kvm: external module: adjust for new host kernels install location
[qemu-kvm/fedora.git] / hw / esp.c
blobbcd90fbb5eb939e544c30c4f3d8ca2ede91e3614
1 /*
2 * QEMU ESP/NCR53C9x emulation
4 * Copyright (c) 2005-2006 Fabrice Bellard
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
24 #include "hw.h"
25 #include "block.h"
26 #include "scsi-disk.h"
27 #include "scsi.h"
29 /* debug ESP card */
30 //#define DEBUG_ESP
33 * On Sparc32, this is the ESP (NCR53C90) part of chip STP2000 (Master I/O),
34 * also produced as NCR89C100. See
35 * http://www.ibiblio.org/pub/historic-linux/early-ports/Sparc/NCR/NCR89C100.txt
36 * and
37 * http://www.ibiblio.org/pub/historic-linux/early-ports/Sparc/NCR/NCR53C9X.txt
40 #ifdef DEBUG_ESP
41 #define DPRINTF(fmt, args...) \
42 do { printf("ESP: " fmt , ##args); } while (0)
43 #else
44 #define DPRINTF(fmt, args...)
45 #endif
47 #define ESP_MASK 0x3f
48 #define ESP_REGS 16
49 #define ESP_SIZE (ESP_REGS * 4)
50 #define TI_BUFSZ 32
52 typedef struct ESPState ESPState;
54 struct ESPState {
55 qemu_irq irq;
56 uint8_t rregs[ESP_REGS];
57 uint8_t wregs[ESP_REGS];
58 int32_t ti_size;
59 uint32_t ti_rptr, ti_wptr;
60 uint8_t ti_buf[TI_BUFSZ];
61 int sense;
62 int dma;
63 SCSIDevice *scsi_dev[ESP_MAX_DEVS];
64 SCSIDevice *current_dev;
65 uint8_t cmdbuf[TI_BUFSZ];
66 int cmdlen;
67 int do_cmd;
69 /* The amount of data left in the current DMA transfer. */
70 uint32_t dma_left;
71 /* The size of the current DMA transfer. Zero if no transfer is in
72 progress. */
73 uint32_t dma_counter;
74 uint8_t *async_buf;
75 uint32_t async_len;
77 espdma_memory_read_write dma_memory_read;
78 espdma_memory_read_write dma_memory_write;
79 void *dma_opaque;
82 #define ESP_TCLO 0x0
83 #define ESP_TCMID 0x1
84 #define ESP_FIFO 0x2
85 #define ESP_CMD 0x3
86 #define ESP_RSTAT 0x4
87 #define ESP_WBUSID 0x4
88 #define ESP_RINTR 0x5
89 #define ESP_WSEL 0x5
90 #define ESP_RSEQ 0x6
91 #define ESP_WSYNTP 0x6
92 #define ESP_RFLAGS 0x7
93 #define ESP_WSYNO 0x7
94 #define ESP_CFG1 0x8
95 #define ESP_RRES1 0x9
96 #define ESP_WCCF 0x9
97 #define ESP_RRES2 0xa
98 #define ESP_WTEST 0xa
99 #define ESP_CFG2 0xb
100 #define ESP_CFG3 0xc
101 #define ESP_RES3 0xd
102 #define ESP_TCHI 0xe
103 #define ESP_RES4 0xf
105 #define CMD_DMA 0x80
106 #define CMD_CMD 0x7f
108 #define CMD_NOP 0x00
109 #define CMD_FLUSH 0x01
110 #define CMD_RESET 0x02
111 #define CMD_BUSRESET 0x03
112 #define CMD_TI 0x10
113 #define CMD_ICCS 0x11
114 #define CMD_MSGACC 0x12
115 #define CMD_SATN 0x1a
116 #define CMD_SELATN 0x42
117 #define CMD_SELATNS 0x43
118 #define CMD_ENSEL 0x44
120 #define STAT_DO 0x00
121 #define STAT_DI 0x01
122 #define STAT_CD 0x02
123 #define STAT_ST 0x03
124 #define STAT_MI 0x06
125 #define STAT_MO 0x07
126 #define STAT_PIO_MASK 0x06
128 #define STAT_TC 0x10
129 #define STAT_PE 0x20
130 #define STAT_GE 0x40
131 #define STAT_IN 0x80
133 #define INTR_FC 0x08
134 #define INTR_BS 0x10
135 #define INTR_DC 0x20
136 #define INTR_RST 0x80
138 #define SEQ_0 0x0
139 #define SEQ_CD 0x4
141 #define CFG1_RESREPT 0x40
143 #define CFG2_MASK 0x15
145 #define TCHI_FAS100A 0x4
147 static int get_cmd(ESPState *s, uint8_t *buf)
149 uint32_t dmalen;
150 int target;
152 dmalen = s->rregs[ESP_TCLO] | (s->rregs[ESP_TCMID] << 8);
153 target = s->wregs[ESP_WBUSID] & 7;
154 DPRINTF("get_cmd: len %d target %d\n", dmalen, target);
155 if (s->dma) {
156 s->dma_memory_read(s->dma_opaque, buf, dmalen);
157 } else {
158 buf[0] = 0;
159 memcpy(&buf[1], s->ti_buf, dmalen);
160 dmalen++;
163 s->ti_size = 0;
164 s->ti_rptr = 0;
165 s->ti_wptr = 0;
167 if (s->current_dev) {
168 /* Started a new command before the old one finished. Cancel it. */
169 s->current_dev->cancel_io(s->current_dev, 0);
170 s->async_len = 0;
173 if (target >= ESP_MAX_DEVS || !s->scsi_dev[target]) {
174 // No such drive
175 s->rregs[ESP_RSTAT] = STAT_IN;
176 s->rregs[ESP_RINTR] = INTR_DC;
177 s->rregs[ESP_RSEQ] = SEQ_0;
178 qemu_irq_raise(s->irq);
179 return 0;
181 s->current_dev = s->scsi_dev[target];
182 return dmalen;
185 static void do_cmd(ESPState *s, uint8_t *buf)
187 int32_t datalen;
188 int lun;
190 DPRINTF("do_cmd: busid 0x%x\n", buf[0]);
191 lun = buf[0] & 7;
192 datalen = s->current_dev->send_command(s->current_dev, 0, &buf[1], lun);
193 s->ti_size = datalen;
194 if (datalen != 0) {
195 s->rregs[ESP_RSTAT] = STAT_IN | STAT_TC;
196 s->dma_left = 0;
197 s->dma_counter = 0;
198 if (datalen > 0) {
199 s->rregs[ESP_RSTAT] |= STAT_DI;
200 s->current_dev->read_data(s->current_dev, 0);
201 } else {
202 s->rregs[ESP_RSTAT] |= STAT_DO;
203 s->current_dev->write_data(s->current_dev, 0);
206 s->rregs[ESP_RINTR] = INTR_BS | INTR_FC;
207 s->rregs[ESP_RSEQ] = SEQ_CD;
208 qemu_irq_raise(s->irq);
211 static void handle_satn(ESPState *s)
213 uint8_t buf[32];
214 int len;
216 len = get_cmd(s, buf);
217 if (len)
218 do_cmd(s, buf);
221 static void handle_satn_stop(ESPState *s)
223 s->cmdlen = get_cmd(s, s->cmdbuf);
224 if (s->cmdlen) {
225 DPRINTF("Set ATN & Stop: cmdlen %d\n", s->cmdlen);
226 s->do_cmd = 1;
227 s->rregs[ESP_RSTAT] = STAT_IN | STAT_TC | STAT_CD;
228 s->rregs[ESP_RINTR] = INTR_BS | INTR_FC;
229 s->rregs[ESP_RSEQ] = SEQ_CD;
230 qemu_irq_raise(s->irq);
234 static void write_response(ESPState *s)
236 DPRINTF("Transfer status (sense=%d)\n", s->sense);
237 s->ti_buf[0] = s->sense;
238 s->ti_buf[1] = 0;
239 if (s->dma) {
240 s->dma_memory_write(s->dma_opaque, s->ti_buf, 2);
241 s->rregs[ESP_RSTAT] = STAT_IN | STAT_TC | STAT_ST;
242 s->rregs[ESP_RINTR] = INTR_BS | INTR_FC;
243 s->rregs[ESP_RSEQ] = SEQ_CD;
244 } else {
245 s->ti_size = 2;
246 s->ti_rptr = 0;
247 s->ti_wptr = 0;
248 s->rregs[ESP_RFLAGS] = 2;
250 qemu_irq_raise(s->irq);
253 static void esp_dma_done(ESPState *s)
255 s->rregs[ESP_RSTAT] |= STAT_IN | STAT_TC;
256 s->rregs[ESP_RINTR] = INTR_BS;
257 s->rregs[ESP_RSEQ] = 0;
258 s->rregs[ESP_RFLAGS] = 0;
259 s->rregs[ESP_TCLO] = 0;
260 s->rregs[ESP_TCMID] = 0;
261 qemu_irq_raise(s->irq);
264 static void esp_do_dma(ESPState *s)
266 uint32_t len;
267 int to_device;
269 to_device = (s->ti_size < 0);
270 len = s->dma_left;
271 if (s->do_cmd) {
272 DPRINTF("command len %d + %d\n", s->cmdlen, len);
273 s->dma_memory_read(s->dma_opaque, &s->cmdbuf[s->cmdlen], len);
274 s->ti_size = 0;
275 s->cmdlen = 0;
276 s->do_cmd = 0;
277 do_cmd(s, s->cmdbuf);
278 return;
280 if (s->async_len == 0) {
281 /* Defer until data is available. */
282 return;
284 if (len > s->async_len) {
285 len = s->async_len;
287 if (to_device) {
288 s->dma_memory_read(s->dma_opaque, s->async_buf, len);
289 } else {
290 s->dma_memory_write(s->dma_opaque, s->async_buf, len);
292 s->dma_left -= len;
293 s->async_buf += len;
294 s->async_len -= len;
295 if (to_device)
296 s->ti_size += len;
297 else
298 s->ti_size -= len;
299 if (s->async_len == 0) {
300 if (to_device) {
301 // ti_size is negative
302 s->current_dev->write_data(s->current_dev, 0);
303 } else {
304 s->current_dev->read_data(s->current_dev, 0);
305 /* If there is still data to be read from the device then
306 complete the DMA operation immeriately. Otherwise defer
307 until the scsi layer has completed. */
308 if (s->dma_left == 0 && s->ti_size > 0) {
309 esp_dma_done(s);
312 } else {
313 /* Partially filled a scsi buffer. Complete immediately. */
314 esp_dma_done(s);
318 static void esp_command_complete(void *opaque, int reason, uint32_t tag,
319 uint32_t arg)
321 ESPState *s = (ESPState *)opaque;
323 if (reason == SCSI_REASON_DONE) {
324 DPRINTF("SCSI Command complete\n");
325 if (s->ti_size != 0)
326 DPRINTF("SCSI command completed unexpectedly\n");
327 s->ti_size = 0;
328 s->dma_left = 0;
329 s->async_len = 0;
330 if (arg)
331 DPRINTF("Command failed\n");
332 s->sense = arg;
333 s->rregs[ESP_RSTAT] = STAT_ST;
334 esp_dma_done(s);
335 s->current_dev = NULL;
336 } else {
337 DPRINTF("transfer %d/%d\n", s->dma_left, s->ti_size);
338 s->async_len = arg;
339 s->async_buf = s->current_dev->get_buf(s->current_dev, 0);
340 if (s->dma_left) {
341 esp_do_dma(s);
342 } else if (s->dma_counter != 0 && s->ti_size <= 0) {
343 /* If this was the last part of a DMA transfer then the
344 completion interrupt is deferred to here. */
345 esp_dma_done(s);
350 static void handle_ti(ESPState *s)
352 uint32_t dmalen, minlen;
354 dmalen = s->rregs[ESP_TCLO] | (s->rregs[ESP_TCMID] << 8);
355 if (dmalen==0) {
356 dmalen=0x10000;
358 s->dma_counter = dmalen;
360 if (s->do_cmd)
361 minlen = (dmalen < 32) ? dmalen : 32;
362 else if (s->ti_size < 0)
363 minlen = (dmalen < -s->ti_size) ? dmalen : -s->ti_size;
364 else
365 minlen = (dmalen < s->ti_size) ? dmalen : s->ti_size;
366 DPRINTF("Transfer Information len %d\n", minlen);
367 if (s->dma) {
368 s->dma_left = minlen;
369 s->rregs[ESP_RSTAT] &= ~STAT_TC;
370 esp_do_dma(s);
371 } else if (s->do_cmd) {
372 DPRINTF("command len %d\n", s->cmdlen);
373 s->ti_size = 0;
374 s->cmdlen = 0;
375 s->do_cmd = 0;
376 do_cmd(s, s->cmdbuf);
377 return;
381 static void esp_reset(void *opaque)
383 ESPState *s = opaque;
385 memset(s->rregs, 0, ESP_REGS);
386 memset(s->wregs, 0, ESP_REGS);
387 s->rregs[ESP_TCHI] = TCHI_FAS100A; // Indicate fas100a
388 s->ti_size = 0;
389 s->ti_rptr = 0;
390 s->ti_wptr = 0;
391 s->dma = 0;
392 s->do_cmd = 0;
395 static void parent_esp_reset(void *opaque, int irq, int level)
397 if (level)
398 esp_reset(opaque);
401 static uint32_t esp_mem_readb(void *opaque, target_phys_addr_t addr)
403 ESPState *s = opaque;
404 uint32_t saddr;
406 saddr = (addr & ESP_MASK) >> 2;
407 DPRINTF("read reg[%d]: 0x%2.2x\n", saddr, s->rregs[saddr]);
408 switch (saddr) {
409 case ESP_FIFO:
410 if (s->ti_size > 0) {
411 s->ti_size--;
412 if ((s->rregs[ESP_RSTAT] & STAT_PIO_MASK) == 0) {
413 /* Data in/out. */
414 fprintf(stderr, "esp: PIO data read not implemented\n");
415 s->rregs[ESP_FIFO] = 0;
416 } else {
417 s->rregs[ESP_FIFO] = s->ti_buf[s->ti_rptr++];
419 qemu_irq_raise(s->irq);
421 if (s->ti_size == 0) {
422 s->ti_rptr = 0;
423 s->ti_wptr = 0;
425 break;
426 case ESP_RINTR:
427 // Clear interrupt/error status bits
428 s->rregs[ESP_RSTAT] &= ~(STAT_IN | STAT_GE | STAT_PE);
429 qemu_irq_lower(s->irq);
430 break;
431 default:
432 break;
434 return s->rregs[saddr];
437 static void esp_mem_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
439 ESPState *s = opaque;
440 uint32_t saddr;
442 saddr = (addr & ESP_MASK) >> 2;
443 DPRINTF("write reg[%d]: 0x%2.2x -> 0x%2.2x\n", saddr, s->wregs[saddr],
444 val);
445 switch (saddr) {
446 case ESP_TCLO:
447 case ESP_TCMID:
448 s->rregs[ESP_RSTAT] &= ~STAT_TC;
449 break;
450 case ESP_FIFO:
451 if (s->do_cmd) {
452 s->cmdbuf[s->cmdlen++] = val & 0xff;
453 } else if ((s->rregs[ESP_RSTAT] & STAT_PIO_MASK) == 0) {
454 uint8_t buf;
455 buf = val & 0xff;
456 s->ti_size--;
457 fprintf(stderr, "esp: PIO data write not implemented\n");
458 } else {
459 s->ti_size++;
460 s->ti_buf[s->ti_wptr++] = val & 0xff;
462 break;
463 case ESP_CMD:
464 s->rregs[saddr] = val;
465 if (val & CMD_DMA) {
466 s->dma = 1;
467 /* Reload DMA counter. */
468 s->rregs[ESP_TCLO] = s->wregs[ESP_TCLO];
469 s->rregs[ESP_TCMID] = s->wregs[ESP_TCMID];
470 } else {
471 s->dma = 0;
473 switch(val & CMD_CMD) {
474 case CMD_NOP:
475 DPRINTF("NOP (%2.2x)\n", val);
476 break;
477 case CMD_FLUSH:
478 DPRINTF("Flush FIFO (%2.2x)\n", val);
479 //s->ti_size = 0;
480 s->rregs[ESP_RINTR] = INTR_FC;
481 s->rregs[ESP_RSEQ] = 0;
482 break;
483 case CMD_RESET:
484 DPRINTF("Chip reset (%2.2x)\n", val);
485 esp_reset(s);
486 break;
487 case CMD_BUSRESET:
488 DPRINTF("Bus reset (%2.2x)\n", val);
489 s->rregs[ESP_RINTR] = INTR_RST;
490 if (!(s->wregs[ESP_CFG1] & CFG1_RESREPT)) {
491 qemu_irq_raise(s->irq);
493 break;
494 case CMD_TI:
495 handle_ti(s);
496 break;
497 case CMD_ICCS:
498 DPRINTF("Initiator Command Complete Sequence (%2.2x)\n", val);
499 write_response(s);
500 break;
501 case CMD_MSGACC:
502 DPRINTF("Message Accepted (%2.2x)\n", val);
503 write_response(s);
504 s->rregs[ESP_RINTR] = INTR_DC;
505 s->rregs[ESP_RSEQ] = 0;
506 break;
507 case CMD_SATN:
508 DPRINTF("Set ATN (%2.2x)\n", val);
509 break;
510 case CMD_SELATN:
511 DPRINTF("Set ATN (%2.2x)\n", val);
512 handle_satn(s);
513 break;
514 case CMD_SELATNS:
515 DPRINTF("Set ATN & stop (%2.2x)\n", val);
516 handle_satn_stop(s);
517 break;
518 case CMD_ENSEL:
519 DPRINTF("Enable selection (%2.2x)\n", val);
520 break;
521 default:
522 DPRINTF("Unhandled ESP command (%2.2x)\n", val);
523 break;
525 break;
526 case ESP_WBUSID ... ESP_WSYNO:
527 break;
528 case ESP_CFG1:
529 s->rregs[saddr] = val;
530 break;
531 case ESP_WCCF ... ESP_WTEST:
532 break;
533 case ESP_CFG2:
534 s->rregs[saddr] = val & CFG2_MASK;
535 break;
536 case ESP_CFG3 ... ESP_RES4:
537 s->rregs[saddr] = val;
538 break;
539 default:
540 break;
542 s->wregs[saddr] = val;
545 static CPUReadMemoryFunc *esp_mem_read[3] = {
546 esp_mem_readb,
547 NULL,
548 NULL,
551 static CPUWriteMemoryFunc *esp_mem_write[3] = {
552 esp_mem_writeb,
553 NULL,
554 NULL,
557 static void esp_save(QEMUFile *f, void *opaque)
559 ESPState *s = opaque;
561 qemu_put_buffer(f, s->rregs, ESP_REGS);
562 qemu_put_buffer(f, s->wregs, ESP_REGS);
563 qemu_put_be32s(f, &s->ti_size);
564 qemu_put_be32s(f, &s->ti_rptr);
565 qemu_put_be32s(f, &s->ti_wptr);
566 qemu_put_buffer(f, s->ti_buf, TI_BUFSZ);
567 qemu_put_be32s(f, &s->sense);
568 qemu_put_be32s(f, &s->dma);
569 qemu_put_buffer(f, s->cmdbuf, TI_BUFSZ);
570 qemu_put_be32s(f, &s->cmdlen);
571 qemu_put_be32s(f, &s->do_cmd);
572 qemu_put_be32s(f, &s->dma_left);
573 // There should be no transfers in progress, so dma_counter is not saved
576 static int esp_load(QEMUFile *f, void *opaque, int version_id)
578 ESPState *s = opaque;
580 if (version_id != 3)
581 return -EINVAL; // Cannot emulate 2
583 qemu_get_buffer(f, s->rregs, ESP_REGS);
584 qemu_get_buffer(f, s->wregs, ESP_REGS);
585 qemu_get_be32s(f, &s->ti_size);
586 qemu_get_be32s(f, &s->ti_rptr);
587 qemu_get_be32s(f, &s->ti_wptr);
588 qemu_get_buffer(f, s->ti_buf, TI_BUFSZ);
589 qemu_get_be32s(f, &s->sense);
590 qemu_get_be32s(f, &s->dma);
591 qemu_get_buffer(f, s->cmdbuf, TI_BUFSZ);
592 qemu_get_be32s(f, &s->cmdlen);
593 qemu_get_be32s(f, &s->do_cmd);
594 qemu_get_be32s(f, &s->dma_left);
596 return 0;
599 void esp_scsi_attach(void *opaque, BlockDriverState *bd, int id)
601 ESPState *s = (ESPState *)opaque;
603 if (id < 0) {
604 for (id = 0; id < ESP_MAX_DEVS; id++) {
605 if (s->scsi_dev[id] == NULL)
606 break;
609 if (id >= ESP_MAX_DEVS) {
610 DPRINTF("Bad Device ID %d\n", id);
611 return;
613 if (s->scsi_dev[id]) {
614 DPRINTF("Destroying device %d\n", id);
615 s->scsi_dev[id]->destroy(s->scsi_dev[id]);
617 DPRINTF("Attaching block device %d\n", id);
618 /* Command queueing is not implemented. */
619 s->scsi_dev[id] = scsi_generic_init(bd, 0, esp_command_complete, s);
620 if (s->scsi_dev[id] == NULL)
621 s->scsi_dev[id] = scsi_disk_init(bd, 0, esp_command_complete, s);
624 void *esp_init(target_phys_addr_t espaddr,
625 espdma_memory_read_write dma_memory_read,
626 espdma_memory_read_write dma_memory_write,
627 void *dma_opaque, qemu_irq irq, qemu_irq *reset)
629 ESPState *s;
630 int esp_io_memory;
632 s = qemu_mallocz(sizeof(ESPState));
633 if (!s)
634 return NULL;
636 s->irq = irq;
637 s->dma_memory_read = dma_memory_read;
638 s->dma_memory_write = dma_memory_write;
639 s->dma_opaque = dma_opaque;
641 esp_io_memory = cpu_register_io_memory(0, esp_mem_read, esp_mem_write, s);
642 cpu_register_physical_memory(espaddr, ESP_SIZE, esp_io_memory);
644 esp_reset(s);
646 register_savevm("esp", espaddr, 3, esp_save, esp_load, s);
647 qemu_register_reset(esp_reset, s);
649 *reset = *qemu_allocate_irqs(parent_esp_reset, s, 1);
651 return s;