9 #include "qemu-common.h"
11 static uint32_t cortexa8_cp15_c0_c1
[8] =
12 { 0x1031, 0x11, 0x400, 0, 0x31100003, 0x20000000, 0x01202000, 0x11 };
14 static uint32_t cortexa8_cp15_c0_c2
[8] =
15 { 0x00101111, 0x12112111, 0x21232031, 0x11112131, 0x00111142, 0, 0, 0 };
17 static uint32_t mpcore_cp15_c0_c1
[8] =
18 { 0x111, 0x1, 0, 0x2, 0x01100103, 0x10020302, 0x01222000, 0 };
20 static uint32_t mpcore_cp15_c0_c2
[8] =
21 { 0x00100011, 0x12002111, 0x11221011, 0x01102131, 0x141, 0, 0, 0 };
23 static uint32_t arm1136_cp15_c0_c1
[8] =
24 { 0x111, 0x1, 0x2, 0x3, 0x01130003, 0x10030302, 0x01222110, 0 };
26 static uint32_t arm1136_cp15_c0_c2
[8] =
27 { 0x00140011, 0x12002111, 0x11231111, 0x01102131, 0x141, 0, 0, 0 };
29 static uint32_t cpu_arm_find_by_name(const char *name
);
31 static inline void set_feature(CPUARMState
*env
, int feature
)
33 env
->features
|= 1u << feature
;
36 static void cpu_reset_model_id(CPUARMState
*env
, uint32_t id
)
38 env
->cp15
.c0_cpuid
= id
;
40 case ARM_CPUID_ARM926
:
41 set_feature(env
, ARM_FEATURE_VFP
);
42 env
->vfp
.xregs
[ARM_VFP_FPSID
] = 0x41011090;
43 env
->cp15
.c0_cachetype
= 0x1dd20d2;
44 env
->cp15
.c1_sys
= 0x00090078;
46 case ARM_CPUID_ARM946
:
47 set_feature(env
, ARM_FEATURE_MPU
);
48 env
->cp15
.c0_cachetype
= 0x0f004006;
49 env
->cp15
.c1_sys
= 0x00000078;
51 case ARM_CPUID_ARM1026
:
52 set_feature(env
, ARM_FEATURE_VFP
);
53 set_feature(env
, ARM_FEATURE_AUXCR
);
54 env
->vfp
.xregs
[ARM_VFP_FPSID
] = 0x410110a0;
55 env
->cp15
.c0_cachetype
= 0x1dd20d2;
56 env
->cp15
.c1_sys
= 0x00090078;
58 case ARM_CPUID_ARM1136_R2
:
59 case ARM_CPUID_ARM1136
:
60 set_feature(env
, ARM_FEATURE_V6
);
61 set_feature(env
, ARM_FEATURE_VFP
);
62 set_feature(env
, ARM_FEATURE_AUXCR
);
63 env
->vfp
.xregs
[ARM_VFP_FPSID
] = 0x410120b4;
64 env
->vfp
.xregs
[ARM_VFP_MVFR0
] = 0x11111111;
65 env
->vfp
.xregs
[ARM_VFP_MVFR1
] = 0x00000000;
66 memcpy(env
->cp15
.c0_c1
, arm1136_cp15_c0_c1
, 8 * sizeof(uint32_t));
67 memcpy(env
->cp15
.c0_c2
, arm1136_cp15_c0_c2
, 8 * sizeof(uint32_t));
68 env
->cp15
.c0_cachetype
= 0x1dd20d2;
70 case ARM_CPUID_ARM11MPCORE
:
71 set_feature(env
, ARM_FEATURE_V6
);
72 set_feature(env
, ARM_FEATURE_V6K
);
73 set_feature(env
, ARM_FEATURE_VFP
);
74 set_feature(env
, ARM_FEATURE_AUXCR
);
75 env
->vfp
.xregs
[ARM_VFP_FPSID
] = 0x410120b4;
76 env
->vfp
.xregs
[ARM_VFP_MVFR0
] = 0x11111111;
77 env
->vfp
.xregs
[ARM_VFP_MVFR1
] = 0x00000000;
78 memcpy(env
->cp15
.c0_c1
, mpcore_cp15_c0_c1
, 8 * sizeof(uint32_t));
79 memcpy(env
->cp15
.c0_c2
, mpcore_cp15_c0_c2
, 8 * sizeof(uint32_t));
80 env
->cp15
.c0_cachetype
= 0x1dd20d2;
82 case ARM_CPUID_CORTEXA8
:
83 set_feature(env
, ARM_FEATURE_V6
);
84 set_feature(env
, ARM_FEATURE_V6K
);
85 set_feature(env
, ARM_FEATURE_V7
);
86 set_feature(env
, ARM_FEATURE_AUXCR
);
87 set_feature(env
, ARM_FEATURE_THUMB2
);
88 set_feature(env
, ARM_FEATURE_VFP
);
89 set_feature(env
, ARM_FEATURE_VFP3
);
90 set_feature(env
, ARM_FEATURE_NEON
);
91 set_feature(env
, ARM_FEATURE_THUMB2EE
);
92 env
->vfp
.xregs
[ARM_VFP_FPSID
] = 0x410330c0;
93 env
->vfp
.xregs
[ARM_VFP_MVFR0
] = 0x11110222;
94 env
->vfp
.xregs
[ARM_VFP_MVFR1
] = 0x00011100;
95 memcpy(env
->cp15
.c0_c1
, cortexa8_cp15_c0_c1
, 8 * sizeof(uint32_t));
96 memcpy(env
->cp15
.c0_c2
, cortexa8_cp15_c0_c2
, 8 * sizeof(uint32_t));
97 env
->cp15
.c0_cachetype
= 0x82048004;
98 env
->cp15
.c0_clid
= (1 << 27) | (2 << 24) | 3;
99 env
->cp15
.c0_ccsid
[0] = 0xe007e01a; /* 16k L1 dcache. */
100 env
->cp15
.c0_ccsid
[1] = 0x2007e01a; /* 16k L1 icache. */
101 env
->cp15
.c0_ccsid
[2] = 0xf0000000; /* No L2 icache. */
103 case ARM_CPUID_CORTEXM3
:
104 set_feature(env
, ARM_FEATURE_V6
);
105 set_feature(env
, ARM_FEATURE_THUMB2
);
106 set_feature(env
, ARM_FEATURE_V7
);
107 set_feature(env
, ARM_FEATURE_M
);
108 set_feature(env
, ARM_FEATURE_DIV
);
110 case ARM_CPUID_ANY
: /* For userspace emulation. */
111 set_feature(env
, ARM_FEATURE_V6
);
112 set_feature(env
, ARM_FEATURE_V6K
);
113 set_feature(env
, ARM_FEATURE_V7
);
114 set_feature(env
, ARM_FEATURE_THUMB2
);
115 set_feature(env
, ARM_FEATURE_VFP
);
116 set_feature(env
, ARM_FEATURE_VFP3
);
117 set_feature(env
, ARM_FEATURE_NEON
);
118 set_feature(env
, ARM_FEATURE_THUMB2EE
);
119 set_feature(env
, ARM_FEATURE_DIV
);
121 case ARM_CPUID_TI915T
:
122 case ARM_CPUID_TI925T
:
123 set_feature(env
, ARM_FEATURE_OMAPCP
);
124 env
->cp15
.c0_cpuid
= ARM_CPUID_TI925T
; /* Depends on wiring. */
125 env
->cp15
.c0_cachetype
= 0x5109149;
126 env
->cp15
.c1_sys
= 0x00000070;
127 env
->cp15
.c15_i_max
= 0x000;
128 env
->cp15
.c15_i_min
= 0xff0;
130 case ARM_CPUID_PXA250
:
131 case ARM_CPUID_PXA255
:
132 case ARM_CPUID_PXA260
:
133 case ARM_CPUID_PXA261
:
134 case ARM_CPUID_PXA262
:
135 set_feature(env
, ARM_FEATURE_XSCALE
);
136 /* JTAG_ID is ((id << 28) | 0x09265013) */
137 env
->cp15
.c0_cachetype
= 0xd172172;
138 env
->cp15
.c1_sys
= 0x00000078;
140 case ARM_CPUID_PXA270_A0
:
141 case ARM_CPUID_PXA270_A1
:
142 case ARM_CPUID_PXA270_B0
:
143 case ARM_CPUID_PXA270_B1
:
144 case ARM_CPUID_PXA270_C0
:
145 case ARM_CPUID_PXA270_C5
:
146 set_feature(env
, ARM_FEATURE_XSCALE
);
147 /* JTAG_ID is ((id << 28) | 0x09265013) */
148 set_feature(env
, ARM_FEATURE_IWMMXT
);
149 env
->iwmmxt
.cregs
[ARM_IWMMXT_wCID
] = 0x69051000 | 'Q';
150 env
->cp15
.c0_cachetype
= 0xd172172;
151 env
->cp15
.c1_sys
= 0x00000078;
154 cpu_abort(env
, "Bad CPU ID: %x\n", id
);
159 void cpu_reset(CPUARMState
*env
)
163 if (qemu_loglevel_mask(CPU_LOG_RESET
)) {
164 qemu_log("CPU Reset (CPU %d)\n", env
->cpu_index
);
165 log_cpu_state(env
, 0);
168 id
= env
->cp15
.c0_cpuid
;
169 memset(env
, 0, offsetof(CPUARMState
, breakpoints
));
171 cpu_reset_model_id(env
, id
);
172 #if defined (CONFIG_USER_ONLY)
173 env
->uncached_cpsr
= ARM_CPU_MODE_USR
;
174 env
->vfp
.xregs
[ARM_VFP_FPEXC
] = 1 << 30;
176 /* SVC mode with interrupts disabled. */
177 env
->uncached_cpsr
= ARM_CPU_MODE_SVC
| CPSR_A
| CPSR_F
| CPSR_I
;
178 /* On ARMv7-M the CPSR_I is the value of the PRIMASK register, and is
181 env
->uncached_cpsr
&= ~CPSR_I
;
182 env
->vfp
.xregs
[ARM_VFP_FPEXC
] = 0;
183 env
->cp15
.c2_base_mask
= 0xffffc000u
;
189 static int vfp_gdb_get_reg(CPUState
*env
, uint8_t *buf
, int reg
)
193 /* VFP data registers are always little-endian. */
194 nregs
= arm_feature(env
, ARM_FEATURE_VFP3
) ? 32 : 16;
196 stfq_le_p(buf
, env
->vfp
.regs
[reg
]);
199 if (arm_feature(env
, ARM_FEATURE_NEON
)) {
200 /* Aliases for Q regs. */
203 stfq_le_p(buf
, env
->vfp
.regs
[(reg
- 32) * 2]);
204 stfq_le_p(buf
+ 8, env
->vfp
.regs
[(reg
- 32) * 2 + 1]);
208 switch (reg
- nregs
) {
209 case 0: stl_p(buf
, env
->vfp
.xregs
[ARM_VFP_FPSID
]); return 4;
210 case 1: stl_p(buf
, env
->vfp
.xregs
[ARM_VFP_FPSCR
]); return 4;
211 case 2: stl_p(buf
, env
->vfp
.xregs
[ARM_VFP_FPEXC
]); return 4;
216 static int vfp_gdb_set_reg(CPUState
*env
, uint8_t *buf
, int reg
)
220 nregs
= arm_feature(env
, ARM_FEATURE_VFP3
) ? 32 : 16;
222 env
->vfp
.regs
[reg
] = ldfq_le_p(buf
);
225 if (arm_feature(env
, ARM_FEATURE_NEON
)) {
228 env
->vfp
.regs
[(reg
- 32) * 2] = ldfq_le_p(buf
);
229 env
->vfp
.regs
[(reg
- 32) * 2 + 1] = ldfq_le_p(buf
+ 8);
233 switch (reg
- nregs
) {
234 case 0: env
->vfp
.xregs
[ARM_VFP_FPSID
] = ldl_p(buf
); return 4;
235 case 1: env
->vfp
.xregs
[ARM_VFP_FPSCR
] = ldl_p(buf
); return 4;
236 case 2: env
->vfp
.xregs
[ARM_VFP_FPEXC
] = ldl_p(buf
); return 4;
241 CPUARMState
*cpu_arm_init(const char *cpu_model
)
245 static int inited
= 0;
247 id
= cpu_arm_find_by_name(cpu_model
);
250 env
= qemu_mallocz(sizeof(CPUARMState
));
254 arm_translate_init();
257 env
->cpu_model_str
= cpu_model
;
258 env
->cp15
.c0_cpuid
= id
;
260 if (arm_feature(env
, ARM_FEATURE_NEON
)) {
261 gdb_register_coprocessor(env
, vfp_gdb_get_reg
, vfp_gdb_set_reg
,
262 51, "arm-neon.xml", 0);
263 } else if (arm_feature(env
, ARM_FEATURE_VFP3
)) {
264 gdb_register_coprocessor(env
, vfp_gdb_get_reg
, vfp_gdb_set_reg
,
265 35, "arm-vfp3.xml", 0);
266 } else if (arm_feature(env
, ARM_FEATURE_VFP
)) {
267 gdb_register_coprocessor(env
, vfp_gdb_get_reg
, vfp_gdb_set_reg
,
268 19, "arm-vfp.xml", 0);
278 static const struct arm_cpu_t arm_cpu_names
[] = {
279 { ARM_CPUID_ARM926
, "arm926"},
280 { ARM_CPUID_ARM946
, "arm946"},
281 { ARM_CPUID_ARM1026
, "arm1026"},
282 { ARM_CPUID_ARM1136
, "arm1136"},
283 { ARM_CPUID_ARM1136_R2
, "arm1136-r2"},
284 { ARM_CPUID_ARM11MPCORE
, "arm11mpcore"},
285 { ARM_CPUID_CORTEXM3
, "cortex-m3"},
286 { ARM_CPUID_CORTEXA8
, "cortex-a8"},
287 { ARM_CPUID_TI925T
, "ti925t" },
288 { ARM_CPUID_PXA250
, "pxa250" },
289 { ARM_CPUID_PXA255
, "pxa255" },
290 { ARM_CPUID_PXA260
, "pxa260" },
291 { ARM_CPUID_PXA261
, "pxa261" },
292 { ARM_CPUID_PXA262
, "pxa262" },
293 { ARM_CPUID_PXA270
, "pxa270" },
294 { ARM_CPUID_PXA270_A0
, "pxa270-a0" },
295 { ARM_CPUID_PXA270_A1
, "pxa270-a1" },
296 { ARM_CPUID_PXA270_B0
, "pxa270-b0" },
297 { ARM_CPUID_PXA270_B1
, "pxa270-b1" },
298 { ARM_CPUID_PXA270_C0
, "pxa270-c0" },
299 { ARM_CPUID_PXA270_C5
, "pxa270-c5" },
300 { ARM_CPUID_ANY
, "any"},
304 void arm_cpu_list(FILE *f
, int (*cpu_fprintf
)(FILE *f
, const char *fmt
, ...))
308 (*cpu_fprintf
)(f
, "Available CPUs:\n");
309 for (i
= 0; arm_cpu_names
[i
].name
; i
++) {
310 (*cpu_fprintf
)(f
, " %s\n", arm_cpu_names
[i
].name
);
314 /* return 0 if not found */
315 static uint32_t cpu_arm_find_by_name(const char *name
)
321 for (i
= 0; arm_cpu_names
[i
].name
; i
++) {
322 if (strcmp(name
, arm_cpu_names
[i
].name
) == 0) {
323 id
= arm_cpu_names
[i
].id
;
330 void cpu_arm_close(CPUARMState
*env
)
335 uint32_t cpsr_read(CPUARMState
*env
)
339 return env
->uncached_cpsr
| (env
->NF
& 0x80000000) | (ZF
<< 30) |
340 (env
->CF
<< 29) | ((env
->VF
& 0x80000000) >> 3) | (env
->QF
<< 27)
341 | (env
->thumb
<< 5) | ((env
->condexec_bits
& 3) << 25)
342 | ((env
->condexec_bits
& 0xfc) << 8)
346 void cpsr_write(CPUARMState
*env
, uint32_t val
, uint32_t mask
)
348 if (mask
& CPSR_NZCV
) {
349 env
->ZF
= (~val
) & CPSR_Z
;
351 env
->CF
= (val
>> 29) & 1;
352 env
->VF
= (val
<< 3) & 0x80000000;
355 env
->QF
= ((val
& CPSR_Q
) != 0);
357 env
->thumb
= ((val
& CPSR_T
) != 0);
358 if (mask
& CPSR_IT_0_1
) {
359 env
->condexec_bits
&= ~3;
360 env
->condexec_bits
|= (val
>> 25) & 3;
362 if (mask
& CPSR_IT_2_7
) {
363 env
->condexec_bits
&= 3;
364 env
->condexec_bits
|= (val
>> 8) & 0xfc;
366 if (mask
& CPSR_GE
) {
367 env
->GE
= (val
>> 16) & 0xf;
370 if ((env
->uncached_cpsr
^ val
) & mask
& CPSR_M
) {
371 switch_mode(env
, val
& CPSR_M
);
373 mask
&= ~CACHED_CPSR_BITS
;
374 env
->uncached_cpsr
= (env
->uncached_cpsr
& ~mask
) | (val
& mask
);
377 /* Sign/zero extend */
378 uint32_t HELPER(sxtb16
)(uint32_t x
)
381 res
= (uint16_t)(int8_t)x
;
382 res
|= (uint32_t)(int8_t)(x
>> 16) << 16;
386 uint32_t HELPER(uxtb16
)(uint32_t x
)
389 res
= (uint16_t)(uint8_t)x
;
390 res
|= (uint32_t)(uint8_t)(x
>> 16) << 16;
394 uint32_t HELPER(clz
)(uint32_t x
)
397 for (count
= 32; x
; count
--)
402 int32_t HELPER(sdiv
)(int32_t num
, int32_t den
)
409 uint32_t HELPER(udiv
)(uint32_t num
, uint32_t den
)
416 uint32_t HELPER(rbit
)(uint32_t x
)
418 x
= ((x
& 0xff000000) >> 24)
419 | ((x
& 0x00ff0000) >> 8)
420 | ((x
& 0x0000ff00) << 8)
421 | ((x
& 0x000000ff) << 24);
422 x
= ((x
& 0xf0f0f0f0) >> 4)
423 | ((x
& 0x0f0f0f0f) << 4);
424 x
= ((x
& 0x88888888) >> 3)
425 | ((x
& 0x44444444) >> 1)
426 | ((x
& 0x22222222) << 1)
427 | ((x
& 0x11111111) << 3);
431 uint32_t HELPER(abs
)(uint32_t x
)
433 return ((int32_t)x
< 0) ? -x
: x
;
436 #if defined(CONFIG_USER_ONLY)
438 void do_interrupt (CPUState
*env
)
440 env
->exception_index
= -1;
443 /* Structure used to record exclusive memory locations. */
444 typedef struct mmon_state
{
445 struct mmon_state
*next
;
446 CPUARMState
*cpu_env
;
450 /* Chain of current locks. */
451 static mmon_state
* mmon_head
= NULL
;
453 int cpu_arm_handle_mmu_fault (CPUState
*env
, target_ulong address
, int rw
,
454 int mmu_idx
, int is_softmmu
)
457 env
->exception_index
= EXCP_PREFETCH_ABORT
;
458 env
->cp15
.c6_insn
= address
;
460 env
->exception_index
= EXCP_DATA_ABORT
;
461 env
->cp15
.c6_data
= address
;
466 static void allocate_mmon_state(CPUState
*env
)
468 env
->mmon_entry
= malloc(sizeof (mmon_state
));
469 memset (env
->mmon_entry
, 0, sizeof (mmon_state
));
470 env
->mmon_entry
->cpu_env
= env
;
471 mmon_head
= env
->mmon_entry
;
474 /* Flush any monitor locks for the specified address. */
475 static void flush_mmon(uint32_t addr
)
479 for (mon
= mmon_head
; mon
; mon
= mon
->next
)
481 if (mon
->addr
!= addr
)
489 /* Mark an address for exclusive access. */
490 void HELPER(mark_exclusive
)(CPUState
*env
, uint32_t addr
)
492 if (!env
->mmon_entry
)
493 allocate_mmon_state(env
);
494 /* Clear any previous locks. */
496 env
->mmon_entry
->addr
= addr
;
499 /* Test if an exclusive address is still exclusive. Returns zero
500 if the address is still exclusive. */
501 uint32_t HELPER(test_exclusive
)(CPUState
*env
, uint32_t addr
)
505 if (!env
->mmon_entry
)
507 if (env
->mmon_entry
->addr
== addr
)
515 void HELPER(clrex
)(CPUState
*env
)
517 if (!(env
->mmon_entry
&& env
->mmon_entry
->addr
))
519 flush_mmon(env
->mmon_entry
->addr
);
522 target_phys_addr_t
cpu_get_phys_page_debug(CPUState
*env
, target_ulong addr
)
527 /* These should probably raise undefined insn exceptions. */
528 void HELPER(set_cp
)(CPUState
*env
, uint32_t insn
, uint32_t val
)
530 int op1
= (insn
>> 8) & 0xf;
531 cpu_abort(env
, "cp%i insn %08x\n", op1
, insn
);
535 uint32_t HELPER(get_cp
)(CPUState
*env
, uint32_t insn
)
537 int op1
= (insn
>> 8) & 0xf;
538 cpu_abort(env
, "cp%i insn %08x\n", op1
, insn
);
542 void HELPER(set_cp15
)(CPUState
*env
, uint32_t insn
, uint32_t val
)
544 cpu_abort(env
, "cp15 insn %08x\n", insn
);
547 uint32_t HELPER(get_cp15
)(CPUState
*env
, uint32_t insn
)
549 cpu_abort(env
, "cp15 insn %08x\n", insn
);
553 /* These should probably raise undefined insn exceptions. */
554 void HELPER(v7m_msr
)(CPUState
*env
, uint32_t reg
, uint32_t val
)
556 cpu_abort(env
, "v7m_mrs %d\n", reg
);
559 uint32_t HELPER(v7m_mrs
)(CPUState
*env
, uint32_t reg
)
561 cpu_abort(env
, "v7m_mrs %d\n", reg
);
565 void switch_mode(CPUState
*env
, int mode
)
567 if (mode
!= ARM_CPU_MODE_USR
)
568 cpu_abort(env
, "Tried to switch out of user mode\n");
571 void HELPER(set_r13_banked
)(CPUState
*env
, uint32_t mode
, uint32_t val
)
573 cpu_abort(env
, "banked r13 write\n");
576 uint32_t HELPER(get_r13_banked
)(CPUState
*env
, uint32_t mode
)
578 cpu_abort(env
, "banked r13 read\n");
584 extern int semihosting_enabled
;
586 /* Map CPU modes onto saved register banks. */
587 static inline int bank_number (int mode
)
590 case ARM_CPU_MODE_USR
:
591 case ARM_CPU_MODE_SYS
:
593 case ARM_CPU_MODE_SVC
:
595 case ARM_CPU_MODE_ABT
:
597 case ARM_CPU_MODE_UND
:
599 case ARM_CPU_MODE_IRQ
:
601 case ARM_CPU_MODE_FIQ
:
604 cpu_abort(cpu_single_env
, "Bad mode %x\n", mode
);
608 void switch_mode(CPUState
*env
, int mode
)
613 old_mode
= env
->uncached_cpsr
& CPSR_M
;
614 if (mode
== old_mode
)
617 if (old_mode
== ARM_CPU_MODE_FIQ
) {
618 memcpy (env
->fiq_regs
, env
->regs
+ 8, 5 * sizeof(uint32_t));
619 memcpy (env
->regs
+ 8, env
->usr_regs
, 5 * sizeof(uint32_t));
620 } else if (mode
== ARM_CPU_MODE_FIQ
) {
621 memcpy (env
->usr_regs
, env
->regs
+ 8, 5 * sizeof(uint32_t));
622 memcpy (env
->regs
+ 8, env
->fiq_regs
, 5 * sizeof(uint32_t));
625 i
= bank_number(old_mode
);
626 env
->banked_r13
[i
] = env
->regs
[13];
627 env
->banked_r14
[i
] = env
->regs
[14];
628 env
->banked_spsr
[i
] = env
->spsr
;
630 i
= bank_number(mode
);
631 env
->regs
[13] = env
->banked_r13
[i
];
632 env
->regs
[14] = env
->banked_r14
[i
];
633 env
->spsr
= env
->banked_spsr
[i
];
636 static void v7m_push(CPUARMState
*env
, uint32_t val
)
639 stl_phys(env
->regs
[13], val
);
642 static uint32_t v7m_pop(CPUARMState
*env
)
645 val
= ldl_phys(env
->regs
[13]);
650 /* Switch to V7M main or process stack pointer. */
651 static void switch_v7m_sp(CPUARMState
*env
, int process
)
654 if (env
->v7m
.current_sp
!= process
) {
655 tmp
= env
->v7m
.other_sp
;
656 env
->v7m
.other_sp
= env
->regs
[13];
658 env
->v7m
.current_sp
= process
;
662 static void do_v7m_exception_exit(CPUARMState
*env
)
667 type
= env
->regs
[15];
668 if (env
->v7m
.exception
!= 0)
669 armv7m_nvic_complete_irq(env
->v7m
.nvic
, env
->v7m
.exception
);
671 /* Switch to the target stack. */
672 switch_v7m_sp(env
, (type
& 4) != 0);
674 env
->regs
[0] = v7m_pop(env
);
675 env
->regs
[1] = v7m_pop(env
);
676 env
->regs
[2] = v7m_pop(env
);
677 env
->regs
[3] = v7m_pop(env
);
678 env
->regs
[12] = v7m_pop(env
);
679 env
->regs
[14] = v7m_pop(env
);
680 env
->regs
[15] = v7m_pop(env
);
682 xpsr_write(env
, xpsr
, 0xfffffdff);
683 /* Undo stack alignment. */
686 /* ??? The exception return type specifies Thread/Handler mode. However
687 this is also implied by the xPSR value. Not sure what to do
688 if there is a mismatch. */
689 /* ??? Likewise for mismatches between the CONTROL register and the stack
693 static void do_interrupt_v7m(CPUARMState
*env
)
695 uint32_t xpsr
= xpsr_read(env
);
700 if (env
->v7m
.current_sp
)
702 if (env
->v7m
.exception
== 0)
705 /* For exceptions we just mark as pending on the NVIC, and let that
707 /* TODO: Need to escalate if the current priority is higher than the
708 one we're raising. */
709 switch (env
->exception_index
) {
711 armv7m_nvic_set_pending(env
->v7m
.nvic
, ARMV7M_EXCP_USAGE
);
715 armv7m_nvic_set_pending(env
->v7m
.nvic
, ARMV7M_EXCP_SVC
);
717 case EXCP_PREFETCH_ABORT
:
718 case EXCP_DATA_ABORT
:
719 armv7m_nvic_set_pending(env
->v7m
.nvic
, ARMV7M_EXCP_MEM
);
722 if (semihosting_enabled
) {
724 nr
= lduw_code(env
->regs
[15]) & 0xff;
727 env
->regs
[0] = do_arm_semihosting(env
);
731 armv7m_nvic_set_pending(env
->v7m
.nvic
, ARMV7M_EXCP_DEBUG
);
734 env
->v7m
.exception
= armv7m_nvic_acknowledge_irq(env
->v7m
.nvic
);
736 case EXCP_EXCEPTION_EXIT
:
737 do_v7m_exception_exit(env
);
740 cpu_abort(env
, "Unhandled exception 0x%x\n", env
->exception_index
);
741 return; /* Never happens. Keep compiler happy. */
744 /* Align stack pointer. */
745 /* ??? Should only do this if Configuration Control Register
746 STACKALIGN bit is set. */
747 if (env
->regs
[13] & 4) {
751 /* Switch to the handler mode. */
753 v7m_push(env
, env
->regs
[15]);
754 v7m_push(env
, env
->regs
[14]);
755 v7m_push(env
, env
->regs
[12]);
756 v7m_push(env
, env
->regs
[3]);
757 v7m_push(env
, env
->regs
[2]);
758 v7m_push(env
, env
->regs
[1]);
759 v7m_push(env
, env
->regs
[0]);
760 switch_v7m_sp(env
, 0);
761 env
->uncached_cpsr
&= ~CPSR_IT
;
763 addr
= ldl_phys(env
->v7m
.vecbase
+ env
->v7m
.exception
* 4);
764 env
->regs
[15] = addr
& 0xfffffffe;
765 env
->thumb
= addr
& 1;
768 /* Handle a CPU exception. */
769 void do_interrupt(CPUARMState
*env
)
777 do_interrupt_v7m(env
);
780 /* TODO: Vectored interrupt controller. */
781 switch (env
->exception_index
) {
783 new_mode
= ARM_CPU_MODE_UND
;
792 if (semihosting_enabled
) {
793 /* Check for semihosting interrupt. */
795 mask
= lduw_code(env
->regs
[15] - 2) & 0xff;
797 mask
= ldl_code(env
->regs
[15] - 4) & 0xffffff;
799 /* Only intercept calls from privileged modes, to provide some
800 semblance of security. */
801 if (((mask
== 0x123456 && !env
->thumb
)
802 || (mask
== 0xab && env
->thumb
))
803 && (env
->uncached_cpsr
& CPSR_M
) != ARM_CPU_MODE_USR
) {
804 env
->regs
[0] = do_arm_semihosting(env
);
808 new_mode
= ARM_CPU_MODE_SVC
;
811 /* The PC already points to the next instruction. */
815 /* See if this is a semihosting syscall. */
816 if (env
->thumb
&& semihosting_enabled
) {
817 mask
= lduw_code(env
->regs
[15]) & 0xff;
819 && (env
->uncached_cpsr
& CPSR_M
) != ARM_CPU_MODE_USR
) {
821 env
->regs
[0] = do_arm_semihosting(env
);
825 /* Fall through to prefetch abort. */
826 case EXCP_PREFETCH_ABORT
:
827 new_mode
= ARM_CPU_MODE_ABT
;
829 mask
= CPSR_A
| CPSR_I
;
832 case EXCP_DATA_ABORT
:
833 new_mode
= ARM_CPU_MODE_ABT
;
835 mask
= CPSR_A
| CPSR_I
;
839 new_mode
= ARM_CPU_MODE_IRQ
;
841 /* Disable IRQ and imprecise data aborts. */
842 mask
= CPSR_A
| CPSR_I
;
846 new_mode
= ARM_CPU_MODE_FIQ
;
848 /* Disable FIQ, IRQ and imprecise data aborts. */
849 mask
= CPSR_A
| CPSR_I
| CPSR_F
;
853 cpu_abort(env
, "Unhandled exception 0x%x\n", env
->exception_index
);
854 return; /* Never happens. Keep compiler happy. */
857 if (env
->cp15
.c1_sys
& (1 << 13)) {
860 switch_mode (env
, new_mode
);
861 env
->spsr
= cpsr_read(env
);
863 env
->condexec_bits
= 0;
864 /* Switch to the new mode, and switch to Arm mode. */
865 /* ??? Thumb interrupt handlers not implemented. */
866 env
->uncached_cpsr
= (env
->uncached_cpsr
& ~CPSR_M
) | new_mode
;
867 env
->uncached_cpsr
|= mask
;
869 env
->regs
[14] = env
->regs
[15] + offset
;
870 env
->regs
[15] = addr
;
871 env
->interrupt_request
|= CPU_INTERRUPT_EXITTB
;
874 /* Check section/page access permissions.
875 Returns the page protection flags, or zero if the access is not
877 static inline int check_ap(CPUState
*env
, int ap
, int domain
, int access_type
,
883 return PAGE_READ
| PAGE_WRITE
;
885 if (access_type
== 1)
892 if (access_type
== 1)
894 switch ((env
->cp15
.c1_sys
>> 8) & 3) {
896 return is_user
? 0 : PAGE_READ
;
903 return is_user
? 0 : PAGE_READ
| PAGE_WRITE
;
908 return PAGE_READ
| PAGE_WRITE
;
910 return PAGE_READ
| PAGE_WRITE
;
911 case 4: /* Reserved. */
914 return is_user
? 0 : prot_ro
;
918 if (!arm_feature (env
, ARM_FEATURE_V7
))
926 static uint32_t get_level1_table_address(CPUState
*env
, uint32_t address
)
930 if (address
& env
->cp15
.c2_mask
)
931 table
= env
->cp15
.c2_base1
& 0xffffc000;
933 table
= env
->cp15
.c2_base0
& env
->cp15
.c2_base_mask
;
935 table
|= (address
>> 18) & 0x3ffc;
939 static int get_phys_addr_v5(CPUState
*env
, uint32_t address
, int access_type
,
940 int is_user
, uint32_t *phys_ptr
, int *prot
)
950 /* Pagetable walk. */
951 /* Lookup l1 descriptor. */
952 table
= get_level1_table_address(env
, address
);
953 desc
= ldl_phys(table
);
955 domain
= (env
->cp15
.c3
>> ((desc
>> 4) & 0x1e)) & 3;
957 /* Section translation fault. */
961 if (domain
== 0 || domain
== 2) {
963 code
= 9; /* Section domain fault. */
965 code
= 11; /* Page domain fault. */
970 phys_addr
= (desc
& 0xfff00000) | (address
& 0x000fffff);
971 ap
= (desc
>> 10) & 3;
974 /* Lookup l2 entry. */
976 /* Coarse pagetable. */
977 table
= (desc
& 0xfffffc00) | ((address
>> 10) & 0x3fc);
979 /* Fine pagetable. */
980 table
= (desc
& 0xfffff000) | ((address
>> 8) & 0xffc);
982 desc
= ldl_phys(table
);
984 case 0: /* Page translation fault. */
987 case 1: /* 64k page. */
988 phys_addr
= (desc
& 0xffff0000) | (address
& 0xffff);
989 ap
= (desc
>> (4 + ((address
>> 13) & 6))) & 3;
991 case 2: /* 4k page. */
992 phys_addr
= (desc
& 0xfffff000) | (address
& 0xfff);
993 ap
= (desc
>> (4 + ((address
>> 13) & 6))) & 3;
995 case 3: /* 1k page. */
997 if (arm_feature(env
, ARM_FEATURE_XSCALE
)) {
998 phys_addr
= (desc
& 0xfffff000) | (address
& 0xfff);
1000 /* Page translation fault. */
1005 phys_addr
= (desc
& 0xfffffc00) | (address
& 0x3ff);
1007 ap
= (desc
>> 4) & 3;
1010 /* Never happens, but compiler isn't smart enough to tell. */
1015 *prot
= check_ap(env
, ap
, domain
, access_type
, is_user
);
1017 /* Access permission fault. */
1020 *phys_ptr
= phys_addr
;
1023 return code
| (domain
<< 4);
1026 static int get_phys_addr_v6(CPUState
*env
, uint32_t address
, int access_type
,
1027 int is_user
, uint32_t *phys_ptr
, int *prot
)
1038 /* Pagetable walk. */
1039 /* Lookup l1 descriptor. */
1040 table
= get_level1_table_address(env
, address
);
1041 desc
= ldl_phys(table
);
1044 /* Section translation fault. */
1048 } else if (type
== 2 && (desc
& (1 << 18))) {
1052 /* Section or page. */
1053 domain
= (desc
>> 4) & 0x1e;
1055 domain
= (env
->cp15
.c3
>> domain
) & 3;
1056 if (domain
== 0 || domain
== 2) {
1058 code
= 9; /* Section domain fault. */
1060 code
= 11; /* Page domain fault. */
1064 if (desc
& (1 << 18)) {
1066 phys_addr
= (desc
& 0xff000000) | (address
& 0x00ffffff);
1069 phys_addr
= (desc
& 0xfff00000) | (address
& 0x000fffff);
1071 ap
= ((desc
>> 10) & 3) | ((desc
>> 13) & 4);
1072 xn
= desc
& (1 << 4);
1075 /* Lookup l2 entry. */
1076 table
= (desc
& 0xfffffc00) | ((address
>> 10) & 0x3fc);
1077 desc
= ldl_phys(table
);
1078 ap
= ((desc
>> 4) & 3) | ((desc
>> 7) & 4);
1080 case 0: /* Page translation fault. */
1083 case 1: /* 64k page. */
1084 phys_addr
= (desc
& 0xffff0000) | (address
& 0xffff);
1085 xn
= desc
& (1 << 15);
1087 case 2: case 3: /* 4k page. */
1088 phys_addr
= (desc
& 0xfffff000) | (address
& 0xfff);
1092 /* Never happens, but compiler isn't smart enough to tell. */
1097 if (xn
&& access_type
== 2)
1100 /* The simplified model uses AP[0] as an access control bit. */
1101 if ((env
->cp15
.c1_sys
& (1 << 29)) && (ap
& 1) == 0) {
1102 /* Access flag fault. */
1103 code
= (code
== 15) ? 6 : 3;
1106 *prot
= check_ap(env
, ap
, domain
, access_type
, is_user
);
1108 /* Access permission fault. */
1111 *phys_ptr
= phys_addr
;
1114 return code
| (domain
<< 4);
1117 static int get_phys_addr_mpu(CPUState
*env
, uint32_t address
, int access_type
,
1118 int is_user
, uint32_t *phys_ptr
, int *prot
)
1124 *phys_ptr
= address
;
1125 for (n
= 7; n
>= 0; n
--) {
1126 base
= env
->cp15
.c6_region
[n
];
1127 if ((base
& 1) == 0)
1129 mask
= 1 << ((base
>> 1) & 0x1f);
1130 /* Keep this shift separate from the above to avoid an
1131 (undefined) << 32. */
1132 mask
= (mask
<< 1) - 1;
1133 if (((base
^ address
) & ~mask
) == 0)
1139 if (access_type
== 2) {
1140 mask
= env
->cp15
.c5_insn
;
1142 mask
= env
->cp15
.c5_data
;
1144 mask
= (mask
>> (n
* 4)) & 0xf;
1151 *prot
= PAGE_READ
| PAGE_WRITE
;
1156 *prot
|= PAGE_WRITE
;
1159 *prot
= PAGE_READ
| PAGE_WRITE
;
1170 /* Bad permission. */
1176 static inline int get_phys_addr(CPUState
*env
, uint32_t address
,
1177 int access_type
, int is_user
,
1178 uint32_t *phys_ptr
, int *prot
)
1180 /* Fast Context Switch Extension. */
1181 if (address
< 0x02000000)
1182 address
+= env
->cp15
.c13_fcse
;
1184 if ((env
->cp15
.c1_sys
& 1) == 0) {
1185 /* MMU/MPU disabled. */
1186 *phys_ptr
= address
;
1187 *prot
= PAGE_READ
| PAGE_WRITE
;
1189 } else if (arm_feature(env
, ARM_FEATURE_MPU
)) {
1190 return get_phys_addr_mpu(env
, address
, access_type
, is_user
, phys_ptr
,
1192 } else if (env
->cp15
.c1_sys
& (1 << 23)) {
1193 return get_phys_addr_v6(env
, address
, access_type
, is_user
, phys_ptr
,
1196 return get_phys_addr_v5(env
, address
, access_type
, is_user
, phys_ptr
,
1201 int cpu_arm_handle_mmu_fault (CPUState
*env
, target_ulong address
,
1202 int access_type
, int mmu_idx
, int is_softmmu
)
1208 is_user
= mmu_idx
== MMU_USER_IDX
;
1209 ret
= get_phys_addr(env
, address
, access_type
, is_user
, &phys_addr
, &prot
);
1211 /* Map a single [sub]page. */
1212 phys_addr
&= ~(uint32_t)0x3ff;
1213 address
&= ~(uint32_t)0x3ff;
1214 return tlb_set_page (env
, address
, phys_addr
, prot
, mmu_idx
,
1218 if (access_type
== 2) {
1219 env
->cp15
.c5_insn
= ret
;
1220 env
->cp15
.c6_insn
= address
;
1221 env
->exception_index
= EXCP_PREFETCH_ABORT
;
1223 env
->cp15
.c5_data
= ret
;
1224 if (access_type
== 1 && arm_feature(env
, ARM_FEATURE_V6
))
1225 env
->cp15
.c5_data
|= (1 << 11);
1226 env
->cp15
.c6_data
= address
;
1227 env
->exception_index
= EXCP_DATA_ABORT
;
1232 target_phys_addr_t
cpu_get_phys_page_debug(CPUState
*env
, target_ulong addr
)
1238 ret
= get_phys_addr(env
, addr
, 0, 0, &phys_addr
, &prot
);
1246 /* Not really implemented. Need to figure out a sane way of doing this.
1247 Maybe add generic watchpoint support and use that. */
1249 void HELPER(mark_exclusive
)(CPUState
*env
, uint32_t addr
)
1251 env
->mmon_addr
= addr
;
1254 uint32_t HELPER(test_exclusive
)(CPUState
*env
, uint32_t addr
)
1256 return (env
->mmon_addr
!= addr
);
1259 void HELPER(clrex
)(CPUState
*env
)
1261 env
->mmon_addr
= -1;
1264 void HELPER(set_cp
)(CPUState
*env
, uint32_t insn
, uint32_t val
)
1266 int cp_num
= (insn
>> 8) & 0xf;
1267 int cp_info
= (insn
>> 5) & 7;
1268 int src
= (insn
>> 16) & 0xf;
1269 int operand
= insn
& 0xf;
1271 if (env
->cp
[cp_num
].cp_write
)
1272 env
->cp
[cp_num
].cp_write(env
->cp
[cp_num
].opaque
,
1273 cp_info
, src
, operand
, val
);
1276 uint32_t HELPER(get_cp
)(CPUState
*env
, uint32_t insn
)
1278 int cp_num
= (insn
>> 8) & 0xf;
1279 int cp_info
= (insn
>> 5) & 7;
1280 int dest
= (insn
>> 16) & 0xf;
1281 int operand
= insn
& 0xf;
1283 if (env
->cp
[cp_num
].cp_read
)
1284 return env
->cp
[cp_num
].cp_read(env
->cp
[cp_num
].opaque
,
1285 cp_info
, dest
, operand
);
1289 /* Return basic MPU access permission bits. */
1290 static uint32_t simple_mpu_ap_bits(uint32_t val
)
1297 for (i
= 0; i
< 16; i
+= 2) {
1298 ret
|= (val
>> i
) & mask
;
1304 /* Pad basic MPU access permission bits to extended format. */
1305 static uint32_t extended_mpu_ap_bits(uint32_t val
)
1312 for (i
= 0; i
< 16; i
+= 2) {
1313 ret
|= (val
& mask
) << i
;
1319 void HELPER(set_cp15
)(CPUState
*env
, uint32_t insn
, uint32_t val
)
1325 op1
= (insn
>> 21) & 7;
1326 op2
= (insn
>> 5) & 7;
1328 switch ((insn
>> 16) & 0xf) {
1331 if (arm_feature(env
, ARM_FEATURE_XSCALE
))
1333 if (arm_feature(env
, ARM_FEATURE_OMAPCP
))
1335 if (arm_feature(env
, ARM_FEATURE_V7
)
1336 && op1
== 2 && crm
== 0 && op2
== 0) {
1337 env
->cp15
.c0_cssel
= val
& 0xf;
1341 case 1: /* System configuration. */
1342 if (arm_feature(env
, ARM_FEATURE_OMAPCP
))
1346 if (!arm_feature(env
, ARM_FEATURE_XSCALE
) || crm
== 0)
1347 env
->cp15
.c1_sys
= val
;
1348 /* ??? Lots of these bits are not implemented. */
1349 /* This may enable/disable the MMU, so do a TLB flush. */
1352 case 1: /* Auxiliary cotrol register. */
1353 if (arm_feature(env
, ARM_FEATURE_XSCALE
)) {
1354 env
->cp15
.c1_xscaleauxcr
= val
;
1357 /* Not implemented. */
1360 if (arm_feature(env
, ARM_FEATURE_XSCALE
))
1362 if (env
->cp15
.c1_coproc
!= val
) {
1363 env
->cp15
.c1_coproc
= val
;
1364 /* ??? Is this safe when called from within a TB? */
1372 case 2: /* MMU Page table control / MPU cache control. */
1373 if (arm_feature(env
, ARM_FEATURE_MPU
)) {
1376 env
->cp15
.c2_data
= val
;
1379 env
->cp15
.c2_insn
= val
;
1387 env
->cp15
.c2_base0
= val
;
1390 env
->cp15
.c2_base1
= val
;
1394 env
->cp15
.c2_control
= val
;
1395 env
->cp15
.c2_mask
= ~(((uint32_t)0xffffffffu
) >> val
);
1396 env
->cp15
.c2_base_mask
= ~((uint32_t)0x3fffu
>> val
);
1403 case 3: /* MMU Domain access control / MPU write buffer control. */
1405 tlb_flush(env
, 1); /* Flush TLB as domain not tracked in TLB */
1407 case 4: /* Reserved. */
1409 case 5: /* MMU Fault status / MPU access permission. */
1410 if (arm_feature(env
, ARM_FEATURE_OMAPCP
))
1414 if (arm_feature(env
, ARM_FEATURE_MPU
))
1415 val
= extended_mpu_ap_bits(val
);
1416 env
->cp15
.c5_data
= val
;
1419 if (arm_feature(env
, ARM_FEATURE_MPU
))
1420 val
= extended_mpu_ap_bits(val
);
1421 env
->cp15
.c5_insn
= val
;
1424 if (!arm_feature(env
, ARM_FEATURE_MPU
))
1426 env
->cp15
.c5_data
= val
;
1429 if (!arm_feature(env
, ARM_FEATURE_MPU
))
1431 env
->cp15
.c5_insn
= val
;
1437 case 6: /* MMU Fault address / MPU base/size. */
1438 if (arm_feature(env
, ARM_FEATURE_MPU
)) {
1441 env
->cp15
.c6_region
[crm
] = val
;
1443 if (arm_feature(env
, ARM_FEATURE_OMAPCP
))
1447 env
->cp15
.c6_data
= val
;
1449 case 1: /* ??? This is WFAR on armv6 */
1451 env
->cp15
.c6_insn
= val
;
1458 case 7: /* Cache control. */
1459 env
->cp15
.c15_i_max
= 0x000;
1460 env
->cp15
.c15_i_min
= 0xff0;
1461 /* No cache, so nothing to do. */
1462 /* ??? MPCore has VA to PA translation functions. */
1464 case 8: /* MMU TLB control. */
1466 case 0: /* Invalidate all. */
1469 case 1: /* Invalidate single TLB entry. */
1471 /* ??? This is wrong for large pages and sections. */
1472 /* As an ugly hack to make linux work we always flush a 4K
1475 tlb_flush_page(env
, val
);
1476 tlb_flush_page(env
, val
+ 0x400);
1477 tlb_flush_page(env
, val
+ 0x800);
1478 tlb_flush_page(env
, val
+ 0xc00);
1483 case 2: /* Invalidate on ASID. */
1484 tlb_flush(env
, val
== 0);
1486 case 3: /* Invalidate single entry on MVA. */
1487 /* ??? This is like case 1, but ignores ASID. */
1495 if (arm_feature(env
, ARM_FEATURE_OMAPCP
))
1498 case 0: /* Cache lockdown. */
1500 case 0: /* L1 cache. */
1503 env
->cp15
.c9_data
= val
;
1506 env
->cp15
.c9_insn
= val
;
1512 case 1: /* L2 cache. */
1513 /* Ignore writes to L2 lockdown/auxiliary registers. */
1519 case 1: /* TCM memory region registers. */
1520 /* Not implemented. */
1526 case 10: /* MMU TLB lockdown. */
1527 /* ??? TLB lockdown not implemented. */
1529 case 12: /* Reserved. */
1531 case 13: /* Process ID. */
1534 /* Unlike real hardware the qemu TLB uses virtual addresses,
1535 not modified virtual addresses, so this causes a TLB flush.
1537 if (env
->cp15
.c13_fcse
!= val
)
1539 env
->cp15
.c13_fcse
= val
;
1542 /* This changes the ASID, so do a TLB flush. */
1543 if (env
->cp15
.c13_context
!= val
1544 && !arm_feature(env
, ARM_FEATURE_MPU
))
1546 env
->cp15
.c13_context
= val
;
1549 env
->cp15
.c13_tls1
= val
;
1552 env
->cp15
.c13_tls2
= val
;
1555 env
->cp15
.c13_tls3
= val
;
1561 case 14: /* Reserved. */
1563 case 15: /* Implementation specific. */
1564 if (arm_feature(env
, ARM_FEATURE_XSCALE
)) {
1565 if (op2
== 0 && crm
== 1) {
1566 if (env
->cp15
.c15_cpar
!= (val
& 0x3fff)) {
1567 /* Changes cp0 to cp13 behavior, so needs a TB flush. */
1569 env
->cp15
.c15_cpar
= val
& 0x3fff;
1575 if (arm_feature(env
, ARM_FEATURE_OMAPCP
)) {
1579 case 1: /* Set TI925T configuration. */
1580 env
->cp15
.c15_ticonfig
= val
& 0xe7;
1581 env
->cp15
.c0_cpuid
= (val
& (1 << 5)) ? /* OS_TYPE bit */
1582 ARM_CPUID_TI915T
: ARM_CPUID_TI925T
;
1584 case 2: /* Set I_max. */
1585 env
->cp15
.c15_i_max
= val
;
1587 case 3: /* Set I_min. */
1588 env
->cp15
.c15_i_min
= val
;
1590 case 4: /* Set thread-ID. */
1591 env
->cp15
.c15_threadid
= val
& 0xffff;
1593 case 8: /* Wait-for-interrupt (deprecated). */
1594 cpu_interrupt(env
, CPU_INTERRUPT_HALT
);
1604 /* ??? For debugging only. Should raise illegal instruction exception. */
1605 cpu_abort(env
, "Unimplemented cp15 register write (c%d, c%d, {%d, %d})\n",
1606 (insn
>> 16) & 0xf, crm
, op1
, op2
);
1609 uint32_t HELPER(get_cp15
)(CPUState
*env
, uint32_t insn
)
1615 op1
= (insn
>> 21) & 7;
1616 op2
= (insn
>> 5) & 7;
1618 switch ((insn
>> 16) & 0xf) {
1619 case 0: /* ID codes. */
1625 case 0: /* Device ID. */
1626 return env
->cp15
.c0_cpuid
;
1627 case 1: /* Cache Type. */
1628 return env
->cp15
.c0_cachetype
;
1629 case 2: /* TCM status. */
1631 case 3: /* TLB type register. */
1632 return 0; /* No lockable TLB entries. */
1633 case 5: /* CPU ID */
1634 return env
->cpu_index
;
1639 if (!arm_feature(env
, ARM_FEATURE_V6
))
1641 return env
->cp15
.c0_c1
[op2
];
1643 if (!arm_feature(env
, ARM_FEATURE_V6
))
1645 return env
->cp15
.c0_c2
[op2
];
1646 case 3: case 4: case 5: case 6: case 7:
1652 /* These registers aren't documented on arm11 cores. However
1653 Linux looks at them anyway. */
1654 if (!arm_feature(env
, ARM_FEATURE_V6
))
1658 if (!arm_feature(env
, ARM_FEATURE_V7
))
1663 return env
->cp15
.c0_ccsid
[env
->cp15
.c0_cssel
];
1665 return env
->cp15
.c0_clid
;
1671 if (op2
!= 0 || crm
!= 0)
1673 return env
->cp15
.c0_cssel
;
1677 case 1: /* System configuration. */
1678 if (arm_feature(env
, ARM_FEATURE_OMAPCP
))
1681 case 0: /* Control register. */
1682 return env
->cp15
.c1_sys
;
1683 case 1: /* Auxiliary control register. */
1684 if (arm_feature(env
, ARM_FEATURE_XSCALE
))
1685 return env
->cp15
.c1_xscaleauxcr
;
1686 if (!arm_feature(env
, ARM_FEATURE_AUXCR
))
1688 switch (ARM_CPUID(env
)) {
1689 case ARM_CPUID_ARM1026
:
1691 case ARM_CPUID_ARM1136
:
1692 case ARM_CPUID_ARM1136_R2
:
1694 case ARM_CPUID_ARM11MPCORE
:
1696 case ARM_CPUID_CORTEXA8
:
1701 case 2: /* Coprocessor access register. */
1702 if (arm_feature(env
, ARM_FEATURE_XSCALE
))
1704 return env
->cp15
.c1_coproc
;
1708 case 2: /* MMU Page table control / MPU cache control. */
1709 if (arm_feature(env
, ARM_FEATURE_MPU
)) {
1712 return env
->cp15
.c2_data
;
1715 return env
->cp15
.c2_insn
;
1723 return env
->cp15
.c2_base0
;
1725 return env
->cp15
.c2_base1
;
1727 return env
->cp15
.c2_control
;
1732 case 3: /* MMU Domain access control / MPU write buffer control. */
1733 return env
->cp15
.c3
;
1734 case 4: /* Reserved. */
1736 case 5: /* MMU Fault status / MPU access permission. */
1737 if (arm_feature(env
, ARM_FEATURE_OMAPCP
))
1741 if (arm_feature(env
, ARM_FEATURE_MPU
))
1742 return simple_mpu_ap_bits(env
->cp15
.c5_data
);
1743 return env
->cp15
.c5_data
;
1745 if (arm_feature(env
, ARM_FEATURE_MPU
))
1746 return simple_mpu_ap_bits(env
->cp15
.c5_data
);
1747 return env
->cp15
.c5_insn
;
1749 if (!arm_feature(env
, ARM_FEATURE_MPU
))
1751 return env
->cp15
.c5_data
;
1753 if (!arm_feature(env
, ARM_FEATURE_MPU
))
1755 return env
->cp15
.c5_insn
;
1759 case 6: /* MMU Fault address. */
1760 if (arm_feature(env
, ARM_FEATURE_MPU
)) {
1763 return env
->cp15
.c6_region
[crm
];
1765 if (arm_feature(env
, ARM_FEATURE_OMAPCP
))
1769 return env
->cp15
.c6_data
;
1771 if (arm_feature(env
, ARM_FEATURE_V6
)) {
1772 /* Watchpoint Fault Adrress. */
1773 return 0; /* Not implemented. */
1775 /* Instruction Fault Adrress. */
1776 /* Arm9 doesn't have an IFAR, but implementing it anyway
1777 shouldn't do any harm. */
1778 return env
->cp15
.c6_insn
;
1781 if (arm_feature(env
, ARM_FEATURE_V6
)) {
1782 /* Instruction Fault Adrress. */
1783 return env
->cp15
.c6_insn
;
1791 case 7: /* Cache control. */
1792 /* FIXME: Should only clear Z flag if destination is r15. */
1795 case 8: /* MMU TLB control. */
1797 case 9: /* Cache lockdown. */
1799 case 0: /* L1 cache. */
1800 if (arm_feature(env
, ARM_FEATURE_OMAPCP
))
1804 return env
->cp15
.c9_data
;
1806 return env
->cp15
.c9_insn
;
1810 case 1: /* L2 cache */
1813 /* L2 Lockdown and Auxiliary control. */
1818 case 10: /* MMU TLB lockdown. */
1819 /* ??? TLB lockdown not implemented. */
1821 case 11: /* TCM DMA control. */
1822 case 12: /* Reserved. */
1824 case 13: /* Process ID. */
1827 return env
->cp15
.c13_fcse
;
1829 return env
->cp15
.c13_context
;
1831 return env
->cp15
.c13_tls1
;
1833 return env
->cp15
.c13_tls2
;
1835 return env
->cp15
.c13_tls3
;
1839 case 14: /* Reserved. */
1841 case 15: /* Implementation specific. */
1842 if (arm_feature(env
, ARM_FEATURE_XSCALE
)) {
1843 if (op2
== 0 && crm
== 1)
1844 return env
->cp15
.c15_cpar
;
1848 if (arm_feature(env
, ARM_FEATURE_OMAPCP
)) {
1852 case 1: /* Read TI925T configuration. */
1853 return env
->cp15
.c15_ticonfig
;
1854 case 2: /* Read I_max. */
1855 return env
->cp15
.c15_i_max
;
1856 case 3: /* Read I_min. */
1857 return env
->cp15
.c15_i_min
;
1858 case 4: /* Read thread-ID. */
1859 return env
->cp15
.c15_threadid
;
1860 case 8: /* TI925T_status */
1863 /* TODO: Peripheral port remap register:
1864 * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt
1865 * controller base address at $rn & ~0xfff and map size of
1866 * 0x200 << ($rn & 0xfff), when MMU is off. */
1872 /* ??? For debugging only. Should raise illegal instruction exception. */
1873 cpu_abort(env
, "Unimplemented cp15 register read (c%d, c%d, {%d, %d})\n",
1874 (insn
>> 16) & 0xf, crm
, op1
, op2
);
1878 void HELPER(set_r13_banked
)(CPUState
*env
, uint32_t mode
, uint32_t val
)
1880 env
->banked_r13
[bank_number(mode
)] = val
;
1883 uint32_t HELPER(get_r13_banked
)(CPUState
*env
, uint32_t mode
)
1885 return env
->banked_r13
[bank_number(mode
)];
1888 uint32_t HELPER(v7m_mrs
)(CPUState
*env
, uint32_t reg
)
1892 return xpsr_read(env
) & 0xf8000000;
1894 return xpsr_read(env
) & 0xf80001ff;
1896 return xpsr_read(env
) & 0xff00fc00;
1898 return xpsr_read(env
) & 0xff00fdff;
1900 return xpsr_read(env
) & 0x000001ff;
1902 return xpsr_read(env
) & 0x0700fc00;
1904 return xpsr_read(env
) & 0x0700edff;
1906 return env
->v7m
.current_sp
? env
->v7m
.other_sp
: env
->regs
[13];
1908 return env
->v7m
.current_sp
? env
->regs
[13] : env
->v7m
.other_sp
;
1909 case 16: /* PRIMASK */
1910 return (env
->uncached_cpsr
& CPSR_I
) != 0;
1911 case 17: /* FAULTMASK */
1912 return (env
->uncached_cpsr
& CPSR_F
) != 0;
1913 case 18: /* BASEPRI */
1914 case 19: /* BASEPRI_MAX */
1915 return env
->v7m
.basepri
;
1916 case 20: /* CONTROL */
1917 return env
->v7m
.control
;
1919 /* ??? For debugging only. */
1920 cpu_abort(env
, "Unimplemented system register read (%d)\n", reg
);
1925 void HELPER(v7m_msr
)(CPUState
*env
, uint32_t reg
, uint32_t val
)
1929 xpsr_write(env
, val
, 0xf8000000);
1932 xpsr_write(env
, val
, 0xf8000000);
1935 xpsr_write(env
, val
, 0xfe00fc00);
1938 xpsr_write(env
, val
, 0xfe00fc00);
1941 /* IPSR bits are readonly. */
1944 xpsr_write(env
, val
, 0x0600fc00);
1947 xpsr_write(env
, val
, 0x0600fc00);
1950 if (env
->v7m
.current_sp
)
1951 env
->v7m
.other_sp
= val
;
1953 env
->regs
[13] = val
;
1956 if (env
->v7m
.current_sp
)
1957 env
->regs
[13] = val
;
1959 env
->v7m
.other_sp
= val
;
1961 case 16: /* PRIMASK */
1963 env
->uncached_cpsr
|= CPSR_I
;
1965 env
->uncached_cpsr
&= ~CPSR_I
;
1967 case 17: /* FAULTMASK */
1969 env
->uncached_cpsr
|= CPSR_F
;
1971 env
->uncached_cpsr
&= ~CPSR_F
;
1973 case 18: /* BASEPRI */
1974 env
->v7m
.basepri
= val
& 0xff;
1976 case 19: /* BASEPRI_MAX */
1978 if (val
!= 0 && (val
< env
->v7m
.basepri
|| env
->v7m
.basepri
== 0))
1979 env
->v7m
.basepri
= val
;
1981 case 20: /* CONTROL */
1982 env
->v7m
.control
= val
& 3;
1983 switch_v7m_sp(env
, (val
& 2) != 0);
1986 /* ??? For debugging only. */
1987 cpu_abort(env
, "Unimplemented system register write (%d)\n", reg
);
1992 void cpu_arm_set_cp_io(CPUARMState
*env
, int cpnum
,
1993 ARMReadCPFunc
*cp_read
, ARMWriteCPFunc
*cp_write
,
1996 if (cpnum
< 0 || cpnum
> 14) {
1997 cpu_abort(env
, "Bad coprocessor number: %i\n", cpnum
);
2001 env
->cp
[cpnum
].cp_read
= cp_read
;
2002 env
->cp
[cpnum
].cp_write
= cp_write
;
2003 env
->cp
[cpnum
].opaque
= opaque
;
2008 /* Note that signed overflow is undefined in C. The following routines are
2009 careful to use unsigned types where modulo arithmetic is required.
2010 Failure to do so _will_ break on newer gcc. */
2012 /* Signed saturating arithmetic. */
2014 /* Perform 16-bit signed saturating addition. */
2015 static inline uint16_t add16_sat(uint16_t a
, uint16_t b
)
2020 if (((res
^ a
) & 0x8000) && !((a
^ b
) & 0x8000)) {
2029 /* Perform 8-bit signed saturating addition. */
2030 static inline uint8_t add8_sat(uint8_t a
, uint8_t b
)
2035 if (((res
^ a
) & 0x80) && !((a
^ b
) & 0x80)) {
2044 /* Perform 16-bit signed saturating subtraction. */
2045 static inline uint16_t sub16_sat(uint16_t a
, uint16_t b
)
2050 if (((res
^ a
) & 0x8000) && ((a
^ b
) & 0x8000)) {
2059 /* Perform 8-bit signed saturating subtraction. */
2060 static inline uint8_t sub8_sat(uint8_t a
, uint8_t b
)
2065 if (((res
^ a
) & 0x80) && ((a
^ b
) & 0x80)) {
2074 #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16);
2075 #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16);
2076 #define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8);
2077 #define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8);
2080 #include "op_addsub.h"
2082 /* Unsigned saturating arithmetic. */
2083 static inline uint16_t add16_usat(uint16_t a
, uint16_t b
)
2092 static inline uint16_t sub16_usat(uint16_t a
, uint16_t b
)
2100 static inline uint8_t add8_usat(uint8_t a
, uint8_t b
)
2109 static inline uint8_t sub8_usat(uint8_t a
, uint8_t b
)
2117 #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16);
2118 #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16);
2119 #define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8);
2120 #define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8);
2123 #include "op_addsub.h"
2125 /* Signed modulo arithmetic. */
2126 #define SARITH16(a, b, n, op) do { \
2128 sum = (int16_t)((uint16_t)(a) op (uint16_t)(b)); \
2129 RESULT(sum, n, 16); \
2131 ge |= 3 << (n * 2); \
2134 #define SARITH8(a, b, n, op) do { \
2136 sum = (int8_t)((uint8_t)(a) op (uint8_t)(b)); \
2137 RESULT(sum, n, 8); \
2143 #define ADD16(a, b, n) SARITH16(a, b, n, +)
2144 #define SUB16(a, b, n) SARITH16(a, b, n, -)
2145 #define ADD8(a, b, n) SARITH8(a, b, n, +)
2146 #define SUB8(a, b, n) SARITH8(a, b, n, -)
2150 #include "op_addsub.h"
2152 /* Unsigned modulo arithmetic. */
2153 #define ADD16(a, b, n) do { \
2155 sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \
2156 RESULT(sum, n, 16); \
2157 if ((sum >> 16) == 1) \
2158 ge |= 3 << (n * 2); \
2161 #define ADD8(a, b, n) do { \
2163 sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \
2164 RESULT(sum, n, 8); \
2165 if ((sum >> 8) == 1) \
2169 #define SUB16(a, b, n) do { \
2171 sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \
2172 RESULT(sum, n, 16); \
2173 if ((sum >> 16) == 0) \
2174 ge |= 3 << (n * 2); \
2177 #define SUB8(a, b, n) do { \
2179 sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \
2180 RESULT(sum, n, 8); \
2181 if ((sum >> 8) == 0) \
2188 #include "op_addsub.h"
2190 /* Halved signed arithmetic. */
2191 #define ADD16(a, b, n) \
2192 RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16)
2193 #define SUB16(a, b, n) \
2194 RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16)
2195 #define ADD8(a, b, n) \
2196 RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8)
2197 #define SUB8(a, b, n) \
2198 RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8)
2201 #include "op_addsub.h"
2203 /* Halved unsigned arithmetic. */
2204 #define ADD16(a, b, n) \
2205 RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16)
2206 #define SUB16(a, b, n) \
2207 RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16)
2208 #define ADD8(a, b, n) \
2209 RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8)
2210 #define SUB8(a, b, n) \
2211 RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8)
2214 #include "op_addsub.h"
2216 static inline uint8_t do_usad(uint8_t a
, uint8_t b
)
2224 /* Unsigned sum of absolute byte differences. */
2225 uint32_t HELPER(usad8
)(uint32_t a
, uint32_t b
)
2228 sum
= do_usad(a
, b
);
2229 sum
+= do_usad(a
>> 8, b
>> 8);
2230 sum
+= do_usad(a
>> 16, b
>>16);
2231 sum
+= do_usad(a
>> 24, b
>> 24);
2235 /* For ARMv6 SEL instruction. */
2236 uint32_t HELPER(sel_flags
)(uint32_t flags
, uint32_t a
, uint32_t b
)
2249 return (a
& mask
) | (b
& ~mask
);
2252 uint32_t HELPER(logicq_cc
)(uint64_t val
)
2254 return (val
>> 32) | (val
!= 0);
2257 /* VFP support. We follow the convention used for VFP instrunctions:
2258 Single precition routines have a "s" suffix, double precision a
2261 /* Convert host exception flags to vfp form. */
2262 static inline int vfp_exceptbits_from_host(int host_bits
)
2264 int target_bits
= 0;
2266 if (host_bits
& float_flag_invalid
)
2268 if (host_bits
& float_flag_divbyzero
)
2270 if (host_bits
& float_flag_overflow
)
2272 if (host_bits
& float_flag_underflow
)
2274 if (host_bits
& float_flag_inexact
)
2275 target_bits
|= 0x10;
2279 uint32_t HELPER(vfp_get_fpscr
)(CPUState
*env
)
2284 fpscr
= (env
->vfp
.xregs
[ARM_VFP_FPSCR
] & 0xffc8ffff)
2285 | (env
->vfp
.vec_len
<< 16)
2286 | (env
->vfp
.vec_stride
<< 20);
2287 i
= get_float_exception_flags(&env
->vfp
.fp_status
);
2288 fpscr
|= vfp_exceptbits_from_host(i
);
2292 /* Convert vfp exception flags to target form. */
2293 static inline int vfp_exceptbits_to_host(int target_bits
)
2297 if (target_bits
& 1)
2298 host_bits
|= float_flag_invalid
;
2299 if (target_bits
& 2)
2300 host_bits
|= float_flag_divbyzero
;
2301 if (target_bits
& 4)
2302 host_bits
|= float_flag_overflow
;
2303 if (target_bits
& 8)
2304 host_bits
|= float_flag_underflow
;
2305 if (target_bits
& 0x10)
2306 host_bits
|= float_flag_inexact
;
2310 void HELPER(vfp_set_fpscr
)(CPUState
*env
, uint32_t val
)
2315 changed
= env
->vfp
.xregs
[ARM_VFP_FPSCR
];
2316 env
->vfp
.xregs
[ARM_VFP_FPSCR
] = (val
& 0xffc8ffff);
2317 env
->vfp
.vec_len
= (val
>> 16) & 7;
2318 env
->vfp
.vec_stride
= (val
>> 20) & 3;
2321 if (changed
& (3 << 22)) {
2322 i
= (val
>> 22) & 3;
2325 i
= float_round_nearest_even
;
2331 i
= float_round_down
;
2334 i
= float_round_to_zero
;
2337 set_float_rounding_mode(i
, &env
->vfp
.fp_status
);
2339 if (changed
& (1 << 24))
2340 set_flush_to_zero((val
& (1 << 24)) != 0, &env
->vfp
.fp_status
);
2341 if (changed
& (1 << 25))
2342 set_default_nan_mode((val
& (1 << 25)) != 0, &env
->vfp
.fp_status
);
2344 i
= vfp_exceptbits_to_host((val
>> 8) & 0x1f);
2345 set_float_exception_flags(i
, &env
->vfp
.fp_status
);
2348 #define VFP_HELPER(name, p) HELPER(glue(glue(vfp_,name),p))
2350 #define VFP_BINOP(name) \
2351 float32 VFP_HELPER(name, s)(float32 a, float32 b, CPUState *env) \
2353 return float32_ ## name (a, b, &env->vfp.fp_status); \
2355 float64 VFP_HELPER(name, d)(float64 a, float64 b, CPUState *env) \
2357 return float64_ ## name (a, b, &env->vfp.fp_status); \
2365 float32
VFP_HELPER(neg
, s
)(float32 a
)
2367 return float32_chs(a
);
2370 float64
VFP_HELPER(neg
, d
)(float64 a
)
2372 return float64_chs(a
);
2375 float32
VFP_HELPER(abs
, s
)(float32 a
)
2377 return float32_abs(a
);
2380 float64
VFP_HELPER(abs
, d
)(float64 a
)
2382 return float64_abs(a
);
2385 float32
VFP_HELPER(sqrt
, s
)(float32 a
, CPUState
*env
)
2387 return float32_sqrt(a
, &env
->vfp
.fp_status
);
2390 float64
VFP_HELPER(sqrt
, d
)(float64 a
, CPUState
*env
)
2392 return float64_sqrt(a
, &env
->vfp
.fp_status
);
2395 /* XXX: check quiet/signaling case */
2396 #define DO_VFP_cmp(p, type) \
2397 void VFP_HELPER(cmp, p)(type a, type b, CPUState *env) \
2400 switch(type ## _compare_quiet(a, b, &env->vfp.fp_status)) { \
2401 case 0: flags = 0x6; break; \
2402 case -1: flags = 0x8; break; \
2403 case 1: flags = 0x2; break; \
2404 default: case 2: flags = 0x3; break; \
2406 env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
2407 | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
2409 void VFP_HELPER(cmpe, p)(type a, type b, CPUState *env) \
2412 switch(type ## _compare(a, b, &env->vfp.fp_status)) { \
2413 case 0: flags = 0x6; break; \
2414 case -1: flags = 0x8; break; \
2415 case 1: flags = 0x2; break; \
2416 default: case 2: flags = 0x3; break; \
2418 env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
2419 | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
2421 DO_VFP_cmp(s
, float32
)
2422 DO_VFP_cmp(d
, float64
)
2425 /* Helper routines to perform bitwise copies between float and int. */
2426 static inline float32
vfp_itos(uint32_t i
)
2437 static inline uint32_t vfp_stoi(float32 s
)
2448 static inline float64
vfp_itod(uint64_t i
)
2459 static inline uint64_t vfp_dtoi(float64 d
)
2470 /* Integer to float conversion. */
2471 float32
VFP_HELPER(uito
, s
)(float32 x
, CPUState
*env
)
2473 return uint32_to_float32(vfp_stoi(x
), &env
->vfp
.fp_status
);
2476 float64
VFP_HELPER(uito
, d
)(float32 x
, CPUState
*env
)
2478 return uint32_to_float64(vfp_stoi(x
), &env
->vfp
.fp_status
);
2481 float32
VFP_HELPER(sito
, s
)(float32 x
, CPUState
*env
)
2483 return int32_to_float32(vfp_stoi(x
), &env
->vfp
.fp_status
);
2486 float64
VFP_HELPER(sito
, d
)(float32 x
, CPUState
*env
)
2488 return int32_to_float64(vfp_stoi(x
), &env
->vfp
.fp_status
);
2491 /* Float to integer conversion. */
2492 float32
VFP_HELPER(toui
, s
)(float32 x
, CPUState
*env
)
2494 return vfp_itos(float32_to_uint32(x
, &env
->vfp
.fp_status
));
2497 float32
VFP_HELPER(toui
, d
)(float64 x
, CPUState
*env
)
2499 return vfp_itos(float64_to_uint32(x
, &env
->vfp
.fp_status
));
2502 float32
VFP_HELPER(tosi
, s
)(float32 x
, CPUState
*env
)
2504 return vfp_itos(float32_to_int32(x
, &env
->vfp
.fp_status
));
2507 float32
VFP_HELPER(tosi
, d
)(float64 x
, CPUState
*env
)
2509 return vfp_itos(float64_to_int32(x
, &env
->vfp
.fp_status
));
2512 float32
VFP_HELPER(touiz
, s
)(float32 x
, CPUState
*env
)
2514 return vfp_itos(float32_to_uint32_round_to_zero(x
, &env
->vfp
.fp_status
));
2517 float32
VFP_HELPER(touiz
, d
)(float64 x
, CPUState
*env
)
2519 return vfp_itos(float64_to_uint32_round_to_zero(x
, &env
->vfp
.fp_status
));
2522 float32
VFP_HELPER(tosiz
, s
)(float32 x
, CPUState
*env
)
2524 return vfp_itos(float32_to_int32_round_to_zero(x
, &env
->vfp
.fp_status
));
2527 float32
VFP_HELPER(tosiz
, d
)(float64 x
, CPUState
*env
)
2529 return vfp_itos(float64_to_int32_round_to_zero(x
, &env
->vfp
.fp_status
));
2532 /* floating point conversion */
2533 float64
VFP_HELPER(fcvtd
, s
)(float32 x
, CPUState
*env
)
2535 return float32_to_float64(x
, &env
->vfp
.fp_status
);
2538 float32
VFP_HELPER(fcvts
, d
)(float64 x
, CPUState
*env
)
2540 return float64_to_float32(x
, &env
->vfp
.fp_status
);
2543 /* VFP3 fixed point conversion. */
2544 #define VFP_CONV_FIX(name, p, ftype, itype, sign) \
2545 ftype VFP_HELPER(name##to, p)(ftype x, uint32_t shift, CPUState *env) \
2548 tmp = sign##int32_to_##ftype ((itype)vfp_##p##toi(x), \
2549 &env->vfp.fp_status); \
2550 return ftype##_scalbn(tmp, -(int)shift, &env->vfp.fp_status); \
2552 ftype VFP_HELPER(to##name, p)(ftype x, uint32_t shift, CPUState *env) \
2555 tmp = ftype##_scalbn(x, shift, &env->vfp.fp_status); \
2556 return vfp_ito##p((itype)ftype##_to_##sign##int32_round_to_zero(tmp, \
2557 &env->vfp.fp_status)); \
2560 VFP_CONV_FIX(sh
, d
, float64
, int16
, )
2561 VFP_CONV_FIX(sl
, d
, float64
, int32
, )
2562 VFP_CONV_FIX(uh
, d
, float64
, uint16
, u
)
2563 VFP_CONV_FIX(ul
, d
, float64
, uint32
, u
)
2564 VFP_CONV_FIX(sh
, s
, float32
, int16
, )
2565 VFP_CONV_FIX(sl
, s
, float32
, int32
, )
2566 VFP_CONV_FIX(uh
, s
, float32
, uint16
, u
)
2567 VFP_CONV_FIX(ul
, s
, float32
, uint32
, u
)
2570 float32
HELPER(recps_f32
)(float32 a
, float32 b
, CPUState
*env
)
2572 float_status
*s
= &env
->vfp
.fp_status
;
2573 float32 two
= int32_to_float32(2, s
);
2574 return float32_sub(two
, float32_mul(a
, b
, s
), s
);
2577 float32
HELPER(rsqrts_f32
)(float32 a
, float32 b
, CPUState
*env
)
2579 float_status
*s
= &env
->vfp
.fp_status
;
2580 float32 three
= int32_to_float32(3, s
);
2581 return float32_sub(three
, float32_mul(a
, b
, s
), s
);
2586 /* TODO: The architecture specifies the value that the estimate functions
2587 should return. We return the exact reciprocal/root instead. */
2588 float32
HELPER(recpe_f32
)(float32 a
, CPUState
*env
)
2590 float_status
*s
= &env
->vfp
.fp_status
;
2591 float32 one
= int32_to_float32(1, s
);
2592 return float32_div(one
, a
, s
);
2595 float32
HELPER(rsqrte_f32
)(float32 a
, CPUState
*env
)
2597 float_status
*s
= &env
->vfp
.fp_status
;
2598 float32 one
= int32_to_float32(1, s
);
2599 return float32_div(one
, float32_sqrt(a
, s
), s
);
2602 uint32_t HELPER(recpe_u32
)(uint32_t a
, CPUState
*env
)
2604 float_status
*s
= &env
->vfp
.fp_status
;
2606 tmp
= int32_to_float32(a
, s
);
2607 tmp
= float32_scalbn(tmp
, -32, s
);
2608 tmp
= helper_recpe_f32(tmp
, env
);
2609 tmp
= float32_scalbn(tmp
, 31, s
);
2610 return float32_to_int32(tmp
, s
);
2613 uint32_t HELPER(rsqrte_u32
)(uint32_t a
, CPUState
*env
)
2615 float_status
*s
= &env
->vfp
.fp_status
;
2617 tmp
= int32_to_float32(a
, s
);
2618 tmp
= float32_scalbn(tmp
, -32, s
);
2619 tmp
= helper_rsqrte_f32(tmp
, env
);
2620 tmp
= float32_scalbn(tmp
, 31, s
);
2621 return float32_to_int32(tmp
, s
);
2624 void HELPER(set_teecr
)(CPUState
*env
, uint32_t val
)
2627 if (env
->teecr
!= val
) {