Fix Sparse warning
[qemu-kvm/fedora.git] / linux-user / qemu.h
blob9454e668fbb8ff8315998d48cd29c492242a93f3
1 #ifndef QEMU_H
2 #define QEMU_H
4 #include <signal.h>
5 #include <string.h>
7 #include "cpu.h"
9 #undef DEBUG_REMAP
10 #ifdef DEBUG_REMAP
11 #include <stdlib.h>
12 #endif /* DEBUG_REMAP */
14 #include "qemu-types.h"
16 #include "thunk.h"
17 #include "syscall_defs.h"
18 #include "syscall.h"
19 #include "target_signal.h"
20 #include "gdbstub.h"
22 #if defined(USE_NPTL)
23 #define THREAD __thread
24 #else
25 #define THREAD
26 #endif
28 /* This struct is used to hold certain information about the image.
29 * Basically, it replicates in user space what would be certain
30 * task_struct fields in the kernel
32 struct image_info {
33 abi_ulong load_addr;
34 abi_ulong start_code;
35 abi_ulong end_code;
36 abi_ulong start_data;
37 abi_ulong end_data;
38 abi_ulong start_brk;
39 abi_ulong brk;
40 abi_ulong start_mmap;
41 abi_ulong mmap;
42 abi_ulong rss;
43 abi_ulong start_stack;
44 abi_ulong entry;
45 abi_ulong code_offset;
46 abi_ulong data_offset;
47 char **host_argv;
48 int personality;
51 #ifdef TARGET_I386
52 /* Information about the current linux thread */
53 struct vm86_saved_state {
54 uint32_t eax; /* return code */
55 uint32_t ebx;
56 uint32_t ecx;
57 uint32_t edx;
58 uint32_t esi;
59 uint32_t edi;
60 uint32_t ebp;
61 uint32_t esp;
62 uint32_t eflags;
63 uint32_t eip;
64 uint16_t cs, ss, ds, es, fs, gs;
66 #endif
68 #ifdef TARGET_ARM
69 /* FPU emulator */
70 #include "nwfpe/fpa11.h"
71 #endif
73 #define MAX_SIGQUEUE_SIZE 1024
75 struct sigqueue {
76 struct sigqueue *next;
77 target_siginfo_t info;
80 struct emulated_sigtable {
81 int pending; /* true if signal is pending */
82 struct sigqueue *first;
83 struct sigqueue info; /* in order to always have memory for the
84 first signal, we put it here */
87 /* NOTE: we force a big alignment so that the stack stored after is
88 aligned too */
89 typedef struct TaskState {
90 struct TaskState *next;
91 #ifdef TARGET_ARM
92 /* FPA state */
93 FPA11 fpa;
94 int swi_errno;
95 #endif
96 #if defined(TARGET_I386) && !defined(TARGET_X86_64)
97 abi_ulong target_v86;
98 struct vm86_saved_state vm86_saved_regs;
99 struct target_vm86plus_struct vm86plus;
100 uint32_t v86flags;
101 uint32_t v86mask;
102 #endif
103 #ifdef USE_NPTL
104 abi_ulong child_tidptr;
105 #endif
106 #ifdef TARGET_M68K
107 int sim_syscalls;
108 #endif
109 #if defined(TARGET_ARM) || defined(TARGET_M68K)
110 /* Extra fields for semihosted binaries. */
111 uint32_t stack_base;
112 uint32_t heap_base;
113 uint32_t heap_limit;
114 #endif
115 int used; /* non zero if used */
116 struct image_info *info;
118 struct emulated_sigtable sigtab[TARGET_NSIG];
119 struct sigqueue sigqueue_table[MAX_SIGQUEUE_SIZE]; /* siginfo queue */
120 struct sigqueue *first_free; /* first free siginfo queue entry */
121 int signal_pending; /* non zero if a signal may be pending */
123 uint8_t stack[0];
124 } __attribute__((aligned(16))) TaskState;
126 extern char *exec_path;
127 void init_task_state(TaskState *ts);
128 extern const char *qemu_uname_release;
130 /* ??? See if we can avoid exposing so much of the loader internals. */
132 * MAX_ARG_PAGES defines the number of pages allocated for arguments
133 * and envelope for the new program. 32 should suffice, this gives
134 * a maximum env+arg of 128kB w/4KB pages!
136 #define MAX_ARG_PAGES 32
139 * This structure is used to hold the arguments that are
140 * used when loading binaries.
142 struct linux_binprm {
143 char buf[128];
144 void *page[MAX_ARG_PAGES];
145 abi_ulong p;
146 int fd;
147 int e_uid, e_gid;
148 int argc, envc;
149 char **argv;
150 char **envp;
151 char * filename; /* Name of binary */
154 void do_init_thread(struct target_pt_regs *regs, struct image_info *infop);
155 abi_ulong loader_build_argptr(int envc, int argc, abi_ulong sp,
156 abi_ulong stringp, int push_ptr);
157 int loader_exec(const char * filename, char ** argv, char ** envp,
158 struct target_pt_regs * regs, struct image_info *infop);
160 int load_elf_binary(struct linux_binprm * bprm, struct target_pt_regs * regs,
161 struct image_info * info);
162 int load_flt_binary(struct linux_binprm * bprm, struct target_pt_regs * regs,
163 struct image_info * info);
164 #ifdef TARGET_HAS_ELFLOAD32
165 int load_elf_binary_multi(struct linux_binprm *bprm,
166 struct target_pt_regs *regs,
167 struct image_info *info);
168 #endif
170 abi_long memcpy_to_target(abi_ulong dest, const void *src,
171 unsigned long len);
172 void target_set_brk(abi_ulong new_brk);
173 abi_long do_brk(abi_ulong new_brk);
174 void syscall_init(void);
175 abi_long do_syscall(void *cpu_env, int num, abi_long arg1,
176 abi_long arg2, abi_long arg3, abi_long arg4,
177 abi_long arg5, abi_long arg6);
178 void gemu_log(const char *fmt, ...) __attribute__((format(printf,1,2)));
179 extern THREAD CPUState *thread_env;
180 void cpu_loop(CPUState *env);
181 void init_paths(const char *prefix);
182 const char *path(const char *pathname);
183 char *target_strerror(int err);
184 int get_osversion(void);
185 void fork_start(void);
186 void fork_end(int child);
188 #include "qemu-log.h"
190 /* strace.c */
191 void print_syscall(int num,
192 abi_long arg1, abi_long arg2, abi_long arg3,
193 abi_long arg4, abi_long arg5, abi_long arg6);
194 void print_syscall_ret(int num, abi_long arg1);
195 extern int do_strace;
197 /* signal.c */
198 void process_pending_signals(CPUState *cpu_env);
199 void signal_init(void);
200 int queue_signal(CPUState *env, int sig, target_siginfo_t *info);
201 void host_to_target_siginfo(target_siginfo_t *tinfo, const siginfo_t *info);
202 void target_to_host_siginfo(siginfo_t *info, const target_siginfo_t *tinfo);
203 int target_to_host_signal(int sig);
204 int host_to_target_signal(int sig);
205 long do_sigreturn(CPUState *env);
206 long do_rt_sigreturn(CPUState *env);
207 abi_long do_sigaltstack(abi_ulong uss_addr, abi_ulong uoss_addr, abi_ulong sp);
209 #ifdef TARGET_I386
210 /* vm86.c */
211 void save_v86_state(CPUX86State *env);
212 void handle_vm86_trap(CPUX86State *env, int trapno);
213 void handle_vm86_fault(CPUX86State *env);
214 int do_vm86(CPUX86State *env, long subfunction, abi_ulong v86_addr);
215 #elif defined(TARGET_SPARC64)
216 void sparc64_set_context(CPUSPARCState *env);
217 void sparc64_get_context(CPUSPARCState *env);
218 #endif
220 /* mmap.c */
221 int target_mprotect(abi_ulong start, abi_ulong len, int prot);
222 abi_long target_mmap(abi_ulong start, abi_ulong len, int prot,
223 int flags, int fd, abi_ulong offset);
224 int target_munmap(abi_ulong start, abi_ulong len);
225 abi_long target_mremap(abi_ulong old_addr, abi_ulong old_size,
226 abi_ulong new_size, unsigned long flags,
227 abi_ulong new_addr);
228 int target_msync(abi_ulong start, abi_ulong len, int flags);
229 extern unsigned long last_brk;
230 void mmap_lock(void);
231 void mmap_unlock(void);
232 void cpu_list_lock(void);
233 void cpu_list_unlock(void);
234 #if defined(USE_NPTL)
235 void mmap_fork_start(void);
236 void mmap_fork_end(int child);
237 #endif
239 /* main.c */
240 extern unsigned long x86_stack_size;
242 /* user access */
244 #define VERIFY_READ 0
245 #define VERIFY_WRITE 1 /* implies read access */
247 static inline int access_ok(int type, abi_ulong addr, abi_ulong size)
249 return page_check_range((target_ulong)addr, size,
250 (type == VERIFY_READ) ? PAGE_READ : (PAGE_READ | PAGE_WRITE)) == 0;
253 /* NOTE __get_user and __put_user use host pointers and don't check access. */
254 /* These are usually used to access struct data members once the
255 * struct has been locked - usually with lock_user_struct().
257 #define __put_user(x, hptr)\
259 int size = sizeof(*hptr);\
260 switch(size) {\
261 case 1:\
262 *(uint8_t *)(hptr) = (uint8_t)(typeof(*hptr))(x);\
263 break;\
264 case 2:\
265 *(uint16_t *)(hptr) = tswap16((uint16_t)(typeof(*hptr))(x));\
266 break;\
267 case 4:\
268 *(uint32_t *)(hptr) = tswap32((uint32_t)(typeof(*hptr))(x));\
269 break;\
270 case 8:\
271 *(uint64_t *)(hptr) = tswap64((typeof(*hptr))(x));\
272 break;\
273 default:\
274 abort();\
279 #define __get_user(x, hptr) \
281 int size = sizeof(*hptr);\
282 switch(size) {\
283 case 1:\
284 x = (typeof(*hptr))*(uint8_t *)(hptr);\
285 break;\
286 case 2:\
287 x = (typeof(*hptr))tswap16(*(uint16_t *)(hptr));\
288 break;\
289 case 4:\
290 x = (typeof(*hptr))tswap32(*(uint32_t *)(hptr));\
291 break;\
292 case 8:\
293 x = (typeof(*hptr))tswap64(*(uint64_t *)(hptr));\
294 break;\
295 default:\
296 /* avoid warning */\
297 x = 0;\
298 abort();\
303 /* put_user()/get_user() take a guest address and check access */
304 /* These are usually used to access an atomic data type, such as an int,
305 * that has been passed by address. These internally perform locking
306 * and unlocking on the data type.
308 #define put_user(x, gaddr, target_type) \
309 ({ \
310 abi_ulong __gaddr = (gaddr); \
311 target_type *__hptr; \
312 abi_long __ret; \
313 if ((__hptr = lock_user(VERIFY_WRITE, __gaddr, sizeof(target_type), 0))) { \
314 __ret = __put_user((x), __hptr); \
315 unlock_user(__hptr, __gaddr, sizeof(target_type)); \
316 } else \
317 __ret = -TARGET_EFAULT; \
318 __ret; \
321 #define get_user(x, gaddr, target_type) \
322 ({ \
323 abi_ulong __gaddr = (gaddr); \
324 target_type *__hptr; \
325 abi_long __ret; \
326 if ((__hptr = lock_user(VERIFY_READ, __gaddr, sizeof(target_type), 1))) { \
327 __ret = __get_user((x), __hptr); \
328 unlock_user(__hptr, __gaddr, 0); \
329 } else { \
330 /* avoid warning */ \
331 (x) = 0; \
332 __ret = -TARGET_EFAULT; \
334 __ret; \
337 #define put_user_ual(x, gaddr) put_user((x), (gaddr), abi_ulong)
338 #define put_user_sal(x, gaddr) put_user((x), (gaddr), abi_long)
339 #define put_user_u64(x, gaddr) put_user((x), (gaddr), uint64_t)
340 #define put_user_s64(x, gaddr) put_user((x), (gaddr), int64_t)
341 #define put_user_u32(x, gaddr) put_user((x), (gaddr), uint32_t)
342 #define put_user_s32(x, gaddr) put_user((x), (gaddr), int32_t)
343 #define put_user_u16(x, gaddr) put_user((x), (gaddr), uint16_t)
344 #define put_user_s16(x, gaddr) put_user((x), (gaddr), int16_t)
345 #define put_user_u8(x, gaddr) put_user((x), (gaddr), uint8_t)
346 #define put_user_s8(x, gaddr) put_user((x), (gaddr), int8_t)
348 #define get_user_ual(x, gaddr) get_user((x), (gaddr), abi_ulong)
349 #define get_user_sal(x, gaddr) get_user((x), (gaddr), abi_long)
350 #define get_user_u64(x, gaddr) get_user((x), (gaddr), uint64_t)
351 #define get_user_s64(x, gaddr) get_user((x), (gaddr), int64_t)
352 #define get_user_u32(x, gaddr) get_user((x), (gaddr), uint32_t)
353 #define get_user_s32(x, gaddr) get_user((x), (gaddr), int32_t)
354 #define get_user_u16(x, gaddr) get_user((x), (gaddr), uint16_t)
355 #define get_user_s16(x, gaddr) get_user((x), (gaddr), int16_t)
356 #define get_user_u8(x, gaddr) get_user((x), (gaddr), uint8_t)
357 #define get_user_s8(x, gaddr) get_user((x), (gaddr), int8_t)
359 /* copy_from_user() and copy_to_user() are usually used to copy data
360 * buffers between the target and host. These internally perform
361 * locking/unlocking of the memory.
363 abi_long copy_from_user(void *hptr, abi_ulong gaddr, size_t len);
364 abi_long copy_to_user(abi_ulong gaddr, void *hptr, size_t len);
366 /* Functions for accessing guest memory. The tget and tput functions
367 read/write single values, byteswapping as neccessary. The lock_user
368 gets a pointer to a contiguous area of guest memory, but does not perform
369 and byteswapping. lock_user may return either a pointer to the guest
370 memory, or a temporary buffer. */
372 /* Lock an area of guest memory into the host. If copy is true then the
373 host area will have the same contents as the guest. */
374 static inline void *lock_user(int type, abi_ulong guest_addr, long len, int copy)
376 if (!access_ok(type, guest_addr, len))
377 return NULL;
378 #ifdef DEBUG_REMAP
380 void *addr;
381 addr = malloc(len);
382 if (copy)
383 memcpy(addr, g2h(guest_addr), len);
384 else
385 memset(addr, 0, len);
386 return addr;
388 #else
389 return g2h(guest_addr);
390 #endif
393 /* Unlock an area of guest memory. The first LEN bytes must be
394 flushed back to guest memory. host_ptr = NULL is explicitly
395 allowed and does nothing. */
396 static inline void unlock_user(void *host_ptr, abi_ulong guest_addr,
397 long len)
400 #ifdef DEBUG_REMAP
401 if (!host_ptr)
402 return;
403 if (host_ptr == g2h(guest_addr))
404 return;
405 if (len > 0)
406 memcpy(g2h(guest_addr), host_ptr, len);
407 free(host_ptr);
408 #endif
411 /* Return the length of a string in target memory or -TARGET_EFAULT if
412 access error. */
413 abi_long target_strlen(abi_ulong gaddr);
415 /* Like lock_user but for null terminated strings. */
416 static inline void *lock_user_string(abi_ulong guest_addr)
418 abi_long len;
419 len = target_strlen(guest_addr);
420 if (len < 0)
421 return NULL;
422 return lock_user(VERIFY_READ, guest_addr, (long)(len + 1), 1);
425 /* Helper macros for locking/ulocking a target struct. */
426 #define lock_user_struct(type, host_ptr, guest_addr, copy) \
427 (host_ptr = lock_user(type, guest_addr, sizeof(*host_ptr), copy))
428 #define unlock_user_struct(host_ptr, guest_addr, copy) \
429 unlock_user(host_ptr, guest_addr, (copy) ? sizeof(*host_ptr) : 0)
431 #if defined(USE_NPTL)
432 #include <pthread.h>
433 #endif
435 #endif /* QEMU_H */