4 * Copyright (c) 2003-2005 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, write to the Free Software
18 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston MA 02110-1301 USA
21 #include "qemu-common.h"
22 #ifdef CONFIG_USER_ONLY
33 #include "qemu-char.h"
39 #define MAX_PACKET_LENGTH 4096
41 #include "qemu_socket.h"
48 GDB_SIGNAL_UNKNOWN
= 143
51 #ifdef CONFIG_USER_ONLY
53 /* Map target signal numbers to GDB protocol signal numbers and vice
54 * versa. For user emulation's currently supported systems, we can
55 * assume most signals are defined.
58 static int gdb_signal_table
[] = {
218 /* In system mode we only need SIGINT and SIGTRAP; other signals
219 are not yet supported. */
226 static int gdb_signal_table
[] = {
236 #ifdef CONFIG_USER_ONLY
237 static int target_signal_to_gdb (int sig
)
240 for (i
= 0; i
< ARRAY_SIZE (gdb_signal_table
); i
++)
241 if (gdb_signal_table
[i
] == sig
)
243 return GDB_SIGNAL_UNKNOWN
;
247 static int gdb_signal_to_target (int sig
)
249 if (sig
< ARRAY_SIZE (gdb_signal_table
))
250 return gdb_signal_table
[sig
];
257 typedef struct GDBRegisterState
{
263 struct GDBRegisterState
*next
;
273 typedef struct GDBState
{
274 CPUState
*c_cpu
; /* current CPU for step/continue ops */
275 CPUState
*g_cpu
; /* current CPU for other ops */
276 CPUState
*query_cpu
; /* for q{f|s}ThreadInfo */
277 enum RSState state
; /* parsing state */
278 char line_buf
[MAX_PACKET_LENGTH
];
281 uint8_t last_packet
[MAX_PACKET_LENGTH
+ 4];
284 #ifdef CONFIG_USER_ONLY
288 CharDriverState
*chr
;
292 /* By default use no IRQs and no timers while single stepping so as to
293 * make single stepping like an ICE HW step.
295 static int sstep_flags
= SSTEP_ENABLE
|SSTEP_NOIRQ
|SSTEP_NOTIMER
;
297 static GDBState
*gdbserver_state
;
299 /* This is an ugly hack to cope with both new and old gdb.
300 If gdb sends qXfer:features:read then assume we're talking to a newish
301 gdb that understands target descriptions. */
302 static int gdb_has_xml
;
304 #ifdef CONFIG_USER_ONLY
305 /* XXX: This is not thread safe. Do we care? */
306 static int gdbserver_fd
= -1;
308 static int get_char(GDBState
*s
)
314 ret
= recv(s
->fd
, &ch
, 1, 0);
316 if (errno
== ECONNRESET
)
318 if (errno
!= EINTR
&& errno
!= EAGAIN
)
320 } else if (ret
== 0) {
332 static gdb_syscall_complete_cb gdb_current_syscall_cb
;
340 /* If gdb is connected when the first semihosting syscall occurs then use
341 remote gdb syscalls. Otherwise use native file IO. */
342 int use_gdb_syscalls(void)
344 if (gdb_syscall_mode
== GDB_SYS_UNKNOWN
) {
345 gdb_syscall_mode
= (gdbserver_state
? GDB_SYS_ENABLED
348 return gdb_syscall_mode
== GDB_SYS_ENABLED
;
351 /* Resume execution. */
352 static inline void gdb_continue(GDBState
*s
)
354 #ifdef CONFIG_USER_ONLY
355 s
->running_state
= 1;
361 static void put_buffer(GDBState
*s
, const uint8_t *buf
, int len
)
363 #ifdef CONFIG_USER_ONLY
367 ret
= send(s
->fd
, buf
, len
, 0);
369 if (errno
!= EINTR
&& errno
!= EAGAIN
)
377 qemu_chr_write(s
->chr
, buf
, len
);
381 static inline int fromhex(int v
)
383 if (v
>= '0' && v
<= '9')
385 else if (v
>= 'A' && v
<= 'F')
387 else if (v
>= 'a' && v
<= 'f')
393 static inline int tohex(int v
)
401 static void memtohex(char *buf
, const uint8_t *mem
, int len
)
406 for(i
= 0; i
< len
; i
++) {
408 *q
++ = tohex(c
>> 4);
409 *q
++ = tohex(c
& 0xf);
414 static void hextomem(uint8_t *mem
, const char *buf
, int len
)
418 for(i
= 0; i
< len
; i
++) {
419 mem
[i
] = (fromhex(buf
[0]) << 4) | fromhex(buf
[1]);
424 /* return -1 if error, 0 if OK */
425 static int put_packet_binary(GDBState
*s
, const char *buf
, int len
)
436 for(i
= 0; i
< len
; i
++) {
440 *(p
++) = tohex((csum
>> 4) & 0xf);
441 *(p
++) = tohex((csum
) & 0xf);
443 s
->last_packet_len
= p
- s
->last_packet
;
444 put_buffer(s
, (uint8_t *)s
->last_packet
, s
->last_packet_len
);
446 #ifdef CONFIG_USER_ONLY
459 /* return -1 if error, 0 if OK */
460 static int put_packet(GDBState
*s
, const char *buf
)
463 printf("reply='%s'\n", buf
);
466 return put_packet_binary(s
, buf
, strlen(buf
));
469 /* The GDB remote protocol transfers values in target byte order. This means
470 we can use the raw memory access routines to access the value buffer.
471 Conveniently, these also handle the case where the buffer is mis-aligned.
473 #define GET_REG8(val) do { \
474 stb_p(mem_buf, val); \
477 #define GET_REG16(val) do { \
478 stw_p(mem_buf, val); \
481 #define GET_REG32(val) do { \
482 stl_p(mem_buf, val); \
485 #define GET_REG64(val) do { \
486 stq_p(mem_buf, val); \
490 #if TARGET_LONG_BITS == 64
491 #define GET_REGL(val) GET_REG64(val)
492 #define ldtul_p(addr) ldq_p(addr)
494 #define GET_REGL(val) GET_REG32(val)
495 #define ldtul_p(addr) ldl_p(addr)
498 #if defined(TARGET_I386)
501 static const int gpr_map
[16] = {
502 R_EAX
, R_EBX
, R_ECX
, R_EDX
, R_ESI
, R_EDI
, R_EBP
, R_ESP
,
503 8, 9, 10, 11, 12, 13, 14, 15
506 static const int gpr_map
[8] = {0, 1, 2, 3, 4, 5, 6, 7};
509 #define NUM_CORE_REGS (CPU_NB_REGS * 2 + 25)
511 static int cpu_gdb_read_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
513 if (n
< CPU_NB_REGS
) {
514 GET_REGL(env
->regs
[gpr_map
[n
]]);
515 } else if (n
>= CPU_NB_REGS
+ 8 && n
< CPU_NB_REGS
+ 16) {
516 /* FIXME: byteswap float values. */
517 #ifdef USE_X86LDOUBLE
518 memcpy(mem_buf
, &env
->fpregs
[n
- (CPU_NB_REGS
+ 8)], 10);
520 memset(mem_buf
, 0, 10);
523 } else if (n
>= CPU_NB_REGS
+ 24) {
524 n
-= CPU_NB_REGS
+ 24;
525 if (n
< CPU_NB_REGS
) {
526 stq_p(mem_buf
, env
->xmm_regs
[n
].XMM_Q(0));
527 stq_p(mem_buf
+ 8, env
->xmm_regs
[n
].XMM_Q(1));
529 } else if (n
== CPU_NB_REGS
) {
530 GET_REG32(env
->mxcsr
);
535 case 0: GET_REGL(env
->eip
);
536 case 1: GET_REG32(env
->eflags
);
537 case 2: GET_REG32(env
->segs
[R_CS
].selector
);
538 case 3: GET_REG32(env
->segs
[R_SS
].selector
);
539 case 4: GET_REG32(env
->segs
[R_DS
].selector
);
540 case 5: GET_REG32(env
->segs
[R_ES
].selector
);
541 case 6: GET_REG32(env
->segs
[R_FS
].selector
);
542 case 7: GET_REG32(env
->segs
[R_GS
].selector
);
543 /* 8...15 x87 regs. */
544 case 16: GET_REG32(env
->fpuc
);
545 case 17: GET_REG32((env
->fpus
& ~0x3800) | (env
->fpstt
& 0x7) << 11);
546 case 18: GET_REG32(0); /* ftag */
547 case 19: GET_REG32(0); /* fiseg */
548 case 20: GET_REG32(0); /* fioff */
549 case 21: GET_REG32(0); /* foseg */
550 case 22: GET_REG32(0); /* fooff */
551 case 23: GET_REG32(0); /* fop */
558 static int cpu_gdb_write_register(CPUState
*env
, uint8_t *mem_buf
, int i
)
562 if (i
< CPU_NB_REGS
) {
563 env
->regs
[gpr_map
[i
]] = ldtul_p(mem_buf
);
564 return sizeof(target_ulong
);
565 } else if (i
>= CPU_NB_REGS
+ 8 && i
< CPU_NB_REGS
+ 16) {
566 i
-= CPU_NB_REGS
+ 8;
567 #ifdef USE_X86LDOUBLE
568 memcpy(&env
->fpregs
[i
], mem_buf
, 10);
571 } else if (i
>= CPU_NB_REGS
+ 24) {
572 i
-= CPU_NB_REGS
+ 24;
573 if (i
< CPU_NB_REGS
) {
574 env
->xmm_regs
[i
].XMM_Q(0) = ldq_p(mem_buf
);
575 env
->xmm_regs
[i
].XMM_Q(1) = ldq_p(mem_buf
+ 8);
577 } else if (i
== CPU_NB_REGS
) {
578 env
->mxcsr
= ldl_p(mem_buf
);
584 case 0: env
->eip
= ldtul_p(mem_buf
); return sizeof(target_ulong
);
585 case 1: env
->eflags
= ldl_p(mem_buf
); return 4;
586 #if defined(CONFIG_USER_ONLY)
587 #define LOAD_SEG(index, sreg)\
588 tmp = ldl_p(mem_buf);\
589 if (tmp != env->segs[sreg].selector)\
590 cpu_x86_load_seg(env, sreg, tmp);
592 /* FIXME: Honor segment registers. Needs to avoid raising an exception
593 when the selector is invalid. */
594 #define LOAD_SEG(index, sreg) do {} while(0)
596 case 2: LOAD_SEG(10, R_CS
); return 4;
597 case 3: LOAD_SEG(11, R_SS
); return 4;
598 case 4: LOAD_SEG(12, R_DS
); return 4;
599 case 5: LOAD_SEG(13, R_ES
); return 4;
600 case 6: LOAD_SEG(14, R_FS
); return 4;
601 case 7: LOAD_SEG(15, R_GS
); return 4;
602 /* 8...15 x87 regs. */
603 case 16: env
->fpuc
= ldl_p(mem_buf
); return 4;
605 tmp
= ldl_p(mem_buf
);
606 env
->fpstt
= (tmp
>> 11) & 7;
607 env
->fpus
= tmp
& ~0x3800;
609 case 18: /* ftag */ return 4;
610 case 19: /* fiseg */ return 4;
611 case 20: /* fioff */ return 4;
612 case 21: /* foseg */ return 4;
613 case 22: /* fooff */ return 4;
614 case 23: /* fop */ return 4;
618 /* Unrecognised register. */
622 #elif defined (TARGET_PPC)
624 /* Old gdb always expects FP registers. Newer (xml-aware) gdb only
625 expects whatever the target description contains. Due to a
626 historical mishap the FP registers appear in between core integer
627 regs and PC, MSR, CR, and so forth. We hack round this by giving the
628 FP regs zero size when talking to a newer gdb. */
629 #define NUM_CORE_REGS 71
630 #if defined (TARGET_PPC64)
631 #define GDB_CORE_XML "power64-core.xml"
633 #define GDB_CORE_XML "power-core.xml"
636 static int cpu_gdb_read_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
640 GET_REGL(env
->gpr
[n
]);
645 stfq_p(mem_buf
, env
->fpr
[n
-32]);
649 case 64: GET_REGL(env
->nip
);
650 case 65: GET_REGL(env
->msr
);
655 for (i
= 0; i
< 8; i
++)
656 cr
|= env
->crf
[i
] << (32 - ((i
+ 1) * 4));
659 case 67: GET_REGL(env
->lr
);
660 case 68: GET_REGL(env
->ctr
);
661 case 69: GET_REGL(env
->xer
);
666 GET_REG32(0); /* fpscr */
673 static int cpu_gdb_write_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
677 env
->gpr
[n
] = ldtul_p(mem_buf
);
678 return sizeof(target_ulong
);
683 env
->fpr
[n
-32] = ldfq_p(mem_buf
);
688 env
->nip
= ldtul_p(mem_buf
);
689 return sizeof(target_ulong
);
691 ppc_store_msr(env
, ldtul_p(mem_buf
));
692 return sizeof(target_ulong
);
695 uint32_t cr
= ldl_p(mem_buf
);
697 for (i
= 0; i
< 8; i
++)
698 env
->crf
[i
] = (cr
>> (32 - ((i
+ 1) * 4))) & 0xF;
702 env
->lr
= ldtul_p(mem_buf
);
703 return sizeof(target_ulong
);
705 env
->ctr
= ldtul_p(mem_buf
);
706 return sizeof(target_ulong
);
708 env
->xer
= ldtul_p(mem_buf
);
709 return sizeof(target_ulong
);
720 #elif defined (TARGET_SPARC)
722 #if defined(TARGET_SPARC64) && !defined(TARGET_ABI32)
723 #define NUM_CORE_REGS 86
725 #define NUM_CORE_REGS 72
729 #define GET_REGA(val) GET_REG32(val)
731 #define GET_REGA(val) GET_REGL(val)
734 static int cpu_gdb_read_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
738 GET_REGA(env
->gregs
[n
]);
741 /* register window */
742 GET_REGA(env
->regwptr
[n
- 8]);
744 #if defined(TARGET_ABI32) || !defined(TARGET_SPARC64)
747 GET_REG32(*((uint32_t *)&env
->fpr
[n
- 32]));
749 /* Y, PSR, WIM, TBR, PC, NPC, FPSR, CPSR */
751 case 64: GET_REGA(env
->y
);
752 case 65: GET_REGA(GET_PSR(env
));
753 case 66: GET_REGA(env
->wim
);
754 case 67: GET_REGA(env
->tbr
);
755 case 68: GET_REGA(env
->pc
);
756 case 69: GET_REGA(env
->npc
);
757 case 70: GET_REGA(env
->fsr
);
758 case 71: GET_REGA(0); /* csr */
759 default: GET_REGA(0);
764 GET_REG32(*((uint32_t *)&env
->fpr
[n
- 32]));
767 /* f32-f62 (double width, even numbers only) */
770 val
= (uint64_t)*((uint32_t *)&env
->fpr
[(n
- 64) * 2 + 32]) << 32;
771 val
|= *((uint32_t *)&env
->fpr
[(n
- 64) * 2 + 33]);
775 case 80: GET_REGL(env
->pc
);
776 case 81: GET_REGL(env
->npc
);
777 case 82: GET_REGL(((uint64_t)GET_CCR(env
) << 32) |
778 ((env
->asi
& 0xff) << 24) |
779 ((env
->pstate
& 0xfff) << 8) |
781 case 83: GET_REGL(env
->fsr
);
782 case 84: GET_REGL(env
->fprs
);
783 case 85: GET_REGL(env
->y
);
789 static int cpu_gdb_write_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
791 #if defined(TARGET_ABI32)
794 tmp
= ldl_p(mem_buf
);
798 tmp
= ldtul_p(mem_buf
);
805 /* register window */
806 env
->regwptr
[n
- 8] = tmp
;
808 #if defined(TARGET_ABI32) || !defined(TARGET_SPARC64)
811 *((uint32_t *)&env
->fpr
[n
- 32]) = tmp
;
813 /* Y, PSR, WIM, TBR, PC, NPC, FPSR, CPSR */
815 case 64: env
->y
= tmp
; break;
816 case 65: PUT_PSR(env
, tmp
); break;
817 case 66: env
->wim
= tmp
; break;
818 case 67: env
->tbr
= tmp
; break;
819 case 68: env
->pc
= tmp
; break;
820 case 69: env
->npc
= tmp
; break;
821 case 70: env
->fsr
= tmp
; break;
829 env
->fpr
[n
] = ldfl_p(mem_buf
);
832 /* f32-f62 (double width, even numbers only) */
833 *((uint32_t *)&env
->fpr
[(n
- 64) * 2 + 32]) = tmp
>> 32;
834 *((uint32_t *)&env
->fpr
[(n
- 64) * 2 + 33]) = tmp
;
837 case 80: env
->pc
= tmp
; break;
838 case 81: env
->npc
= tmp
; break;
840 PUT_CCR(env
, tmp
>> 32);
841 env
->asi
= (tmp
>> 24) & 0xff;
842 env
->pstate
= (tmp
>> 8) & 0xfff;
843 PUT_CWP64(env
, tmp
& 0xff);
845 case 83: env
->fsr
= tmp
; break;
846 case 84: env
->fprs
= tmp
; break;
847 case 85: env
->y
= tmp
; break;
854 #elif defined (TARGET_ARM)
856 /* Old gdb always expect FPA registers. Newer (xml-aware) gdb only expect
857 whatever the target description contains. Due to a historical mishap
858 the FPA registers appear in between core integer regs and the CPSR.
859 We hack round this by giving the FPA regs zero size when talking to a
861 #define NUM_CORE_REGS 26
862 #define GDB_CORE_XML "arm-core.xml"
864 static int cpu_gdb_read_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
867 /* Core integer register. */
868 GET_REG32(env
->regs
[n
]);
874 memset(mem_buf
, 0, 12);
879 /* FPA status register. */
885 GET_REG32(cpsr_read(env
));
887 /* Unknown register. */
891 static int cpu_gdb_write_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
895 tmp
= ldl_p(mem_buf
);
897 /* Mask out low bit of PC to workaround gdb bugs. This will probably
898 cause problems if we ever implement the Jazelle DBX extensions. */
903 /* Core integer register. */
907 if (n
< 24) { /* 16-23 */
908 /* FPA registers (ignored). */
915 /* FPA status register (ignored). */
921 cpsr_write (env
, tmp
, 0xffffffff);
924 /* Unknown register. */
928 #elif defined (TARGET_M68K)
930 #define NUM_CORE_REGS 18
932 #define GDB_CORE_XML "cf-core.xml"
934 static int cpu_gdb_read_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
938 GET_REG32(env
->dregs
[n
]);
941 GET_REG32(env
->aregs
[n
- 8]);
944 case 16: GET_REG32(env
->sr
);
945 case 17: GET_REG32(env
->pc
);
948 /* FP registers not included here because they vary between
949 ColdFire and m68k. Use XML bits for these. */
953 static int cpu_gdb_write_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
957 tmp
= ldl_p(mem_buf
);
964 env
->aregs
[n
- 8] = tmp
;
967 case 16: env
->sr
= tmp
; break;
968 case 17: env
->pc
= tmp
; break;
974 #elif defined (TARGET_MIPS)
976 #define NUM_CORE_REGS 73
978 static int cpu_gdb_read_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
981 GET_REGL(env
->active_tc
.gpr
[n
]);
983 if (env
->CP0_Config1
& (1 << CP0C1_FP
)) {
984 if (n
>= 38 && n
< 70) {
985 if (env
->CP0_Status
& (1 << CP0St_FR
))
986 GET_REGL(env
->active_fpu
.fpr
[n
- 38].d
);
988 GET_REGL(env
->active_fpu
.fpr
[n
- 38].w
[FP_ENDIAN_IDX
]);
991 case 70: GET_REGL((int32_t)env
->active_fpu
.fcr31
);
992 case 71: GET_REGL((int32_t)env
->active_fpu
.fcr0
);
996 case 32: GET_REGL((int32_t)env
->CP0_Status
);
997 case 33: GET_REGL(env
->active_tc
.LO
[0]);
998 case 34: GET_REGL(env
->active_tc
.HI
[0]);
999 case 35: GET_REGL(env
->CP0_BadVAddr
);
1000 case 36: GET_REGL((int32_t)env
->CP0_Cause
);
1001 case 37: GET_REGL(env
->active_tc
.PC
);
1002 case 72: GET_REGL(0); /* fp */
1003 case 89: GET_REGL((int32_t)env
->CP0_PRid
);
1005 if (n
>= 73 && n
<= 88) {
1006 /* 16 embedded regs. */
1013 /* convert MIPS rounding mode in FCR31 to IEEE library */
1014 static unsigned int ieee_rm
[] =
1016 float_round_nearest_even
,
1017 float_round_to_zero
,
1021 #define RESTORE_ROUNDING_MODE \
1022 set_float_rounding_mode(ieee_rm[env->active_fpu.fcr31 & 3], &env->active_fpu.fp_status)
1024 static int cpu_gdb_write_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
1028 tmp
= ldtul_p(mem_buf
);
1031 env
->active_tc
.gpr
[n
] = tmp
;
1032 return sizeof(target_ulong
);
1034 if (env
->CP0_Config1
& (1 << CP0C1_FP
)
1035 && n
>= 38 && n
< 73) {
1037 if (env
->CP0_Status
& (1 << CP0St_FR
))
1038 env
->active_fpu
.fpr
[n
- 38].d
= tmp
;
1040 env
->active_fpu
.fpr
[n
- 38].w
[FP_ENDIAN_IDX
] = tmp
;
1044 env
->active_fpu
.fcr31
= tmp
& 0xFF83FFFF;
1045 /* set rounding mode */
1046 RESTORE_ROUNDING_MODE
;
1047 #ifndef CONFIG_SOFTFLOAT
1048 /* no floating point exception for native float */
1049 SET_FP_ENABLE(env
->active_fpu
.fcr31
, 0);
1052 case 71: env
->active_fpu
.fcr0
= tmp
; break;
1054 return sizeof(target_ulong
);
1057 case 32: env
->CP0_Status
= tmp
; break;
1058 case 33: env
->active_tc
.LO
[0] = tmp
; break;
1059 case 34: env
->active_tc
.HI
[0] = tmp
; break;
1060 case 35: env
->CP0_BadVAddr
= tmp
; break;
1061 case 36: env
->CP0_Cause
= tmp
; break;
1062 case 37: env
->active_tc
.PC
= tmp
; break;
1063 case 72: /* fp, ignored */ break;
1067 /* Other registers are readonly. Ignore writes. */
1071 return sizeof(target_ulong
);
1073 #elif defined (TARGET_SH4)
1075 /* Hint: Use "set architecture sh4" in GDB to see fpu registers */
1076 /* FIXME: We should use XML for this. */
1078 #define NUM_CORE_REGS 59
1080 static int cpu_gdb_read_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
1083 if ((env
->sr
& (SR_MD
| SR_RB
)) == (SR_MD
| SR_RB
)) {
1084 GET_REGL(env
->gregs
[n
+ 16]);
1086 GET_REGL(env
->gregs
[n
]);
1088 } else if (n
< 16) {
1089 GET_REGL(env
->gregs
[n
- 8]);
1090 } else if (n
>= 25 && n
< 41) {
1091 GET_REGL(env
->fregs
[(n
- 25) + ((env
->fpscr
& FPSCR_FR
) ? 16 : 0)]);
1092 } else if (n
>= 43 && n
< 51) {
1093 GET_REGL(env
->gregs
[n
- 43]);
1094 } else if (n
>= 51 && n
< 59) {
1095 GET_REGL(env
->gregs
[n
- (51 - 16)]);
1098 case 16: GET_REGL(env
->pc
);
1099 case 17: GET_REGL(env
->pr
);
1100 case 18: GET_REGL(env
->gbr
);
1101 case 19: GET_REGL(env
->vbr
);
1102 case 20: GET_REGL(env
->mach
);
1103 case 21: GET_REGL(env
->macl
);
1104 case 22: GET_REGL(env
->sr
);
1105 case 23: GET_REGL(env
->fpul
);
1106 case 24: GET_REGL(env
->fpscr
);
1107 case 41: GET_REGL(env
->ssr
);
1108 case 42: GET_REGL(env
->spc
);
1114 static int cpu_gdb_write_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
1118 tmp
= ldl_p(mem_buf
);
1121 if ((env
->sr
& (SR_MD
| SR_RB
)) == (SR_MD
| SR_RB
)) {
1122 env
->gregs
[n
+ 16] = tmp
;
1124 env
->gregs
[n
] = tmp
;
1127 } else if (n
< 16) {
1128 env
->gregs
[n
- 8] = tmp
;
1130 } else if (n
>= 25 && n
< 41) {
1131 env
->fregs
[(n
- 25) + ((env
->fpscr
& FPSCR_FR
) ? 16 : 0)] = tmp
;
1132 } else if (n
>= 43 && n
< 51) {
1133 env
->gregs
[n
- 43] = tmp
;
1135 } else if (n
>= 51 && n
< 59) {
1136 env
->gregs
[n
- (51 - 16)] = tmp
;
1140 case 16: env
->pc
= tmp
;
1141 case 17: env
->pr
= tmp
;
1142 case 18: env
->gbr
= tmp
;
1143 case 19: env
->vbr
= tmp
;
1144 case 20: env
->mach
= tmp
;
1145 case 21: env
->macl
= tmp
;
1146 case 22: env
->sr
= tmp
;
1147 case 23: env
->fpul
= tmp
;
1148 case 24: env
->fpscr
= tmp
;
1149 case 41: env
->ssr
= tmp
;
1150 case 42: env
->spc
= tmp
;
1156 #elif defined (TARGET_CRIS)
1158 #define NUM_CORE_REGS 49
1160 static int cpu_gdb_read_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
1164 srs
= env
->pregs
[PR_SRS
];
1166 GET_REG32(env
->regs
[n
]);
1169 if (n
>= 21 && n
< 32) {
1170 GET_REG32(env
->pregs
[n
- 16]);
1172 if (n
>= 33 && n
< 49) {
1173 GET_REG32(env
->sregs
[srs
][n
- 33]);
1176 case 16: GET_REG8(env
->pregs
[0]);
1177 case 17: GET_REG8(env
->pregs
[1]);
1178 case 18: GET_REG32(env
->pregs
[2]);
1179 case 19: GET_REG8(srs
);
1180 case 20: GET_REG16(env
->pregs
[4]);
1181 case 32: GET_REG32(env
->pc
);
1187 static int cpu_gdb_write_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
1194 tmp
= ldl_p(mem_buf
);
1200 if (n
>= 21 && n
< 32) {
1201 env
->pregs
[n
- 16] = tmp
;
1204 /* FIXME: Should support function regs be writable? */
1208 case 18: env
->pregs
[PR_PID
] = tmp
; break;
1211 case 32: env
->pc
= tmp
; break;
1216 #elif defined (TARGET_ALPHA)
1218 #define NUM_CORE_REGS 65
1220 static int cpu_gdb_read_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
1223 GET_REGL(env
->ir
[n
]);
1231 val
=*((uint64_t *)&env
->fir
[n
-32]);
1235 GET_REGL(env
->fpcr
);
1247 static int cpu_gdb_write_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
1250 tmp
= ldtul_p(mem_buf
);
1256 if (n
> 31 && n
< 63) {
1257 env
->fir
[n
- 32] = ldfl_p(mem_buf
);
1268 #define NUM_CORE_REGS 0
1270 static int cpu_gdb_read_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
1275 static int cpu_gdb_write_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
1282 static int num_g_regs
= NUM_CORE_REGS
;
1285 /* Encode data using the encoding for 'x' packets. */
1286 static int memtox(char *buf
, const char *mem
, int len
)
1294 case '#': case '$': case '*': case '}':
1306 static const char *get_feature_xml(const char *p
, const char **newp
)
1308 extern const char *const xml_builtin
[][2];
1312 static char target_xml
[1024];
1315 while (p
[len
] && p
[len
] != ':')
1320 if (strncmp(p
, "target.xml", len
) == 0) {
1321 /* Generate the XML description for this CPU. */
1322 if (!target_xml
[0]) {
1323 GDBRegisterState
*r
;
1325 snprintf(target_xml
, sizeof(target_xml
),
1326 "<?xml version=\"1.0\"?>"
1327 "<!DOCTYPE target SYSTEM \"gdb-target.dtd\">"
1329 "<xi:include href=\"%s\"/>",
1332 for (r
= first_cpu
->gdb_regs
; r
; r
= r
->next
) {
1333 strcat(target_xml
, "<xi:include href=\"");
1334 strcat(target_xml
, r
->xml
);
1335 strcat(target_xml
, "\"/>");
1337 strcat(target_xml
, "</target>");
1341 for (i
= 0; ; i
++) {
1342 name
= xml_builtin
[i
][0];
1343 if (!name
|| (strncmp(name
, p
, len
) == 0 && strlen(name
) == len
))
1346 return name
? xml_builtin
[i
][1] : NULL
;
1350 static int gdb_read_register(CPUState
*env
, uint8_t *mem_buf
, int reg
)
1352 GDBRegisterState
*r
;
1354 if (reg
< NUM_CORE_REGS
)
1355 return cpu_gdb_read_register(env
, mem_buf
, reg
);
1357 for (r
= env
->gdb_regs
; r
; r
= r
->next
) {
1358 if (r
->base_reg
<= reg
&& reg
< r
->base_reg
+ r
->num_regs
) {
1359 return r
->get_reg(env
, mem_buf
, reg
- r
->base_reg
);
1365 static int gdb_write_register(CPUState
*env
, uint8_t *mem_buf
, int reg
)
1367 GDBRegisterState
*r
;
1369 if (reg
< NUM_CORE_REGS
)
1370 return cpu_gdb_write_register(env
, mem_buf
, reg
);
1372 for (r
= env
->gdb_regs
; r
; r
= r
->next
) {
1373 if (r
->base_reg
<= reg
&& reg
< r
->base_reg
+ r
->num_regs
) {
1374 return r
->set_reg(env
, mem_buf
, reg
- r
->base_reg
);
1380 /* Register a supplemental set of CPU registers. If g_pos is nonzero it
1381 specifies the first register number and these registers are included in
1382 a standard "g" packet. Direction is relative to gdb, i.e. get_reg is
1383 gdb reading a CPU register, and set_reg is gdb modifying a CPU register.
1386 void gdb_register_coprocessor(CPUState
* env
,
1387 gdb_reg_cb get_reg
, gdb_reg_cb set_reg
,
1388 int num_regs
, const char *xml
, int g_pos
)
1390 GDBRegisterState
*s
;
1391 GDBRegisterState
**p
;
1392 static int last_reg
= NUM_CORE_REGS
;
1394 s
= (GDBRegisterState
*)qemu_mallocz(sizeof(GDBRegisterState
));
1395 s
->base_reg
= last_reg
;
1396 s
->num_regs
= num_regs
;
1397 s
->get_reg
= get_reg
;
1398 s
->set_reg
= set_reg
;
1402 /* Check for duplicates. */
1403 if (strcmp((*p
)->xml
, xml
) == 0)
1407 /* Add to end of list. */
1408 last_reg
+= num_regs
;
1411 if (g_pos
!= s
->base_reg
) {
1412 fprintf(stderr
, "Error: Bad gdb register numbering for '%s'\n"
1413 "Expected %d got %d\n", xml
, g_pos
, s
->base_reg
);
1415 num_g_regs
= last_reg
;
1420 #ifndef CONFIG_USER_ONLY
1421 static const int xlat_gdb_type
[] = {
1422 [GDB_WATCHPOINT_WRITE
] = BP_GDB
| BP_MEM_WRITE
,
1423 [GDB_WATCHPOINT_READ
] = BP_GDB
| BP_MEM_READ
,
1424 [GDB_WATCHPOINT_ACCESS
] = BP_GDB
| BP_MEM_ACCESS
,
1428 static int gdb_breakpoint_insert(target_ulong addr
, target_ulong len
, int type
)
1434 return kvm_insert_breakpoint(gdbserver_state
->c_cpu
, addr
, len
, type
);
1437 case GDB_BREAKPOINT_SW
:
1438 case GDB_BREAKPOINT_HW
:
1439 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
1440 err
= cpu_breakpoint_insert(env
, addr
, BP_GDB
, NULL
);
1445 #ifndef CONFIG_USER_ONLY
1446 case GDB_WATCHPOINT_WRITE
:
1447 case GDB_WATCHPOINT_READ
:
1448 case GDB_WATCHPOINT_ACCESS
:
1449 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
1450 err
= cpu_watchpoint_insert(env
, addr
, len
, xlat_gdb_type
[type
],
1462 static int gdb_breakpoint_remove(target_ulong addr
, target_ulong len
, int type
)
1468 return kvm_remove_breakpoint(gdbserver_state
->c_cpu
, addr
, len
, type
);
1471 case GDB_BREAKPOINT_SW
:
1472 case GDB_BREAKPOINT_HW
:
1473 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
1474 err
= cpu_breakpoint_remove(env
, addr
, BP_GDB
);
1479 #ifndef CONFIG_USER_ONLY
1480 case GDB_WATCHPOINT_WRITE
:
1481 case GDB_WATCHPOINT_READ
:
1482 case GDB_WATCHPOINT_ACCESS
:
1483 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
1484 err
= cpu_watchpoint_remove(env
, addr
, len
, xlat_gdb_type
[type
]);
1495 static void gdb_breakpoint_remove_all(void)
1499 if (kvm_enabled()) {
1500 kvm_remove_all_breakpoints(gdbserver_state
->c_cpu
);
1504 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
1505 cpu_breakpoint_remove_all(env
, BP_GDB
);
1506 #ifndef CONFIG_USER_ONLY
1507 cpu_watchpoint_remove_all(env
, BP_GDB
);
1512 static int gdb_handle_packet(GDBState
*s
, const char *line_buf
)
1516 int ch
, reg_size
, type
, res
, thread
;
1517 char buf
[MAX_PACKET_LENGTH
];
1518 uint8_t mem_buf
[MAX_PACKET_LENGTH
];
1520 target_ulong addr
, len
;
1523 printf("command='%s'\n", line_buf
);
1529 /* TODO: Make this return the correct value for user-mode. */
1530 snprintf(buf
, sizeof(buf
), "T%02xthread:%02x;", GDB_SIGNAL_TRAP
,
1531 s
->c_cpu
->cpu_index
+1);
1533 /* Remove all the breakpoints when this query is issued,
1534 * because gdb is doing and initial connect and the state
1535 * should be cleaned up.
1537 gdb_breakpoint_remove_all();
1541 addr
= strtoull(p
, (char **)&p
, 16);
1542 #if defined(TARGET_I386)
1543 s
->c_cpu
->eip
= addr
;
1544 kvm_load_registers(s
->c_cpu
);
1545 #elif defined (TARGET_PPC)
1546 s
->c_cpu
->nip
= addr
;
1547 kvm_load_registers(s
->c_cpu
);
1548 #elif defined (TARGET_SPARC)
1549 s
->c_cpu
->pc
= addr
;
1550 s
->c_cpu
->npc
= addr
+ 4;
1551 #elif defined (TARGET_ARM)
1552 s
->c_cpu
->regs
[15] = addr
;
1553 #elif defined (TARGET_SH4)
1554 s
->c_cpu
->pc
= addr
;
1555 #elif defined (TARGET_MIPS)
1556 s
->c_cpu
->active_tc
.PC
= addr
;
1557 #elif defined (TARGET_CRIS)
1558 s
->c_cpu
->pc
= addr
;
1559 #elif defined (TARGET_ALPHA)
1560 s
->c_cpu
->pc
= addr
;
1567 s
->signal
= gdb_signal_to_target (strtoul(p
, (char **)&p
, 16));
1568 if (s
->signal
== -1)
1573 /* Kill the target */
1574 fprintf(stderr
, "\nQEMU: Terminated via GDBstub\n");
1578 gdb_breakpoint_remove_all();
1580 put_packet(s
, "OK");
1584 addr
= strtoull(p
, (char **)&p
, 16);
1585 #if defined(TARGET_I386)
1586 s
->c_cpu
->eip
= addr
;
1587 kvm_load_registers(s
->c_cpu
);
1588 #elif defined (TARGET_PPC)
1589 s
->c_cpu
->nip
= addr
;
1590 kvm_load_registers(s
->c_cpu
);
1591 #elif defined (TARGET_SPARC)
1592 s
->c_cpu
->pc
= addr
;
1593 s
->c_cpu
->npc
= addr
+ 4;
1594 #elif defined (TARGET_ARM)
1595 s
->c_cpu
->regs
[15] = addr
;
1596 #elif defined (TARGET_SH4)
1597 s
->c_cpu
->pc
= addr
;
1598 #elif defined (TARGET_MIPS)
1599 s
->c_cpu
->active_tc
.PC
= addr
;
1600 #elif defined (TARGET_CRIS)
1601 s
->c_cpu
->pc
= addr
;
1602 #elif defined (TARGET_ALPHA)
1603 s
->c_cpu
->pc
= addr
;
1606 cpu_single_step(s
->c_cpu
, sstep_flags
);
1614 ret
= strtoull(p
, (char **)&p
, 16);
1617 err
= strtoull(p
, (char **)&p
, 16);
1624 if (gdb_current_syscall_cb
)
1625 gdb_current_syscall_cb(s
->c_cpu
, ret
, err
);
1627 put_packet(s
, "T02");
1634 kvm_save_registers(s
->g_cpu
);
1636 for (addr
= 0; addr
< num_g_regs
; addr
++) {
1637 reg_size
= gdb_read_register(s
->g_cpu
, mem_buf
+ len
, addr
);
1640 memtohex(buf
, mem_buf
, len
);
1644 registers
= mem_buf
;
1645 len
= strlen(p
) / 2;
1646 hextomem((uint8_t *)registers
, p
, len
);
1647 for (addr
= 0; addr
< num_g_regs
&& len
> 0; addr
++) {
1648 reg_size
= gdb_write_register(s
->g_cpu
, registers
, addr
);
1650 registers
+= reg_size
;
1652 kvm_load_registers(s
->g_cpu
);
1653 put_packet(s
, "OK");
1656 addr
= strtoull(p
, (char **)&p
, 16);
1659 len
= strtoull(p
, NULL
, 16);
1660 if (cpu_memory_rw_debug(s
->g_cpu
, addr
, mem_buf
, len
, 0) != 0) {
1661 put_packet (s
, "E14");
1663 memtohex(buf
, mem_buf
, len
);
1668 addr
= strtoull(p
, (char **)&p
, 16);
1671 len
= strtoull(p
, (char **)&p
, 16);
1674 hextomem(mem_buf
, p
, len
);
1675 if (cpu_memory_rw_debug(s
->g_cpu
, addr
, mem_buf
, len
, 1) != 0)
1676 put_packet(s
, "E14");
1678 put_packet(s
, "OK");
1681 /* Older gdb are really dumb, and don't use 'g' if 'p' is avaialable.
1682 This works, but can be very slow. Anything new enough to
1683 understand XML also knows how to use this properly. */
1685 goto unknown_command
;
1686 addr
= strtoull(p
, (char **)&p
, 16);
1687 reg_size
= gdb_read_register(s
->g_cpu
, mem_buf
, addr
);
1689 memtohex(buf
, mem_buf
, reg_size
);
1692 put_packet(s
, "E14");
1697 goto unknown_command
;
1698 addr
= strtoull(p
, (char **)&p
, 16);
1701 reg_size
= strlen(p
) / 2;
1702 hextomem(mem_buf
, p
, reg_size
);
1703 gdb_write_register(s
->g_cpu
, mem_buf
, addr
);
1704 put_packet(s
, "OK");
1708 type
= strtoul(p
, (char **)&p
, 16);
1711 addr
= strtoull(p
, (char **)&p
, 16);
1714 len
= strtoull(p
, (char **)&p
, 16);
1716 res
= gdb_breakpoint_insert(addr
, len
, type
);
1718 res
= gdb_breakpoint_remove(addr
, len
, type
);
1720 put_packet(s
, "OK");
1721 else if (res
== -ENOSYS
)
1724 put_packet(s
, "E22");
1728 thread
= strtoull(p
, (char **)&p
, 16);
1729 if (thread
== -1 || thread
== 0) {
1730 put_packet(s
, "OK");
1733 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
)
1734 if (env
->cpu_index
+ 1 == thread
)
1737 put_packet(s
, "E22");
1743 put_packet(s
, "OK");
1747 put_packet(s
, "OK");
1750 put_packet(s
, "E22");
1755 thread
= strtoull(p
, (char **)&p
, 16);
1756 #ifndef CONFIG_USER_ONLY
1757 if (thread
> 0 && thread
< smp_cpus
+ 1)
1761 put_packet(s
, "OK");
1763 put_packet(s
, "E22");
1767 /* parse any 'q' packets here */
1768 if (!strcmp(p
,"qemu.sstepbits")) {
1769 /* Query Breakpoint bit definitions */
1770 snprintf(buf
, sizeof(buf
), "ENABLE=%x,NOIRQ=%x,NOTIMER=%x",
1776 } else if (strncmp(p
,"qemu.sstep",10) == 0) {
1777 /* Display or change the sstep_flags */
1780 /* Display current setting */
1781 snprintf(buf
, sizeof(buf
), "0x%x", sstep_flags
);
1786 type
= strtoul(p
, (char **)&p
, 16);
1788 put_packet(s
, "OK");
1790 } else if (strcmp(p
,"C") == 0) {
1791 /* "Current thread" remains vague in the spec, so always return
1792 * the first CPU (gdb returns the first thread). */
1793 put_packet(s
, "QC1");
1795 } else if (strcmp(p
,"fThreadInfo") == 0) {
1796 s
->query_cpu
= first_cpu
;
1797 goto report_cpuinfo
;
1798 } else if (strcmp(p
,"sThreadInfo") == 0) {
1801 snprintf(buf
, sizeof(buf
), "m%x", s
->query_cpu
->cpu_index
+1);
1803 s
->query_cpu
= s
->query_cpu
->next_cpu
;
1807 } else if (strncmp(p
,"ThreadExtraInfo,", 16) == 0) {
1808 thread
= strtoull(p
+16, (char **)&p
, 16);
1809 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
)
1810 if (env
->cpu_index
+ 1 == thread
) {
1811 kvm_save_registers(env
);
1812 len
= snprintf((char *)mem_buf
, sizeof(mem_buf
),
1813 "CPU#%d [%s]", env
->cpu_index
,
1814 env
->halted
? "halted " : "running");
1815 memtohex(buf
, mem_buf
, len
);
1821 #ifdef CONFIG_LINUX_USER
1822 else if (strncmp(p
, "Offsets", 7) == 0) {
1823 TaskState
*ts
= s
->c_cpu
->opaque
;
1825 snprintf(buf
, sizeof(buf
),
1826 "Text=" TARGET_ABI_FMT_lx
";Data=" TARGET_ABI_FMT_lx
1827 ";Bss=" TARGET_ABI_FMT_lx
,
1828 ts
->info
->code_offset
,
1829 ts
->info
->data_offset
,
1830 ts
->info
->data_offset
);
1835 if (strncmp(p
, "Supported", 9) == 0) {
1836 snprintf(buf
, sizeof(buf
), "PacketSize=%x", MAX_PACKET_LENGTH
);
1838 strcat(buf
, ";qXfer:features:read+");
1844 if (strncmp(p
, "Xfer:features:read:", 19) == 0) {
1846 target_ulong total_len
;
1850 xml
= get_feature_xml(p
, &p
);
1852 snprintf(buf
, sizeof(buf
), "E00");
1859 addr
= strtoul(p
, (char **)&p
, 16);
1862 len
= strtoul(p
, (char **)&p
, 16);
1864 total_len
= strlen(xml
);
1865 if (addr
> total_len
) {
1866 snprintf(buf
, sizeof(buf
), "E00");
1870 if (len
> (MAX_PACKET_LENGTH
- 5) / 2)
1871 len
= (MAX_PACKET_LENGTH
- 5) / 2;
1872 if (len
< total_len
- addr
) {
1874 len
= memtox(buf
+ 1, xml
+ addr
, len
);
1877 len
= memtox(buf
+ 1, xml
+ addr
, total_len
- addr
);
1879 put_packet_binary(s
, buf
, len
+ 1);
1883 /* Unrecognised 'q' command. */
1884 goto unknown_command
;
1888 /* put empty packet */
1896 void gdb_set_stop_cpu(CPUState
*env
)
1898 gdbserver_state
->c_cpu
= env
;
1899 gdbserver_state
->g_cpu
= env
;
1902 #ifndef CONFIG_USER_ONLY
1903 static void gdb_vm_state_change(void *opaque
, int running
, int reason
)
1905 GDBState
*s
= gdbserver_state
;
1906 CPUState
*env
= s
->c_cpu
;
1911 if (running
|| (reason
!= EXCP_DEBUG
&& reason
!= EXCP_INTERRUPT
) ||
1912 s
->state
== RS_SYSCALL
)
1915 /* disable single step if it was enable */
1916 cpu_single_step(env
, 0);
1918 if (reason
== EXCP_DEBUG
) {
1919 if (env
->watchpoint_hit
) {
1920 switch (env
->watchpoint_hit
->flags
& BP_MEM_ACCESS
) {
1931 snprintf(buf
, sizeof(buf
),
1932 "T%02xthread:%02x;%swatch:" TARGET_FMT_lx
";",
1933 GDB_SIGNAL_TRAP
, env
->cpu_index
+1, type
,
1934 env
->watchpoint_hit
->vaddr
);
1936 env
->watchpoint_hit
= NULL
;
1940 ret
= GDB_SIGNAL_TRAP
;
1942 ret
= GDB_SIGNAL_INT
;
1944 snprintf(buf
, sizeof(buf
), "T%02xthread:%02x;", ret
, env
->cpu_index
+1);
1949 /* Send a gdb syscall request.
1950 This accepts limited printf-style format specifiers, specifically:
1951 %x - target_ulong argument printed in hex.
1952 %lx - 64-bit argument printed in hex.
1953 %s - string pointer (target_ulong) and length (int) pair. */
1954 void gdb_do_syscall(gdb_syscall_complete_cb cb
, const char *fmt
, ...)
1963 s
= gdbserver_state
;
1966 gdb_current_syscall_cb
= cb
;
1967 s
->state
= RS_SYSCALL
;
1968 #ifndef CONFIG_USER_ONLY
1969 vm_stop(EXCP_DEBUG
);
1980 addr
= va_arg(va
, target_ulong
);
1981 p
+= snprintf(p
, &buf
[sizeof(buf
)] - p
, TARGET_FMT_lx
, addr
);
1984 if (*(fmt
++) != 'x')
1986 i64
= va_arg(va
, uint64_t);
1987 p
+= snprintf(p
, &buf
[sizeof(buf
)] - p
, "%" PRIx64
, i64
);
1990 addr
= va_arg(va
, target_ulong
);
1991 p
+= snprintf(p
, &buf
[sizeof(buf
)] - p
, TARGET_FMT_lx
"/%x",
1992 addr
, va_arg(va
, int));
1996 fprintf(stderr
, "gdbstub: Bad syscall format string '%s'\n",
2007 #ifdef CONFIG_USER_ONLY
2008 gdb_handlesig(s
->c_cpu
, 0);
2010 cpu_interrupt(s
->c_cpu
, CPU_INTERRUPT_EXIT
);
2014 static void gdb_read_byte(GDBState
*s
, int ch
)
2019 #ifndef CONFIG_USER_ONLY
2020 if (s
->last_packet_len
) {
2021 /* Waiting for a response to the last packet. If we see the start
2022 of a new command then abandon the previous response. */
2025 printf("Got NACK, retransmitting\n");
2027 put_buffer(s
, (uint8_t *)s
->last_packet
, s
->last_packet_len
);
2031 printf("Got ACK\n");
2033 printf("Got '%c' when expecting ACK/NACK\n", ch
);
2035 if (ch
== '+' || ch
== '$')
2036 s
->last_packet_len
= 0;
2041 /* when the CPU is running, we cannot do anything except stop
2042 it when receiving a char */
2043 vm_stop(EXCP_INTERRUPT
);
2050 s
->line_buf_index
= 0;
2051 s
->state
= RS_GETLINE
;
2056 s
->state
= RS_CHKSUM1
;
2057 } else if (s
->line_buf_index
>= sizeof(s
->line_buf
) - 1) {
2060 s
->line_buf
[s
->line_buf_index
++] = ch
;
2064 s
->line_buf
[s
->line_buf_index
] = '\0';
2065 s
->line_csum
= fromhex(ch
) << 4;
2066 s
->state
= RS_CHKSUM2
;
2069 s
->line_csum
|= fromhex(ch
);
2071 for(i
= 0; i
< s
->line_buf_index
; i
++) {
2072 csum
+= s
->line_buf
[i
];
2074 if (s
->line_csum
!= (csum
& 0xff)) {
2076 put_buffer(s
, &reply
, 1);
2080 put_buffer(s
, &reply
, 1);
2081 s
->state
= gdb_handle_packet(s
, s
->line_buf
);
2090 #ifdef CONFIG_USER_ONLY
2096 s
= gdbserver_state
;
2098 if (gdbserver_fd
< 0 || s
->fd
< 0)
2105 gdb_handlesig (CPUState
*env
, int sig
)
2111 s
= gdbserver_state
;
2112 if (gdbserver_fd
< 0 || s
->fd
< 0)
2115 /* disable single step if it was enabled */
2116 cpu_single_step(env
, 0);
2121 snprintf(buf
, sizeof(buf
), "S%02x", target_signal_to_gdb (sig
));
2124 /* put_packet() might have detected that the peer terminated the
2131 s
->running_state
= 0;
2132 while (s
->running_state
== 0) {
2133 n
= read (s
->fd
, buf
, 256);
2138 for (i
= 0; i
< n
; i
++)
2139 gdb_read_byte (s
, buf
[i
]);
2141 else if (n
== 0 || errno
!= EAGAIN
)
2143 /* XXX: Connection closed. Should probably wait for annother
2144 connection before continuing. */
2153 /* Tell the remote gdb that the process has exited. */
2154 void gdb_exit(CPUState
*env
, int code
)
2159 s
= gdbserver_state
;
2160 if (gdbserver_fd
< 0 || s
->fd
< 0)
2163 snprintf(buf
, sizeof(buf
), "W%02x", code
);
2167 /* Tell the remote gdb that the process has exited due to SIG. */
2168 void gdb_signalled(CPUState
*env
, int sig
)
2173 s
= gdbserver_state
;
2174 if (gdbserver_fd
< 0 || s
->fd
< 0)
2177 snprintf(buf
, sizeof(buf
), "X%02x", target_signal_to_gdb (sig
));
2181 static void gdb_accept(void)
2184 struct sockaddr_in sockaddr
;
2189 len
= sizeof(sockaddr
);
2190 fd
= accept(gdbserver_fd
, (struct sockaddr
*)&sockaddr
, &len
);
2191 if (fd
< 0 && errno
!= EINTR
) {
2194 } else if (fd
>= 0) {
2199 /* set short latency */
2201 setsockopt(fd
, IPPROTO_TCP
, TCP_NODELAY
, (char *)&val
, sizeof(val
));
2203 s
= qemu_mallocz(sizeof(GDBState
));
2205 memset (s
, 0, sizeof (GDBState
));
2206 s
->c_cpu
= first_cpu
;
2207 s
->g_cpu
= first_cpu
;
2211 gdbserver_state
= s
;
2213 fcntl(fd
, F_SETFL
, O_NONBLOCK
);
2216 static int gdbserver_open(int port
)
2218 struct sockaddr_in sockaddr
;
2221 fd
= socket(PF_INET
, SOCK_STREAM
, 0);
2227 /* allow fast reuse */
2229 setsockopt(fd
, SOL_SOCKET
, SO_REUSEADDR
, (char *)&val
, sizeof(val
));
2231 sockaddr
.sin_family
= AF_INET
;
2232 sockaddr
.sin_port
= htons(port
);
2233 sockaddr
.sin_addr
.s_addr
= 0;
2234 ret
= bind(fd
, (struct sockaddr
*)&sockaddr
, sizeof(sockaddr
));
2239 ret
= listen(fd
, 0);
2247 int gdbserver_start(int port
)
2249 gdbserver_fd
= gdbserver_open(port
);
2250 if (gdbserver_fd
< 0)
2252 /* accept connections */
2257 /* Disable gdb stub for child processes. */
2258 void gdbserver_fork(CPUState
*env
)
2260 GDBState
*s
= gdbserver_state
;
2261 if (gdbserver_fd
< 0 || s
->fd
< 0)
2265 cpu_breakpoint_remove_all(env
, BP_GDB
);
2266 cpu_watchpoint_remove_all(env
, BP_GDB
);
2269 static int gdb_chr_can_receive(void *opaque
)
2271 /* We can handle an arbitrarily large amount of data.
2272 Pick the maximum packet size, which is as good as anything. */
2273 return MAX_PACKET_LENGTH
;
2276 static void gdb_chr_receive(void *opaque
, const uint8_t *buf
, int size
)
2280 for (i
= 0; i
< size
; i
++) {
2281 gdb_read_byte(gdbserver_state
, buf
[i
]);
2285 static void gdb_chr_event(void *opaque
, int event
)
2288 case CHR_EVENT_RESET
:
2289 vm_stop(EXCP_INTERRUPT
);
2297 int gdbserver_start(const char *port
)
2300 char gdbstub_port_name
[128];
2303 CharDriverState
*chr
;
2305 if (!port
|| !*port
)
2308 port_num
= strtol(port
, &p
, 10);
2310 /* A numeric value is interpreted as a port number. */
2311 snprintf(gdbstub_port_name
, sizeof(gdbstub_port_name
),
2312 "tcp::%d,nowait,nodelay,server", port_num
);
2313 port
= gdbstub_port_name
;
2316 chr
= qemu_chr_open("gdb", port
, NULL
);
2320 s
= qemu_mallocz(sizeof(GDBState
));
2321 s
->c_cpu
= first_cpu
;
2322 s
->g_cpu
= first_cpu
;
2324 gdbserver_state
= s
;
2325 qemu_chr_add_handlers(chr
, gdb_chr_can_receive
, gdb_chr_receive
,
2326 gdb_chr_event
, NULL
);
2327 qemu_add_vm_change_state_handler(gdb_vm_state_change
, NULL
);