Push_nmi should be only used by x86
[qemu-kvm/fedora.git] / qemu-kvm.c
blobb6c82885281e1d5e1decba798df6a69c3c151649
1 /*
2 * qemu/kvm integration
4 * Copyright (C) 2006-2008 Qumranet Technologies
6 * Licensed under the terms of the GNU GPL version 2 or higher.
7 */
8 #include "config.h"
9 #include "config-host.h"
11 int kvm_allowed = 1;
12 int kvm_irqchip = 1;
13 int kvm_pit = 1;
15 #include <assert.h>
16 #include <string.h>
17 #include "hw/hw.h"
18 #include "sysemu.h"
19 #include "qemu-common.h"
20 #include "console.h"
21 #include "block.h"
22 #include "compatfd.h"
24 #include "qemu-kvm.h"
25 #include <libkvm.h>
26 #include <pthread.h>
27 #include <sys/utsname.h>
28 #include <sys/syscall.h>
29 #include <sys/mman.h>
31 #define false 0
32 #define true 1
34 extern void perror(const char *s);
36 kvm_context_t kvm_context;
38 extern int smp_cpus;
40 pthread_mutex_t qemu_mutex = PTHREAD_MUTEX_INITIALIZER;
41 pthread_cond_t qemu_vcpu_cond = PTHREAD_COND_INITIALIZER;
42 pthread_cond_t qemu_system_cond = PTHREAD_COND_INITIALIZER;
43 pthread_cond_t qemu_pause_cond = PTHREAD_COND_INITIALIZER;
44 pthread_cond_t qemu_work_cond = PTHREAD_COND_INITIALIZER;
45 __thread struct CPUState *current_env;
47 static int qemu_system_ready;
49 #define SIG_IPI (SIGRTMIN+4)
51 pthread_t io_thread;
52 static int io_thread_fd = -1;
53 static int io_thread_sigfd = -1;
55 static int kvm_debug_stop_requested;
57 /* The list of ioperm_data */
58 static LIST_HEAD(, ioperm_data) ioperm_head;
60 static inline unsigned long kvm_get_thread_id(void)
62 return syscall(SYS_gettid);
65 static void qemu_cond_wait(pthread_cond_t *cond)
67 CPUState *env = cpu_single_env;
68 static const struct timespec ts = {
69 .tv_sec = 0,
70 .tv_nsec = 100000,
73 pthread_cond_timedwait(cond, &qemu_mutex, &ts);
74 cpu_single_env = env;
77 static void sig_ipi_handler(int n)
81 static void on_vcpu(CPUState *env, void (*func)(void *data), void *data)
83 struct qemu_work_item wi;
85 if (env == current_env) {
86 func(data);
87 return;
90 wi.func = func;
91 wi.data = data;
92 if (!env->kvm_cpu_state.queued_work_first)
93 env->kvm_cpu_state.queued_work_first = &wi;
94 else
95 env->kvm_cpu_state.queued_work_last->next = &wi;
96 env->kvm_cpu_state.queued_work_last = &wi;
97 wi.next = NULL;
98 wi.done = false;
100 pthread_kill(env->kvm_cpu_state.thread, SIG_IPI);
101 while (!wi.done)
102 qemu_cond_wait(&qemu_work_cond);
105 static void inject_interrupt(void *data)
107 cpu_interrupt(current_env, (int)data);
110 void kvm_inject_interrupt(CPUState *env, int mask)
112 on_vcpu(env, inject_interrupt, (void *)mask);
115 void kvm_update_interrupt_request(CPUState *env)
117 int signal = 0;
119 if (env) {
120 if (current_env && !current_env->kvm_cpu_state.created)
121 signal = 1;
123 * Testing for created here is really redundant
125 if (current_env && current_env->kvm_cpu_state.created &&
126 env != current_env && !env->kvm_cpu_state.signalled)
127 signal = 1;
129 if (signal) {
130 env->kvm_cpu_state.signalled = 1;
131 if (env->kvm_cpu_state.thread)
132 pthread_kill(env->kvm_cpu_state.thread, SIG_IPI);
137 void kvm_update_after_sipi(CPUState *env)
139 env->kvm_cpu_state.sipi_needed = 1;
140 kvm_update_interrupt_request(env);
143 void kvm_apic_init(CPUState *env)
145 if (env->cpu_index != 0)
146 env->kvm_cpu_state.init = 1;
147 kvm_update_interrupt_request(env);
150 #include <signal.h>
152 static int try_push_interrupts(void *opaque)
154 return kvm_arch_try_push_interrupts(opaque);
157 #ifdef TARGET_I386
158 static void push_nmi(void *opaque)
160 kvm_arch_push_nmi(opaque);
162 #endif
164 static void post_kvm_run(void *opaque, void *data)
166 CPUState *env = (CPUState *)data;
168 pthread_mutex_lock(&qemu_mutex);
169 kvm_arch_post_kvm_run(opaque, env);
172 static int pre_kvm_run(void *opaque, void *data)
174 CPUState *env = (CPUState *)data;
176 kvm_arch_pre_kvm_run(opaque, env);
178 if (env->interrupt_request & CPU_INTERRUPT_EXIT)
179 return 1;
180 pthread_mutex_unlock(&qemu_mutex);
181 return 0;
184 static void kvm_do_load_registers(void *_env)
186 CPUState *env = _env;
188 kvm_arch_load_regs(env);
191 void kvm_load_registers(CPUState *env)
193 if (kvm_enabled() && qemu_system_ready)
194 on_vcpu(env, kvm_do_load_registers, env);
197 static void kvm_do_save_registers(void *_env)
199 CPUState *env = _env;
201 kvm_arch_save_regs(env);
204 void kvm_save_registers(CPUState *env)
206 if (kvm_enabled())
207 on_vcpu(env, kvm_do_save_registers, env);
210 int kvm_cpu_exec(CPUState *env)
212 int r;
214 r = kvm_run(kvm_context, env->cpu_index, env);
215 if (r < 0) {
216 printf("kvm_run returned %d\n", r);
217 exit(1);
220 return 0;
223 extern int vm_running;
225 static int has_work(CPUState *env)
227 if (!vm_running || (env && env->kvm_cpu_state.stopped))
228 return 0;
229 if (!env->halted)
230 return 1;
231 return kvm_arch_has_work(env);
234 static void flush_queued_work(CPUState *env)
236 struct qemu_work_item *wi;
238 if (!env->kvm_cpu_state.queued_work_first)
239 return;
241 while ((wi = env->kvm_cpu_state.queued_work_first)) {
242 env->kvm_cpu_state.queued_work_first = wi->next;
243 wi->func(wi->data);
244 wi->done = true;
246 env->kvm_cpu_state.queued_work_last = NULL;
247 pthread_cond_broadcast(&qemu_work_cond);
250 static void kvm_main_loop_wait(CPUState *env, int timeout)
252 struct timespec ts;
253 int r, e;
254 siginfo_t siginfo;
255 sigset_t waitset;
257 pthread_mutex_unlock(&qemu_mutex);
259 ts.tv_sec = timeout / 1000;
260 ts.tv_nsec = (timeout % 1000) * 1000000;
261 sigemptyset(&waitset);
262 sigaddset(&waitset, SIG_IPI);
264 r = sigtimedwait(&waitset, &siginfo, &ts);
265 e = errno;
267 pthread_mutex_lock(&qemu_mutex);
269 if (r == -1 && !(e == EAGAIN || e == EINTR)) {
270 printf("sigtimedwait: %s\n", strerror(e));
271 exit(1);
274 cpu_single_env = env;
275 flush_queued_work(env);
277 if (env->kvm_cpu_state.stop) {
278 env->kvm_cpu_state.stop = 0;
279 env->kvm_cpu_state.stopped = 1;
280 pthread_cond_signal(&qemu_pause_cond);
283 env->kvm_cpu_state.signalled = 0;
286 static int all_threads_paused(void)
288 CPUState *penv = first_cpu;
290 while (penv) {
291 if (penv->kvm_cpu_state.stop)
292 return 0;
293 penv = (CPUState *)penv->next_cpu;
296 return 1;
299 static void pause_all_threads(void)
301 CPUState *penv = first_cpu;
303 assert(!cpu_single_env);
305 while (penv) {
306 penv->kvm_cpu_state.stop = 1;
307 pthread_kill(penv->kvm_cpu_state.thread, SIG_IPI);
308 penv = (CPUState *)penv->next_cpu;
311 while (!all_threads_paused())
312 qemu_cond_wait(&qemu_pause_cond);
315 static void resume_all_threads(void)
317 CPUState *penv = first_cpu;
319 assert(!cpu_single_env);
321 while (penv) {
322 penv->kvm_cpu_state.stop = 0;
323 penv->kvm_cpu_state.stopped = 0;
324 pthread_kill(penv->kvm_cpu_state.thread, SIG_IPI);
325 penv = (CPUState *)penv->next_cpu;
329 static void kvm_vm_state_change_handler(void *context, int running)
331 if (running)
332 resume_all_threads();
333 else
334 pause_all_threads();
337 static void update_regs_for_sipi(CPUState *env)
339 kvm_arch_update_regs_for_sipi(env);
340 env->kvm_cpu_state.sipi_needed = 0;
343 static void update_regs_for_init(CPUState *env)
345 #ifdef TARGET_I386
346 SegmentCache cs = env->segs[R_CS];
347 #endif
349 cpu_reset(env);
351 #ifdef TARGET_I386
352 /* restore SIPI vector */
353 if(env->kvm_cpu_state.sipi_needed)
354 env->segs[R_CS] = cs;
355 #endif
357 env->kvm_cpu_state.init = 0;
358 kvm_arch_load_regs(env);
361 static void setup_kernel_sigmask(CPUState *env)
363 sigset_t set;
365 sigemptyset(&set);
366 sigaddset(&set, SIGUSR2);
367 sigaddset(&set, SIGIO);
368 sigaddset(&set, SIGALRM);
369 sigprocmask(SIG_BLOCK, &set, NULL);
371 sigprocmask(SIG_BLOCK, NULL, &set);
372 sigdelset(&set, SIG_IPI);
374 kvm_set_signal_mask(kvm_context, env->cpu_index, &set);
377 void qemu_kvm_system_reset(void)
379 CPUState *penv = first_cpu;
381 pause_all_threads();
383 qemu_system_reset();
385 while (penv) {
386 kvm_arch_cpu_reset(penv);
387 penv = (CPUState *)penv->next_cpu;
390 resume_all_threads();
393 static int kvm_main_loop_cpu(CPUState *env)
395 setup_kernel_sigmask(env);
397 pthread_mutex_lock(&qemu_mutex);
398 if (kvm_irqchip_in_kernel(kvm_context))
399 env->halted = 0;
401 kvm_qemu_init_env(env);
402 #ifdef TARGET_I386
403 kvm_tpr_vcpu_start(env);
404 #endif
406 cpu_single_env = env;
407 kvm_load_registers(env);
409 while (1) {
410 while (!has_work(env))
411 kvm_main_loop_wait(env, 1000);
412 if (env->interrupt_request & (CPU_INTERRUPT_HARD | CPU_INTERRUPT_NMI))
413 env->halted = 0;
414 if (!kvm_irqchip_in_kernel(kvm_context)) {
415 if (env->kvm_cpu_state.init)
416 update_regs_for_init(env);
417 if (env->kvm_cpu_state.sipi_needed)
418 update_regs_for_sipi(env);
420 if (!env->halted && !env->kvm_cpu_state.init)
421 kvm_cpu_exec(env);
422 env->interrupt_request &= ~CPU_INTERRUPT_EXIT;
423 kvm_main_loop_wait(env, 0);
425 pthread_mutex_unlock(&qemu_mutex);
426 return 0;
429 static void *ap_main_loop(void *_env)
431 CPUState *env = _env;
432 sigset_t signals;
433 struct ioperm_data *data = NULL;
435 current_env = env;
436 env->thread_id = kvm_get_thread_id();
437 sigfillset(&signals);
438 sigprocmask(SIG_BLOCK, &signals, NULL);
439 kvm_create_vcpu(kvm_context, env->cpu_index);
440 kvm_qemu_init_env(env);
442 #ifdef USE_KVM_DEVICE_ASSIGNMENT
443 /* do ioperm for io ports of assigned devices */
444 LIST_FOREACH(data, &ioperm_head, entries)
445 on_vcpu(env, kvm_arch_do_ioperm, data);
446 #endif
448 /* signal VCPU creation */
449 pthread_mutex_lock(&qemu_mutex);
450 current_env->kvm_cpu_state.created = 1;
451 pthread_cond_signal(&qemu_vcpu_cond);
453 /* and wait for machine initialization */
454 while (!qemu_system_ready)
455 qemu_cond_wait(&qemu_system_cond);
456 pthread_mutex_unlock(&qemu_mutex);
458 kvm_main_loop_cpu(env);
459 return NULL;
462 void kvm_init_vcpu(CPUState *env)
464 int cpu = env->cpu_index;
465 pthread_create(&env->kvm_cpu_state.thread, NULL, ap_main_loop, env);
467 while (env->kvm_cpu_state.created == 0)
468 qemu_cond_wait(&qemu_vcpu_cond);
471 int kvm_init_ap(void)
473 #ifdef TARGET_I386
474 kvm_tpr_opt_setup();
475 #endif
476 qemu_add_vm_change_state_handler(kvm_vm_state_change_handler, NULL);
478 signal(SIG_IPI, sig_ipi_handler);
479 return 0;
482 void qemu_kvm_notify_work(void)
484 uint64_t value = 1;
485 char buffer[8];
486 size_t offset = 0;
488 if (io_thread_fd == -1)
489 return;
491 memcpy(buffer, &value, sizeof(value));
493 while (offset < 8) {
494 ssize_t len;
496 len = write(io_thread_fd, buffer + offset, 8 - offset);
497 if (len == -1 && errno == EINTR)
498 continue;
500 if (len <= 0)
501 break;
503 offset += len;
506 if (offset != 8)
507 fprintf(stderr, "failed to notify io thread\n");
510 /* If we have signalfd, we mask out the signals we want to handle and then
511 * use signalfd to listen for them. We rely on whatever the current signal
512 * handler is to dispatch the signals when we receive them.
515 static void sigfd_handler(void *opaque)
517 int fd = (unsigned long)opaque;
518 struct qemu_signalfd_siginfo info;
519 struct sigaction action;
520 ssize_t len;
522 while (1) {
523 do {
524 len = read(fd, &info, sizeof(info));
525 } while (len == -1 && errno == EINTR);
527 if (len == -1 && errno == EAGAIN)
528 break;
530 if (len != sizeof(info)) {
531 printf("read from sigfd returned %ld: %m\n", len);
532 return;
535 sigaction(info.ssi_signo, NULL, &action);
536 if (action.sa_handler)
537 action.sa_handler(info.ssi_signo);
542 /* Used to break IO thread out of select */
543 static void io_thread_wakeup(void *opaque)
545 int fd = (unsigned long)opaque;
546 char buffer[8];
547 size_t offset = 0;
549 while (offset < 8) {
550 ssize_t len;
552 len = read(fd, buffer + offset, 8 - offset);
553 if (len == -1 && errno == EINTR)
554 continue;
556 if (len <= 0)
557 break;
559 offset += len;
563 int kvm_main_loop(void)
565 int fds[2];
566 sigset_t mask;
567 int sigfd;
569 io_thread = pthread_self();
570 qemu_system_ready = 1;
572 if (qemu_eventfd(fds) == -1) {
573 fprintf(stderr, "failed to create eventfd\n");
574 return -errno;
577 qemu_set_fd_handler2(fds[0], NULL, io_thread_wakeup, NULL,
578 (void *)(unsigned long)fds[0]);
580 io_thread_fd = fds[1];
582 sigemptyset(&mask);
583 sigaddset(&mask, SIGIO);
584 sigaddset(&mask, SIGALRM);
585 sigprocmask(SIG_BLOCK, &mask, NULL);
587 sigfd = qemu_signalfd(&mask);
588 if (sigfd == -1) {
589 fprintf(stderr, "failed to create signalfd\n");
590 return -errno;
593 fcntl(sigfd, F_SETFL, O_NONBLOCK);
595 qemu_set_fd_handler2(sigfd, NULL, sigfd_handler, NULL,
596 (void *)(unsigned long)sigfd);
598 pthread_cond_broadcast(&qemu_system_cond);
600 io_thread_sigfd = sigfd;
601 cpu_single_env = NULL;
603 while (1) {
604 main_loop_wait(1000);
605 if (qemu_shutdown_requested())
606 break;
607 else if (qemu_powerdown_requested())
608 qemu_system_powerdown();
609 else if (qemu_reset_requested())
610 qemu_kvm_system_reset();
611 else if (kvm_debug_stop_requested) {
612 vm_stop(EXCP_DEBUG);
613 kvm_debug_stop_requested = 0;
617 pause_all_threads();
618 pthread_mutex_unlock(&qemu_mutex);
620 return 0;
623 static int kvm_debug(void *opaque, void *data)
625 struct CPUState *env = (struct CPUState *)data;
627 kvm_debug_stop_requested = 1;
628 env->kvm_cpu_state.stopped = 1;
629 return 1;
632 static int kvm_inb(void *opaque, uint16_t addr, uint8_t *data)
634 *data = cpu_inb(0, addr);
635 return 0;
638 static int kvm_inw(void *opaque, uint16_t addr, uint16_t *data)
640 *data = cpu_inw(0, addr);
641 return 0;
644 static int kvm_inl(void *opaque, uint16_t addr, uint32_t *data)
646 *data = cpu_inl(0, addr);
647 return 0;
650 #define PM_IO_BASE 0xb000
652 static int kvm_outb(void *opaque, uint16_t addr, uint8_t data)
654 if (addr == 0xb2) {
655 switch (data) {
656 case 0: {
657 cpu_outb(0, 0xb3, 0);
658 break;
660 case 0xf0: {
661 unsigned x;
663 /* enable acpi */
664 x = cpu_inw(0, PM_IO_BASE + 4);
665 x &= ~1;
666 cpu_outw(0, PM_IO_BASE + 4, x);
667 break;
669 case 0xf1: {
670 unsigned x;
672 /* enable acpi */
673 x = cpu_inw(0, PM_IO_BASE + 4);
674 x |= 1;
675 cpu_outw(0, PM_IO_BASE + 4, x);
676 break;
678 default:
679 break;
681 return 0;
683 cpu_outb(0, addr, data);
684 return 0;
687 static int kvm_outw(void *opaque, uint16_t addr, uint16_t data)
689 cpu_outw(0, addr, data);
690 return 0;
693 static int kvm_outl(void *opaque, uint16_t addr, uint32_t data)
695 cpu_outl(0, addr, data);
696 return 0;
699 static int kvm_mmio_read(void *opaque, uint64_t addr, uint8_t *data, int len)
701 cpu_physical_memory_rw(addr, data, len, 0);
702 return 0;
705 static int kvm_mmio_write(void *opaque, uint64_t addr, uint8_t *data, int len)
707 cpu_physical_memory_rw(addr, data, len, 1);
708 return 0;
711 static int kvm_io_window(void *opaque)
713 return 1;
717 static int kvm_halt(void *opaque, int vcpu)
719 return kvm_arch_halt(opaque, vcpu);
722 static int kvm_shutdown(void *opaque, void *data)
724 struct CPUState *env = (struct CPUState *)data;
726 /* stop the current vcpu from going back to guest mode */
727 env->kvm_cpu_state.stopped = 1;
729 qemu_system_reset_request();
730 return 1;
733 static struct kvm_callbacks qemu_kvm_ops = {
734 .debug = kvm_debug,
735 .inb = kvm_inb,
736 .inw = kvm_inw,
737 .inl = kvm_inl,
738 .outb = kvm_outb,
739 .outw = kvm_outw,
740 .outl = kvm_outl,
741 .mmio_read = kvm_mmio_read,
742 .mmio_write = kvm_mmio_write,
743 .halt = kvm_halt,
744 .shutdown = kvm_shutdown,
745 .io_window = kvm_io_window,
746 .try_push_interrupts = try_push_interrupts,
747 #ifdef TARGET_I386
748 .push_nmi = push_nmi,
749 #endif
750 .post_kvm_run = post_kvm_run,
751 .pre_kvm_run = pre_kvm_run,
752 #ifdef TARGET_I386
753 .tpr_access = handle_tpr_access,
754 #endif
755 #ifdef TARGET_PPC
756 .powerpc_dcr_read = handle_powerpc_dcr_read,
757 .powerpc_dcr_write = handle_powerpc_dcr_write,
758 #endif
761 int kvm_qemu_init()
763 /* Try to initialize kvm */
764 kvm_context = kvm_init(&qemu_kvm_ops, cpu_single_env);
765 if (!kvm_context) {
766 return -1;
768 pthread_mutex_lock(&qemu_mutex);
770 return 0;
773 int kvm_qemu_create_context(void)
775 int r;
776 if (!kvm_irqchip) {
777 kvm_disable_irqchip_creation(kvm_context);
779 if (!kvm_pit) {
780 kvm_disable_pit_creation(kvm_context);
782 if (kvm_create(kvm_context, phys_ram_size, (void**)&phys_ram_base) < 0) {
783 kvm_qemu_destroy();
784 return -1;
786 r = kvm_arch_qemu_create_context();
787 if(r <0)
788 kvm_qemu_destroy();
789 return 0;
792 void kvm_qemu_destroy(void)
794 kvm_finalize(kvm_context);
797 void kvm_cpu_register_physical_memory(target_phys_addr_t start_addr,
798 unsigned long size,
799 unsigned long phys_offset)
801 int r = 0;
802 unsigned long area_flags = phys_offset & ~TARGET_PAGE_MASK;
804 phys_offset &= ~IO_MEM_ROM;
806 if (area_flags == IO_MEM_UNASSIGNED) {
807 kvm_unregister_memory_area(kvm_context, start_addr, size);
808 return;
811 r = kvm_is_containing_region(kvm_context, start_addr, size);
812 if (r)
813 return;
815 if (area_flags >= TLB_MMIO)
816 return;
818 r = kvm_register_phys_mem(kvm_context, start_addr,
819 phys_ram_base + phys_offset,
820 size, 0);
821 if (r < 0) {
822 printf("kvm_cpu_register_physical_memory: failed\n");
823 exit(1);
825 return;
828 void kvm_cpu_unregister_physical_memory(target_phys_addr_t start_addr,
829 target_phys_addr_t size,
830 unsigned long phys_offset)
832 kvm_unregister_memory_area(kvm_context, start_addr, size);
835 int kvm_setup_guest_memory(void *area, unsigned long size)
837 int ret = 0;
839 #ifdef MADV_DONTFORK
840 if (kvm_enabled() && !kvm_has_sync_mmu(kvm_context))
841 ret = madvise(area, size, MADV_DONTFORK);
842 #endif
844 if (ret)
845 perror ("madvise");
847 return ret;
850 int kvm_qemu_check_extension(int ext)
852 return kvm_check_extension(kvm_context, ext);
855 int kvm_qemu_init_env(CPUState *cenv)
857 return kvm_arch_qemu_init_env(cenv);
860 struct kvm_guest_debug_data {
861 struct kvm_debug_guest dbg;
862 int err;
865 void kvm_invoke_guest_debug(void *data)
867 struct kvm_guest_debug_data *dbg_data = data;
869 dbg_data->err = kvm_guest_debug(kvm_context, cpu_single_env->cpu_index,
870 &dbg_data->dbg);
873 int kvm_update_debugger(CPUState *env)
875 struct kvm_guest_debug_data data;
876 CPUBreakpoint *bp;
877 int i;
879 memset(data.dbg.breakpoints, 0, sizeof(data.dbg.breakpoints));
881 data.dbg.enabled = 0;
882 if (env->breakpoints || env->singlestep_enabled) {
883 bp = env->breakpoints;
884 data.dbg.enabled = 1;
885 for (i = 0; i < 4 && bp; ++i) {
886 data.dbg.breakpoints[i].enabled = 1;
887 data.dbg.breakpoints[i].address = bp->pc;
888 bp = bp->next;
890 data.dbg.singlestep = env->singlestep_enabled;
892 on_vcpu(env, kvm_invoke_guest_debug, &data);
893 return data.err;
898 * dirty pages logging
900 /* FIXME: use unsigned long pointer instead of unsigned char */
901 unsigned char *kvm_dirty_bitmap = NULL;
902 int kvm_physical_memory_set_dirty_tracking(int enable)
904 int r = 0;
906 if (!kvm_enabled())
907 return 0;
909 if (enable) {
910 if (!kvm_dirty_bitmap) {
911 unsigned bitmap_size = BITMAP_SIZE(phys_ram_size);
912 kvm_dirty_bitmap = qemu_malloc(bitmap_size);
913 if (kvm_dirty_bitmap == NULL) {
914 perror("Failed to allocate dirty pages bitmap");
915 r=-1;
917 else {
918 r = kvm_dirty_pages_log_enable_all(kvm_context);
922 else {
923 if (kvm_dirty_bitmap) {
924 r = kvm_dirty_pages_log_reset(kvm_context);
925 qemu_free(kvm_dirty_bitmap);
926 kvm_dirty_bitmap = NULL;
929 return r;
932 /* get kvm's dirty pages bitmap and update qemu's */
933 int kvm_get_dirty_pages_log_range(unsigned long start_addr,
934 unsigned char *bitmap,
935 unsigned int offset,
936 unsigned long mem_size)
938 unsigned int i, j, n=0;
939 unsigned char c;
940 unsigned page_number, addr, addr1;
941 unsigned int len = ((mem_size/TARGET_PAGE_SIZE) + 7) / 8;
944 * bitmap-traveling is faster than memory-traveling (for addr...)
945 * especially when most of the memory is not dirty.
947 for (i=0; i<len; i++) {
948 c = bitmap[i];
949 while (c>0) {
950 j = ffsl(c) - 1;
951 c &= ~(1u<<j);
952 page_number = i * 8 + j;
953 addr1 = page_number * TARGET_PAGE_SIZE;
954 addr = offset + addr1;
955 cpu_physical_memory_set_dirty(addr);
956 n++;
959 return 0;
961 int kvm_get_dirty_bitmap_cb(unsigned long start, unsigned long len,
962 void *bitmap, void *opaque)
964 return kvm_get_dirty_pages_log_range(start, bitmap, start, len);
968 * get kvm's dirty pages bitmap and update qemu's
969 * we only care about physical ram, which resides in slots 0 and 3
971 int kvm_update_dirty_pages_log(void)
973 int r = 0;
976 r = kvm_get_dirty_pages_range(kvm_context, 0, phys_ram_size,
977 kvm_dirty_bitmap, NULL,
978 kvm_get_dirty_bitmap_cb);
979 return r;
982 void kvm_qemu_log_memory(target_phys_addr_t start, target_phys_addr_t size,
983 int log)
985 if (log)
986 kvm_dirty_pages_log_enable_slot(kvm_context, start, size);
987 else
988 kvm_dirty_pages_log_disable_slot(kvm_context, start, size);
991 int kvm_get_phys_ram_page_bitmap(unsigned char *bitmap)
993 unsigned int bsize = BITMAP_SIZE(phys_ram_size);
994 unsigned int brsize = BITMAP_SIZE(ram_size);
995 unsigned int extra_pages = (phys_ram_size - ram_size) / TARGET_PAGE_SIZE;
996 unsigned int extra_bytes = (extra_pages +7)/8;
997 unsigned int hole_start = BITMAP_SIZE(0xa0000);
998 unsigned int hole_end = BITMAP_SIZE(0xc0000);
1000 memset(bitmap, 0xFF, brsize + extra_bytes);
1001 memset(bitmap + hole_start, 0, hole_end - hole_start);
1002 memset(bitmap + brsize + extra_bytes, 0, bsize - brsize - extra_bytes);
1004 return 0;
1007 #ifdef KVM_CAP_IRQCHIP
1009 int kvm_set_irq(int irq, int level)
1011 return kvm_set_irq_level(kvm_context, irq, level);
1014 #endif
1016 int qemu_kvm_get_dirty_pages(unsigned long phys_addr, void *buf)
1018 return kvm_get_dirty_pages(kvm_context, phys_addr, buf);
1021 void *kvm_cpu_create_phys_mem(target_phys_addr_t start_addr,
1022 unsigned long size, int log, int writable)
1024 return kvm_create_phys_mem(kvm_context, start_addr, size, log, writable);
1027 void kvm_cpu_destroy_phys_mem(target_phys_addr_t start_addr,
1028 unsigned long size)
1030 kvm_destroy_phys_mem(kvm_context, start_addr, size);
1033 void kvm_mutex_unlock(void)
1035 assert(!cpu_single_env);
1036 pthread_mutex_unlock(&qemu_mutex);
1039 void kvm_mutex_lock(void)
1041 pthread_mutex_lock(&qemu_mutex);
1042 cpu_single_env = NULL;
1045 int qemu_kvm_register_coalesced_mmio(target_phys_addr_t addr, unsigned int size)
1047 return kvm_register_coalesced_mmio(kvm_context, addr, size);
1050 int qemu_kvm_unregister_coalesced_mmio(target_phys_addr_t addr,
1051 unsigned int size)
1053 return kvm_unregister_coalesced_mmio(kvm_context, addr, size);
1056 #ifdef USE_KVM_DEVICE_ASSIGNMENT
1057 void kvm_add_ioperm_data(struct ioperm_data *data)
1059 LIST_INSERT_HEAD(&ioperm_head, data, entries);
1062 void kvm_ioperm(CPUState *env, void *data)
1064 if (kvm_enabled() && qemu_system_ready)
1065 on_vcpu(env, kvm_arch_do_ioperm, data);
1067 #endif