4 * Copyright (c) 2003-2005 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
21 #include "qemu-common.h"
22 #ifdef CONFIG_USER_ONLY
33 #include "qemu-char.h"
39 #define MAX_PACKET_LENGTH 4096
41 #include "qemu_socket.h"
43 /* XXX: these constants may be independent of the host ones even for Unix */
56 typedef struct GDBRegisterState
{
62 struct GDBRegisterState
*next
;
72 typedef struct GDBState
{
73 CPUState
*c_cpu
; /* current CPU for step/continue ops */
74 CPUState
*g_cpu
; /* current CPU for other ops */
75 CPUState
*query_cpu
; /* for q{f|s}ThreadInfo */
76 enum RSState state
; /* parsing state */
77 char line_buf
[MAX_PACKET_LENGTH
];
80 uint8_t last_packet
[MAX_PACKET_LENGTH
+ 4];
83 #ifdef CONFIG_USER_ONLY
91 /* By default use no IRQs and no timers while single stepping so as to
92 * make single stepping like an ICE HW step.
94 static int sstep_flags
= SSTEP_ENABLE
|SSTEP_NOIRQ
|SSTEP_NOTIMER
;
96 static GDBState
*gdbserver_state
;
98 /* This is an ugly hack to cope with both new and old gdb.
99 If gdb sends qXfer:features:read then assume we're talking to a newish
100 gdb that understands target descriptions. */
101 static int gdb_has_xml
;
103 #ifdef CONFIG_USER_ONLY
104 /* XXX: This is not thread safe. Do we care? */
105 static int gdbserver_fd
= -1;
107 static int get_char(GDBState
*s
)
113 ret
= recv(s
->fd
, &ch
, 1, 0);
115 if (errno
== ECONNRESET
)
117 if (errno
!= EINTR
&& errno
!= EAGAIN
)
119 } else if (ret
== 0) {
131 static gdb_syscall_complete_cb gdb_current_syscall_cb
;
139 /* If gdb is connected when the first semihosting syscall occurs then use
140 remote gdb syscalls. Otherwise use native file IO. */
141 int use_gdb_syscalls(void)
143 if (gdb_syscall_mode
== GDB_SYS_UNKNOWN
) {
144 gdb_syscall_mode
= (gdbserver_state
? GDB_SYS_ENABLED
147 return gdb_syscall_mode
== GDB_SYS_ENABLED
;
150 /* Resume execution. */
151 static inline void gdb_continue(GDBState
*s
)
153 #ifdef CONFIG_USER_ONLY
154 s
->running_state
= 1;
160 static void put_buffer(GDBState
*s
, const uint8_t *buf
, int len
)
162 #ifdef CONFIG_USER_ONLY
166 ret
= send(s
->fd
, buf
, len
, 0);
168 if (errno
!= EINTR
&& errno
!= EAGAIN
)
176 qemu_chr_write(s
->chr
, buf
, len
);
180 static inline int fromhex(int v
)
182 if (v
>= '0' && v
<= '9')
184 else if (v
>= 'A' && v
<= 'F')
186 else if (v
>= 'a' && v
<= 'f')
192 static inline int tohex(int v
)
200 static void memtohex(char *buf
, const uint8_t *mem
, int len
)
205 for(i
= 0; i
< len
; i
++) {
207 *q
++ = tohex(c
>> 4);
208 *q
++ = tohex(c
& 0xf);
213 static void hextomem(uint8_t *mem
, const char *buf
, int len
)
217 for(i
= 0; i
< len
; i
++) {
218 mem
[i
] = (fromhex(buf
[0]) << 4) | fromhex(buf
[1]);
223 /* return -1 if error, 0 if OK */
224 static int put_packet_binary(GDBState
*s
, const char *buf
, int len
)
235 for(i
= 0; i
< len
; i
++) {
239 *(p
++) = tohex((csum
>> 4) & 0xf);
240 *(p
++) = tohex((csum
) & 0xf);
242 s
->last_packet_len
= p
- s
->last_packet
;
243 put_buffer(s
, (uint8_t *)s
->last_packet
, s
->last_packet_len
);
245 #ifdef CONFIG_USER_ONLY
258 /* return -1 if error, 0 if OK */
259 static int put_packet(GDBState
*s
, const char *buf
)
262 printf("reply='%s'\n", buf
);
265 return put_packet_binary(s
, buf
, strlen(buf
));
268 /* The GDB remote protocol transfers values in target byte order. This means
269 we can use the raw memory access routines to access the value buffer.
270 Conveniently, these also handle the case where the buffer is mis-aligned.
272 #define GET_REG8(val) do { \
273 stb_p(mem_buf, val); \
276 #define GET_REG16(val) do { \
277 stw_p(mem_buf, val); \
280 #define GET_REG32(val) do { \
281 stl_p(mem_buf, val); \
284 #define GET_REG64(val) do { \
285 stq_p(mem_buf, val); \
289 #if TARGET_LONG_BITS == 64
290 #define GET_REGL(val) GET_REG64(val)
291 #define ldtul_p(addr) ldq_p(addr)
293 #define GET_REGL(val) GET_REG32(val)
294 #define ldtul_p(addr) ldl_p(addr)
297 #if defined(TARGET_I386)
300 static const int gpr_map
[16] = {
301 R_EAX
, R_EBX
, R_ECX
, R_EDX
, R_ESI
, R_EDI
, R_EBP
, R_ESP
,
302 8, 9, 10, 11, 12, 13, 14, 15
305 static const int gpr_map
[8] = {0, 1, 2, 3, 4, 5, 6, 7};
308 #define NUM_CORE_REGS (CPU_NB_REGS * 2 + 25)
310 static int cpu_gdb_read_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
312 if (n
< CPU_NB_REGS
) {
313 GET_REGL(env
->regs
[gpr_map
[n
]]);
314 } else if (n
>= CPU_NB_REGS
+ 8 && n
< CPU_NB_REGS
+ 16) {
315 /* FIXME: byteswap float values. */
316 #ifdef USE_X86LDOUBLE
317 memcpy(mem_buf
, &env
->fpregs
[n
- (CPU_NB_REGS
+ 8)], 10);
319 memset(mem_buf
, 0, 10);
322 } else if (n
>= CPU_NB_REGS
+ 24) {
323 n
-= CPU_NB_REGS
+ 24;
324 if (n
< CPU_NB_REGS
) {
325 stq_p(mem_buf
, env
->xmm_regs
[n
].XMM_Q(0));
326 stq_p(mem_buf
+ 8, env
->xmm_regs
[n
].XMM_Q(1));
328 } else if (n
== CPU_NB_REGS
) {
329 GET_REG32(env
->mxcsr
);
334 case 0: GET_REGL(env
->eip
);
335 case 1: GET_REG32(env
->eflags
);
336 case 2: GET_REG32(env
->segs
[R_CS
].selector
);
337 case 3: GET_REG32(env
->segs
[R_SS
].selector
);
338 case 4: GET_REG32(env
->segs
[R_DS
].selector
);
339 case 5: GET_REG32(env
->segs
[R_ES
].selector
);
340 case 6: GET_REG32(env
->segs
[R_FS
].selector
);
341 case 7: GET_REG32(env
->segs
[R_GS
].selector
);
342 /* 8...15 x87 regs. */
343 case 16: GET_REG32(env
->fpuc
);
344 case 17: GET_REG32((env
->fpus
& ~0x3800) | (env
->fpstt
& 0x7) << 11);
345 case 18: GET_REG32(0); /* ftag */
346 case 19: GET_REG32(0); /* fiseg */
347 case 20: GET_REG32(0); /* fioff */
348 case 21: GET_REG32(0); /* foseg */
349 case 22: GET_REG32(0); /* fooff */
350 case 23: GET_REG32(0); /* fop */
357 static int cpu_gdb_write_register(CPUState
*env
, uint8_t *mem_buf
, int i
)
361 if (i
< CPU_NB_REGS
) {
362 env
->regs
[gpr_map
[i
]] = ldtul_p(mem_buf
);
363 return sizeof(target_ulong
);
364 } else if (i
>= CPU_NB_REGS
+ 8 && i
< CPU_NB_REGS
+ 16) {
365 i
-= CPU_NB_REGS
+ 8;
366 #ifdef USE_X86LDOUBLE
367 memcpy(&env
->fpregs
[i
], mem_buf
, 10);
370 } else if (i
>= CPU_NB_REGS
+ 24) {
371 i
-= CPU_NB_REGS
+ 24;
372 if (i
< CPU_NB_REGS
) {
373 env
->xmm_regs
[i
].XMM_Q(0) = ldq_p(mem_buf
);
374 env
->xmm_regs
[i
].XMM_Q(1) = ldq_p(mem_buf
+ 8);
376 } else if (i
== CPU_NB_REGS
) {
377 env
->mxcsr
= ldl_p(mem_buf
);
383 case 0: env
->eip
= ldtul_p(mem_buf
); return sizeof(target_ulong
);
384 case 1: env
->eflags
= ldl_p(mem_buf
); return 4;
385 #if defined(CONFIG_USER_ONLY)
386 #define LOAD_SEG(index, sreg)\
387 tmp = ldl_p(mem_buf);\
388 if (tmp != env->segs[sreg].selector)\
389 cpu_x86_load_seg(env, sreg, tmp);
391 /* FIXME: Honor segment registers. Needs to avoid raising an exception
392 when the selector is invalid. */
393 #define LOAD_SEG(index, sreg) do {} while(0)
395 case 2: LOAD_SEG(10, R_CS
); return 4;
396 case 3: LOAD_SEG(11, R_SS
); return 4;
397 case 4: LOAD_SEG(12, R_DS
); return 4;
398 case 5: LOAD_SEG(13, R_ES
); return 4;
399 case 6: LOAD_SEG(14, R_FS
); return 4;
400 case 7: LOAD_SEG(15, R_GS
); return 4;
401 /* 8...15 x87 regs. */
402 case 16: env
->fpuc
= ldl_p(mem_buf
); return 4;
404 tmp
= ldl_p(mem_buf
);
405 env
->fpstt
= (tmp
>> 11) & 7;
406 env
->fpus
= tmp
& ~0x3800;
408 case 18: /* ftag */ return 4;
409 case 19: /* fiseg */ return 4;
410 case 20: /* fioff */ return 4;
411 case 21: /* foseg */ return 4;
412 case 22: /* fooff */ return 4;
413 case 23: /* fop */ return 4;
417 /* Unrecognised register. */
421 #elif defined (TARGET_PPC)
423 #define NUM_CORE_REGS 71
425 static int cpu_gdb_read_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
429 GET_REGL(env
->gpr
[n
]);
432 stfq_p(mem_buf
, env
->fpr
[n
-32]);
436 case 64: GET_REGL(env
->nip
);
437 case 65: GET_REGL(env
->msr
);
442 for (i
= 0; i
< 8; i
++)
443 cr
|= env
->crf
[i
] << (32 - ((i
+ 1) * 4));
446 case 67: GET_REGL(env
->lr
);
447 case 68: GET_REGL(env
->ctr
);
448 case 69: GET_REGL(env
->xer
);
449 case 70: GET_REG32(0); /* fpscr */
455 static int cpu_gdb_write_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
459 env
->gpr
[n
] = ldtul_p(mem_buf
);
460 return sizeof(target_ulong
);
463 env
->fpr
[n
-32] = ldfq_p(mem_buf
);
468 env
->nip
= ldtul_p(mem_buf
);
469 return sizeof(target_ulong
);
471 ppc_store_msr(env
, ldtul_p(mem_buf
));
472 return sizeof(target_ulong
);
475 uint32_t cr
= ldl_p(mem_buf
);
477 for (i
= 0; i
< 8; i
++)
478 env
->crf
[i
] = (cr
>> (32 - ((i
+ 1) * 4))) & 0xF;
482 env
->lr
= ldtul_p(mem_buf
);
483 return sizeof(target_ulong
);
485 env
->ctr
= ldtul_p(mem_buf
);
486 return sizeof(target_ulong
);
488 env
->xer
= ldtul_p(mem_buf
);
489 return sizeof(target_ulong
);
498 #elif defined (TARGET_SPARC)
500 #if defined(TARGET_SPARC64) && !defined(TARGET_ABI32)
501 #define NUM_CORE_REGS 86
503 #define NUM_CORE_REGS 73
507 #define GET_REGA(val) GET_REG32(val)
509 #define GET_REGA(val) GET_REGL(val)
512 static int cpu_gdb_read_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
516 GET_REGA(env
->gregs
[n
]);
519 /* register window */
520 GET_REGA(env
->regwptr
[n
- 8]);
522 #if defined(TARGET_ABI32) || !defined(TARGET_SPARC64)
525 GET_REG32(*((uint32_t *)&env
->fpr
[n
- 32]));
527 /* Y, PSR, WIM, TBR, PC, NPC, FPSR, CPSR */
529 case 64: GET_REGA(env
->y
);
530 case 65: GET_REGA(GET_PSR(env
));
531 case 66: GET_REGA(env
->wim
);
532 case 67: GET_REGA(env
->tbr
);
533 case 68: GET_REGA(env
->pc
);
534 case 69: GET_REGA(env
->npc
);
535 case 70: GET_REGA(env
->fsr
);
536 case 71: GET_REGA(0); /* csr */
537 case 72: GET_REGA(0);
542 GET_REG32(*((uint32_t *)&env
->fpr
[n
- 32]));
545 /* f32-f62 (double width, even numbers only) */
548 val
= (uint64_t)*((uint32_t *)&env
->fpr
[(n
- 64) * 2 + 32]) << 32;
549 val
|= *((uint32_t *)&env
->fpr
[(n
- 64) * 2 + 33]);
553 case 80: GET_REGL(env
->pc
);
554 case 81: GET_REGL(env
->npc
);
555 case 82: GET_REGL(((uint64_t)GET_CCR(env
) << 32) |
556 ((env
->asi
& 0xff) << 24) |
557 ((env
->pstate
& 0xfff) << 8) |
559 case 83: GET_REGL(env
->fsr
);
560 case 84: GET_REGL(env
->fprs
);
561 case 85: GET_REGL(env
->y
);
567 static int cpu_gdb_write_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
569 #if defined(TARGET_ABI32)
572 tmp
= ldl_p(mem_buf
);
576 tmp
= ldtul_p(mem_buf
);
583 /* register window */
584 env
->regwptr
[n
- 8] = tmp
;
586 #if defined(TARGET_ABI32) || !defined(TARGET_SPARC64)
589 *((uint32_t *)&env
->fpr
[n
- 32]) = tmp
;
591 /* Y, PSR, WIM, TBR, PC, NPC, FPSR, CPSR */
593 case 64: env
->y
= tmp
; break;
594 case 65: PUT_PSR(env
, tmp
); break;
595 case 66: env
->wim
= tmp
; break;
596 case 67: env
->tbr
= tmp
; break;
597 case 68: env
->pc
= tmp
; break;
598 case 69: env
->npc
= tmp
; break;
599 case 70: env
->fsr
= tmp
; break;
607 env
->fpr
[n
] = ldfl_p(mem_buf
);
610 /* f32-f62 (double width, even numbers only) */
611 *((uint32_t *)&env
->fpr
[(n
- 64) * 2 + 32]) = tmp
>> 32;
612 *((uint32_t *)&env
->fpr
[(n
- 64) * 2 + 33]) = tmp
;
615 case 80: env
->pc
= tmp
; break;
616 case 81: env
->npc
= tmp
; break;
618 PUT_CCR(env
, tmp
>> 32);
619 env
->asi
= (tmp
>> 24) & 0xff;
620 env
->pstate
= (tmp
>> 8) & 0xfff;
621 PUT_CWP64(env
, tmp
& 0xff);
623 case 83: env
->fsr
= tmp
; break;
624 case 84: env
->fprs
= tmp
; break;
625 case 85: env
->y
= tmp
; break;
632 #elif defined (TARGET_ARM)
634 /* Old gdb always expect FPA registers. Newer (xml-aware) gdb only expect
635 whatever the target description contains. Due to a historical mishap
636 the FPA registers appear in between core integer regs and the CPSR.
637 We hack round this by giving the FPA regs zero size when talking to a
639 #define NUM_CORE_REGS 26
640 #define GDB_CORE_XML "arm-core.xml"
642 static int cpu_gdb_read_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
645 /* Core integer register. */
646 GET_REG32(env
->regs
[n
]);
652 memset(mem_buf
, 0, 12);
657 /* FPA status register. */
663 GET_REG32(cpsr_read(env
));
665 /* Unknown register. */
669 static int cpu_gdb_write_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
673 tmp
= ldl_p(mem_buf
);
675 /* Mask out low bit of PC to workaround gdb bugs. This will probably
676 cause problems if we ever implement the Jazelle DBX extensions. */
681 /* Core integer register. */
685 if (n
< 24) { /* 16-23 */
686 /* FPA registers (ignored). */
693 /* FPA status register (ignored). */
699 cpsr_write (env
, tmp
, 0xffffffff);
702 /* Unknown register. */
706 #elif defined (TARGET_M68K)
708 #define NUM_CORE_REGS 18
710 #define GDB_CORE_XML "cf-core.xml"
712 static int cpu_gdb_read_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
716 GET_REG32(env
->dregs
[n
]);
719 GET_REG32(env
->aregs
[n
- 8]);
722 case 16: GET_REG32(env
->sr
);
723 case 17: GET_REG32(env
->pc
);
726 /* FP registers not included here because they vary between
727 ColdFire and m68k. Use XML bits for these. */
731 static int cpu_gdb_write_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
735 tmp
= ldl_p(mem_buf
);
742 env
->aregs
[n
- 8] = tmp
;
745 case 16: env
->sr
= tmp
; break;
746 case 17: env
->pc
= tmp
; break;
752 #elif defined (TARGET_MIPS)
754 #define NUM_CORE_REGS 73
756 static int cpu_gdb_read_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
759 GET_REGL(env
->active_tc
.gpr
[n
]);
761 if (env
->CP0_Config1
& (1 << CP0C1_FP
)) {
762 if (n
>= 38 && n
< 70) {
763 if (env
->CP0_Status
& (1 << CP0St_FR
))
764 GET_REGL(env
->active_fpu
.fpr
[n
- 38].d
);
766 GET_REGL(env
->active_fpu
.fpr
[n
- 38].w
[FP_ENDIAN_IDX
]);
769 case 70: GET_REGL((int32_t)env
->active_fpu
.fcr31
);
770 case 71: GET_REGL((int32_t)env
->active_fpu
.fcr0
);
774 case 32: GET_REGL((int32_t)env
->CP0_Status
);
775 case 33: GET_REGL(env
->active_tc
.LO
[0]);
776 case 34: GET_REGL(env
->active_tc
.HI
[0]);
777 case 35: GET_REGL(env
->CP0_BadVAddr
);
778 case 36: GET_REGL((int32_t)env
->CP0_Cause
);
779 case 37: GET_REGL(env
->active_tc
.PC
);
780 case 72: GET_REGL(0); /* fp */
781 case 89: GET_REGL((int32_t)env
->CP0_PRid
);
783 if (n
>= 73 && n
<= 88) {
784 /* 16 embedded regs. */
791 /* convert MIPS rounding mode in FCR31 to IEEE library */
792 static unsigned int ieee_rm
[] =
794 float_round_nearest_even
,
799 #define RESTORE_ROUNDING_MODE \
800 set_float_rounding_mode(ieee_rm[env->active_fpu.fcr31 & 3], &env->active_fpu.fp_status)
802 static int cpu_gdb_write_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
806 tmp
= ldtul_p(mem_buf
);
809 env
->active_tc
.gpr
[n
] = tmp
;
810 return sizeof(target_ulong
);
812 if (env
->CP0_Config1
& (1 << CP0C1_FP
)
813 && n
>= 38 && n
< 73) {
815 if (env
->CP0_Status
& (1 << CP0St_FR
))
816 env
->active_fpu
.fpr
[n
- 38].d
= tmp
;
818 env
->active_fpu
.fpr
[n
- 38].w
[FP_ENDIAN_IDX
] = tmp
;
822 env
->active_fpu
.fcr31
= tmp
& 0xFF83FFFF;
823 /* set rounding mode */
824 RESTORE_ROUNDING_MODE
;
825 #ifndef CONFIG_SOFTFLOAT
826 /* no floating point exception for native float */
827 SET_FP_ENABLE(env
->active_fpu
.fcr31
, 0);
830 case 71: env
->active_fpu
.fcr0
= tmp
; break;
832 return sizeof(target_ulong
);
835 case 32: env
->CP0_Status
= tmp
; break;
836 case 33: env
->active_tc
.LO
[0] = tmp
; break;
837 case 34: env
->active_tc
.HI
[0] = tmp
; break;
838 case 35: env
->CP0_BadVAddr
= tmp
; break;
839 case 36: env
->CP0_Cause
= tmp
; break;
840 case 37: env
->active_tc
.PC
= tmp
; break;
841 case 72: /* fp, ignored */ break;
845 /* Other registers are readonly. Ignore writes. */
849 return sizeof(target_ulong
);
851 #elif defined (TARGET_SH4)
853 /* Hint: Use "set architecture sh4" in GDB to see fpu registers */
854 /* FIXME: We should use XML for this. */
856 #define NUM_CORE_REGS 59
858 static int cpu_gdb_read_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
861 if ((env
->sr
& (SR_MD
| SR_RB
)) == (SR_MD
| SR_RB
)) {
862 GET_REGL(env
->gregs
[n
+ 16]);
864 GET_REGL(env
->gregs
[n
]);
867 GET_REGL(env
->gregs
[n
- 8]);
868 } else if (n
>= 25 && n
< 41) {
869 GET_REGL(env
->fregs
[(n
- 25) + ((env
->fpscr
& FPSCR_FR
) ? 16 : 0)]);
870 } else if (n
>= 43 && n
< 51) {
871 GET_REGL(env
->gregs
[n
- 43]);
872 } else if (n
>= 51 && n
< 59) {
873 GET_REGL(env
->gregs
[n
- (51 - 16)]);
876 case 16: GET_REGL(env
->pc
);
877 case 17: GET_REGL(env
->pr
);
878 case 18: GET_REGL(env
->gbr
);
879 case 19: GET_REGL(env
->vbr
);
880 case 20: GET_REGL(env
->mach
);
881 case 21: GET_REGL(env
->macl
);
882 case 22: GET_REGL(env
->sr
);
883 case 23: GET_REGL(env
->fpul
);
884 case 24: GET_REGL(env
->fpscr
);
885 case 41: GET_REGL(env
->ssr
);
886 case 42: GET_REGL(env
->spc
);
892 static int cpu_gdb_write_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
896 tmp
= ldl_p(mem_buf
);
899 if ((env
->sr
& (SR_MD
| SR_RB
)) == (SR_MD
| SR_RB
)) {
900 env
->gregs
[n
+ 16] = tmp
;
906 env
->gregs
[n
- 8] = tmp
;
908 } else if (n
>= 25 && n
< 41) {
909 env
->fregs
[(n
- 25) + ((env
->fpscr
& FPSCR_FR
) ? 16 : 0)] = tmp
;
910 } else if (n
>= 43 && n
< 51) {
911 env
->gregs
[n
- 43] = tmp
;
913 } else if (n
>= 51 && n
< 59) {
914 env
->gregs
[n
- (51 - 16)] = tmp
;
918 case 16: env
->pc
= tmp
;
919 case 17: env
->pr
= tmp
;
920 case 18: env
->gbr
= tmp
;
921 case 19: env
->vbr
= tmp
;
922 case 20: env
->mach
= tmp
;
923 case 21: env
->macl
= tmp
;
924 case 22: env
->sr
= tmp
;
925 case 23: env
->fpul
= tmp
;
926 case 24: env
->fpscr
= tmp
;
927 case 41: env
->ssr
= tmp
;
928 case 42: env
->spc
= tmp
;
934 #elif defined (TARGET_CRIS)
936 #define NUM_CORE_REGS 49
938 static int cpu_gdb_read_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
942 srs
= env
->pregs
[PR_SRS
];
944 GET_REG32(env
->regs
[n
]);
947 if (n
>= 21 && n
< 32) {
948 GET_REG32(env
->pregs
[n
- 16]);
950 if (n
>= 33 && n
< 49) {
951 GET_REG32(env
->sregs
[srs
][n
- 33]);
954 case 16: GET_REG8(env
->pregs
[0]);
955 case 17: GET_REG8(env
->pregs
[1]);
956 case 18: GET_REG32(env
->pregs
[2]);
957 case 19: GET_REG8(srs
);
958 case 20: GET_REG16(env
->pregs
[4]);
959 case 32: GET_REG32(env
->pc
);
965 static int cpu_gdb_write_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
972 tmp
= ldl_p(mem_buf
);
978 if (n
>= 21 && n
< 32) {
979 env
->pregs
[n
- 16] = tmp
;
982 /* FIXME: Should support function regs be writable? */
986 case 18: env
->pregs
[PR_PID
] = tmp
; break;
989 case 32: env
->pc
= tmp
; break;
996 #define NUM_CORE_REGS 0
998 static int cpu_gdb_read_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
1003 static int cpu_gdb_write_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
1010 static int num_g_regs
= NUM_CORE_REGS
;
1013 /* Encode data using the encoding for 'x' packets. */
1014 static int memtox(char *buf
, const char *mem
, int len
)
1022 case '#': case '$': case '*': case '}':
1034 const char *get_feature_xml(const char *p
, const char **newp
)
1036 extern const char *const xml_builtin
[][2];
1040 static char target_xml
[1024];
1043 while (p
[len
] && p
[len
] != ':')
1048 if (strncmp(p
, "target.xml", len
) == 0) {
1049 /* Generate the XML description for this CPU. */
1050 if (!target_xml
[0]) {
1051 GDBRegisterState
*r
;
1053 snprintf(target_xml
, sizeof(target_xml
),
1054 "<?xml version=\"1.0\"?>"
1055 "<!DOCTYPE target SYSTEM \"gdb-target.dtd\">"
1057 "<xi:include href=\"%s\"/>",
1060 for (r
= first_cpu
->gdb_regs
; r
; r
= r
->next
) {
1061 strcat(target_xml
, "<xi:include href=\"");
1062 strcat(target_xml
, r
->xml
);
1063 strcat(target_xml
, "\"/>");
1065 strcat(target_xml
, "</target>");
1069 for (i
= 0; ; i
++) {
1070 name
= xml_builtin
[i
][0];
1071 if (!name
|| (strncmp(name
, p
, len
) == 0 && strlen(name
) == len
))
1074 return name
? xml_builtin
[i
][1] : NULL
;
1078 static int gdb_read_register(CPUState
*env
, uint8_t *mem_buf
, int reg
)
1080 GDBRegisterState
*r
;
1082 if (reg
< NUM_CORE_REGS
)
1083 return cpu_gdb_read_register(env
, mem_buf
, reg
);
1085 for (r
= env
->gdb_regs
; r
; r
= r
->next
) {
1086 if (r
->base_reg
<= reg
&& reg
< r
->base_reg
+ r
->num_regs
) {
1087 return r
->get_reg(env
, mem_buf
, reg
- r
->base_reg
);
1093 static int gdb_write_register(CPUState
*env
, uint8_t *mem_buf
, int reg
)
1095 GDBRegisterState
*r
;
1097 if (reg
< NUM_CORE_REGS
)
1098 return cpu_gdb_write_register(env
, mem_buf
, reg
);
1100 for (r
= env
->gdb_regs
; r
; r
= r
->next
) {
1101 if (r
->base_reg
<= reg
&& reg
< r
->base_reg
+ r
->num_regs
) {
1102 return r
->set_reg(env
, mem_buf
, reg
- r
->base_reg
);
1108 /* Register a supplemental set of CPU registers. If g_pos is nonzero it
1109 specifies the first register number and these registers are included in
1110 a standard "g" packet. Direction is relative to gdb, i.e. get_reg is
1111 gdb reading a CPU register, and set_reg is gdb modifying a CPU register.
1114 void gdb_register_coprocessor(CPUState
* env
,
1115 gdb_reg_cb get_reg
, gdb_reg_cb set_reg
,
1116 int num_regs
, const char *xml
, int g_pos
)
1118 GDBRegisterState
*s
;
1119 GDBRegisterState
**p
;
1120 static int last_reg
= NUM_CORE_REGS
;
1122 s
= (GDBRegisterState
*)qemu_mallocz(sizeof(GDBRegisterState
));
1123 s
->base_reg
= last_reg
;
1124 s
->num_regs
= num_regs
;
1125 s
->get_reg
= get_reg
;
1126 s
->set_reg
= set_reg
;
1130 /* Check for duplicates. */
1131 if (strcmp((*p
)->xml
, xml
) == 0)
1135 /* Add to end of list. */
1136 last_reg
+= num_regs
;
1139 if (g_pos
!= s
->base_reg
) {
1140 fprintf(stderr
, "Error: Bad gdb register numbering for '%s'\n"
1141 "Expected %d got %d\n", xml
, g_pos
, s
->base_reg
);
1143 num_g_regs
= last_reg
;
1148 /* GDB breakpoint/watchpoint types */
1149 #define GDB_BREAKPOINT_SW 0
1150 #define GDB_BREAKPOINT_HW 1
1151 #define GDB_WATCHPOINT_WRITE 2
1152 #define GDB_WATCHPOINT_READ 3
1153 #define GDB_WATCHPOINT_ACCESS 4
1155 #ifndef CONFIG_USER_ONLY
1156 static const int xlat_gdb_type
[] = {
1157 [GDB_WATCHPOINT_WRITE
] = BP_GDB
| BP_MEM_WRITE
,
1158 [GDB_WATCHPOINT_READ
] = BP_GDB
| BP_MEM_READ
,
1159 [GDB_WATCHPOINT_ACCESS
] = BP_GDB
| BP_MEM_ACCESS
,
1163 static int gdb_breakpoint_insert(target_ulong addr
, target_ulong len
, int type
)
1169 case GDB_BREAKPOINT_SW
:
1170 case GDB_BREAKPOINT_HW
:
1171 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
1172 err
= cpu_breakpoint_insert(env
, addr
, BP_GDB
, NULL
);
1177 #ifndef CONFIG_USER_ONLY
1178 case GDB_WATCHPOINT_WRITE
:
1179 case GDB_WATCHPOINT_READ
:
1180 case GDB_WATCHPOINT_ACCESS
:
1181 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
1182 err
= cpu_watchpoint_insert(env
, addr
, len
, xlat_gdb_type
[type
],
1194 static int gdb_breakpoint_remove(target_ulong addr
, target_ulong len
, int type
)
1200 case GDB_BREAKPOINT_SW
:
1201 case GDB_BREAKPOINT_HW
:
1202 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
1203 err
= cpu_breakpoint_remove(env
, addr
, BP_GDB
);
1208 #ifndef CONFIG_USER_ONLY
1209 case GDB_WATCHPOINT_WRITE
:
1210 case GDB_WATCHPOINT_READ
:
1211 case GDB_WATCHPOINT_ACCESS
:
1212 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
1213 err
= cpu_watchpoint_remove(env
, addr
, len
, xlat_gdb_type
[type
]);
1224 static void gdb_breakpoint_remove_all(void)
1228 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
1229 cpu_breakpoint_remove_all(env
, BP_GDB
);
1230 #ifndef CONFIG_USER_ONLY
1231 cpu_watchpoint_remove_all(env
, BP_GDB
);
1236 static int gdb_handle_packet(GDBState
*s
, const char *line_buf
)
1240 int ch
, reg_size
, type
, res
, thread
;
1241 char buf
[MAX_PACKET_LENGTH
];
1242 uint8_t mem_buf
[MAX_PACKET_LENGTH
];
1244 target_ulong addr
, len
;
1247 printf("command='%s'\n", line_buf
);
1253 /* TODO: Make this return the correct value for user-mode. */
1254 snprintf(buf
, sizeof(buf
), "T%02xthread:%02x;", SIGTRAP
,
1255 s
->c_cpu
->cpu_index
+1);
1257 /* Remove all the breakpoints when this query is issued,
1258 * because gdb is doing and initial connect and the state
1259 * should be cleaned up.
1261 gdb_breakpoint_remove_all();
1265 addr
= strtoull(p
, (char **)&p
, 16);
1266 #if defined(TARGET_I386)
1267 s
->c_cpu
->eip
= addr
;
1268 kvm_load_registers(s
->c_cpu
);
1269 #elif defined (TARGET_PPC)
1270 s
->c_cpu
->nip
= addr
;
1271 kvm_load_registers(s
->c_cpu
);
1272 #elif defined (TARGET_SPARC)
1273 s
->c_cpu
->pc
= addr
;
1274 s
->c_cpu
->npc
= addr
+ 4;
1275 #elif defined (TARGET_ARM)
1276 s
->c_cpu
->regs
[15] = addr
;
1277 #elif defined (TARGET_SH4)
1278 s
->c_cpu
->pc
= addr
;
1279 #elif defined (TARGET_MIPS)
1280 s
->c_cpu
->active_tc
.PC
= addr
;
1281 #elif defined (TARGET_CRIS)
1282 s
->c_cpu
->pc
= addr
;
1288 s
->signal
= strtoul(p
, (char **)&p
, 16);
1292 /* Kill the target */
1293 fprintf(stderr
, "\nQEMU: Terminated via GDBstub\n");
1297 gdb_breakpoint_remove_all();
1299 put_packet(s
, "OK");
1303 addr
= strtoull(p
, (char **)&p
, 16);
1304 #if defined(TARGET_I386)
1305 s
->c_cpu
->eip
= addr
;
1306 kvm_load_registers(s
->c_cpu
);
1307 #elif defined (TARGET_PPC)
1308 s
->c_cpu
->nip
= addr
;
1309 kvm_load_registers(s
->c_cpu
);
1310 #elif defined (TARGET_SPARC)
1311 s
->c_cpu
->pc
= addr
;
1312 s
->c_cpu
->npc
= addr
+ 4;
1313 #elif defined (TARGET_ARM)
1314 s
->c_cpu
->regs
[15] = addr
;
1315 #elif defined (TARGET_SH4)
1316 s
->c_cpu
->pc
= addr
;
1317 #elif defined (TARGET_MIPS)
1318 s
->c_cpu
->active_tc
.PC
= addr
;
1319 #elif defined (TARGET_CRIS)
1320 s
->c_cpu
->pc
= addr
;
1323 cpu_single_step(s
->c_cpu
, sstep_flags
);
1331 ret
= strtoull(p
, (char **)&p
, 16);
1334 err
= strtoull(p
, (char **)&p
, 16);
1341 if (gdb_current_syscall_cb
)
1342 gdb_current_syscall_cb(s
->c_cpu
, ret
, err
);
1344 put_packet(s
, "T02");
1351 kvm_save_registers(env
);
1353 for (addr
= 0; addr
< num_g_regs
; addr
++) {
1354 reg_size
= gdb_read_register(s
->g_cpu
, mem_buf
+ len
, addr
);
1357 memtohex(buf
, mem_buf
, len
);
1361 registers
= mem_buf
;
1362 len
= strlen(p
) / 2;
1363 hextomem((uint8_t *)registers
, p
, len
);
1364 for (addr
= 0; addr
< num_g_regs
&& len
> 0; addr
++) {
1365 reg_size
= gdb_write_register(s
->g_cpu
, registers
, addr
);
1367 registers
+= reg_size
;
1369 kvm_load_registers(env
);
1370 put_packet(s
, "OK");
1373 addr
= strtoull(p
, (char **)&p
, 16);
1376 len
= strtoull(p
, NULL
, 16);
1377 if (cpu_memory_rw_debug(s
->g_cpu
, addr
, mem_buf
, len
, 0) != 0) {
1378 put_packet (s
, "E14");
1380 memtohex(buf
, mem_buf
, len
);
1385 addr
= strtoull(p
, (char **)&p
, 16);
1388 len
= strtoull(p
, (char **)&p
, 16);
1391 hextomem(mem_buf
, p
, len
);
1392 if (cpu_memory_rw_debug(s
->g_cpu
, addr
, mem_buf
, len
, 1) != 0)
1393 put_packet(s
, "E14");
1395 put_packet(s
, "OK");
1398 /* Older gdb are really dumb, and don't use 'g' if 'p' is avaialable.
1399 This works, but can be very slow. Anything new enough to
1400 understand XML also knows how to use this properly. */
1402 goto unknown_command
;
1403 addr
= strtoull(p
, (char **)&p
, 16);
1404 reg_size
= gdb_read_register(s
->g_cpu
, mem_buf
, addr
);
1406 memtohex(buf
, mem_buf
, reg_size
);
1409 put_packet(s
, "E14");
1414 goto unknown_command
;
1415 addr
= strtoull(p
, (char **)&p
, 16);
1418 reg_size
= strlen(p
) / 2;
1419 hextomem(mem_buf
, p
, reg_size
);
1420 gdb_write_register(s
->g_cpu
, mem_buf
, addr
);
1421 put_packet(s
, "OK");
1425 type
= strtoul(p
, (char **)&p
, 16);
1428 addr
= strtoull(p
, (char **)&p
, 16);
1431 len
= strtoull(p
, (char **)&p
, 16);
1433 res
= gdb_breakpoint_insert(addr
, len
, type
);
1435 res
= gdb_breakpoint_remove(addr
, len
, type
);
1437 put_packet(s
, "OK");
1438 else if (res
== -ENOSYS
)
1441 put_packet(s
, "E22");
1445 thread
= strtoull(p
, (char **)&p
, 16);
1446 if (thread
== -1 || thread
== 0) {
1447 put_packet(s
, "OK");
1450 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
)
1451 if (env
->cpu_index
+ 1 == thread
)
1454 put_packet(s
, "E22");
1460 put_packet(s
, "OK");
1464 put_packet(s
, "OK");
1467 put_packet(s
, "E22");
1472 thread
= strtoull(p
, (char **)&p
, 16);
1473 #ifndef CONFIG_USER_ONLY
1474 if (thread
> 0 && thread
< smp_cpus
+ 1)
1478 put_packet(s
, "OK");
1480 put_packet(s
, "E22");
1484 /* parse any 'q' packets here */
1485 if (!strcmp(p
,"qemu.sstepbits")) {
1486 /* Query Breakpoint bit definitions */
1487 snprintf(buf
, sizeof(buf
), "ENABLE=%x,NOIRQ=%x,NOTIMER=%x",
1493 } else if (strncmp(p
,"qemu.sstep",10) == 0) {
1494 /* Display or change the sstep_flags */
1497 /* Display current setting */
1498 snprintf(buf
, sizeof(buf
), "0x%x", sstep_flags
);
1503 type
= strtoul(p
, (char **)&p
, 16);
1505 put_packet(s
, "OK");
1507 } else if (strcmp(p
,"C") == 0) {
1508 /* "Current thread" remains vague in the spec, so always return
1509 * the first CPU (gdb returns the first thread). */
1510 put_packet(s
, "QC1");
1512 } else if (strcmp(p
,"fThreadInfo") == 0) {
1513 s
->query_cpu
= first_cpu
;
1514 goto report_cpuinfo
;
1515 } else if (strcmp(p
,"sThreadInfo") == 0) {
1518 snprintf(buf
, sizeof(buf
), "m%x", s
->query_cpu
->cpu_index
+1);
1520 s
->query_cpu
= s
->query_cpu
->next_cpu
;
1524 } else if (strncmp(p
,"ThreadExtraInfo,", 16) == 0) {
1525 thread
= strtoull(p
+16, (char **)&p
, 16);
1526 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
)
1527 if (env
->cpu_index
+ 1 == thread
) {
1528 len
= snprintf((char *)mem_buf
, sizeof(mem_buf
),
1529 "CPU#%d [%s]", env
->cpu_index
,
1530 env
->halted
? "halted " : "running");
1531 memtohex(buf
, mem_buf
, len
);
1537 #ifdef CONFIG_LINUX_USER
1538 else if (strncmp(p
, "Offsets", 7) == 0) {
1539 TaskState
*ts
= s
->c_cpu
->opaque
;
1541 snprintf(buf
, sizeof(buf
),
1542 "Text=" TARGET_ABI_FMT_lx
";Data=" TARGET_ABI_FMT_lx
1543 ";Bss=" TARGET_ABI_FMT_lx
,
1544 ts
->info
->code_offset
,
1545 ts
->info
->data_offset
,
1546 ts
->info
->data_offset
);
1551 if (strncmp(p
, "Supported", 9) == 0) {
1552 snprintf(buf
, sizeof(buf
), "PacketSize=%x", MAX_PACKET_LENGTH
);
1554 strcat(buf
, ";qXfer:features:read+");
1560 if (strncmp(p
, "Xfer:features:read:", 19) == 0) {
1562 target_ulong total_len
;
1566 xml
= get_feature_xml(p
, &p
);
1568 snprintf(buf
, sizeof(buf
), "E00");
1575 addr
= strtoul(p
, (char **)&p
, 16);
1578 len
= strtoul(p
, (char **)&p
, 16);
1580 total_len
= strlen(xml
);
1581 if (addr
> total_len
) {
1582 snprintf(buf
, sizeof(buf
), "E00");
1586 if (len
> (MAX_PACKET_LENGTH
- 5) / 2)
1587 len
= (MAX_PACKET_LENGTH
- 5) / 2;
1588 if (len
< total_len
- addr
) {
1590 len
= memtox(buf
+ 1, xml
+ addr
, len
);
1593 len
= memtox(buf
+ 1, xml
+ addr
, total_len
- addr
);
1595 put_packet_binary(s
, buf
, len
+ 1);
1599 /* Unrecognised 'q' command. */
1600 goto unknown_command
;
1604 /* put empty packet */
1612 extern void tb_flush(CPUState
*env
);
1614 void gdb_set_stop_cpu(CPUState
*env
)
1616 gdbserver_state
->c_cpu
= env
;
1617 gdbserver_state
->g_cpu
= env
;
1620 #ifndef CONFIG_USER_ONLY
1621 static void gdb_vm_stopped(void *opaque
, int reason
)
1623 GDBState
*s
= gdbserver_state
;
1624 CPUState
*env
= s
->c_cpu
;
1629 if (s
->state
== RS_SYSCALL
)
1632 /* disable single step if it was enable */
1633 cpu_single_step(env
, 0);
1635 if (reason
== EXCP_DEBUG
) {
1636 if (env
->watchpoint_hit
) {
1637 switch (env
->watchpoint_hit
->flags
& BP_MEM_ACCESS
) {
1648 snprintf(buf
, sizeof(buf
),
1649 "T%02xthread:%02x;%swatch:" TARGET_FMT_lx
";",
1650 SIGTRAP
, env
->cpu_index
+1, type
,
1651 env
->watchpoint_hit
->vaddr
);
1653 env
->watchpoint_hit
= NULL
;
1658 } else if (reason
== EXCP_INTERRUPT
) {
1663 snprintf(buf
, sizeof(buf
), "T%02xthread:%02x;", ret
, env
->cpu_index
+1);
1668 /* Send a gdb syscall request.
1669 This accepts limited printf-style format specifiers, specifically:
1670 %x - target_ulong argument printed in hex.
1671 %lx - 64-bit argument printed in hex.
1672 %s - string pointer (target_ulong) and length (int) pair. */
1673 void gdb_do_syscall(gdb_syscall_complete_cb cb
, const char *fmt
, ...)
1682 s
= gdbserver_state
;
1685 gdb_current_syscall_cb
= cb
;
1686 s
->state
= RS_SYSCALL
;
1687 #ifndef CONFIG_USER_ONLY
1688 vm_stop(EXCP_DEBUG
);
1699 addr
= va_arg(va
, target_ulong
);
1700 p
+= snprintf(p
, &buf
[sizeof(buf
)] - p
, TARGET_FMT_lx
, addr
);
1703 if (*(fmt
++) != 'x')
1705 i64
= va_arg(va
, uint64_t);
1706 p
+= snprintf(p
, &buf
[sizeof(buf
)] - p
, "%" PRIx64
, i64
);
1709 addr
= va_arg(va
, target_ulong
);
1710 p
+= snprintf(p
, &buf
[sizeof(buf
)] - p
, TARGET_FMT_lx
"/%x",
1711 addr
, va_arg(va
, int));
1715 fprintf(stderr
, "gdbstub: Bad syscall format string '%s'\n",
1726 #ifdef CONFIG_USER_ONLY
1727 gdb_handlesig(s
->c_cpu
, 0);
1729 cpu_interrupt(s
->c_cpu
, CPU_INTERRUPT_EXIT
);
1733 static void gdb_read_byte(GDBState
*s
, int ch
)
1738 #ifndef CONFIG_USER_ONLY
1739 if (s
->last_packet_len
) {
1740 /* Waiting for a response to the last packet. If we see the start
1741 of a new command then abandon the previous response. */
1744 printf("Got NACK, retransmitting\n");
1746 put_buffer(s
, (uint8_t *)s
->last_packet
, s
->last_packet_len
);
1750 printf("Got ACK\n");
1752 printf("Got '%c' when expecting ACK/NACK\n", ch
);
1754 if (ch
== '+' || ch
== '$')
1755 s
->last_packet_len
= 0;
1760 /* when the CPU is running, we cannot do anything except stop
1761 it when receiving a char */
1762 vm_stop(EXCP_INTERRUPT
);
1769 s
->line_buf_index
= 0;
1770 s
->state
= RS_GETLINE
;
1775 s
->state
= RS_CHKSUM1
;
1776 } else if (s
->line_buf_index
>= sizeof(s
->line_buf
) - 1) {
1779 s
->line_buf
[s
->line_buf_index
++] = ch
;
1783 s
->line_buf
[s
->line_buf_index
] = '\0';
1784 s
->line_csum
= fromhex(ch
) << 4;
1785 s
->state
= RS_CHKSUM2
;
1788 s
->line_csum
|= fromhex(ch
);
1790 for(i
= 0; i
< s
->line_buf_index
; i
++) {
1791 csum
+= s
->line_buf
[i
];
1793 if (s
->line_csum
!= (csum
& 0xff)) {
1795 put_buffer(s
, &reply
, 1);
1799 put_buffer(s
, &reply
, 1);
1800 s
->state
= gdb_handle_packet(s
, s
->line_buf
);
1809 #ifdef CONFIG_USER_ONLY
1811 gdb_handlesig (CPUState
*env
, int sig
)
1817 s
= gdbserver_state
;
1818 if (gdbserver_fd
< 0 || s
->fd
< 0)
1821 /* disable single step if it was enabled */
1822 cpu_single_step(env
, 0);
1827 snprintf(buf
, sizeof(buf
), "S%02x", sig
);
1830 /* put_packet() might have detected that the peer terminated the
1837 s
->running_state
= 0;
1838 while (s
->running_state
== 0) {
1839 n
= read (s
->fd
, buf
, 256);
1844 for (i
= 0; i
< n
; i
++)
1845 gdb_read_byte (s
, buf
[i
]);
1847 else if (n
== 0 || errno
!= EAGAIN
)
1849 /* XXX: Connection closed. Should probably wait for annother
1850 connection before continuing. */
1859 /* Tell the remote gdb that the process has exited. */
1860 void gdb_exit(CPUState
*env
, int code
)
1865 s
= gdbserver_state
;
1866 if (gdbserver_fd
< 0 || s
->fd
< 0)
1869 snprintf(buf
, sizeof(buf
), "W%02x", code
);
1874 static void gdb_accept(void)
1877 struct sockaddr_in sockaddr
;
1882 len
= sizeof(sockaddr
);
1883 fd
= accept(gdbserver_fd
, (struct sockaddr
*)&sockaddr
, &len
);
1884 if (fd
< 0 && errno
!= EINTR
) {
1887 } else if (fd
>= 0) {
1892 /* set short latency */
1894 setsockopt(fd
, IPPROTO_TCP
, TCP_NODELAY
, (char *)&val
, sizeof(val
));
1896 s
= qemu_mallocz(sizeof(GDBState
));
1903 memset (s
, 0, sizeof (GDBState
));
1904 s
->c_cpu
= first_cpu
;
1905 s
->g_cpu
= first_cpu
;
1909 gdbserver_state
= s
;
1911 fcntl(fd
, F_SETFL
, O_NONBLOCK
);
1914 static int gdbserver_open(int port
)
1916 struct sockaddr_in sockaddr
;
1919 fd
= socket(PF_INET
, SOCK_STREAM
, 0);
1925 /* allow fast reuse */
1927 setsockopt(fd
, SOL_SOCKET
, SO_REUSEADDR
, (char *)&val
, sizeof(val
));
1929 sockaddr
.sin_family
= AF_INET
;
1930 sockaddr
.sin_port
= htons(port
);
1931 sockaddr
.sin_addr
.s_addr
= 0;
1932 ret
= bind(fd
, (struct sockaddr
*)&sockaddr
, sizeof(sockaddr
));
1937 ret
= listen(fd
, 0);
1945 int gdbserver_start(int port
)
1947 gdbserver_fd
= gdbserver_open(port
);
1948 if (gdbserver_fd
< 0)
1950 /* accept connections */
1955 static int gdb_chr_can_receive(void *opaque
)
1957 /* We can handle an arbitrarily large amount of data.
1958 Pick the maximum packet size, which is as good as anything. */
1959 return MAX_PACKET_LENGTH
;
1962 static void gdb_chr_receive(void *opaque
, const uint8_t *buf
, int size
)
1966 for (i
= 0; i
< size
; i
++) {
1967 gdb_read_byte(gdbserver_state
, buf
[i
]);
1971 static void gdb_chr_event(void *opaque
, int event
)
1974 case CHR_EVENT_RESET
:
1975 vm_stop(EXCP_INTERRUPT
);
1983 int gdbserver_start(const char *port
)
1986 char gdbstub_port_name
[128];
1989 CharDriverState
*chr
;
1991 if (!port
|| !*port
)
1994 port_num
= strtol(port
, &p
, 10);
1996 /* A numeric value is interpreted as a port number. */
1997 snprintf(gdbstub_port_name
, sizeof(gdbstub_port_name
),
1998 "tcp::%d,nowait,nodelay,server", port_num
);
1999 port
= gdbstub_port_name
;
2002 chr
= qemu_chr_open("gdb", port
);
2006 s
= qemu_mallocz(sizeof(GDBState
));
2010 s
->c_cpu
= first_cpu
;
2011 s
->g_cpu
= first_cpu
;
2013 gdbserver_state
= s
;
2014 qemu_chr_add_handlers(chr
, gdb_chr_can_receive
, gdb_chr_receive
,
2015 gdb_chr_event
, NULL
);
2016 qemu_add_vm_stop_handler(gdb_vm_stopped
, NULL
);