qcow2: Update multiple refcounts at once
[qemu-kvm/fedora.git] / vl.c
blobb1216c01837c5e82f485c74735f1cae30d394d91
1 /*
2 * QEMU System Emulator
4 * Copyright (c) 2003-2008 Fabrice Bellard
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
24 #include <unistd.h>
25 #include <fcntl.h>
26 #include <signal.h>
27 #include <time.h>
28 #include <errno.h>
29 #include <sys/time.h>
30 #include <zlib.h>
32 /* Needed early for HOST_BSD etc. */
33 #include "config-host.h"
35 #ifndef _WIN32
36 #include <pwd.h>
37 #include <sys/times.h>
38 #include <sys/wait.h>
39 #include <termios.h>
40 #include <sys/mman.h>
41 #include <sys/ioctl.h>
42 #include <sys/resource.h>
43 #include <sys/socket.h>
44 #include <netinet/in.h>
45 #include <net/if.h>
46 #if defined(__NetBSD__)
47 #include <net/if_tap.h>
48 #endif
49 #ifdef __linux__
50 #include <linux/if_tun.h>
51 #endif
52 #include <arpa/inet.h>
53 #include <dirent.h>
54 #include <netdb.h>
55 #include <sys/select.h>
56 #ifdef HOST_BSD
57 #include <sys/stat.h>
58 #if defined(__FreeBSD__) || defined(__DragonFly__)
59 #include <libutil.h>
60 #else
61 #include <util.h>
62 #endif
63 #elif defined (__GLIBC__) && defined (__FreeBSD_kernel__)
64 #include <freebsd/stdlib.h>
65 #else
66 #ifdef __linux__
67 #include <pty.h>
68 #include <malloc.h>
69 #include <linux/rtc.h>
71 /* For the benefit of older linux systems which don't supply it,
72 we use a local copy of hpet.h. */
73 /* #include <linux/hpet.h> */
74 #include "hpet.h"
76 #include <linux/ppdev.h>
77 #include <linux/parport.h>
78 #endif
79 #ifdef __sun__
80 #include <sys/stat.h>
81 #include <sys/ethernet.h>
82 #include <sys/sockio.h>
83 #include <netinet/arp.h>
84 #include <netinet/in.h>
85 #include <netinet/in_systm.h>
86 #include <netinet/ip.h>
87 #include <netinet/ip_icmp.h> // must come after ip.h
88 #include <netinet/udp.h>
89 #include <netinet/tcp.h>
90 #include <net/if.h>
91 #include <syslog.h>
92 #include <stropts.h>
93 #endif
94 #endif
95 #endif
97 #if defined(__OpenBSD__)
98 #include <util.h>
99 #endif
101 #if defined(CONFIG_VDE)
102 #include <libvdeplug.h>
103 #endif
105 #ifdef _WIN32
106 #include <windows.h>
107 #include <malloc.h>
108 #include <sys/timeb.h>
109 #include <mmsystem.h>
110 #define getopt_long_only getopt_long
111 #define memalign(align, size) malloc(size)
112 #endif
114 #ifdef CONFIG_SDL
115 #ifdef __APPLE__
116 #include <SDL/SDL.h>
117 int qemu_main(int argc, char **argv, char **envp);
118 int main(int argc, char **argv)
120 qemu_main(argc, argv, NULL);
122 #undef main
123 #define main qemu_main
124 #endif
125 #endif /* CONFIG_SDL */
127 #ifdef CONFIG_COCOA
128 #undef main
129 #define main qemu_main
130 #endif /* CONFIG_COCOA */
132 #include "hw/hw.h"
133 #include "hw/boards.h"
134 #include "hw/usb.h"
135 #include "hw/pcmcia.h"
136 #include "hw/pc.h"
137 #include "hw/audiodev.h"
138 #include "hw/isa.h"
139 #include "hw/baum.h"
140 #include "hw/bt.h"
141 #include "hw/watchdog.h"
142 #include "hw/smbios.h"
143 #include "hw/xen.h"
144 #include "bt-host.h"
145 #include "net.h"
146 #include "monitor.h"
147 #include "console.h"
148 #include "sysemu.h"
149 #include "gdbstub.h"
150 #include "qemu-timer.h"
151 #include "qemu-char.h"
152 #include "cache-utils.h"
153 #include "block.h"
154 #include "dma.h"
155 #include "audio/audio.h"
156 #include "migration.h"
157 #include "kvm.h"
158 #include "balloon.h"
159 #include "qemu-option.h"
161 #include "disas.h"
163 #include "exec-all.h"
165 #include "qemu_socket.h"
167 #if defined(CONFIG_SLIRP)
168 #include "libslirp.h"
169 #endif
171 //#define DEBUG_UNUSED_IOPORT
172 //#define DEBUG_IOPORT
173 //#define DEBUG_NET
174 //#define DEBUG_SLIRP
177 #ifdef DEBUG_IOPORT
178 # define LOG_IOPORT(...) qemu_log_mask(CPU_LOG_IOPORT, ## __VA_ARGS__)
179 #else
180 # define LOG_IOPORT(...) do { } while (0)
181 #endif
183 #define DEFAULT_RAM_SIZE 128
185 /* Max number of USB devices that can be specified on the commandline. */
186 #define MAX_USB_CMDLINE 8
188 /* Max number of bluetooth switches on the commandline. */
189 #define MAX_BT_CMDLINE 10
191 /* XXX: use a two level table to limit memory usage */
192 #define MAX_IOPORTS 65536
194 const char *bios_dir = CONFIG_QEMU_SHAREDIR;
195 const char *bios_name = NULL;
196 static void *ioport_opaque[MAX_IOPORTS];
197 static IOPortReadFunc *ioport_read_table[3][MAX_IOPORTS];
198 static IOPortWriteFunc *ioport_write_table[3][MAX_IOPORTS];
199 /* Note: drives_table[MAX_DRIVES] is a dummy block driver if none available
200 to store the VM snapshots */
201 DriveInfo drives_table[MAX_DRIVES+1];
202 int nb_drives;
203 enum vga_retrace_method vga_retrace_method = VGA_RETRACE_DUMB;
204 static DisplayState *display_state;
205 DisplayType display_type = DT_DEFAULT;
206 const char* keyboard_layout = NULL;
207 int64_t ticks_per_sec;
208 ram_addr_t ram_size;
209 int nb_nics;
210 NICInfo nd_table[MAX_NICS];
211 int vm_running;
212 static int autostart;
213 static int rtc_utc = 1;
214 static int rtc_date_offset = -1; /* -1 means no change */
215 int cirrus_vga_enabled = 1;
216 int std_vga_enabled = 0;
217 int vmsvga_enabled = 0;
218 int xenfb_enabled = 0;
219 #ifdef TARGET_SPARC
220 int graphic_width = 1024;
221 int graphic_height = 768;
222 int graphic_depth = 8;
223 #else
224 int graphic_width = 800;
225 int graphic_height = 600;
226 int graphic_depth = 15;
227 #endif
228 static int full_screen = 0;
229 #ifdef CONFIG_SDL
230 static int no_frame = 0;
231 #endif
232 int no_quit = 0;
233 CharDriverState *serial_hds[MAX_SERIAL_PORTS];
234 CharDriverState *parallel_hds[MAX_PARALLEL_PORTS];
235 CharDriverState *virtcon_hds[MAX_VIRTIO_CONSOLES];
236 #ifdef TARGET_I386
237 int win2k_install_hack = 0;
238 int rtc_td_hack = 0;
239 #endif
240 int usb_enabled = 0;
241 int singlestep = 0;
242 int smp_cpus = 1;
243 const char *vnc_display;
244 int acpi_enabled = 1;
245 int no_hpet = 0;
246 int fd_bootchk = 1;
247 int no_reboot = 0;
248 int no_shutdown = 0;
249 int cursor_hide = 1;
250 int graphic_rotate = 0;
251 #ifndef _WIN32
252 int daemonize = 0;
253 #endif
254 WatchdogTimerModel *watchdog = NULL;
255 int watchdog_action = WDT_RESET;
256 const char *option_rom[MAX_OPTION_ROMS];
257 int nb_option_roms;
258 int semihosting_enabled = 0;
259 #ifdef TARGET_ARM
260 int old_param = 0;
261 #endif
262 const char *qemu_name;
263 int alt_grab = 0;
264 #if defined(TARGET_SPARC) || defined(TARGET_PPC)
265 unsigned int nb_prom_envs = 0;
266 const char *prom_envs[MAX_PROM_ENVS];
267 #endif
268 int nb_drives_opt;
269 struct drive_opt drives_opt[MAX_DRIVES];
271 int nb_numa_nodes;
272 uint64_t node_mem[MAX_NODES];
273 uint64_t node_cpumask[MAX_NODES];
275 static CPUState *cur_cpu;
276 static CPUState *next_cpu;
277 static int timer_alarm_pending = 1;
278 /* Conversion factor from emulated instructions to virtual clock ticks. */
279 static int icount_time_shift;
280 /* Arbitrarily pick 1MIPS as the minimum allowable speed. */
281 #define MAX_ICOUNT_SHIFT 10
282 /* Compensate for varying guest execution speed. */
283 static int64_t qemu_icount_bias;
284 static QEMUTimer *icount_rt_timer;
285 static QEMUTimer *icount_vm_timer;
286 static QEMUTimer *nographic_timer;
288 uint8_t qemu_uuid[16];
290 /***********************************************************/
291 /* x86 ISA bus support */
293 target_phys_addr_t isa_mem_base = 0;
294 PicState2 *isa_pic;
296 static IOPortReadFunc default_ioport_readb, default_ioport_readw, default_ioport_readl;
297 static IOPortWriteFunc default_ioport_writeb, default_ioport_writew, default_ioport_writel;
299 static uint32_t ioport_read(int index, uint32_t address)
301 static IOPortReadFunc *default_func[3] = {
302 default_ioport_readb,
303 default_ioport_readw,
304 default_ioport_readl
306 IOPortReadFunc *func = ioport_read_table[index][address];
307 if (!func)
308 func = default_func[index];
309 return func(ioport_opaque[address], address);
312 static void ioport_write(int index, uint32_t address, uint32_t data)
314 static IOPortWriteFunc *default_func[3] = {
315 default_ioport_writeb,
316 default_ioport_writew,
317 default_ioport_writel
319 IOPortWriteFunc *func = ioport_write_table[index][address];
320 if (!func)
321 func = default_func[index];
322 func(ioport_opaque[address], address, data);
325 static uint32_t default_ioport_readb(void *opaque, uint32_t address)
327 #ifdef DEBUG_UNUSED_IOPORT
328 fprintf(stderr, "unused inb: port=0x%04x\n", address);
329 #endif
330 return 0xff;
333 static void default_ioport_writeb(void *opaque, uint32_t address, uint32_t data)
335 #ifdef DEBUG_UNUSED_IOPORT
336 fprintf(stderr, "unused outb: port=0x%04x data=0x%02x\n", address, data);
337 #endif
340 /* default is to make two byte accesses */
341 static uint32_t default_ioport_readw(void *opaque, uint32_t address)
343 uint32_t data;
344 data = ioport_read(0, address);
345 address = (address + 1) & (MAX_IOPORTS - 1);
346 data |= ioport_read(0, address) << 8;
347 return data;
350 static void default_ioport_writew(void *opaque, uint32_t address, uint32_t data)
352 ioport_write(0, address, data & 0xff);
353 address = (address + 1) & (MAX_IOPORTS - 1);
354 ioport_write(0, address, (data >> 8) & 0xff);
357 static uint32_t default_ioport_readl(void *opaque, uint32_t address)
359 #ifdef DEBUG_UNUSED_IOPORT
360 fprintf(stderr, "unused inl: port=0x%04x\n", address);
361 #endif
362 return 0xffffffff;
365 static void default_ioport_writel(void *opaque, uint32_t address, uint32_t data)
367 #ifdef DEBUG_UNUSED_IOPORT
368 fprintf(stderr, "unused outl: port=0x%04x data=0x%02x\n", address, data);
369 #endif
372 /* size is the word size in byte */
373 int register_ioport_read(int start, int length, int size,
374 IOPortReadFunc *func, void *opaque)
376 int i, bsize;
378 if (size == 1) {
379 bsize = 0;
380 } else if (size == 2) {
381 bsize = 1;
382 } else if (size == 4) {
383 bsize = 2;
384 } else {
385 hw_error("register_ioport_read: invalid size");
386 return -1;
388 for(i = start; i < start + length; i += size) {
389 ioport_read_table[bsize][i] = func;
390 if (ioport_opaque[i] != NULL && ioport_opaque[i] != opaque)
391 hw_error("register_ioport_read: invalid opaque");
392 ioport_opaque[i] = opaque;
394 return 0;
397 /* size is the word size in byte */
398 int register_ioport_write(int start, int length, int size,
399 IOPortWriteFunc *func, void *opaque)
401 int i, bsize;
403 if (size == 1) {
404 bsize = 0;
405 } else if (size == 2) {
406 bsize = 1;
407 } else if (size == 4) {
408 bsize = 2;
409 } else {
410 hw_error("register_ioport_write: invalid size");
411 return -1;
413 for(i = start; i < start + length; i += size) {
414 ioport_write_table[bsize][i] = func;
415 if (ioport_opaque[i] != NULL && ioport_opaque[i] != opaque)
416 hw_error("register_ioport_write: invalid opaque");
417 ioport_opaque[i] = opaque;
419 return 0;
422 void isa_unassign_ioport(int start, int length)
424 int i;
426 for(i = start; i < start + length; i++) {
427 ioport_read_table[0][i] = default_ioport_readb;
428 ioport_read_table[1][i] = default_ioport_readw;
429 ioport_read_table[2][i] = default_ioport_readl;
431 ioport_write_table[0][i] = default_ioport_writeb;
432 ioport_write_table[1][i] = default_ioport_writew;
433 ioport_write_table[2][i] = default_ioport_writel;
435 ioport_opaque[i] = NULL;
439 /***********************************************************/
441 void cpu_outb(CPUState *env, int addr, int val)
443 LOG_IOPORT("outb: %04x %02x\n", addr, val);
444 ioport_write(0, addr, val);
445 #ifdef CONFIG_KQEMU
446 if (env)
447 env->last_io_time = cpu_get_time_fast();
448 #endif
451 void cpu_outw(CPUState *env, int addr, int val)
453 LOG_IOPORT("outw: %04x %04x\n", addr, val);
454 ioport_write(1, addr, val);
455 #ifdef CONFIG_KQEMU
456 if (env)
457 env->last_io_time = cpu_get_time_fast();
458 #endif
461 void cpu_outl(CPUState *env, int addr, int val)
463 LOG_IOPORT("outl: %04x %08x\n", addr, val);
464 ioport_write(2, addr, val);
465 #ifdef CONFIG_KQEMU
466 if (env)
467 env->last_io_time = cpu_get_time_fast();
468 #endif
471 int cpu_inb(CPUState *env, int addr)
473 int val;
474 val = ioport_read(0, addr);
475 LOG_IOPORT("inb : %04x %02x\n", addr, val);
476 #ifdef CONFIG_KQEMU
477 if (env)
478 env->last_io_time = cpu_get_time_fast();
479 #endif
480 return val;
483 int cpu_inw(CPUState *env, int addr)
485 int val;
486 val = ioport_read(1, addr);
487 LOG_IOPORT("inw : %04x %04x\n", addr, val);
488 #ifdef CONFIG_KQEMU
489 if (env)
490 env->last_io_time = cpu_get_time_fast();
491 #endif
492 return val;
495 int cpu_inl(CPUState *env, int addr)
497 int val;
498 val = ioport_read(2, addr);
499 LOG_IOPORT("inl : %04x %08x\n", addr, val);
500 #ifdef CONFIG_KQEMU
501 if (env)
502 env->last_io_time = cpu_get_time_fast();
503 #endif
504 return val;
507 /***********************************************************/
508 void hw_error(const char *fmt, ...)
510 va_list ap;
511 CPUState *env;
513 va_start(ap, fmt);
514 fprintf(stderr, "qemu: hardware error: ");
515 vfprintf(stderr, fmt, ap);
516 fprintf(stderr, "\n");
517 for(env = first_cpu; env != NULL; env = env->next_cpu) {
518 fprintf(stderr, "CPU #%d:\n", env->cpu_index);
519 #ifdef TARGET_I386
520 cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU);
521 #else
522 cpu_dump_state(env, stderr, fprintf, 0);
523 #endif
525 va_end(ap);
526 abort();
529 /***************/
530 /* ballooning */
532 static QEMUBalloonEvent *qemu_balloon_event;
533 void *qemu_balloon_event_opaque;
535 void qemu_add_balloon_handler(QEMUBalloonEvent *func, void *opaque)
537 qemu_balloon_event = func;
538 qemu_balloon_event_opaque = opaque;
541 void qemu_balloon(ram_addr_t target)
543 if (qemu_balloon_event)
544 qemu_balloon_event(qemu_balloon_event_opaque, target);
547 ram_addr_t qemu_balloon_status(void)
549 if (qemu_balloon_event)
550 return qemu_balloon_event(qemu_balloon_event_opaque, 0);
551 return 0;
554 /***********************************************************/
555 /* keyboard/mouse */
557 static QEMUPutKBDEvent *qemu_put_kbd_event;
558 static void *qemu_put_kbd_event_opaque;
559 static QEMUPutMouseEntry *qemu_put_mouse_event_head;
560 static QEMUPutMouseEntry *qemu_put_mouse_event_current;
562 void qemu_add_kbd_event_handler(QEMUPutKBDEvent *func, void *opaque)
564 qemu_put_kbd_event_opaque = opaque;
565 qemu_put_kbd_event = func;
568 QEMUPutMouseEntry *qemu_add_mouse_event_handler(QEMUPutMouseEvent *func,
569 void *opaque, int absolute,
570 const char *name)
572 QEMUPutMouseEntry *s, *cursor;
574 s = qemu_mallocz(sizeof(QEMUPutMouseEntry));
576 s->qemu_put_mouse_event = func;
577 s->qemu_put_mouse_event_opaque = opaque;
578 s->qemu_put_mouse_event_absolute = absolute;
579 s->qemu_put_mouse_event_name = qemu_strdup(name);
580 s->next = NULL;
582 if (!qemu_put_mouse_event_head) {
583 qemu_put_mouse_event_head = qemu_put_mouse_event_current = s;
584 return s;
587 cursor = qemu_put_mouse_event_head;
588 while (cursor->next != NULL)
589 cursor = cursor->next;
591 cursor->next = s;
592 qemu_put_mouse_event_current = s;
594 return s;
597 void qemu_remove_mouse_event_handler(QEMUPutMouseEntry *entry)
599 QEMUPutMouseEntry *prev = NULL, *cursor;
601 if (!qemu_put_mouse_event_head || entry == NULL)
602 return;
604 cursor = qemu_put_mouse_event_head;
605 while (cursor != NULL && cursor != entry) {
606 prev = cursor;
607 cursor = cursor->next;
610 if (cursor == NULL) // does not exist or list empty
611 return;
612 else if (prev == NULL) { // entry is head
613 qemu_put_mouse_event_head = cursor->next;
614 if (qemu_put_mouse_event_current == entry)
615 qemu_put_mouse_event_current = cursor->next;
616 qemu_free(entry->qemu_put_mouse_event_name);
617 qemu_free(entry);
618 return;
621 prev->next = entry->next;
623 if (qemu_put_mouse_event_current == entry)
624 qemu_put_mouse_event_current = prev;
626 qemu_free(entry->qemu_put_mouse_event_name);
627 qemu_free(entry);
630 void kbd_put_keycode(int keycode)
632 if (qemu_put_kbd_event) {
633 qemu_put_kbd_event(qemu_put_kbd_event_opaque, keycode);
637 void kbd_mouse_event(int dx, int dy, int dz, int buttons_state)
639 QEMUPutMouseEvent *mouse_event;
640 void *mouse_event_opaque;
641 int width;
643 if (!qemu_put_mouse_event_current) {
644 return;
647 mouse_event =
648 qemu_put_mouse_event_current->qemu_put_mouse_event;
649 mouse_event_opaque =
650 qemu_put_mouse_event_current->qemu_put_mouse_event_opaque;
652 if (mouse_event) {
653 if (graphic_rotate) {
654 if (qemu_put_mouse_event_current->qemu_put_mouse_event_absolute)
655 width = 0x7fff;
656 else
657 width = graphic_width - 1;
658 mouse_event(mouse_event_opaque,
659 width - dy, dx, dz, buttons_state);
660 } else
661 mouse_event(mouse_event_opaque,
662 dx, dy, dz, buttons_state);
666 int kbd_mouse_is_absolute(void)
668 if (!qemu_put_mouse_event_current)
669 return 0;
671 return qemu_put_mouse_event_current->qemu_put_mouse_event_absolute;
674 void do_info_mice(Monitor *mon)
676 QEMUPutMouseEntry *cursor;
677 int index = 0;
679 if (!qemu_put_mouse_event_head) {
680 monitor_printf(mon, "No mouse devices connected\n");
681 return;
684 monitor_printf(mon, "Mouse devices available:\n");
685 cursor = qemu_put_mouse_event_head;
686 while (cursor != NULL) {
687 monitor_printf(mon, "%c Mouse #%d: %s\n",
688 (cursor == qemu_put_mouse_event_current ? '*' : ' '),
689 index, cursor->qemu_put_mouse_event_name);
690 index++;
691 cursor = cursor->next;
695 void do_mouse_set(Monitor *mon, int index)
697 QEMUPutMouseEntry *cursor;
698 int i = 0;
700 if (!qemu_put_mouse_event_head) {
701 monitor_printf(mon, "No mouse devices connected\n");
702 return;
705 cursor = qemu_put_mouse_event_head;
706 while (cursor != NULL && index != i) {
707 i++;
708 cursor = cursor->next;
711 if (cursor != NULL)
712 qemu_put_mouse_event_current = cursor;
713 else
714 monitor_printf(mon, "Mouse at given index not found\n");
717 /* compute with 96 bit intermediate result: (a*b)/c */
718 uint64_t muldiv64(uint64_t a, uint32_t b, uint32_t c)
720 union {
721 uint64_t ll;
722 struct {
723 #ifdef WORDS_BIGENDIAN
724 uint32_t high, low;
725 #else
726 uint32_t low, high;
727 #endif
728 } l;
729 } u, res;
730 uint64_t rl, rh;
732 u.ll = a;
733 rl = (uint64_t)u.l.low * (uint64_t)b;
734 rh = (uint64_t)u.l.high * (uint64_t)b;
735 rh += (rl >> 32);
736 res.l.high = rh / c;
737 res.l.low = (((rh % c) << 32) + (rl & 0xffffffff)) / c;
738 return res.ll;
741 /***********************************************************/
742 /* real time host monotonic timer */
744 #define QEMU_TIMER_BASE 1000000000LL
746 #ifdef WIN32
748 static int64_t clock_freq;
750 static void init_get_clock(void)
752 LARGE_INTEGER freq;
753 int ret;
754 ret = QueryPerformanceFrequency(&freq);
755 if (ret == 0) {
756 fprintf(stderr, "Could not calibrate ticks\n");
757 exit(1);
759 clock_freq = freq.QuadPart;
762 static int64_t get_clock(void)
764 LARGE_INTEGER ti;
765 QueryPerformanceCounter(&ti);
766 return muldiv64(ti.QuadPart, QEMU_TIMER_BASE, clock_freq);
769 #else
771 static int use_rt_clock;
773 static void init_get_clock(void)
775 use_rt_clock = 0;
776 #if defined(__linux__) || (defined(__FreeBSD__) && __FreeBSD_version >= 500000) \
777 || defined(__DragonFly__)
779 struct timespec ts;
780 if (clock_gettime(CLOCK_MONOTONIC, &ts) == 0) {
781 use_rt_clock = 1;
784 #endif
787 static int64_t get_clock(void)
789 #if defined(__linux__) || (defined(__FreeBSD__) && __FreeBSD_version >= 500000) \
790 || defined(__DragonFly__)
791 if (use_rt_clock) {
792 struct timespec ts;
793 clock_gettime(CLOCK_MONOTONIC, &ts);
794 return ts.tv_sec * 1000000000LL + ts.tv_nsec;
795 } else
796 #endif
798 /* XXX: using gettimeofday leads to problems if the date
799 changes, so it should be avoided. */
800 struct timeval tv;
801 gettimeofday(&tv, NULL);
802 return tv.tv_sec * 1000000000LL + (tv.tv_usec * 1000);
805 #endif
807 /* Return the virtual CPU time, based on the instruction counter. */
808 static int64_t cpu_get_icount(void)
810 int64_t icount;
811 CPUState *env = cpu_single_env;;
812 icount = qemu_icount;
813 if (env) {
814 if (!can_do_io(env))
815 fprintf(stderr, "Bad clock read\n");
816 icount -= (env->icount_decr.u16.low + env->icount_extra);
818 return qemu_icount_bias + (icount << icount_time_shift);
821 /***********************************************************/
822 /* guest cycle counter */
824 static int64_t cpu_ticks_prev;
825 static int64_t cpu_ticks_offset;
826 static int64_t cpu_clock_offset;
827 static int cpu_ticks_enabled;
829 /* return the host CPU cycle counter and handle stop/restart */
830 int64_t cpu_get_ticks(void)
832 if (use_icount) {
833 return cpu_get_icount();
835 if (!cpu_ticks_enabled) {
836 return cpu_ticks_offset;
837 } else {
838 int64_t ticks;
839 ticks = cpu_get_real_ticks();
840 if (cpu_ticks_prev > ticks) {
841 /* Note: non increasing ticks may happen if the host uses
842 software suspend */
843 cpu_ticks_offset += cpu_ticks_prev - ticks;
845 cpu_ticks_prev = ticks;
846 return ticks + cpu_ticks_offset;
850 /* return the host CPU monotonic timer and handle stop/restart */
851 static int64_t cpu_get_clock(void)
853 int64_t ti;
854 if (!cpu_ticks_enabled) {
855 return cpu_clock_offset;
856 } else {
857 ti = get_clock();
858 return ti + cpu_clock_offset;
862 /* enable cpu_get_ticks() */
863 void cpu_enable_ticks(void)
865 if (!cpu_ticks_enabled) {
866 cpu_ticks_offset -= cpu_get_real_ticks();
867 cpu_clock_offset -= get_clock();
868 cpu_ticks_enabled = 1;
872 /* disable cpu_get_ticks() : the clock is stopped. You must not call
873 cpu_get_ticks() after that. */
874 void cpu_disable_ticks(void)
876 if (cpu_ticks_enabled) {
877 cpu_ticks_offset = cpu_get_ticks();
878 cpu_clock_offset = cpu_get_clock();
879 cpu_ticks_enabled = 0;
883 /***********************************************************/
884 /* timers */
886 #define QEMU_TIMER_REALTIME 0
887 #define QEMU_TIMER_VIRTUAL 1
889 struct QEMUClock {
890 int type;
891 /* XXX: add frequency */
894 struct QEMUTimer {
895 QEMUClock *clock;
896 int64_t expire_time;
897 QEMUTimerCB *cb;
898 void *opaque;
899 struct QEMUTimer *next;
902 struct qemu_alarm_timer {
903 char const *name;
904 unsigned int flags;
906 int (*start)(struct qemu_alarm_timer *t);
907 void (*stop)(struct qemu_alarm_timer *t);
908 void (*rearm)(struct qemu_alarm_timer *t);
909 void *priv;
912 #define ALARM_FLAG_DYNTICKS 0x1
913 #define ALARM_FLAG_EXPIRED 0x2
915 static inline int alarm_has_dynticks(struct qemu_alarm_timer *t)
917 return t && (t->flags & ALARM_FLAG_DYNTICKS);
920 static void qemu_rearm_alarm_timer(struct qemu_alarm_timer *t)
922 if (!alarm_has_dynticks(t))
923 return;
925 t->rearm(t);
928 /* TODO: MIN_TIMER_REARM_US should be optimized */
929 #define MIN_TIMER_REARM_US 250
931 static struct qemu_alarm_timer *alarm_timer;
933 #ifdef _WIN32
935 struct qemu_alarm_win32 {
936 MMRESULT timerId;
937 unsigned int period;
938 } alarm_win32_data = {0, -1};
940 static int win32_start_timer(struct qemu_alarm_timer *t);
941 static void win32_stop_timer(struct qemu_alarm_timer *t);
942 static void win32_rearm_timer(struct qemu_alarm_timer *t);
944 #else
946 static int unix_start_timer(struct qemu_alarm_timer *t);
947 static void unix_stop_timer(struct qemu_alarm_timer *t);
949 #ifdef __linux__
951 static int dynticks_start_timer(struct qemu_alarm_timer *t);
952 static void dynticks_stop_timer(struct qemu_alarm_timer *t);
953 static void dynticks_rearm_timer(struct qemu_alarm_timer *t);
955 static int hpet_start_timer(struct qemu_alarm_timer *t);
956 static void hpet_stop_timer(struct qemu_alarm_timer *t);
958 static int rtc_start_timer(struct qemu_alarm_timer *t);
959 static void rtc_stop_timer(struct qemu_alarm_timer *t);
961 #endif /* __linux__ */
963 #endif /* _WIN32 */
965 /* Correlation between real and virtual time is always going to be
966 fairly approximate, so ignore small variation.
967 When the guest is idle real and virtual time will be aligned in
968 the IO wait loop. */
969 #define ICOUNT_WOBBLE (QEMU_TIMER_BASE / 10)
971 static void icount_adjust(void)
973 int64_t cur_time;
974 int64_t cur_icount;
975 int64_t delta;
976 static int64_t last_delta;
977 /* If the VM is not running, then do nothing. */
978 if (!vm_running)
979 return;
981 cur_time = cpu_get_clock();
982 cur_icount = qemu_get_clock(vm_clock);
983 delta = cur_icount - cur_time;
984 /* FIXME: This is a very crude algorithm, somewhat prone to oscillation. */
985 if (delta > 0
986 && last_delta + ICOUNT_WOBBLE < delta * 2
987 && icount_time_shift > 0) {
988 /* The guest is getting too far ahead. Slow time down. */
989 icount_time_shift--;
991 if (delta < 0
992 && last_delta - ICOUNT_WOBBLE > delta * 2
993 && icount_time_shift < MAX_ICOUNT_SHIFT) {
994 /* The guest is getting too far behind. Speed time up. */
995 icount_time_shift++;
997 last_delta = delta;
998 qemu_icount_bias = cur_icount - (qemu_icount << icount_time_shift);
1001 static void icount_adjust_rt(void * opaque)
1003 qemu_mod_timer(icount_rt_timer,
1004 qemu_get_clock(rt_clock) + 1000);
1005 icount_adjust();
1008 static void icount_adjust_vm(void * opaque)
1010 qemu_mod_timer(icount_vm_timer,
1011 qemu_get_clock(vm_clock) + QEMU_TIMER_BASE / 10);
1012 icount_adjust();
1015 static void init_icount_adjust(void)
1017 /* Have both realtime and virtual time triggers for speed adjustment.
1018 The realtime trigger catches emulated time passing too slowly,
1019 the virtual time trigger catches emulated time passing too fast.
1020 Realtime triggers occur even when idle, so use them less frequently
1021 than VM triggers. */
1022 icount_rt_timer = qemu_new_timer(rt_clock, icount_adjust_rt, NULL);
1023 qemu_mod_timer(icount_rt_timer,
1024 qemu_get_clock(rt_clock) + 1000);
1025 icount_vm_timer = qemu_new_timer(vm_clock, icount_adjust_vm, NULL);
1026 qemu_mod_timer(icount_vm_timer,
1027 qemu_get_clock(vm_clock) + QEMU_TIMER_BASE / 10);
1030 static struct qemu_alarm_timer alarm_timers[] = {
1031 #ifndef _WIN32
1032 #ifdef __linux__
1033 {"dynticks", ALARM_FLAG_DYNTICKS, dynticks_start_timer,
1034 dynticks_stop_timer, dynticks_rearm_timer, NULL},
1035 /* HPET - if available - is preferred */
1036 {"hpet", 0, hpet_start_timer, hpet_stop_timer, NULL, NULL},
1037 /* ...otherwise try RTC */
1038 {"rtc", 0, rtc_start_timer, rtc_stop_timer, NULL, NULL},
1039 #endif
1040 {"unix", 0, unix_start_timer, unix_stop_timer, NULL, NULL},
1041 #else
1042 {"dynticks", ALARM_FLAG_DYNTICKS, win32_start_timer,
1043 win32_stop_timer, win32_rearm_timer, &alarm_win32_data},
1044 {"win32", 0, win32_start_timer,
1045 win32_stop_timer, NULL, &alarm_win32_data},
1046 #endif
1047 {NULL, }
1050 static void show_available_alarms(void)
1052 int i;
1054 printf("Available alarm timers, in order of precedence:\n");
1055 for (i = 0; alarm_timers[i].name; i++)
1056 printf("%s\n", alarm_timers[i].name);
1059 static void configure_alarms(char const *opt)
1061 int i;
1062 int cur = 0;
1063 int count = ARRAY_SIZE(alarm_timers) - 1;
1064 char *arg;
1065 char *name;
1066 struct qemu_alarm_timer tmp;
1068 if (!strcmp(opt, "?")) {
1069 show_available_alarms();
1070 exit(0);
1073 arg = strdup(opt);
1075 /* Reorder the array */
1076 name = strtok(arg, ",");
1077 while (name) {
1078 for (i = 0; i < count && alarm_timers[i].name; i++) {
1079 if (!strcmp(alarm_timers[i].name, name))
1080 break;
1083 if (i == count) {
1084 fprintf(stderr, "Unknown clock %s\n", name);
1085 goto next;
1088 if (i < cur)
1089 /* Ignore */
1090 goto next;
1092 /* Swap */
1093 tmp = alarm_timers[i];
1094 alarm_timers[i] = alarm_timers[cur];
1095 alarm_timers[cur] = tmp;
1097 cur++;
1098 next:
1099 name = strtok(NULL, ",");
1102 free(arg);
1104 if (cur) {
1105 /* Disable remaining timers */
1106 for (i = cur; i < count; i++)
1107 alarm_timers[i].name = NULL;
1108 } else {
1109 show_available_alarms();
1110 exit(1);
1114 QEMUClock *rt_clock;
1115 QEMUClock *vm_clock;
1117 static QEMUTimer *active_timers[2];
1119 static QEMUClock *qemu_new_clock(int type)
1121 QEMUClock *clock;
1122 clock = qemu_mallocz(sizeof(QEMUClock));
1123 clock->type = type;
1124 return clock;
1127 QEMUTimer *qemu_new_timer(QEMUClock *clock, QEMUTimerCB *cb, void *opaque)
1129 QEMUTimer *ts;
1131 ts = qemu_mallocz(sizeof(QEMUTimer));
1132 ts->clock = clock;
1133 ts->cb = cb;
1134 ts->opaque = opaque;
1135 return ts;
1138 void qemu_free_timer(QEMUTimer *ts)
1140 qemu_free(ts);
1143 /* stop a timer, but do not dealloc it */
1144 void qemu_del_timer(QEMUTimer *ts)
1146 QEMUTimer **pt, *t;
1148 /* NOTE: this code must be signal safe because
1149 qemu_timer_expired() can be called from a signal. */
1150 pt = &active_timers[ts->clock->type];
1151 for(;;) {
1152 t = *pt;
1153 if (!t)
1154 break;
1155 if (t == ts) {
1156 *pt = t->next;
1157 break;
1159 pt = &t->next;
1163 /* modify the current timer so that it will be fired when current_time
1164 >= expire_time. The corresponding callback will be called. */
1165 void qemu_mod_timer(QEMUTimer *ts, int64_t expire_time)
1167 QEMUTimer **pt, *t;
1169 qemu_del_timer(ts);
1171 /* add the timer in the sorted list */
1172 /* NOTE: this code must be signal safe because
1173 qemu_timer_expired() can be called from a signal. */
1174 pt = &active_timers[ts->clock->type];
1175 for(;;) {
1176 t = *pt;
1177 if (!t)
1178 break;
1179 if (t->expire_time > expire_time)
1180 break;
1181 pt = &t->next;
1183 ts->expire_time = expire_time;
1184 ts->next = *pt;
1185 *pt = ts;
1187 /* Rearm if necessary */
1188 if (pt == &active_timers[ts->clock->type]) {
1189 if ((alarm_timer->flags & ALARM_FLAG_EXPIRED) == 0) {
1190 qemu_rearm_alarm_timer(alarm_timer);
1192 /* Interrupt execution to force deadline recalculation. */
1193 if (use_icount)
1194 qemu_notify_event();
1198 int qemu_timer_pending(QEMUTimer *ts)
1200 QEMUTimer *t;
1201 for(t = active_timers[ts->clock->type]; t != NULL; t = t->next) {
1202 if (t == ts)
1203 return 1;
1205 return 0;
1208 static inline int qemu_timer_expired(QEMUTimer *timer_head, int64_t current_time)
1210 if (!timer_head)
1211 return 0;
1212 return (timer_head->expire_time <= current_time);
1215 static void qemu_run_timers(QEMUTimer **ptimer_head, int64_t current_time)
1217 QEMUTimer *ts;
1219 for(;;) {
1220 ts = *ptimer_head;
1221 if (!ts || ts->expire_time > current_time)
1222 break;
1223 /* remove timer from the list before calling the callback */
1224 *ptimer_head = ts->next;
1225 ts->next = NULL;
1227 /* run the callback (the timer list can be modified) */
1228 ts->cb(ts->opaque);
1232 int64_t qemu_get_clock(QEMUClock *clock)
1234 switch(clock->type) {
1235 case QEMU_TIMER_REALTIME:
1236 return get_clock() / 1000000;
1237 default:
1238 case QEMU_TIMER_VIRTUAL:
1239 if (use_icount) {
1240 return cpu_get_icount();
1241 } else {
1242 return cpu_get_clock();
1247 static void init_timers(void)
1249 init_get_clock();
1250 ticks_per_sec = QEMU_TIMER_BASE;
1251 rt_clock = qemu_new_clock(QEMU_TIMER_REALTIME);
1252 vm_clock = qemu_new_clock(QEMU_TIMER_VIRTUAL);
1255 /* save a timer */
1256 void qemu_put_timer(QEMUFile *f, QEMUTimer *ts)
1258 uint64_t expire_time;
1260 if (qemu_timer_pending(ts)) {
1261 expire_time = ts->expire_time;
1262 } else {
1263 expire_time = -1;
1265 qemu_put_be64(f, expire_time);
1268 void qemu_get_timer(QEMUFile *f, QEMUTimer *ts)
1270 uint64_t expire_time;
1272 expire_time = qemu_get_be64(f);
1273 if (expire_time != -1) {
1274 qemu_mod_timer(ts, expire_time);
1275 } else {
1276 qemu_del_timer(ts);
1280 static void timer_save(QEMUFile *f, void *opaque)
1282 if (cpu_ticks_enabled) {
1283 hw_error("cannot save state if virtual timers are running");
1285 qemu_put_be64(f, cpu_ticks_offset);
1286 qemu_put_be64(f, ticks_per_sec);
1287 qemu_put_be64(f, cpu_clock_offset);
1290 static int timer_load(QEMUFile *f, void *opaque, int version_id)
1292 if (version_id != 1 && version_id != 2)
1293 return -EINVAL;
1294 if (cpu_ticks_enabled) {
1295 return -EINVAL;
1297 cpu_ticks_offset=qemu_get_be64(f);
1298 ticks_per_sec=qemu_get_be64(f);
1299 if (version_id == 2) {
1300 cpu_clock_offset=qemu_get_be64(f);
1302 return 0;
1305 static void qemu_event_increment(void);
1307 #ifdef _WIN32
1308 static void CALLBACK host_alarm_handler(UINT uTimerID, UINT uMsg,
1309 DWORD_PTR dwUser, DWORD_PTR dw1,
1310 DWORD_PTR dw2)
1311 #else
1312 static void host_alarm_handler(int host_signum)
1313 #endif
1315 #if 0
1316 #define DISP_FREQ 1000
1318 static int64_t delta_min = INT64_MAX;
1319 static int64_t delta_max, delta_cum, last_clock, delta, ti;
1320 static int count;
1321 ti = qemu_get_clock(vm_clock);
1322 if (last_clock != 0) {
1323 delta = ti - last_clock;
1324 if (delta < delta_min)
1325 delta_min = delta;
1326 if (delta > delta_max)
1327 delta_max = delta;
1328 delta_cum += delta;
1329 if (++count == DISP_FREQ) {
1330 printf("timer: min=%" PRId64 " us max=%" PRId64 " us avg=%" PRId64 " us avg_freq=%0.3f Hz\n",
1331 muldiv64(delta_min, 1000000, ticks_per_sec),
1332 muldiv64(delta_max, 1000000, ticks_per_sec),
1333 muldiv64(delta_cum, 1000000 / DISP_FREQ, ticks_per_sec),
1334 (double)ticks_per_sec / ((double)delta_cum / DISP_FREQ));
1335 count = 0;
1336 delta_min = INT64_MAX;
1337 delta_max = 0;
1338 delta_cum = 0;
1341 last_clock = ti;
1343 #endif
1344 if (alarm_has_dynticks(alarm_timer) ||
1345 (!use_icount &&
1346 qemu_timer_expired(active_timers[QEMU_TIMER_VIRTUAL],
1347 qemu_get_clock(vm_clock))) ||
1348 qemu_timer_expired(active_timers[QEMU_TIMER_REALTIME],
1349 qemu_get_clock(rt_clock))) {
1350 qemu_event_increment();
1351 if (alarm_timer) alarm_timer->flags |= ALARM_FLAG_EXPIRED;
1353 #ifndef CONFIG_IOTHREAD
1354 if (next_cpu) {
1355 /* stop the currently executing cpu because a timer occured */
1356 cpu_exit(next_cpu);
1357 #ifdef CONFIG_KQEMU
1358 if (next_cpu->kqemu_enabled) {
1359 kqemu_cpu_interrupt(next_cpu);
1361 #endif
1363 #endif
1364 timer_alarm_pending = 1;
1365 qemu_notify_event();
1369 static int64_t qemu_next_deadline(void)
1371 int64_t delta;
1373 if (active_timers[QEMU_TIMER_VIRTUAL]) {
1374 delta = active_timers[QEMU_TIMER_VIRTUAL]->expire_time -
1375 qemu_get_clock(vm_clock);
1376 } else {
1377 /* To avoid problems with overflow limit this to 2^32. */
1378 delta = INT32_MAX;
1381 if (delta < 0)
1382 delta = 0;
1384 return delta;
1387 #if defined(__linux__) || defined(_WIN32)
1388 static uint64_t qemu_next_deadline_dyntick(void)
1390 int64_t delta;
1391 int64_t rtdelta;
1393 if (use_icount)
1394 delta = INT32_MAX;
1395 else
1396 delta = (qemu_next_deadline() + 999) / 1000;
1398 if (active_timers[QEMU_TIMER_REALTIME]) {
1399 rtdelta = (active_timers[QEMU_TIMER_REALTIME]->expire_time -
1400 qemu_get_clock(rt_clock))*1000;
1401 if (rtdelta < delta)
1402 delta = rtdelta;
1405 if (delta < MIN_TIMER_REARM_US)
1406 delta = MIN_TIMER_REARM_US;
1408 return delta;
1410 #endif
1412 #ifndef _WIN32
1414 /* Sets a specific flag */
1415 static int fcntl_setfl(int fd, int flag)
1417 int flags;
1419 flags = fcntl(fd, F_GETFL);
1420 if (flags == -1)
1421 return -errno;
1423 if (fcntl(fd, F_SETFL, flags | flag) == -1)
1424 return -errno;
1426 return 0;
1429 #if defined(__linux__)
1431 #define RTC_FREQ 1024
1433 static void enable_sigio_timer(int fd)
1435 struct sigaction act;
1437 /* timer signal */
1438 sigfillset(&act.sa_mask);
1439 act.sa_flags = 0;
1440 act.sa_handler = host_alarm_handler;
1442 sigaction(SIGIO, &act, NULL);
1443 fcntl_setfl(fd, O_ASYNC);
1444 fcntl(fd, F_SETOWN, getpid());
1447 static int hpet_start_timer(struct qemu_alarm_timer *t)
1449 struct hpet_info info;
1450 int r, fd;
1452 fd = open("/dev/hpet", O_RDONLY);
1453 if (fd < 0)
1454 return -1;
1456 /* Set frequency */
1457 r = ioctl(fd, HPET_IRQFREQ, RTC_FREQ);
1458 if (r < 0) {
1459 fprintf(stderr, "Could not configure '/dev/hpet' to have a 1024Hz timer. This is not a fatal\n"
1460 "error, but for better emulation accuracy type:\n"
1461 "'echo 1024 > /proc/sys/dev/hpet/max-user-freq' as root.\n");
1462 goto fail;
1465 /* Check capabilities */
1466 r = ioctl(fd, HPET_INFO, &info);
1467 if (r < 0)
1468 goto fail;
1470 /* Enable periodic mode */
1471 r = ioctl(fd, HPET_EPI, 0);
1472 if (info.hi_flags && (r < 0))
1473 goto fail;
1475 /* Enable interrupt */
1476 r = ioctl(fd, HPET_IE_ON, 0);
1477 if (r < 0)
1478 goto fail;
1480 enable_sigio_timer(fd);
1481 t->priv = (void *)(long)fd;
1483 return 0;
1484 fail:
1485 close(fd);
1486 return -1;
1489 static void hpet_stop_timer(struct qemu_alarm_timer *t)
1491 int fd = (long)t->priv;
1493 close(fd);
1496 static int rtc_start_timer(struct qemu_alarm_timer *t)
1498 int rtc_fd;
1499 unsigned long current_rtc_freq = 0;
1501 TFR(rtc_fd = open("/dev/rtc", O_RDONLY));
1502 if (rtc_fd < 0)
1503 return -1;
1504 ioctl(rtc_fd, RTC_IRQP_READ, &current_rtc_freq);
1505 if (current_rtc_freq != RTC_FREQ &&
1506 ioctl(rtc_fd, RTC_IRQP_SET, RTC_FREQ) < 0) {
1507 fprintf(stderr, "Could not configure '/dev/rtc' to have a 1024 Hz timer. This is not a fatal\n"
1508 "error, but for better emulation accuracy either use a 2.6 host Linux kernel or\n"
1509 "type 'echo 1024 > /proc/sys/dev/rtc/max-user-freq' as root.\n");
1510 goto fail;
1512 if (ioctl(rtc_fd, RTC_PIE_ON, 0) < 0) {
1513 fail:
1514 close(rtc_fd);
1515 return -1;
1518 enable_sigio_timer(rtc_fd);
1520 t->priv = (void *)(long)rtc_fd;
1522 return 0;
1525 static void rtc_stop_timer(struct qemu_alarm_timer *t)
1527 int rtc_fd = (long)t->priv;
1529 close(rtc_fd);
1532 static int dynticks_start_timer(struct qemu_alarm_timer *t)
1534 struct sigevent ev;
1535 timer_t host_timer;
1536 struct sigaction act;
1538 sigfillset(&act.sa_mask);
1539 act.sa_flags = 0;
1540 act.sa_handler = host_alarm_handler;
1542 sigaction(SIGALRM, &act, NULL);
1545 * Initialize ev struct to 0 to avoid valgrind complaining
1546 * about uninitialized data in timer_create call
1548 memset(&ev, 0, sizeof(ev));
1549 ev.sigev_value.sival_int = 0;
1550 ev.sigev_notify = SIGEV_SIGNAL;
1551 ev.sigev_signo = SIGALRM;
1553 if (timer_create(CLOCK_REALTIME, &ev, &host_timer)) {
1554 perror("timer_create");
1556 /* disable dynticks */
1557 fprintf(stderr, "Dynamic Ticks disabled\n");
1559 return -1;
1562 t->priv = (void *)(long)host_timer;
1564 return 0;
1567 static void dynticks_stop_timer(struct qemu_alarm_timer *t)
1569 timer_t host_timer = (timer_t)(long)t->priv;
1571 timer_delete(host_timer);
1574 static void dynticks_rearm_timer(struct qemu_alarm_timer *t)
1576 timer_t host_timer = (timer_t)(long)t->priv;
1577 struct itimerspec timeout;
1578 int64_t nearest_delta_us = INT64_MAX;
1579 int64_t current_us;
1581 if (!active_timers[QEMU_TIMER_REALTIME] &&
1582 !active_timers[QEMU_TIMER_VIRTUAL])
1583 return;
1585 nearest_delta_us = qemu_next_deadline_dyntick();
1587 /* check whether a timer is already running */
1588 if (timer_gettime(host_timer, &timeout)) {
1589 perror("gettime");
1590 fprintf(stderr, "Internal timer error: aborting\n");
1591 exit(1);
1593 current_us = timeout.it_value.tv_sec * 1000000 + timeout.it_value.tv_nsec/1000;
1594 if (current_us && current_us <= nearest_delta_us)
1595 return;
1597 timeout.it_interval.tv_sec = 0;
1598 timeout.it_interval.tv_nsec = 0; /* 0 for one-shot timer */
1599 timeout.it_value.tv_sec = nearest_delta_us / 1000000;
1600 timeout.it_value.tv_nsec = (nearest_delta_us % 1000000) * 1000;
1601 if (timer_settime(host_timer, 0 /* RELATIVE */, &timeout, NULL)) {
1602 perror("settime");
1603 fprintf(stderr, "Internal timer error: aborting\n");
1604 exit(1);
1608 #endif /* defined(__linux__) */
1610 static int unix_start_timer(struct qemu_alarm_timer *t)
1612 struct sigaction act;
1613 struct itimerval itv;
1614 int err;
1616 /* timer signal */
1617 sigfillset(&act.sa_mask);
1618 act.sa_flags = 0;
1619 act.sa_handler = host_alarm_handler;
1621 sigaction(SIGALRM, &act, NULL);
1623 itv.it_interval.tv_sec = 0;
1624 /* for i386 kernel 2.6 to get 1 ms */
1625 itv.it_interval.tv_usec = 999;
1626 itv.it_value.tv_sec = 0;
1627 itv.it_value.tv_usec = 10 * 1000;
1629 err = setitimer(ITIMER_REAL, &itv, NULL);
1630 if (err)
1631 return -1;
1633 return 0;
1636 static void unix_stop_timer(struct qemu_alarm_timer *t)
1638 struct itimerval itv;
1640 memset(&itv, 0, sizeof(itv));
1641 setitimer(ITIMER_REAL, &itv, NULL);
1644 #endif /* !defined(_WIN32) */
1647 #ifdef _WIN32
1649 static int win32_start_timer(struct qemu_alarm_timer *t)
1651 TIMECAPS tc;
1652 struct qemu_alarm_win32 *data = t->priv;
1653 UINT flags;
1655 memset(&tc, 0, sizeof(tc));
1656 timeGetDevCaps(&tc, sizeof(tc));
1658 if (data->period < tc.wPeriodMin)
1659 data->period = tc.wPeriodMin;
1661 timeBeginPeriod(data->period);
1663 flags = TIME_CALLBACK_FUNCTION;
1664 if (alarm_has_dynticks(t))
1665 flags |= TIME_ONESHOT;
1666 else
1667 flags |= TIME_PERIODIC;
1669 data->timerId = timeSetEvent(1, // interval (ms)
1670 data->period, // resolution
1671 host_alarm_handler, // function
1672 (DWORD)t, // parameter
1673 flags);
1675 if (!data->timerId) {
1676 perror("Failed to initialize win32 alarm timer");
1677 timeEndPeriod(data->period);
1678 return -1;
1681 return 0;
1684 static void win32_stop_timer(struct qemu_alarm_timer *t)
1686 struct qemu_alarm_win32 *data = t->priv;
1688 timeKillEvent(data->timerId);
1689 timeEndPeriod(data->period);
1692 static void win32_rearm_timer(struct qemu_alarm_timer *t)
1694 struct qemu_alarm_win32 *data = t->priv;
1695 uint64_t nearest_delta_us;
1697 if (!active_timers[QEMU_TIMER_REALTIME] &&
1698 !active_timers[QEMU_TIMER_VIRTUAL])
1699 return;
1701 nearest_delta_us = qemu_next_deadline_dyntick();
1702 nearest_delta_us /= 1000;
1704 timeKillEvent(data->timerId);
1706 data->timerId = timeSetEvent(1,
1707 data->period,
1708 host_alarm_handler,
1709 (DWORD)t,
1710 TIME_ONESHOT | TIME_PERIODIC);
1712 if (!data->timerId) {
1713 perror("Failed to re-arm win32 alarm timer");
1715 timeEndPeriod(data->period);
1716 exit(1);
1720 #endif /* _WIN32 */
1722 static int init_timer_alarm(void)
1724 struct qemu_alarm_timer *t = NULL;
1725 int i, err = -1;
1727 for (i = 0; alarm_timers[i].name; i++) {
1728 t = &alarm_timers[i];
1730 err = t->start(t);
1731 if (!err)
1732 break;
1735 if (err) {
1736 err = -ENOENT;
1737 goto fail;
1740 alarm_timer = t;
1742 return 0;
1744 fail:
1745 return err;
1748 static void quit_timers(void)
1750 alarm_timer->stop(alarm_timer);
1751 alarm_timer = NULL;
1754 /***********************************************************/
1755 /* host time/date access */
1756 void qemu_get_timedate(struct tm *tm, int offset)
1758 time_t ti;
1759 struct tm *ret;
1761 time(&ti);
1762 ti += offset;
1763 if (rtc_date_offset == -1) {
1764 if (rtc_utc)
1765 ret = gmtime(&ti);
1766 else
1767 ret = localtime(&ti);
1768 } else {
1769 ti -= rtc_date_offset;
1770 ret = gmtime(&ti);
1773 memcpy(tm, ret, sizeof(struct tm));
1776 int qemu_timedate_diff(struct tm *tm)
1778 time_t seconds;
1780 if (rtc_date_offset == -1)
1781 if (rtc_utc)
1782 seconds = mktimegm(tm);
1783 else
1784 seconds = mktime(tm);
1785 else
1786 seconds = mktimegm(tm) + rtc_date_offset;
1788 return seconds - time(NULL);
1791 #ifdef _WIN32
1792 static void socket_cleanup(void)
1794 WSACleanup();
1797 static int socket_init(void)
1799 WSADATA Data;
1800 int ret, err;
1802 ret = WSAStartup(MAKEWORD(2,2), &Data);
1803 if (ret != 0) {
1804 err = WSAGetLastError();
1805 fprintf(stderr, "WSAStartup: %d\n", err);
1806 return -1;
1808 atexit(socket_cleanup);
1809 return 0;
1811 #endif
1813 int get_param_value(char *buf, int buf_size,
1814 const char *tag, const char *str)
1816 const char *p;
1817 char option[128];
1819 p = str;
1820 for(;;) {
1821 p = get_opt_name(option, sizeof(option), p, '=');
1822 if (*p != '=')
1823 break;
1824 p++;
1825 if (!strcmp(tag, option)) {
1826 (void)get_opt_value(buf, buf_size, p);
1827 return strlen(buf);
1828 } else {
1829 p = get_opt_value(NULL, 0, p);
1831 if (*p != ',')
1832 break;
1833 p++;
1835 return 0;
1838 int check_params(const char * const *params, const char *str)
1840 int name_buf_size = 1;
1841 const char *p;
1842 char *name_buf;
1843 int i, len;
1844 int ret = 0;
1846 for (i = 0; params[i] != NULL; i++) {
1847 len = strlen(params[i]) + 1;
1848 if (len > name_buf_size) {
1849 name_buf_size = len;
1852 name_buf = qemu_malloc(name_buf_size);
1854 p = str;
1855 while (*p != '\0') {
1856 p = get_opt_name(name_buf, name_buf_size, p, '=');
1857 if (*p != '=') {
1858 ret = -1;
1859 break;
1861 p++;
1862 for(i = 0; params[i] != NULL; i++)
1863 if (!strcmp(params[i], name_buf))
1864 break;
1865 if (params[i] == NULL) {
1866 ret = -1;
1867 break;
1869 p = get_opt_value(NULL, 0, p);
1870 if (*p != ',')
1871 break;
1872 p++;
1875 qemu_free(name_buf);
1876 return ret;
1879 /***********************************************************/
1880 /* Bluetooth support */
1881 static int nb_hcis;
1882 static int cur_hci;
1883 static struct HCIInfo *hci_table[MAX_NICS];
1885 static struct bt_vlan_s {
1886 struct bt_scatternet_s net;
1887 int id;
1888 struct bt_vlan_s *next;
1889 } *first_bt_vlan;
1891 /* find or alloc a new bluetooth "VLAN" */
1892 static struct bt_scatternet_s *qemu_find_bt_vlan(int id)
1894 struct bt_vlan_s **pvlan, *vlan;
1895 for (vlan = first_bt_vlan; vlan != NULL; vlan = vlan->next) {
1896 if (vlan->id == id)
1897 return &vlan->net;
1899 vlan = qemu_mallocz(sizeof(struct bt_vlan_s));
1900 vlan->id = id;
1901 pvlan = &first_bt_vlan;
1902 while (*pvlan != NULL)
1903 pvlan = &(*pvlan)->next;
1904 *pvlan = vlan;
1905 return &vlan->net;
1908 static void null_hci_send(struct HCIInfo *hci, const uint8_t *data, int len)
1912 static int null_hci_addr_set(struct HCIInfo *hci, const uint8_t *bd_addr)
1914 return -ENOTSUP;
1917 static struct HCIInfo null_hci = {
1918 .cmd_send = null_hci_send,
1919 .sco_send = null_hci_send,
1920 .acl_send = null_hci_send,
1921 .bdaddr_set = null_hci_addr_set,
1924 struct HCIInfo *qemu_next_hci(void)
1926 if (cur_hci == nb_hcis)
1927 return &null_hci;
1929 return hci_table[cur_hci++];
1932 static struct HCIInfo *hci_init(const char *str)
1934 char *endp;
1935 struct bt_scatternet_s *vlan = 0;
1937 if (!strcmp(str, "null"))
1938 /* null */
1939 return &null_hci;
1940 else if (!strncmp(str, "host", 4) && (str[4] == '\0' || str[4] == ':'))
1941 /* host[:hciN] */
1942 return bt_host_hci(str[4] ? str + 5 : "hci0");
1943 else if (!strncmp(str, "hci", 3)) {
1944 /* hci[,vlan=n] */
1945 if (str[3]) {
1946 if (!strncmp(str + 3, ",vlan=", 6)) {
1947 vlan = qemu_find_bt_vlan(strtol(str + 9, &endp, 0));
1948 if (*endp)
1949 vlan = 0;
1951 } else
1952 vlan = qemu_find_bt_vlan(0);
1953 if (vlan)
1954 return bt_new_hci(vlan);
1957 fprintf(stderr, "qemu: Unknown bluetooth HCI `%s'.\n", str);
1959 return 0;
1962 static int bt_hci_parse(const char *str)
1964 struct HCIInfo *hci;
1965 bdaddr_t bdaddr;
1967 if (nb_hcis >= MAX_NICS) {
1968 fprintf(stderr, "qemu: Too many bluetooth HCIs (max %i).\n", MAX_NICS);
1969 return -1;
1972 hci = hci_init(str);
1973 if (!hci)
1974 return -1;
1976 bdaddr.b[0] = 0x52;
1977 bdaddr.b[1] = 0x54;
1978 bdaddr.b[2] = 0x00;
1979 bdaddr.b[3] = 0x12;
1980 bdaddr.b[4] = 0x34;
1981 bdaddr.b[5] = 0x56 + nb_hcis;
1982 hci->bdaddr_set(hci, bdaddr.b);
1984 hci_table[nb_hcis++] = hci;
1986 return 0;
1989 static void bt_vhci_add(int vlan_id)
1991 struct bt_scatternet_s *vlan = qemu_find_bt_vlan(vlan_id);
1993 if (!vlan->slave)
1994 fprintf(stderr, "qemu: warning: adding a VHCI to "
1995 "an empty scatternet %i\n", vlan_id);
1997 bt_vhci_init(bt_new_hci(vlan));
2000 static struct bt_device_s *bt_device_add(const char *opt)
2002 struct bt_scatternet_s *vlan;
2003 int vlan_id = 0;
2004 char *endp = strstr(opt, ",vlan=");
2005 int len = (endp ? endp - opt : strlen(opt)) + 1;
2006 char devname[10];
2008 pstrcpy(devname, MIN(sizeof(devname), len), opt);
2010 if (endp) {
2011 vlan_id = strtol(endp + 6, &endp, 0);
2012 if (*endp) {
2013 fprintf(stderr, "qemu: unrecognised bluetooth vlan Id\n");
2014 return 0;
2018 vlan = qemu_find_bt_vlan(vlan_id);
2020 if (!vlan->slave)
2021 fprintf(stderr, "qemu: warning: adding a slave device to "
2022 "an empty scatternet %i\n", vlan_id);
2024 if (!strcmp(devname, "keyboard"))
2025 return bt_keyboard_init(vlan);
2027 fprintf(stderr, "qemu: unsupported bluetooth device `%s'\n", devname);
2028 return 0;
2031 static int bt_parse(const char *opt)
2033 const char *endp, *p;
2034 int vlan;
2036 if (strstart(opt, "hci", &endp)) {
2037 if (!*endp || *endp == ',') {
2038 if (*endp)
2039 if (!strstart(endp, ",vlan=", 0))
2040 opt = endp + 1;
2042 return bt_hci_parse(opt);
2044 } else if (strstart(opt, "vhci", &endp)) {
2045 if (!*endp || *endp == ',') {
2046 if (*endp) {
2047 if (strstart(endp, ",vlan=", &p)) {
2048 vlan = strtol(p, (char **) &endp, 0);
2049 if (*endp) {
2050 fprintf(stderr, "qemu: bad scatternet '%s'\n", p);
2051 return 1;
2053 } else {
2054 fprintf(stderr, "qemu: bad parameter '%s'\n", endp + 1);
2055 return 1;
2057 } else
2058 vlan = 0;
2060 bt_vhci_add(vlan);
2061 return 0;
2063 } else if (strstart(opt, "device:", &endp))
2064 return !bt_device_add(endp);
2066 fprintf(stderr, "qemu: bad bluetooth parameter '%s'\n", opt);
2067 return 1;
2070 /***********************************************************/
2071 /* QEMU Block devices */
2073 #define HD_ALIAS "index=%d,media=disk"
2074 #define CDROM_ALIAS "index=2,media=cdrom"
2075 #define FD_ALIAS "index=%d,if=floppy"
2076 #define PFLASH_ALIAS "if=pflash"
2077 #define MTD_ALIAS "if=mtd"
2078 #define SD_ALIAS "index=0,if=sd"
2080 static int drive_opt_get_free_idx(void)
2082 int index;
2084 for (index = 0; index < MAX_DRIVES; index++)
2085 if (!drives_opt[index].used) {
2086 drives_opt[index].used = 1;
2087 return index;
2090 return -1;
2093 static int drive_get_free_idx(void)
2095 int index;
2097 for (index = 0; index < MAX_DRIVES; index++)
2098 if (!drives_table[index].used) {
2099 drives_table[index].used = 1;
2100 return index;
2103 return -1;
2106 int drive_add(const char *file, const char *fmt, ...)
2108 va_list ap;
2109 int index = drive_opt_get_free_idx();
2111 if (nb_drives_opt >= MAX_DRIVES || index == -1) {
2112 fprintf(stderr, "qemu: too many drives\n");
2113 return -1;
2116 drives_opt[index].file = file;
2117 va_start(ap, fmt);
2118 vsnprintf(drives_opt[index].opt,
2119 sizeof(drives_opt[0].opt), fmt, ap);
2120 va_end(ap);
2122 nb_drives_opt++;
2123 return index;
2126 void drive_remove(int index)
2128 drives_opt[index].used = 0;
2129 nb_drives_opt--;
2132 int drive_get_index(BlockInterfaceType type, int bus, int unit)
2134 int index;
2136 /* seek interface, bus and unit */
2138 for (index = 0; index < MAX_DRIVES; index++)
2139 if (drives_table[index].type == type &&
2140 drives_table[index].bus == bus &&
2141 drives_table[index].unit == unit &&
2142 drives_table[index].used)
2143 return index;
2145 return -1;
2148 int drive_get_max_bus(BlockInterfaceType type)
2150 int max_bus;
2151 int index;
2153 max_bus = -1;
2154 for (index = 0; index < nb_drives; index++) {
2155 if(drives_table[index].type == type &&
2156 drives_table[index].bus > max_bus)
2157 max_bus = drives_table[index].bus;
2159 return max_bus;
2162 const char *drive_get_serial(BlockDriverState *bdrv)
2164 int index;
2166 for (index = 0; index < nb_drives; index++)
2167 if (drives_table[index].bdrv == bdrv)
2168 return drives_table[index].serial;
2170 return "\0";
2173 BlockInterfaceErrorAction drive_get_onerror(BlockDriverState *bdrv)
2175 int index;
2177 for (index = 0; index < nb_drives; index++)
2178 if (drives_table[index].bdrv == bdrv)
2179 return drives_table[index].onerror;
2181 return BLOCK_ERR_STOP_ENOSPC;
2184 static void bdrv_format_print(void *opaque, const char *name)
2186 fprintf(stderr, " %s", name);
2189 void drive_uninit(BlockDriverState *bdrv)
2191 int i;
2193 for (i = 0; i < MAX_DRIVES; i++)
2194 if (drives_table[i].bdrv == bdrv) {
2195 drives_table[i].bdrv = NULL;
2196 drives_table[i].used = 0;
2197 drive_remove(drives_table[i].drive_opt_idx);
2198 nb_drives--;
2199 break;
2203 int drive_init(struct drive_opt *arg, int snapshot, void *opaque)
2205 char buf[128];
2206 char file[1024];
2207 char devname[128];
2208 char serial[21];
2209 const char *mediastr = "";
2210 BlockInterfaceType type;
2211 enum { MEDIA_DISK, MEDIA_CDROM } media;
2212 int bus_id, unit_id;
2213 int cyls, heads, secs, translation;
2214 BlockDriverState *bdrv;
2215 BlockDriver *drv = NULL;
2216 QEMUMachine *machine = opaque;
2217 int max_devs;
2218 int index;
2219 int cache;
2220 int bdrv_flags, onerror;
2221 int drives_table_idx;
2222 char *str = arg->opt;
2223 static const char * const params[] = { "bus", "unit", "if", "index",
2224 "cyls", "heads", "secs", "trans",
2225 "media", "snapshot", "file",
2226 "cache", "format", "serial", "werror",
2227 NULL };
2229 if (check_params(params, str) < 0) {
2230 fprintf(stderr, "qemu: unknown parameter in '%s'\n", str);
2231 return -1;
2234 file[0] = 0;
2235 cyls = heads = secs = 0;
2236 bus_id = 0;
2237 unit_id = -1;
2238 translation = BIOS_ATA_TRANSLATION_AUTO;
2239 index = -1;
2240 cache = 3;
2242 if (machine->use_scsi) {
2243 type = IF_SCSI;
2244 max_devs = MAX_SCSI_DEVS;
2245 pstrcpy(devname, sizeof(devname), "scsi");
2246 } else {
2247 type = IF_IDE;
2248 max_devs = MAX_IDE_DEVS;
2249 pstrcpy(devname, sizeof(devname), "ide");
2251 media = MEDIA_DISK;
2253 /* extract parameters */
2255 if (get_param_value(buf, sizeof(buf), "bus", str)) {
2256 bus_id = strtol(buf, NULL, 0);
2257 if (bus_id < 0) {
2258 fprintf(stderr, "qemu: '%s' invalid bus id\n", str);
2259 return -1;
2263 if (get_param_value(buf, sizeof(buf), "unit", str)) {
2264 unit_id = strtol(buf, NULL, 0);
2265 if (unit_id < 0) {
2266 fprintf(stderr, "qemu: '%s' invalid unit id\n", str);
2267 return -1;
2271 if (get_param_value(buf, sizeof(buf), "if", str)) {
2272 pstrcpy(devname, sizeof(devname), buf);
2273 if (!strcmp(buf, "ide")) {
2274 type = IF_IDE;
2275 max_devs = MAX_IDE_DEVS;
2276 } else if (!strcmp(buf, "scsi")) {
2277 type = IF_SCSI;
2278 max_devs = MAX_SCSI_DEVS;
2279 } else if (!strcmp(buf, "floppy")) {
2280 type = IF_FLOPPY;
2281 max_devs = 0;
2282 } else if (!strcmp(buf, "pflash")) {
2283 type = IF_PFLASH;
2284 max_devs = 0;
2285 } else if (!strcmp(buf, "mtd")) {
2286 type = IF_MTD;
2287 max_devs = 0;
2288 } else if (!strcmp(buf, "sd")) {
2289 type = IF_SD;
2290 max_devs = 0;
2291 } else if (!strcmp(buf, "virtio")) {
2292 type = IF_VIRTIO;
2293 max_devs = 0;
2294 } else if (!strcmp(buf, "xen")) {
2295 type = IF_XEN;
2296 max_devs = 0;
2297 } else {
2298 fprintf(stderr, "qemu: '%s' unsupported bus type '%s'\n", str, buf);
2299 return -1;
2303 if (get_param_value(buf, sizeof(buf), "index", str)) {
2304 index = strtol(buf, NULL, 0);
2305 if (index < 0) {
2306 fprintf(stderr, "qemu: '%s' invalid index\n", str);
2307 return -1;
2311 if (get_param_value(buf, sizeof(buf), "cyls", str)) {
2312 cyls = strtol(buf, NULL, 0);
2315 if (get_param_value(buf, sizeof(buf), "heads", str)) {
2316 heads = strtol(buf, NULL, 0);
2319 if (get_param_value(buf, sizeof(buf), "secs", str)) {
2320 secs = strtol(buf, NULL, 0);
2323 if (cyls || heads || secs) {
2324 if (cyls < 1 || cyls > 16383) {
2325 fprintf(stderr, "qemu: '%s' invalid physical cyls number\n", str);
2326 return -1;
2328 if (heads < 1 || heads > 16) {
2329 fprintf(stderr, "qemu: '%s' invalid physical heads number\n", str);
2330 return -1;
2332 if (secs < 1 || secs > 63) {
2333 fprintf(stderr, "qemu: '%s' invalid physical secs number\n", str);
2334 return -1;
2338 if (get_param_value(buf, sizeof(buf), "trans", str)) {
2339 if (!cyls) {
2340 fprintf(stderr,
2341 "qemu: '%s' trans must be used with cyls,heads and secs\n",
2342 str);
2343 return -1;
2345 if (!strcmp(buf, "none"))
2346 translation = BIOS_ATA_TRANSLATION_NONE;
2347 else if (!strcmp(buf, "lba"))
2348 translation = BIOS_ATA_TRANSLATION_LBA;
2349 else if (!strcmp(buf, "auto"))
2350 translation = BIOS_ATA_TRANSLATION_AUTO;
2351 else {
2352 fprintf(stderr, "qemu: '%s' invalid translation type\n", str);
2353 return -1;
2357 if (get_param_value(buf, sizeof(buf), "media", str)) {
2358 if (!strcmp(buf, "disk")) {
2359 media = MEDIA_DISK;
2360 } else if (!strcmp(buf, "cdrom")) {
2361 if (cyls || secs || heads) {
2362 fprintf(stderr,
2363 "qemu: '%s' invalid physical CHS format\n", str);
2364 return -1;
2366 media = MEDIA_CDROM;
2367 } else {
2368 fprintf(stderr, "qemu: '%s' invalid media\n", str);
2369 return -1;
2373 if (get_param_value(buf, sizeof(buf), "snapshot", str)) {
2374 if (!strcmp(buf, "on"))
2375 snapshot = 1;
2376 else if (!strcmp(buf, "off"))
2377 snapshot = 0;
2378 else {
2379 fprintf(stderr, "qemu: '%s' invalid snapshot option\n", str);
2380 return -1;
2384 if (get_param_value(buf, sizeof(buf), "cache", str)) {
2385 if (!strcmp(buf, "off") || !strcmp(buf, "none"))
2386 cache = 0;
2387 else if (!strcmp(buf, "writethrough"))
2388 cache = 1;
2389 else if (!strcmp(buf, "writeback"))
2390 cache = 2;
2391 else {
2392 fprintf(stderr, "qemu: invalid cache option\n");
2393 return -1;
2397 if (get_param_value(buf, sizeof(buf), "format", str)) {
2398 if (strcmp(buf, "?") == 0) {
2399 fprintf(stderr, "qemu: Supported formats:");
2400 bdrv_iterate_format(bdrv_format_print, NULL);
2401 fprintf(stderr, "\n");
2402 return -1;
2404 drv = bdrv_find_format(buf);
2405 if (!drv) {
2406 fprintf(stderr, "qemu: '%s' invalid format\n", buf);
2407 return -1;
2411 if (arg->file == NULL)
2412 get_param_value(file, sizeof(file), "file", str);
2413 else
2414 pstrcpy(file, sizeof(file), arg->file);
2416 if (!get_param_value(serial, sizeof(serial), "serial", str))
2417 memset(serial, 0, sizeof(serial));
2419 onerror = BLOCK_ERR_STOP_ENOSPC;
2420 if (get_param_value(buf, sizeof(serial), "werror", str)) {
2421 if (type != IF_IDE && type != IF_SCSI && type != IF_VIRTIO) {
2422 fprintf(stderr, "werror is no supported by this format\n");
2423 return -1;
2425 if (!strcmp(buf, "ignore"))
2426 onerror = BLOCK_ERR_IGNORE;
2427 else if (!strcmp(buf, "enospc"))
2428 onerror = BLOCK_ERR_STOP_ENOSPC;
2429 else if (!strcmp(buf, "stop"))
2430 onerror = BLOCK_ERR_STOP_ANY;
2431 else if (!strcmp(buf, "report"))
2432 onerror = BLOCK_ERR_REPORT;
2433 else {
2434 fprintf(stderr, "qemu: '%s' invalid write error action\n", buf);
2435 return -1;
2439 /* compute bus and unit according index */
2441 if (index != -1) {
2442 if (bus_id != 0 || unit_id != -1) {
2443 fprintf(stderr,
2444 "qemu: '%s' index cannot be used with bus and unit\n", str);
2445 return -1;
2447 if (max_devs == 0)
2449 unit_id = index;
2450 bus_id = 0;
2451 } else {
2452 unit_id = index % max_devs;
2453 bus_id = index / max_devs;
2457 /* if user doesn't specify a unit_id,
2458 * try to find the first free
2461 if (unit_id == -1) {
2462 unit_id = 0;
2463 while (drive_get_index(type, bus_id, unit_id) != -1) {
2464 unit_id++;
2465 if (max_devs && unit_id >= max_devs) {
2466 unit_id -= max_devs;
2467 bus_id++;
2472 /* check unit id */
2474 if (max_devs && unit_id >= max_devs) {
2475 fprintf(stderr, "qemu: '%s' unit %d too big (max is %d)\n",
2476 str, unit_id, max_devs - 1);
2477 return -1;
2481 * ignore multiple definitions
2484 if (drive_get_index(type, bus_id, unit_id) != -1)
2485 return -2;
2487 /* init */
2489 if (type == IF_IDE || type == IF_SCSI)
2490 mediastr = (media == MEDIA_CDROM) ? "-cd" : "-hd";
2491 if (max_devs)
2492 snprintf(buf, sizeof(buf), "%s%i%s%i",
2493 devname, bus_id, mediastr, unit_id);
2494 else
2495 snprintf(buf, sizeof(buf), "%s%s%i",
2496 devname, mediastr, unit_id);
2497 bdrv = bdrv_new(buf);
2498 drives_table_idx = drive_get_free_idx();
2499 drives_table[drives_table_idx].bdrv = bdrv;
2500 drives_table[drives_table_idx].type = type;
2501 drives_table[drives_table_idx].bus = bus_id;
2502 drives_table[drives_table_idx].unit = unit_id;
2503 drives_table[drives_table_idx].onerror = onerror;
2504 drives_table[drives_table_idx].drive_opt_idx = arg - drives_opt;
2505 strncpy(drives_table[drives_table_idx].serial, serial, sizeof(serial));
2506 nb_drives++;
2508 switch(type) {
2509 case IF_IDE:
2510 case IF_SCSI:
2511 case IF_XEN:
2512 switch(media) {
2513 case MEDIA_DISK:
2514 if (cyls != 0) {
2515 bdrv_set_geometry_hint(bdrv, cyls, heads, secs);
2516 bdrv_set_translation_hint(bdrv, translation);
2518 break;
2519 case MEDIA_CDROM:
2520 bdrv_set_type_hint(bdrv, BDRV_TYPE_CDROM);
2521 break;
2523 break;
2524 case IF_SD:
2525 /* FIXME: This isn't really a floppy, but it's a reasonable
2526 approximation. */
2527 case IF_FLOPPY:
2528 bdrv_set_type_hint(bdrv, BDRV_TYPE_FLOPPY);
2529 break;
2530 case IF_PFLASH:
2531 case IF_MTD:
2532 case IF_VIRTIO:
2533 break;
2534 case IF_COUNT:
2535 abort();
2537 if (!file[0])
2538 return -2;
2539 bdrv_flags = 0;
2540 if (snapshot) {
2541 bdrv_flags |= BDRV_O_SNAPSHOT;
2542 cache = 2; /* always use write-back with snapshot */
2544 if (cache == 0) /* no caching */
2545 bdrv_flags |= BDRV_O_NOCACHE;
2546 else if (cache == 2) /* write-back */
2547 bdrv_flags |= BDRV_O_CACHE_WB;
2548 else if (cache == 3) /* not specified */
2549 bdrv_flags |= BDRV_O_CACHE_DEF;
2550 if (bdrv_open2(bdrv, file, bdrv_flags, drv) < 0) {
2551 fprintf(stderr, "qemu: could not open disk image %s\n",
2552 file);
2553 return -1;
2555 if (bdrv_key_required(bdrv))
2556 autostart = 0;
2557 return drives_table_idx;
2560 static void numa_add(const char *optarg)
2562 char option[128];
2563 char *endptr;
2564 unsigned long long value, endvalue;
2565 int nodenr;
2567 optarg = get_opt_name(option, 128, optarg, ',') + 1;
2568 if (!strcmp(option, "node")) {
2569 if (get_param_value(option, 128, "nodeid", optarg) == 0) {
2570 nodenr = nb_numa_nodes;
2571 } else {
2572 nodenr = strtoull(option, NULL, 10);
2575 if (get_param_value(option, 128, "mem", optarg) == 0) {
2576 node_mem[nodenr] = 0;
2577 } else {
2578 value = strtoull(option, &endptr, 0);
2579 switch (*endptr) {
2580 case 0: case 'M': case 'm':
2581 value <<= 20;
2582 break;
2583 case 'G': case 'g':
2584 value <<= 30;
2585 break;
2587 node_mem[nodenr] = value;
2589 if (get_param_value(option, 128, "cpus", optarg) == 0) {
2590 node_cpumask[nodenr] = 0;
2591 } else {
2592 value = strtoull(option, &endptr, 10);
2593 if (value >= 64) {
2594 value = 63;
2595 fprintf(stderr, "only 64 CPUs in NUMA mode supported.\n");
2596 } else {
2597 if (*endptr == '-') {
2598 endvalue = strtoull(endptr+1, &endptr, 10);
2599 if (endvalue >= 63) {
2600 endvalue = 62;
2601 fprintf(stderr,
2602 "only 63 CPUs in NUMA mode supported.\n");
2604 value = (1 << (endvalue + 1)) - (1 << value);
2605 } else {
2606 value = 1 << value;
2609 node_cpumask[nodenr] = value;
2611 nb_numa_nodes++;
2613 return;
2616 /***********************************************************/
2617 /* USB devices */
2619 static USBPort *used_usb_ports;
2620 static USBPort *free_usb_ports;
2622 /* ??? Maybe change this to register a hub to keep track of the topology. */
2623 void qemu_register_usb_port(USBPort *port, void *opaque, int index,
2624 usb_attachfn attach)
2626 port->opaque = opaque;
2627 port->index = index;
2628 port->attach = attach;
2629 port->next = free_usb_ports;
2630 free_usb_ports = port;
2633 int usb_device_add_dev(USBDevice *dev)
2635 USBPort *port;
2637 /* Find a USB port to add the device to. */
2638 port = free_usb_ports;
2639 if (!port->next) {
2640 USBDevice *hub;
2642 /* Create a new hub and chain it on. */
2643 free_usb_ports = NULL;
2644 port->next = used_usb_ports;
2645 used_usb_ports = port;
2647 hub = usb_hub_init(VM_USB_HUB_SIZE);
2648 usb_attach(port, hub);
2649 port = free_usb_ports;
2652 free_usb_ports = port->next;
2653 port->next = used_usb_ports;
2654 used_usb_ports = port;
2655 usb_attach(port, dev);
2656 return 0;
2659 static void usb_msd_password_cb(void *opaque, int err)
2661 USBDevice *dev = opaque;
2663 if (!err)
2664 usb_device_add_dev(dev);
2665 else
2666 dev->handle_destroy(dev);
2669 static int usb_device_add(const char *devname, int is_hotplug)
2671 const char *p;
2672 USBDevice *dev;
2674 if (!free_usb_ports)
2675 return -1;
2677 if (strstart(devname, "host:", &p)) {
2678 dev = usb_host_device_open(p);
2679 } else if (!strcmp(devname, "mouse")) {
2680 dev = usb_mouse_init();
2681 } else if (!strcmp(devname, "tablet")) {
2682 dev = usb_tablet_init();
2683 } else if (!strcmp(devname, "keyboard")) {
2684 dev = usb_keyboard_init();
2685 } else if (strstart(devname, "disk:", &p)) {
2686 BlockDriverState *bs;
2688 dev = usb_msd_init(p);
2689 if (!dev)
2690 return -1;
2691 bs = usb_msd_get_bdrv(dev);
2692 if (bdrv_key_required(bs)) {
2693 autostart = 0;
2694 if (is_hotplug) {
2695 monitor_read_bdrv_key_start(cur_mon, bs, usb_msd_password_cb,
2696 dev);
2697 return 0;
2700 } else if (!strcmp(devname, "wacom-tablet")) {
2701 dev = usb_wacom_init();
2702 } else if (strstart(devname, "serial:", &p)) {
2703 dev = usb_serial_init(p);
2704 #ifdef CONFIG_BRLAPI
2705 } else if (!strcmp(devname, "braille")) {
2706 dev = usb_baum_init();
2707 #endif
2708 } else if (strstart(devname, "net:", &p)) {
2709 int nic = nb_nics;
2711 if (net_client_init("nic", p) < 0)
2712 return -1;
2713 nd_table[nic].model = "usb";
2714 dev = usb_net_init(&nd_table[nic]);
2715 } else if (!strcmp(devname, "bt") || strstart(devname, "bt:", &p)) {
2716 dev = usb_bt_init(devname[2] ? hci_init(p) :
2717 bt_new_hci(qemu_find_bt_vlan(0)));
2718 } else {
2719 return -1;
2721 if (!dev)
2722 return -1;
2724 return usb_device_add_dev(dev);
2727 int usb_device_del_addr(int bus_num, int addr)
2729 USBPort *port;
2730 USBPort **lastp;
2731 USBDevice *dev;
2733 if (!used_usb_ports)
2734 return -1;
2736 if (bus_num != 0)
2737 return -1;
2739 lastp = &used_usb_ports;
2740 port = used_usb_ports;
2741 while (port && port->dev->addr != addr) {
2742 lastp = &port->next;
2743 port = port->next;
2746 if (!port)
2747 return -1;
2749 dev = port->dev;
2750 *lastp = port->next;
2751 usb_attach(port, NULL);
2752 dev->handle_destroy(dev);
2753 port->next = free_usb_ports;
2754 free_usb_ports = port;
2755 return 0;
2758 static int usb_device_del(const char *devname)
2760 int bus_num, addr;
2761 const char *p;
2763 if (strstart(devname, "host:", &p))
2764 return usb_host_device_close(p);
2766 if (!used_usb_ports)
2767 return -1;
2769 p = strchr(devname, '.');
2770 if (!p)
2771 return -1;
2772 bus_num = strtoul(devname, NULL, 0);
2773 addr = strtoul(p + 1, NULL, 0);
2775 return usb_device_del_addr(bus_num, addr);
2778 void do_usb_add(Monitor *mon, const char *devname)
2780 usb_device_add(devname, 1);
2783 void do_usb_del(Monitor *mon, const char *devname)
2785 usb_device_del(devname);
2788 void usb_info(Monitor *mon)
2790 USBDevice *dev;
2791 USBPort *port;
2792 const char *speed_str;
2794 if (!usb_enabled) {
2795 monitor_printf(mon, "USB support not enabled\n");
2796 return;
2799 for (port = used_usb_ports; port; port = port->next) {
2800 dev = port->dev;
2801 if (!dev)
2802 continue;
2803 switch(dev->speed) {
2804 case USB_SPEED_LOW:
2805 speed_str = "1.5";
2806 break;
2807 case USB_SPEED_FULL:
2808 speed_str = "12";
2809 break;
2810 case USB_SPEED_HIGH:
2811 speed_str = "480";
2812 break;
2813 default:
2814 speed_str = "?";
2815 break;
2817 monitor_printf(mon, " Device %d.%d, Speed %s Mb/s, Product %s\n",
2818 0, dev->addr, speed_str, dev->devname);
2822 /***********************************************************/
2823 /* PCMCIA/Cardbus */
2825 static struct pcmcia_socket_entry_s {
2826 PCMCIASocket *socket;
2827 struct pcmcia_socket_entry_s *next;
2828 } *pcmcia_sockets = 0;
2830 void pcmcia_socket_register(PCMCIASocket *socket)
2832 struct pcmcia_socket_entry_s *entry;
2834 entry = qemu_malloc(sizeof(struct pcmcia_socket_entry_s));
2835 entry->socket = socket;
2836 entry->next = pcmcia_sockets;
2837 pcmcia_sockets = entry;
2840 void pcmcia_socket_unregister(PCMCIASocket *socket)
2842 struct pcmcia_socket_entry_s *entry, **ptr;
2844 ptr = &pcmcia_sockets;
2845 for (entry = *ptr; entry; ptr = &entry->next, entry = *ptr)
2846 if (entry->socket == socket) {
2847 *ptr = entry->next;
2848 qemu_free(entry);
2852 void pcmcia_info(Monitor *mon)
2854 struct pcmcia_socket_entry_s *iter;
2856 if (!pcmcia_sockets)
2857 monitor_printf(mon, "No PCMCIA sockets\n");
2859 for (iter = pcmcia_sockets; iter; iter = iter->next)
2860 monitor_printf(mon, "%s: %s\n", iter->socket->slot_string,
2861 iter->socket->attached ? iter->socket->card_string :
2862 "Empty");
2865 /***********************************************************/
2866 /* register display */
2868 struct DisplayAllocator default_allocator = {
2869 defaultallocator_create_displaysurface,
2870 defaultallocator_resize_displaysurface,
2871 defaultallocator_free_displaysurface
2874 void register_displaystate(DisplayState *ds)
2876 DisplayState **s;
2877 s = &display_state;
2878 while (*s != NULL)
2879 s = &(*s)->next;
2880 ds->next = NULL;
2881 *s = ds;
2884 DisplayState *get_displaystate(void)
2886 return display_state;
2889 DisplayAllocator *register_displayallocator(DisplayState *ds, DisplayAllocator *da)
2891 if(ds->allocator == &default_allocator) ds->allocator = da;
2892 return ds->allocator;
2895 /* dumb display */
2897 static void dumb_display_init(void)
2899 DisplayState *ds = qemu_mallocz(sizeof(DisplayState));
2900 ds->allocator = &default_allocator;
2901 ds->surface = qemu_create_displaysurface(ds, 640, 480);
2902 register_displaystate(ds);
2905 /***********************************************************/
2906 /* I/O handling */
2908 typedef struct IOHandlerRecord {
2909 int fd;
2910 IOCanRWHandler *fd_read_poll;
2911 IOHandler *fd_read;
2912 IOHandler *fd_write;
2913 int deleted;
2914 void *opaque;
2915 /* temporary data */
2916 struct pollfd *ufd;
2917 struct IOHandlerRecord *next;
2918 } IOHandlerRecord;
2920 static IOHandlerRecord *first_io_handler;
2922 /* XXX: fd_read_poll should be suppressed, but an API change is
2923 necessary in the character devices to suppress fd_can_read(). */
2924 int qemu_set_fd_handler2(int fd,
2925 IOCanRWHandler *fd_read_poll,
2926 IOHandler *fd_read,
2927 IOHandler *fd_write,
2928 void *opaque)
2930 IOHandlerRecord **pioh, *ioh;
2932 if (!fd_read && !fd_write) {
2933 pioh = &first_io_handler;
2934 for(;;) {
2935 ioh = *pioh;
2936 if (ioh == NULL)
2937 break;
2938 if (ioh->fd == fd) {
2939 ioh->deleted = 1;
2940 break;
2942 pioh = &ioh->next;
2944 } else {
2945 for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
2946 if (ioh->fd == fd)
2947 goto found;
2949 ioh = qemu_mallocz(sizeof(IOHandlerRecord));
2950 ioh->next = first_io_handler;
2951 first_io_handler = ioh;
2952 found:
2953 ioh->fd = fd;
2954 ioh->fd_read_poll = fd_read_poll;
2955 ioh->fd_read = fd_read;
2956 ioh->fd_write = fd_write;
2957 ioh->opaque = opaque;
2958 ioh->deleted = 0;
2960 return 0;
2963 int qemu_set_fd_handler(int fd,
2964 IOHandler *fd_read,
2965 IOHandler *fd_write,
2966 void *opaque)
2968 return qemu_set_fd_handler2(fd, NULL, fd_read, fd_write, opaque);
2971 #ifdef _WIN32
2972 /***********************************************************/
2973 /* Polling handling */
2975 typedef struct PollingEntry {
2976 PollingFunc *func;
2977 void *opaque;
2978 struct PollingEntry *next;
2979 } PollingEntry;
2981 static PollingEntry *first_polling_entry;
2983 int qemu_add_polling_cb(PollingFunc *func, void *opaque)
2985 PollingEntry **ppe, *pe;
2986 pe = qemu_mallocz(sizeof(PollingEntry));
2987 pe->func = func;
2988 pe->opaque = opaque;
2989 for(ppe = &first_polling_entry; *ppe != NULL; ppe = &(*ppe)->next);
2990 *ppe = pe;
2991 return 0;
2994 void qemu_del_polling_cb(PollingFunc *func, void *opaque)
2996 PollingEntry **ppe, *pe;
2997 for(ppe = &first_polling_entry; *ppe != NULL; ppe = &(*ppe)->next) {
2998 pe = *ppe;
2999 if (pe->func == func && pe->opaque == opaque) {
3000 *ppe = pe->next;
3001 qemu_free(pe);
3002 break;
3007 /***********************************************************/
3008 /* Wait objects support */
3009 typedef struct WaitObjects {
3010 int num;
3011 HANDLE events[MAXIMUM_WAIT_OBJECTS + 1];
3012 WaitObjectFunc *func[MAXIMUM_WAIT_OBJECTS + 1];
3013 void *opaque[MAXIMUM_WAIT_OBJECTS + 1];
3014 } WaitObjects;
3016 static WaitObjects wait_objects = {0};
3018 int qemu_add_wait_object(HANDLE handle, WaitObjectFunc *func, void *opaque)
3020 WaitObjects *w = &wait_objects;
3022 if (w->num >= MAXIMUM_WAIT_OBJECTS)
3023 return -1;
3024 w->events[w->num] = handle;
3025 w->func[w->num] = func;
3026 w->opaque[w->num] = opaque;
3027 w->num++;
3028 return 0;
3031 void qemu_del_wait_object(HANDLE handle, WaitObjectFunc *func, void *opaque)
3033 int i, found;
3034 WaitObjects *w = &wait_objects;
3036 found = 0;
3037 for (i = 0; i < w->num; i++) {
3038 if (w->events[i] == handle)
3039 found = 1;
3040 if (found) {
3041 w->events[i] = w->events[i + 1];
3042 w->func[i] = w->func[i + 1];
3043 w->opaque[i] = w->opaque[i + 1];
3046 if (found)
3047 w->num--;
3049 #endif
3051 /***********************************************************/
3052 /* ram save/restore */
3054 static int ram_get_page(QEMUFile *f, uint8_t *buf, int len)
3056 int v;
3058 v = qemu_get_byte(f);
3059 switch(v) {
3060 case 0:
3061 if (qemu_get_buffer(f, buf, len) != len)
3062 return -EIO;
3063 break;
3064 case 1:
3065 v = qemu_get_byte(f);
3066 memset(buf, v, len);
3067 break;
3068 default:
3069 return -EINVAL;
3072 if (qemu_file_has_error(f))
3073 return -EIO;
3075 return 0;
3078 static int ram_load_v1(QEMUFile *f, void *opaque)
3080 int ret;
3081 ram_addr_t i;
3083 if (qemu_get_be32(f) != last_ram_offset)
3084 return -EINVAL;
3085 for(i = 0; i < last_ram_offset; i+= TARGET_PAGE_SIZE) {
3086 ret = ram_get_page(f, qemu_get_ram_ptr(i), TARGET_PAGE_SIZE);
3087 if (ret)
3088 return ret;
3090 return 0;
3093 #define BDRV_HASH_BLOCK_SIZE 1024
3094 #define IOBUF_SIZE 4096
3095 #define RAM_CBLOCK_MAGIC 0xfabe
3097 typedef struct RamDecompressState {
3098 z_stream zstream;
3099 QEMUFile *f;
3100 uint8_t buf[IOBUF_SIZE];
3101 } RamDecompressState;
3103 static int ram_decompress_open(RamDecompressState *s, QEMUFile *f)
3105 int ret;
3106 memset(s, 0, sizeof(*s));
3107 s->f = f;
3108 ret = inflateInit(&s->zstream);
3109 if (ret != Z_OK)
3110 return -1;
3111 return 0;
3114 static int ram_decompress_buf(RamDecompressState *s, uint8_t *buf, int len)
3116 int ret, clen;
3118 s->zstream.avail_out = len;
3119 s->zstream.next_out = buf;
3120 while (s->zstream.avail_out > 0) {
3121 if (s->zstream.avail_in == 0) {
3122 if (qemu_get_be16(s->f) != RAM_CBLOCK_MAGIC)
3123 return -1;
3124 clen = qemu_get_be16(s->f);
3125 if (clen > IOBUF_SIZE)
3126 return -1;
3127 qemu_get_buffer(s->f, s->buf, clen);
3128 s->zstream.avail_in = clen;
3129 s->zstream.next_in = s->buf;
3131 ret = inflate(&s->zstream, Z_PARTIAL_FLUSH);
3132 if (ret != Z_OK && ret != Z_STREAM_END) {
3133 return -1;
3136 return 0;
3139 static void ram_decompress_close(RamDecompressState *s)
3141 inflateEnd(&s->zstream);
3144 #define RAM_SAVE_FLAG_FULL 0x01
3145 #define RAM_SAVE_FLAG_COMPRESS 0x02
3146 #define RAM_SAVE_FLAG_MEM_SIZE 0x04
3147 #define RAM_SAVE_FLAG_PAGE 0x08
3148 #define RAM_SAVE_FLAG_EOS 0x10
3150 static int is_dup_page(uint8_t *page, uint8_t ch)
3152 uint32_t val = ch << 24 | ch << 16 | ch << 8 | ch;
3153 uint32_t *array = (uint32_t *)page;
3154 int i;
3156 for (i = 0; i < (TARGET_PAGE_SIZE / 4); i++) {
3157 if (array[i] != val)
3158 return 0;
3161 return 1;
3164 static int ram_save_block(QEMUFile *f)
3166 static ram_addr_t current_addr = 0;
3167 ram_addr_t saved_addr = current_addr;
3168 ram_addr_t addr = 0;
3169 int found = 0;
3171 while (addr < last_ram_offset) {
3172 if (cpu_physical_memory_get_dirty(current_addr, MIGRATION_DIRTY_FLAG)) {
3173 uint8_t *p;
3175 cpu_physical_memory_reset_dirty(current_addr,
3176 current_addr + TARGET_PAGE_SIZE,
3177 MIGRATION_DIRTY_FLAG);
3179 p = qemu_get_ram_ptr(current_addr);
3181 if (is_dup_page(p, *p)) {
3182 qemu_put_be64(f, current_addr | RAM_SAVE_FLAG_COMPRESS);
3183 qemu_put_byte(f, *p);
3184 } else {
3185 qemu_put_be64(f, current_addr | RAM_SAVE_FLAG_PAGE);
3186 qemu_put_buffer(f, p, TARGET_PAGE_SIZE);
3189 found = 1;
3190 break;
3192 addr += TARGET_PAGE_SIZE;
3193 current_addr = (saved_addr + addr) % last_ram_offset;
3196 return found;
3199 static ram_addr_t ram_save_threshold = 10;
3200 static uint64_t bytes_transferred = 0;
3202 static ram_addr_t ram_save_remaining(void)
3204 ram_addr_t addr;
3205 ram_addr_t count = 0;
3207 for (addr = 0; addr < last_ram_offset; addr += TARGET_PAGE_SIZE) {
3208 if (cpu_physical_memory_get_dirty(addr, MIGRATION_DIRTY_FLAG))
3209 count++;
3212 return count;
3215 uint64_t ram_bytes_remaining(void)
3217 return ram_save_remaining() * TARGET_PAGE_SIZE;
3220 uint64_t ram_bytes_transferred(void)
3222 return bytes_transferred;
3225 uint64_t ram_bytes_total(void)
3227 return last_ram_offset;
3230 static int ram_save_live(QEMUFile *f, int stage, void *opaque)
3232 ram_addr_t addr;
3234 if (cpu_physical_sync_dirty_bitmap(0, last_ram_offset) != 0) {
3235 qemu_file_set_error(f);
3236 return 0;
3239 if (stage == 1) {
3240 /* Make sure all dirty bits are set */
3241 for (addr = 0; addr < last_ram_offset; addr += TARGET_PAGE_SIZE) {
3242 if (!cpu_physical_memory_get_dirty(addr, MIGRATION_DIRTY_FLAG))
3243 cpu_physical_memory_set_dirty(addr);
3246 /* Enable dirty memory tracking */
3247 cpu_physical_memory_set_dirty_tracking(1);
3249 qemu_put_be64(f, last_ram_offset | RAM_SAVE_FLAG_MEM_SIZE);
3252 while (!qemu_file_rate_limit(f)) {
3253 int ret;
3255 ret = ram_save_block(f);
3256 bytes_transferred += ret * TARGET_PAGE_SIZE;
3257 if (ret == 0) /* no more blocks */
3258 break;
3261 /* try transferring iterative blocks of memory */
3263 if (stage == 3) {
3265 /* flush all remaining blocks regardless of rate limiting */
3266 while (ram_save_block(f) != 0) {
3267 bytes_transferred += TARGET_PAGE_SIZE;
3269 cpu_physical_memory_set_dirty_tracking(0);
3272 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
3274 return (stage == 2) && (ram_save_remaining() < ram_save_threshold);
3277 static int ram_load_dead(QEMUFile *f, void *opaque)
3279 RamDecompressState s1, *s = &s1;
3280 uint8_t buf[10];
3281 ram_addr_t i;
3283 if (ram_decompress_open(s, f) < 0)
3284 return -EINVAL;
3285 for(i = 0; i < last_ram_offset; i+= BDRV_HASH_BLOCK_SIZE) {
3286 if (ram_decompress_buf(s, buf, 1) < 0) {
3287 fprintf(stderr, "Error while reading ram block header\n");
3288 goto error;
3290 if (buf[0] == 0) {
3291 if (ram_decompress_buf(s, qemu_get_ram_ptr(i),
3292 BDRV_HASH_BLOCK_SIZE) < 0) {
3293 fprintf(stderr, "Error while reading ram block address=0x%08" PRIx64, (uint64_t)i);
3294 goto error;
3296 } else {
3297 error:
3298 printf("Error block header\n");
3299 return -EINVAL;
3302 ram_decompress_close(s);
3304 return 0;
3307 static int ram_load(QEMUFile *f, void *opaque, int version_id)
3309 ram_addr_t addr;
3310 int flags;
3312 if (version_id == 1)
3313 return ram_load_v1(f, opaque);
3315 if (version_id == 2) {
3316 if (qemu_get_be32(f) != last_ram_offset)
3317 return -EINVAL;
3318 return ram_load_dead(f, opaque);
3321 if (version_id != 3)
3322 return -EINVAL;
3324 do {
3325 addr = qemu_get_be64(f);
3327 flags = addr & ~TARGET_PAGE_MASK;
3328 addr &= TARGET_PAGE_MASK;
3330 if (flags & RAM_SAVE_FLAG_MEM_SIZE) {
3331 if (addr != last_ram_offset)
3332 return -EINVAL;
3335 if (flags & RAM_SAVE_FLAG_FULL) {
3336 if (ram_load_dead(f, opaque) < 0)
3337 return -EINVAL;
3340 if (flags & RAM_SAVE_FLAG_COMPRESS) {
3341 uint8_t ch = qemu_get_byte(f);
3342 memset(qemu_get_ram_ptr(addr), ch, TARGET_PAGE_SIZE);
3343 } else if (flags & RAM_SAVE_FLAG_PAGE)
3344 qemu_get_buffer(f, qemu_get_ram_ptr(addr), TARGET_PAGE_SIZE);
3345 } while (!(flags & RAM_SAVE_FLAG_EOS));
3347 return 0;
3350 void qemu_service_io(void)
3352 qemu_notify_event();
3355 /***********************************************************/
3356 /* bottom halves (can be seen as timers which expire ASAP) */
3358 struct QEMUBH {
3359 QEMUBHFunc *cb;
3360 void *opaque;
3361 int scheduled;
3362 int idle;
3363 int deleted;
3364 QEMUBH *next;
3367 static QEMUBH *first_bh = NULL;
3369 QEMUBH *qemu_bh_new(QEMUBHFunc *cb, void *opaque)
3371 QEMUBH *bh;
3372 bh = qemu_mallocz(sizeof(QEMUBH));
3373 bh->cb = cb;
3374 bh->opaque = opaque;
3375 bh->next = first_bh;
3376 first_bh = bh;
3377 return bh;
3380 int qemu_bh_poll(void)
3382 QEMUBH *bh, **bhp;
3383 int ret;
3385 ret = 0;
3386 for (bh = first_bh; bh; bh = bh->next) {
3387 if (!bh->deleted && bh->scheduled) {
3388 bh->scheduled = 0;
3389 if (!bh->idle)
3390 ret = 1;
3391 bh->idle = 0;
3392 bh->cb(bh->opaque);
3396 /* remove deleted bhs */
3397 bhp = &first_bh;
3398 while (*bhp) {
3399 bh = *bhp;
3400 if (bh->deleted) {
3401 *bhp = bh->next;
3402 qemu_free(bh);
3403 } else
3404 bhp = &bh->next;
3407 return ret;
3410 void qemu_bh_schedule_idle(QEMUBH *bh)
3412 if (bh->scheduled)
3413 return;
3414 bh->scheduled = 1;
3415 bh->idle = 1;
3418 void qemu_bh_schedule(QEMUBH *bh)
3420 if (bh->scheduled)
3421 return;
3422 bh->scheduled = 1;
3423 bh->idle = 0;
3424 /* stop the currently executing CPU to execute the BH ASAP */
3425 qemu_notify_event();
3428 void qemu_bh_cancel(QEMUBH *bh)
3430 bh->scheduled = 0;
3433 void qemu_bh_delete(QEMUBH *bh)
3435 bh->scheduled = 0;
3436 bh->deleted = 1;
3439 static void qemu_bh_update_timeout(int *timeout)
3441 QEMUBH *bh;
3443 for (bh = first_bh; bh; bh = bh->next) {
3444 if (!bh->deleted && bh->scheduled) {
3445 if (bh->idle) {
3446 /* idle bottom halves will be polled at least
3447 * every 10ms */
3448 *timeout = MIN(10, *timeout);
3449 } else {
3450 /* non-idle bottom halves will be executed
3451 * immediately */
3452 *timeout = 0;
3453 break;
3459 /***********************************************************/
3460 /* machine registration */
3462 static QEMUMachine *first_machine = NULL;
3463 QEMUMachine *current_machine = NULL;
3465 int qemu_register_machine(QEMUMachine *m)
3467 QEMUMachine **pm;
3468 pm = &first_machine;
3469 while (*pm != NULL)
3470 pm = &(*pm)->next;
3471 m->next = NULL;
3472 *pm = m;
3473 return 0;
3476 static QEMUMachine *find_machine(const char *name)
3478 QEMUMachine *m;
3480 for(m = first_machine; m != NULL; m = m->next) {
3481 if (!strcmp(m->name, name))
3482 return m;
3484 return NULL;
3487 static QEMUMachine *find_default_machine(void)
3489 QEMUMachine *m;
3491 for(m = first_machine; m != NULL; m = m->next) {
3492 if (m->is_default) {
3493 return m;
3496 return NULL;
3499 /***********************************************************/
3500 /* main execution loop */
3502 static void gui_update(void *opaque)
3504 uint64_t interval = GUI_REFRESH_INTERVAL;
3505 DisplayState *ds = opaque;
3506 DisplayChangeListener *dcl = ds->listeners;
3508 dpy_refresh(ds);
3510 while (dcl != NULL) {
3511 if (dcl->gui_timer_interval &&
3512 dcl->gui_timer_interval < interval)
3513 interval = dcl->gui_timer_interval;
3514 dcl = dcl->next;
3516 qemu_mod_timer(ds->gui_timer, interval + qemu_get_clock(rt_clock));
3519 static void nographic_update(void *opaque)
3521 uint64_t interval = GUI_REFRESH_INTERVAL;
3523 qemu_mod_timer(nographic_timer, interval + qemu_get_clock(rt_clock));
3526 struct vm_change_state_entry {
3527 VMChangeStateHandler *cb;
3528 void *opaque;
3529 LIST_ENTRY (vm_change_state_entry) entries;
3532 static LIST_HEAD(vm_change_state_head, vm_change_state_entry) vm_change_state_head;
3534 VMChangeStateEntry *qemu_add_vm_change_state_handler(VMChangeStateHandler *cb,
3535 void *opaque)
3537 VMChangeStateEntry *e;
3539 e = qemu_mallocz(sizeof (*e));
3541 e->cb = cb;
3542 e->opaque = opaque;
3543 LIST_INSERT_HEAD(&vm_change_state_head, e, entries);
3544 return e;
3547 void qemu_del_vm_change_state_handler(VMChangeStateEntry *e)
3549 LIST_REMOVE (e, entries);
3550 qemu_free (e);
3553 static void vm_state_notify(int running, int reason)
3555 VMChangeStateEntry *e;
3557 for (e = vm_change_state_head.lh_first; e; e = e->entries.le_next) {
3558 e->cb(e->opaque, running, reason);
3562 static void resume_all_vcpus(void);
3563 static void pause_all_vcpus(void);
3565 void vm_start(void)
3567 if (!vm_running) {
3568 cpu_enable_ticks();
3569 vm_running = 1;
3570 vm_state_notify(1, 0);
3571 qemu_rearm_alarm_timer(alarm_timer);
3572 resume_all_vcpus();
3576 /* reset/shutdown handler */
3578 typedef struct QEMUResetEntry {
3579 QEMUResetHandler *func;
3580 void *opaque;
3581 int order;
3582 struct QEMUResetEntry *next;
3583 } QEMUResetEntry;
3585 static QEMUResetEntry *first_reset_entry;
3586 static int reset_requested;
3587 static int shutdown_requested;
3588 static int powerdown_requested;
3589 static int debug_requested;
3590 static int vmstop_requested;
3592 int qemu_shutdown_requested(void)
3594 int r = shutdown_requested;
3595 shutdown_requested = 0;
3596 return r;
3599 int qemu_reset_requested(void)
3601 int r = reset_requested;
3602 reset_requested = 0;
3603 return r;
3606 int qemu_powerdown_requested(void)
3608 int r = powerdown_requested;
3609 powerdown_requested = 0;
3610 return r;
3613 static int qemu_debug_requested(void)
3615 int r = debug_requested;
3616 debug_requested = 0;
3617 return r;
3620 static int qemu_vmstop_requested(void)
3622 int r = vmstop_requested;
3623 vmstop_requested = 0;
3624 return r;
3627 static void do_vm_stop(int reason)
3629 if (vm_running) {
3630 cpu_disable_ticks();
3631 vm_running = 0;
3632 pause_all_vcpus();
3633 vm_state_notify(0, reason);
3637 void qemu_register_reset(QEMUResetHandler *func, int order, void *opaque)
3639 QEMUResetEntry **pre, *re;
3641 pre = &first_reset_entry;
3642 while (*pre != NULL && (*pre)->order >= order) {
3643 pre = &(*pre)->next;
3645 re = qemu_mallocz(sizeof(QEMUResetEntry));
3646 re->func = func;
3647 re->opaque = opaque;
3648 re->order = order;
3649 re->next = NULL;
3650 *pre = re;
3653 void qemu_system_reset(void)
3655 QEMUResetEntry *re;
3657 /* reset all devices */
3658 for(re = first_reset_entry; re != NULL; re = re->next) {
3659 re->func(re->opaque);
3663 void qemu_system_reset_request(void)
3665 if (no_reboot) {
3666 shutdown_requested = 1;
3667 } else {
3668 reset_requested = 1;
3670 qemu_notify_event();
3673 void qemu_system_shutdown_request(void)
3675 shutdown_requested = 1;
3676 qemu_notify_event();
3679 void qemu_system_powerdown_request(void)
3681 powerdown_requested = 1;
3682 qemu_notify_event();
3685 #ifdef CONFIG_IOTHREAD
3686 static void qemu_system_vmstop_request(int reason)
3688 vmstop_requested = reason;
3689 qemu_notify_event();
3691 #endif
3693 #ifndef _WIN32
3694 static int io_thread_fd = -1;
3696 static void qemu_event_increment(void)
3698 static const char byte = 0;
3700 if (io_thread_fd == -1)
3701 return;
3703 write(io_thread_fd, &byte, sizeof(byte));
3706 static void qemu_event_read(void *opaque)
3708 int fd = (unsigned long)opaque;
3709 ssize_t len;
3711 /* Drain the notify pipe */
3712 do {
3713 char buffer[512];
3714 len = read(fd, buffer, sizeof(buffer));
3715 } while ((len == -1 && errno == EINTR) || len > 0);
3718 static int qemu_event_init(void)
3720 int err;
3721 int fds[2];
3723 err = pipe(fds);
3724 if (err == -1)
3725 return -errno;
3727 err = fcntl_setfl(fds[0], O_NONBLOCK);
3728 if (err < 0)
3729 goto fail;
3731 err = fcntl_setfl(fds[1], O_NONBLOCK);
3732 if (err < 0)
3733 goto fail;
3735 qemu_set_fd_handler2(fds[0], NULL, qemu_event_read, NULL,
3736 (void *)(unsigned long)fds[0]);
3738 io_thread_fd = fds[1];
3739 return 0;
3741 fail:
3742 close(fds[0]);
3743 close(fds[1]);
3744 return err;
3746 #else
3747 HANDLE qemu_event_handle;
3749 static void dummy_event_handler(void *opaque)
3753 static int qemu_event_init(void)
3755 qemu_event_handle = CreateEvent(NULL, FALSE, FALSE, NULL);
3756 if (!qemu_event_handle) {
3757 perror("Failed CreateEvent");
3758 return -1;
3760 qemu_add_wait_object(qemu_event_handle, dummy_event_handler, NULL);
3761 return 0;
3764 static void qemu_event_increment(void)
3766 SetEvent(qemu_event_handle);
3768 #endif
3770 static int cpu_can_run(CPUState *env)
3772 if (env->stop)
3773 return 0;
3774 if (env->stopped)
3775 return 0;
3776 return 1;
3779 #ifndef CONFIG_IOTHREAD
3780 static int qemu_init_main_loop(void)
3782 return qemu_event_init();
3785 void qemu_init_vcpu(void *_env)
3787 CPUState *env = _env;
3789 if (kvm_enabled())
3790 kvm_init_vcpu(env);
3791 return;
3794 int qemu_cpu_self(void *env)
3796 return 1;
3799 static void resume_all_vcpus(void)
3803 static void pause_all_vcpus(void)
3807 void qemu_cpu_kick(void *env)
3809 return;
3812 void qemu_notify_event(void)
3814 CPUState *env = cpu_single_env;
3816 if (env) {
3817 cpu_exit(env);
3818 #ifdef USE_KQEMU
3819 if (env->kqemu_enabled)
3820 kqemu_cpu_interrupt(env);
3821 #endif
3825 #define qemu_mutex_lock_iothread() do { } while (0)
3826 #define qemu_mutex_unlock_iothread() do { } while (0)
3828 void vm_stop(int reason)
3830 do_vm_stop(reason);
3833 #else /* CONFIG_IOTHREAD */
3835 #include "qemu-thread.h"
3837 QemuMutex qemu_global_mutex;
3838 static QemuMutex qemu_fair_mutex;
3840 static QemuThread io_thread;
3842 static QemuThread *tcg_cpu_thread;
3843 static QemuCond *tcg_halt_cond;
3845 static int qemu_system_ready;
3846 /* cpu creation */
3847 static QemuCond qemu_cpu_cond;
3848 /* system init */
3849 static QemuCond qemu_system_cond;
3850 static QemuCond qemu_pause_cond;
3852 static void block_io_signals(void);
3853 static void unblock_io_signals(void);
3854 static int tcg_has_work(void);
3856 static int qemu_init_main_loop(void)
3858 int ret;
3860 ret = qemu_event_init();
3861 if (ret)
3862 return ret;
3864 qemu_cond_init(&qemu_pause_cond);
3865 qemu_mutex_init(&qemu_fair_mutex);
3866 qemu_mutex_init(&qemu_global_mutex);
3867 qemu_mutex_lock(&qemu_global_mutex);
3869 unblock_io_signals();
3870 qemu_thread_self(&io_thread);
3872 return 0;
3875 static void qemu_wait_io_event(CPUState *env)
3877 while (!tcg_has_work())
3878 qemu_cond_timedwait(env->halt_cond, &qemu_global_mutex, 1000);
3880 qemu_mutex_unlock(&qemu_global_mutex);
3883 * Users of qemu_global_mutex can be starved, having no chance
3884 * to acquire it since this path will get to it first.
3885 * So use another lock to provide fairness.
3887 qemu_mutex_lock(&qemu_fair_mutex);
3888 qemu_mutex_unlock(&qemu_fair_mutex);
3890 qemu_mutex_lock(&qemu_global_mutex);
3891 if (env->stop) {
3892 env->stop = 0;
3893 env->stopped = 1;
3894 qemu_cond_signal(&qemu_pause_cond);
3898 static int qemu_cpu_exec(CPUState *env);
3900 static void *kvm_cpu_thread_fn(void *arg)
3902 CPUState *env = arg;
3904 block_io_signals();
3905 qemu_thread_self(env->thread);
3907 /* signal CPU creation */
3908 qemu_mutex_lock(&qemu_global_mutex);
3909 env->created = 1;
3910 qemu_cond_signal(&qemu_cpu_cond);
3912 /* and wait for machine initialization */
3913 while (!qemu_system_ready)
3914 qemu_cond_timedwait(&qemu_system_cond, &qemu_global_mutex, 100);
3916 while (1) {
3917 if (cpu_can_run(env))
3918 qemu_cpu_exec(env);
3919 qemu_wait_io_event(env);
3922 return NULL;
3925 static void tcg_cpu_exec(void);
3927 static void *tcg_cpu_thread_fn(void *arg)
3929 CPUState *env = arg;
3931 block_io_signals();
3932 qemu_thread_self(env->thread);
3934 /* signal CPU creation */
3935 qemu_mutex_lock(&qemu_global_mutex);
3936 for (env = first_cpu; env != NULL; env = env->next_cpu)
3937 env->created = 1;
3938 qemu_cond_signal(&qemu_cpu_cond);
3940 /* and wait for machine initialization */
3941 while (!qemu_system_ready)
3942 qemu_cond_timedwait(&qemu_system_cond, &qemu_global_mutex, 100);
3944 while (1) {
3945 tcg_cpu_exec();
3946 qemu_wait_io_event(cur_cpu);
3949 return NULL;
3952 void qemu_cpu_kick(void *_env)
3954 CPUState *env = _env;
3955 qemu_cond_broadcast(env->halt_cond);
3956 if (kvm_enabled())
3957 qemu_thread_signal(env->thread, SIGUSR1);
3960 int qemu_cpu_self(void *env)
3962 return (cpu_single_env != NULL);
3965 static void cpu_signal(int sig)
3967 if (cpu_single_env)
3968 cpu_exit(cpu_single_env);
3971 static void block_io_signals(void)
3973 sigset_t set;
3974 struct sigaction sigact;
3976 sigemptyset(&set);
3977 sigaddset(&set, SIGUSR2);
3978 sigaddset(&set, SIGIO);
3979 sigaddset(&set, SIGALRM);
3980 pthread_sigmask(SIG_BLOCK, &set, NULL);
3982 sigemptyset(&set);
3983 sigaddset(&set, SIGUSR1);
3984 pthread_sigmask(SIG_UNBLOCK, &set, NULL);
3986 memset(&sigact, 0, sizeof(sigact));
3987 sigact.sa_handler = cpu_signal;
3988 sigaction(SIGUSR1, &sigact, NULL);
3991 static void unblock_io_signals(void)
3993 sigset_t set;
3995 sigemptyset(&set);
3996 sigaddset(&set, SIGUSR2);
3997 sigaddset(&set, SIGIO);
3998 sigaddset(&set, SIGALRM);
3999 pthread_sigmask(SIG_UNBLOCK, &set, NULL);
4001 sigemptyset(&set);
4002 sigaddset(&set, SIGUSR1);
4003 pthread_sigmask(SIG_BLOCK, &set, NULL);
4006 static void qemu_signal_lock(unsigned int msecs)
4008 qemu_mutex_lock(&qemu_fair_mutex);
4010 while (qemu_mutex_trylock(&qemu_global_mutex)) {
4011 qemu_thread_signal(tcg_cpu_thread, SIGUSR1);
4012 if (!qemu_mutex_timedlock(&qemu_global_mutex, msecs))
4013 break;
4015 qemu_mutex_unlock(&qemu_fair_mutex);
4018 static void qemu_mutex_lock_iothread(void)
4020 if (kvm_enabled()) {
4021 qemu_mutex_lock(&qemu_fair_mutex);
4022 qemu_mutex_lock(&qemu_global_mutex);
4023 qemu_mutex_unlock(&qemu_fair_mutex);
4024 } else
4025 qemu_signal_lock(100);
4028 static void qemu_mutex_unlock_iothread(void)
4030 qemu_mutex_unlock(&qemu_global_mutex);
4033 static int all_vcpus_paused(void)
4035 CPUState *penv = first_cpu;
4037 while (penv) {
4038 if (!penv->stopped)
4039 return 0;
4040 penv = (CPUState *)penv->next_cpu;
4043 return 1;
4046 static void pause_all_vcpus(void)
4048 CPUState *penv = first_cpu;
4050 while (penv) {
4051 penv->stop = 1;
4052 qemu_thread_signal(penv->thread, SIGUSR1);
4053 qemu_cpu_kick(penv);
4054 penv = (CPUState *)penv->next_cpu;
4057 while (!all_vcpus_paused()) {
4058 qemu_cond_timedwait(&qemu_pause_cond, &qemu_global_mutex, 100);
4059 penv = first_cpu;
4060 while (penv) {
4061 qemu_thread_signal(penv->thread, SIGUSR1);
4062 penv = (CPUState *)penv->next_cpu;
4067 static void resume_all_vcpus(void)
4069 CPUState *penv = first_cpu;
4071 while (penv) {
4072 penv->stop = 0;
4073 penv->stopped = 0;
4074 qemu_thread_signal(penv->thread, SIGUSR1);
4075 qemu_cpu_kick(penv);
4076 penv = (CPUState *)penv->next_cpu;
4080 static void tcg_init_vcpu(void *_env)
4082 CPUState *env = _env;
4083 /* share a single thread for all cpus with TCG */
4084 if (!tcg_cpu_thread) {
4085 env->thread = qemu_mallocz(sizeof(QemuThread));
4086 env->halt_cond = qemu_mallocz(sizeof(QemuCond));
4087 qemu_cond_init(env->halt_cond);
4088 qemu_thread_create(env->thread, tcg_cpu_thread_fn, env);
4089 while (env->created == 0)
4090 qemu_cond_timedwait(&qemu_cpu_cond, &qemu_global_mutex, 100);
4091 tcg_cpu_thread = env->thread;
4092 tcg_halt_cond = env->halt_cond;
4093 } else {
4094 env->thread = tcg_cpu_thread;
4095 env->halt_cond = tcg_halt_cond;
4099 static void kvm_start_vcpu(CPUState *env)
4101 kvm_init_vcpu(env);
4102 env->thread = qemu_mallocz(sizeof(QemuThread));
4103 env->halt_cond = qemu_mallocz(sizeof(QemuCond));
4104 qemu_cond_init(env->halt_cond);
4105 qemu_thread_create(env->thread, kvm_cpu_thread_fn, env);
4106 while (env->created == 0)
4107 qemu_cond_timedwait(&qemu_cpu_cond, &qemu_global_mutex, 100);
4110 void qemu_init_vcpu(void *_env)
4112 CPUState *env = _env;
4114 if (kvm_enabled())
4115 kvm_start_vcpu(env);
4116 else
4117 tcg_init_vcpu(env);
4120 void qemu_notify_event(void)
4122 qemu_event_increment();
4125 void vm_stop(int reason)
4127 QemuThread me;
4128 qemu_thread_self(&me);
4130 if (!qemu_thread_equal(&me, &io_thread)) {
4131 qemu_system_vmstop_request(reason);
4133 * FIXME: should not return to device code in case
4134 * vm_stop() has been requested.
4136 if (cpu_single_env) {
4137 cpu_exit(cpu_single_env);
4138 cpu_single_env->stop = 1;
4140 return;
4142 do_vm_stop(reason);
4145 #endif
4148 #ifdef _WIN32
4149 static void host_main_loop_wait(int *timeout)
4151 int ret, ret2, i;
4152 PollingEntry *pe;
4155 /* XXX: need to suppress polling by better using win32 events */
4156 ret = 0;
4157 for(pe = first_polling_entry; pe != NULL; pe = pe->next) {
4158 ret |= pe->func(pe->opaque);
4160 if (ret == 0) {
4161 int err;
4162 WaitObjects *w = &wait_objects;
4164 ret = WaitForMultipleObjects(w->num, w->events, FALSE, *timeout);
4165 if (WAIT_OBJECT_0 + 0 <= ret && ret <= WAIT_OBJECT_0 + w->num - 1) {
4166 if (w->func[ret - WAIT_OBJECT_0])
4167 w->func[ret - WAIT_OBJECT_0](w->opaque[ret - WAIT_OBJECT_0]);
4169 /* Check for additional signaled events */
4170 for(i = (ret - WAIT_OBJECT_0 + 1); i < w->num; i++) {
4172 /* Check if event is signaled */
4173 ret2 = WaitForSingleObject(w->events[i], 0);
4174 if(ret2 == WAIT_OBJECT_0) {
4175 if (w->func[i])
4176 w->func[i](w->opaque[i]);
4177 } else if (ret2 == WAIT_TIMEOUT) {
4178 } else {
4179 err = GetLastError();
4180 fprintf(stderr, "WaitForSingleObject error %d %d\n", i, err);
4183 } else if (ret == WAIT_TIMEOUT) {
4184 } else {
4185 err = GetLastError();
4186 fprintf(stderr, "WaitForMultipleObjects error %d %d\n", ret, err);
4190 *timeout = 0;
4192 #else
4193 static void host_main_loop_wait(int *timeout)
4196 #endif
4198 void main_loop_wait(int timeout)
4200 IOHandlerRecord *ioh;
4201 fd_set rfds, wfds, xfds;
4202 int ret, nfds;
4203 struct timeval tv;
4205 qemu_bh_update_timeout(&timeout);
4207 host_main_loop_wait(&timeout);
4209 /* poll any events */
4210 /* XXX: separate device handlers from system ones */
4211 nfds = -1;
4212 FD_ZERO(&rfds);
4213 FD_ZERO(&wfds);
4214 FD_ZERO(&xfds);
4215 for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
4216 if (ioh->deleted)
4217 continue;
4218 if (ioh->fd_read &&
4219 (!ioh->fd_read_poll ||
4220 ioh->fd_read_poll(ioh->opaque) != 0)) {
4221 FD_SET(ioh->fd, &rfds);
4222 if (ioh->fd > nfds)
4223 nfds = ioh->fd;
4225 if (ioh->fd_write) {
4226 FD_SET(ioh->fd, &wfds);
4227 if (ioh->fd > nfds)
4228 nfds = ioh->fd;
4232 tv.tv_sec = timeout / 1000;
4233 tv.tv_usec = (timeout % 1000) * 1000;
4235 #if defined(CONFIG_SLIRP)
4236 if (slirp_is_inited()) {
4237 slirp_select_fill(&nfds, &rfds, &wfds, &xfds);
4239 #endif
4240 qemu_mutex_unlock_iothread();
4241 ret = select(nfds + 1, &rfds, &wfds, &xfds, &tv);
4242 qemu_mutex_lock_iothread();
4243 if (ret > 0) {
4244 IOHandlerRecord **pioh;
4246 for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
4247 if (!ioh->deleted && ioh->fd_read && FD_ISSET(ioh->fd, &rfds)) {
4248 ioh->fd_read(ioh->opaque);
4250 if (!ioh->deleted && ioh->fd_write && FD_ISSET(ioh->fd, &wfds)) {
4251 ioh->fd_write(ioh->opaque);
4255 /* remove deleted IO handlers */
4256 pioh = &first_io_handler;
4257 while (*pioh) {
4258 ioh = *pioh;
4259 if (ioh->deleted) {
4260 *pioh = ioh->next;
4261 qemu_free(ioh);
4262 } else
4263 pioh = &ioh->next;
4266 #if defined(CONFIG_SLIRP)
4267 if (slirp_is_inited()) {
4268 if (ret < 0) {
4269 FD_ZERO(&rfds);
4270 FD_ZERO(&wfds);
4271 FD_ZERO(&xfds);
4273 slirp_select_poll(&rfds, &wfds, &xfds);
4275 #endif
4277 /* rearm timer, if not periodic */
4278 if (alarm_timer->flags & ALARM_FLAG_EXPIRED) {
4279 alarm_timer->flags &= ~ALARM_FLAG_EXPIRED;
4280 qemu_rearm_alarm_timer(alarm_timer);
4283 /* vm time timers */
4284 if (vm_running) {
4285 if (!cur_cpu || likely(!(cur_cpu->singlestep_enabled & SSTEP_NOTIMER)))
4286 qemu_run_timers(&active_timers[QEMU_TIMER_VIRTUAL],
4287 qemu_get_clock(vm_clock));
4290 /* real time timers */
4291 qemu_run_timers(&active_timers[QEMU_TIMER_REALTIME],
4292 qemu_get_clock(rt_clock));
4294 /* Check bottom-halves last in case any of the earlier events triggered
4295 them. */
4296 qemu_bh_poll();
4300 static int qemu_cpu_exec(CPUState *env)
4302 int ret;
4303 #ifdef CONFIG_PROFILER
4304 int64_t ti;
4305 #endif
4307 #ifdef CONFIG_PROFILER
4308 ti = profile_getclock();
4309 #endif
4310 if (use_icount) {
4311 int64_t count;
4312 int decr;
4313 qemu_icount -= (env->icount_decr.u16.low + env->icount_extra);
4314 env->icount_decr.u16.low = 0;
4315 env->icount_extra = 0;
4316 count = qemu_next_deadline();
4317 count = (count + (1 << icount_time_shift) - 1)
4318 >> icount_time_shift;
4319 qemu_icount += count;
4320 decr = (count > 0xffff) ? 0xffff : count;
4321 count -= decr;
4322 env->icount_decr.u16.low = decr;
4323 env->icount_extra = count;
4325 ret = cpu_exec(env);
4326 #ifdef CONFIG_PROFILER
4327 qemu_time += profile_getclock() - ti;
4328 #endif
4329 if (use_icount) {
4330 /* Fold pending instructions back into the
4331 instruction counter, and clear the interrupt flag. */
4332 qemu_icount -= (env->icount_decr.u16.low
4333 + env->icount_extra);
4334 env->icount_decr.u32 = 0;
4335 env->icount_extra = 0;
4337 return ret;
4340 static void tcg_cpu_exec(void)
4342 int ret = 0;
4344 if (next_cpu == NULL)
4345 next_cpu = first_cpu;
4346 for (; next_cpu != NULL; next_cpu = next_cpu->next_cpu) {
4347 CPUState *env = cur_cpu = next_cpu;
4349 if (!vm_running)
4350 break;
4351 if (timer_alarm_pending) {
4352 timer_alarm_pending = 0;
4353 break;
4355 if (cpu_can_run(env))
4356 ret = qemu_cpu_exec(env);
4357 if (ret == EXCP_DEBUG) {
4358 gdb_set_stop_cpu(env);
4359 debug_requested = 1;
4360 break;
4365 static int cpu_has_work(CPUState *env)
4367 if (env->stop)
4368 return 1;
4369 if (env->stopped)
4370 return 0;
4371 if (!env->halted)
4372 return 1;
4373 if (qemu_cpu_has_work(env))
4374 return 1;
4375 return 0;
4378 static int tcg_has_work(void)
4380 CPUState *env;
4382 for (env = first_cpu; env != NULL; env = env->next_cpu)
4383 if (cpu_has_work(env))
4384 return 1;
4385 return 0;
4388 static int qemu_calculate_timeout(void)
4390 int timeout;
4392 if (!vm_running)
4393 timeout = 5000;
4394 else if (tcg_has_work())
4395 timeout = 0;
4396 else if (!use_icount)
4397 timeout = 5000;
4398 else {
4399 /* XXX: use timeout computed from timers */
4400 int64_t add;
4401 int64_t delta;
4402 /* Advance virtual time to the next event. */
4403 if (use_icount == 1) {
4404 /* When not using an adaptive execution frequency
4405 we tend to get badly out of sync with real time,
4406 so just delay for a reasonable amount of time. */
4407 delta = 0;
4408 } else {
4409 delta = cpu_get_icount() - cpu_get_clock();
4411 if (delta > 0) {
4412 /* If virtual time is ahead of real time then just
4413 wait for IO. */
4414 timeout = (delta / 1000000) + 1;
4415 } else {
4416 /* Wait for either IO to occur or the next
4417 timer event. */
4418 add = qemu_next_deadline();
4419 /* We advance the timer before checking for IO.
4420 Limit the amount we advance so that early IO
4421 activity won't get the guest too far ahead. */
4422 if (add > 10000000)
4423 add = 10000000;
4424 delta += add;
4425 add = (add + (1 << icount_time_shift) - 1)
4426 >> icount_time_shift;
4427 qemu_icount += add;
4428 timeout = delta / 1000000;
4429 if (timeout < 0)
4430 timeout = 0;
4434 return timeout;
4437 static int vm_can_run(void)
4439 if (powerdown_requested)
4440 return 0;
4441 if (reset_requested)
4442 return 0;
4443 if (shutdown_requested)
4444 return 0;
4445 if (debug_requested)
4446 return 0;
4447 return 1;
4450 static void main_loop(void)
4452 int r;
4454 #ifdef CONFIG_IOTHREAD
4455 qemu_system_ready = 1;
4456 qemu_cond_broadcast(&qemu_system_cond);
4457 #endif
4459 for (;;) {
4460 do {
4461 #ifdef CONFIG_PROFILER
4462 int64_t ti;
4463 #endif
4464 #ifndef CONFIG_IOTHREAD
4465 tcg_cpu_exec();
4466 #endif
4467 #ifdef CONFIG_PROFILER
4468 ti = profile_getclock();
4469 #endif
4470 #ifdef CONFIG_IOTHREAD
4471 main_loop_wait(1000);
4472 #else
4473 main_loop_wait(qemu_calculate_timeout());
4474 #endif
4475 #ifdef CONFIG_PROFILER
4476 dev_time += profile_getclock() - ti;
4477 #endif
4478 } while (vm_can_run());
4480 if (qemu_debug_requested())
4481 vm_stop(EXCP_DEBUG);
4482 if (qemu_shutdown_requested()) {
4483 if (no_shutdown) {
4484 vm_stop(0);
4485 no_shutdown = 0;
4486 } else
4487 break;
4489 if (qemu_reset_requested()) {
4490 pause_all_vcpus();
4491 qemu_system_reset();
4492 resume_all_vcpus();
4494 if (qemu_powerdown_requested())
4495 qemu_system_powerdown();
4496 if ((r = qemu_vmstop_requested()))
4497 vm_stop(r);
4499 pause_all_vcpus();
4502 static void version(void)
4504 printf("QEMU PC emulator version " QEMU_VERSION QEMU_PKGVERSION ", Copyright (c) 2003-2008 Fabrice Bellard\n");
4507 static void help(int exitcode)
4509 version();
4510 printf("usage: %s [options] [disk_image]\n"
4511 "\n"
4512 "'disk_image' is a raw hard image image for IDE hard disk 0\n"
4513 "\n"
4514 #define DEF(option, opt_arg, opt_enum, opt_help) \
4515 opt_help
4516 #define DEFHEADING(text) stringify(text) "\n"
4517 #include "qemu-options.h"
4518 #undef DEF
4519 #undef DEFHEADING
4520 #undef GEN_DOCS
4521 "\n"
4522 "During emulation, the following keys are useful:\n"
4523 "ctrl-alt-f toggle full screen\n"
4524 "ctrl-alt-n switch to virtual console 'n'\n"
4525 "ctrl-alt toggle mouse and keyboard grab\n"
4526 "\n"
4527 "When using -nographic, press 'ctrl-a h' to get some help.\n"
4529 "qemu",
4530 DEFAULT_RAM_SIZE,
4531 #ifndef _WIN32
4532 DEFAULT_NETWORK_SCRIPT,
4533 DEFAULT_NETWORK_DOWN_SCRIPT,
4534 #endif
4535 DEFAULT_GDBSTUB_PORT,
4536 "/tmp/qemu.log");
4537 exit(exitcode);
4540 #define HAS_ARG 0x0001
4542 enum {
4543 #define DEF(option, opt_arg, opt_enum, opt_help) \
4544 opt_enum,
4545 #define DEFHEADING(text)
4546 #include "qemu-options.h"
4547 #undef DEF
4548 #undef DEFHEADING
4549 #undef GEN_DOCS
4552 typedef struct QEMUOption {
4553 const char *name;
4554 int flags;
4555 int index;
4556 } QEMUOption;
4558 static const QEMUOption qemu_options[] = {
4559 { "h", 0, QEMU_OPTION_h },
4560 #define DEF(option, opt_arg, opt_enum, opt_help) \
4561 { option, opt_arg, opt_enum },
4562 #define DEFHEADING(text)
4563 #include "qemu-options.h"
4564 #undef DEF
4565 #undef DEFHEADING
4566 #undef GEN_DOCS
4567 { NULL },
4570 #ifdef HAS_AUDIO
4571 struct soundhw soundhw[] = {
4572 #ifdef HAS_AUDIO_CHOICE
4573 #if defined(TARGET_I386) || defined(TARGET_MIPS)
4575 "pcspk",
4576 "PC speaker",
4579 { .init_isa = pcspk_audio_init }
4581 #endif
4583 #ifdef CONFIG_SB16
4585 "sb16",
4586 "Creative Sound Blaster 16",
4589 { .init_isa = SB16_init }
4591 #endif
4593 #ifdef CONFIG_CS4231A
4595 "cs4231a",
4596 "CS4231A",
4599 { .init_isa = cs4231a_init }
4601 #endif
4603 #ifdef CONFIG_ADLIB
4605 "adlib",
4606 #ifdef HAS_YMF262
4607 "Yamaha YMF262 (OPL3)",
4608 #else
4609 "Yamaha YM3812 (OPL2)",
4610 #endif
4613 { .init_isa = Adlib_init }
4615 #endif
4617 #ifdef CONFIG_GUS
4619 "gus",
4620 "Gravis Ultrasound GF1",
4623 { .init_isa = GUS_init }
4625 #endif
4627 #ifdef CONFIG_AC97
4629 "ac97",
4630 "Intel 82801AA AC97 Audio",
4633 { .init_pci = ac97_init }
4635 #endif
4637 #ifdef CONFIG_ES1370
4639 "es1370",
4640 "ENSONIQ AudioPCI ES1370",
4643 { .init_pci = es1370_init }
4645 #endif
4647 #endif /* HAS_AUDIO_CHOICE */
4649 { NULL, NULL, 0, 0, { NULL } }
4652 static void select_soundhw (const char *optarg)
4654 struct soundhw *c;
4656 if (*optarg == '?') {
4657 show_valid_cards:
4659 printf ("Valid sound card names (comma separated):\n");
4660 for (c = soundhw; c->name; ++c) {
4661 printf ("%-11s %s\n", c->name, c->descr);
4663 printf ("\n-soundhw all will enable all of the above\n");
4664 exit (*optarg != '?');
4666 else {
4667 size_t l;
4668 const char *p;
4669 char *e;
4670 int bad_card = 0;
4672 if (!strcmp (optarg, "all")) {
4673 for (c = soundhw; c->name; ++c) {
4674 c->enabled = 1;
4676 return;
4679 p = optarg;
4680 while (*p) {
4681 e = strchr (p, ',');
4682 l = !e ? strlen (p) : (size_t) (e - p);
4684 for (c = soundhw; c->name; ++c) {
4685 if (!strncmp (c->name, p, l)) {
4686 c->enabled = 1;
4687 break;
4691 if (!c->name) {
4692 if (l > 80) {
4693 fprintf (stderr,
4694 "Unknown sound card name (too big to show)\n");
4696 else {
4697 fprintf (stderr, "Unknown sound card name `%.*s'\n",
4698 (int) l, p);
4700 bad_card = 1;
4702 p += l + (e != NULL);
4705 if (bad_card)
4706 goto show_valid_cards;
4709 #endif
4711 static void select_vgahw (const char *p)
4713 const char *opts;
4715 cirrus_vga_enabled = 0;
4716 std_vga_enabled = 0;
4717 vmsvga_enabled = 0;
4718 xenfb_enabled = 0;
4719 if (strstart(p, "std", &opts)) {
4720 std_vga_enabled = 1;
4721 } else if (strstart(p, "cirrus", &opts)) {
4722 cirrus_vga_enabled = 1;
4723 } else if (strstart(p, "vmware", &opts)) {
4724 vmsvga_enabled = 1;
4725 } else if (strstart(p, "xenfb", &opts)) {
4726 xenfb_enabled = 1;
4727 } else if (!strstart(p, "none", &opts)) {
4728 invalid_vga:
4729 fprintf(stderr, "Unknown vga type: %s\n", p);
4730 exit(1);
4732 while (*opts) {
4733 const char *nextopt;
4735 if (strstart(opts, ",retrace=", &nextopt)) {
4736 opts = nextopt;
4737 if (strstart(opts, "dumb", &nextopt))
4738 vga_retrace_method = VGA_RETRACE_DUMB;
4739 else if (strstart(opts, "precise", &nextopt))
4740 vga_retrace_method = VGA_RETRACE_PRECISE;
4741 else goto invalid_vga;
4742 } else goto invalid_vga;
4743 opts = nextopt;
4747 #ifdef _WIN32
4748 static BOOL WINAPI qemu_ctrl_handler(DWORD type)
4750 exit(STATUS_CONTROL_C_EXIT);
4751 return TRUE;
4753 #endif
4755 int qemu_uuid_parse(const char *str, uint8_t *uuid)
4757 int ret;
4759 if(strlen(str) != 36)
4760 return -1;
4762 ret = sscanf(str, UUID_FMT, &uuid[0], &uuid[1], &uuid[2], &uuid[3],
4763 &uuid[4], &uuid[5], &uuid[6], &uuid[7], &uuid[8], &uuid[9],
4764 &uuid[10], &uuid[11], &uuid[12], &uuid[13], &uuid[14], &uuid[15]);
4766 if(ret != 16)
4767 return -1;
4769 #ifdef TARGET_I386
4770 smbios_add_field(1, offsetof(struct smbios_type_1, uuid), 16, uuid);
4771 #endif
4773 return 0;
4776 #define MAX_NET_CLIENTS 32
4778 #ifndef _WIN32
4780 static void termsig_handler(int signal)
4782 qemu_system_shutdown_request();
4785 static void termsig_setup(void)
4787 struct sigaction act;
4789 memset(&act, 0, sizeof(act));
4790 act.sa_handler = termsig_handler;
4791 sigaction(SIGINT, &act, NULL);
4792 sigaction(SIGHUP, &act, NULL);
4793 sigaction(SIGTERM, &act, NULL);
4796 #endif
4798 int main(int argc, char **argv, char **envp)
4800 const char *gdbstub_dev = NULL;
4801 uint32_t boot_devices_bitmap = 0;
4802 int i;
4803 int snapshot, linux_boot, net_boot;
4804 const char *initrd_filename;
4805 const char *kernel_filename, *kernel_cmdline;
4806 const char *boot_devices = "";
4807 DisplayState *ds;
4808 DisplayChangeListener *dcl;
4809 int cyls, heads, secs, translation;
4810 const char *net_clients[MAX_NET_CLIENTS];
4811 int nb_net_clients;
4812 const char *bt_opts[MAX_BT_CMDLINE];
4813 int nb_bt_opts;
4814 int hda_index;
4815 int optind;
4816 const char *r, *optarg;
4817 CharDriverState *monitor_hd = NULL;
4818 const char *monitor_device;
4819 const char *serial_devices[MAX_SERIAL_PORTS];
4820 int serial_device_index;
4821 const char *parallel_devices[MAX_PARALLEL_PORTS];
4822 int parallel_device_index;
4823 const char *virtio_consoles[MAX_VIRTIO_CONSOLES];
4824 int virtio_console_index;
4825 const char *loadvm = NULL;
4826 QEMUMachine *machine;
4827 const char *cpu_model;
4828 const char *usb_devices[MAX_USB_CMDLINE];
4829 int usb_devices_index;
4830 #ifndef _WIN32
4831 int fds[2];
4832 #endif
4833 int tb_size;
4834 const char *pid_file = NULL;
4835 const char *incoming = NULL;
4836 #ifndef _WIN32
4837 int fd = 0;
4838 struct passwd *pwd = NULL;
4839 const char *chroot_dir = NULL;
4840 const char *run_as = NULL;
4841 #endif
4842 CPUState *env;
4843 int show_vnc_port = 0;
4845 qemu_cache_utils_init(envp);
4847 LIST_INIT (&vm_change_state_head);
4848 #ifndef _WIN32
4850 struct sigaction act;
4851 sigfillset(&act.sa_mask);
4852 act.sa_flags = 0;
4853 act.sa_handler = SIG_IGN;
4854 sigaction(SIGPIPE, &act, NULL);
4856 #else
4857 SetConsoleCtrlHandler(qemu_ctrl_handler, TRUE);
4858 /* Note: cpu_interrupt() is currently not SMP safe, so we force
4859 QEMU to run on a single CPU */
4861 HANDLE h;
4862 DWORD mask, smask;
4863 int i;
4864 h = GetCurrentProcess();
4865 if (GetProcessAffinityMask(h, &mask, &smask)) {
4866 for(i = 0; i < 32; i++) {
4867 if (mask & (1 << i))
4868 break;
4870 if (i != 32) {
4871 mask = 1 << i;
4872 SetProcessAffinityMask(h, mask);
4876 #endif
4878 module_call_init(MODULE_INIT_MACHINE);
4879 machine = find_default_machine();
4880 cpu_model = NULL;
4881 initrd_filename = NULL;
4882 ram_size = 0;
4883 snapshot = 0;
4884 kernel_filename = NULL;
4885 kernel_cmdline = "";
4886 cyls = heads = secs = 0;
4887 translation = BIOS_ATA_TRANSLATION_AUTO;
4888 monitor_device = "vc:80Cx24C";
4890 serial_devices[0] = "vc:80Cx24C";
4891 for(i = 1; i < MAX_SERIAL_PORTS; i++)
4892 serial_devices[i] = NULL;
4893 serial_device_index = 0;
4895 parallel_devices[0] = "vc:80Cx24C";
4896 for(i = 1; i < MAX_PARALLEL_PORTS; i++)
4897 parallel_devices[i] = NULL;
4898 parallel_device_index = 0;
4900 for(i = 0; i < MAX_VIRTIO_CONSOLES; i++)
4901 virtio_consoles[i] = NULL;
4902 virtio_console_index = 0;
4904 for (i = 0; i < MAX_NODES; i++) {
4905 node_mem[i] = 0;
4906 node_cpumask[i] = 0;
4909 usb_devices_index = 0;
4911 nb_net_clients = 0;
4912 nb_bt_opts = 0;
4913 nb_drives = 0;
4914 nb_drives_opt = 0;
4915 nb_numa_nodes = 0;
4916 hda_index = -1;
4918 nb_nics = 0;
4920 tb_size = 0;
4921 autostart= 1;
4923 register_watchdogs();
4925 optind = 1;
4926 for(;;) {
4927 if (optind >= argc)
4928 break;
4929 r = argv[optind];
4930 if (r[0] != '-') {
4931 hda_index = drive_add(argv[optind++], HD_ALIAS, 0);
4932 } else {
4933 const QEMUOption *popt;
4935 optind++;
4936 /* Treat --foo the same as -foo. */
4937 if (r[1] == '-')
4938 r++;
4939 popt = qemu_options;
4940 for(;;) {
4941 if (!popt->name) {
4942 fprintf(stderr, "%s: invalid option -- '%s'\n",
4943 argv[0], r);
4944 exit(1);
4946 if (!strcmp(popt->name, r + 1))
4947 break;
4948 popt++;
4950 if (popt->flags & HAS_ARG) {
4951 if (optind >= argc) {
4952 fprintf(stderr, "%s: option '%s' requires an argument\n",
4953 argv[0], r);
4954 exit(1);
4956 optarg = argv[optind++];
4957 } else {
4958 optarg = NULL;
4961 switch(popt->index) {
4962 case QEMU_OPTION_M:
4963 machine = find_machine(optarg);
4964 if (!machine) {
4965 QEMUMachine *m;
4966 printf("Supported machines are:\n");
4967 for(m = first_machine; m != NULL; m = m->next) {
4968 printf("%-10s %s%s\n",
4969 m->name, m->desc,
4970 m->is_default ? " (default)" : "");
4972 exit(*optarg != '?');
4974 break;
4975 case QEMU_OPTION_cpu:
4976 /* hw initialization will check this */
4977 if (*optarg == '?') {
4978 /* XXX: implement xxx_cpu_list for targets that still miss it */
4979 #if defined(cpu_list)
4980 cpu_list(stdout, &fprintf);
4981 #endif
4982 exit(0);
4983 } else {
4984 cpu_model = optarg;
4986 break;
4987 case QEMU_OPTION_initrd:
4988 initrd_filename = optarg;
4989 break;
4990 case QEMU_OPTION_hda:
4991 if (cyls == 0)
4992 hda_index = drive_add(optarg, HD_ALIAS, 0);
4993 else
4994 hda_index = drive_add(optarg, HD_ALIAS
4995 ",cyls=%d,heads=%d,secs=%d%s",
4996 0, cyls, heads, secs,
4997 translation == BIOS_ATA_TRANSLATION_LBA ?
4998 ",trans=lba" :
4999 translation == BIOS_ATA_TRANSLATION_NONE ?
5000 ",trans=none" : "");
5001 break;
5002 case QEMU_OPTION_hdb:
5003 case QEMU_OPTION_hdc:
5004 case QEMU_OPTION_hdd:
5005 drive_add(optarg, HD_ALIAS, popt->index - QEMU_OPTION_hda);
5006 break;
5007 case QEMU_OPTION_drive:
5008 drive_add(NULL, "%s", optarg);
5009 break;
5010 case QEMU_OPTION_mtdblock:
5011 drive_add(optarg, MTD_ALIAS);
5012 break;
5013 case QEMU_OPTION_sd:
5014 drive_add(optarg, SD_ALIAS);
5015 break;
5016 case QEMU_OPTION_pflash:
5017 drive_add(optarg, PFLASH_ALIAS);
5018 break;
5019 case QEMU_OPTION_snapshot:
5020 snapshot = 1;
5021 break;
5022 case QEMU_OPTION_hdachs:
5024 const char *p;
5025 p = optarg;
5026 cyls = strtol(p, (char **)&p, 0);
5027 if (cyls < 1 || cyls > 16383)
5028 goto chs_fail;
5029 if (*p != ',')
5030 goto chs_fail;
5031 p++;
5032 heads = strtol(p, (char **)&p, 0);
5033 if (heads < 1 || heads > 16)
5034 goto chs_fail;
5035 if (*p != ',')
5036 goto chs_fail;
5037 p++;
5038 secs = strtol(p, (char **)&p, 0);
5039 if (secs < 1 || secs > 63)
5040 goto chs_fail;
5041 if (*p == ',') {
5042 p++;
5043 if (!strcmp(p, "none"))
5044 translation = BIOS_ATA_TRANSLATION_NONE;
5045 else if (!strcmp(p, "lba"))
5046 translation = BIOS_ATA_TRANSLATION_LBA;
5047 else if (!strcmp(p, "auto"))
5048 translation = BIOS_ATA_TRANSLATION_AUTO;
5049 else
5050 goto chs_fail;
5051 } else if (*p != '\0') {
5052 chs_fail:
5053 fprintf(stderr, "qemu: invalid physical CHS format\n");
5054 exit(1);
5056 if (hda_index != -1)
5057 snprintf(drives_opt[hda_index].opt,
5058 sizeof(drives_opt[hda_index].opt),
5059 HD_ALIAS ",cyls=%d,heads=%d,secs=%d%s",
5060 0, cyls, heads, secs,
5061 translation == BIOS_ATA_TRANSLATION_LBA ?
5062 ",trans=lba" :
5063 translation == BIOS_ATA_TRANSLATION_NONE ?
5064 ",trans=none" : "");
5066 break;
5067 case QEMU_OPTION_numa:
5068 if (nb_numa_nodes >= MAX_NODES) {
5069 fprintf(stderr, "qemu: too many NUMA nodes\n");
5070 exit(1);
5072 numa_add(optarg);
5073 break;
5074 case QEMU_OPTION_nographic:
5075 display_type = DT_NOGRAPHIC;
5076 break;
5077 #ifdef CONFIG_CURSES
5078 case QEMU_OPTION_curses:
5079 display_type = DT_CURSES;
5080 break;
5081 #endif
5082 case QEMU_OPTION_portrait:
5083 graphic_rotate = 1;
5084 break;
5085 case QEMU_OPTION_kernel:
5086 kernel_filename = optarg;
5087 break;
5088 case QEMU_OPTION_append:
5089 kernel_cmdline = optarg;
5090 break;
5091 case QEMU_OPTION_cdrom:
5092 drive_add(optarg, CDROM_ALIAS);
5093 break;
5094 case QEMU_OPTION_boot:
5095 boot_devices = optarg;
5096 /* We just do some generic consistency checks */
5098 /* Could easily be extended to 64 devices if needed */
5099 const char *p;
5101 boot_devices_bitmap = 0;
5102 for (p = boot_devices; *p != '\0'; p++) {
5103 /* Allowed boot devices are:
5104 * a b : floppy disk drives
5105 * c ... f : IDE disk drives
5106 * g ... m : machine implementation dependant drives
5107 * n ... p : network devices
5108 * It's up to each machine implementation to check
5109 * if the given boot devices match the actual hardware
5110 * implementation and firmware features.
5112 if (*p < 'a' || *p > 'q') {
5113 fprintf(stderr, "Invalid boot device '%c'\n", *p);
5114 exit(1);
5116 if (boot_devices_bitmap & (1 << (*p - 'a'))) {
5117 fprintf(stderr,
5118 "Boot device '%c' was given twice\n",*p);
5119 exit(1);
5121 boot_devices_bitmap |= 1 << (*p - 'a');
5124 break;
5125 case QEMU_OPTION_fda:
5126 case QEMU_OPTION_fdb:
5127 drive_add(optarg, FD_ALIAS, popt->index - QEMU_OPTION_fda);
5128 break;
5129 #ifdef TARGET_I386
5130 case QEMU_OPTION_no_fd_bootchk:
5131 fd_bootchk = 0;
5132 break;
5133 #endif
5134 case QEMU_OPTION_net:
5135 if (nb_net_clients >= MAX_NET_CLIENTS) {
5136 fprintf(stderr, "qemu: too many network clients\n");
5137 exit(1);
5139 net_clients[nb_net_clients] = optarg;
5140 nb_net_clients++;
5141 break;
5142 #ifdef CONFIG_SLIRP
5143 case QEMU_OPTION_tftp:
5144 tftp_prefix = optarg;
5145 break;
5146 case QEMU_OPTION_bootp:
5147 bootp_filename = optarg;
5148 break;
5149 #ifndef _WIN32
5150 case QEMU_OPTION_smb:
5151 net_slirp_smb(optarg);
5152 break;
5153 #endif
5154 case QEMU_OPTION_redir:
5155 net_slirp_redir(NULL, optarg);
5156 break;
5157 #endif
5158 case QEMU_OPTION_bt:
5159 if (nb_bt_opts >= MAX_BT_CMDLINE) {
5160 fprintf(stderr, "qemu: too many bluetooth options\n");
5161 exit(1);
5163 bt_opts[nb_bt_opts++] = optarg;
5164 break;
5165 #ifdef HAS_AUDIO
5166 case QEMU_OPTION_audio_help:
5167 AUD_help ();
5168 exit (0);
5169 break;
5170 case QEMU_OPTION_soundhw:
5171 select_soundhw (optarg);
5172 break;
5173 #endif
5174 case QEMU_OPTION_h:
5175 help(0);
5176 break;
5177 case QEMU_OPTION_version:
5178 version();
5179 exit(0);
5180 break;
5181 case QEMU_OPTION_m: {
5182 uint64_t value;
5183 char *ptr;
5185 value = strtoul(optarg, &ptr, 10);
5186 switch (*ptr) {
5187 case 0: case 'M': case 'm':
5188 value <<= 20;
5189 break;
5190 case 'G': case 'g':
5191 value <<= 30;
5192 break;
5193 default:
5194 fprintf(stderr, "qemu: invalid ram size: %s\n", optarg);
5195 exit(1);
5198 /* On 32-bit hosts, QEMU is limited by virtual address space */
5199 if (value > (2047 << 20)
5200 #ifndef CONFIG_KQEMU
5201 && HOST_LONG_BITS == 32
5202 #endif
5204 fprintf(stderr, "qemu: at most 2047 MB RAM can be simulated\n");
5205 exit(1);
5207 if (value != (uint64_t)(ram_addr_t)value) {
5208 fprintf(stderr, "qemu: ram size too large\n");
5209 exit(1);
5211 ram_size = value;
5212 break;
5214 case QEMU_OPTION_d:
5216 int mask;
5217 const CPULogItem *item;
5219 mask = cpu_str_to_log_mask(optarg);
5220 if (!mask) {
5221 printf("Log items (comma separated):\n");
5222 for(item = cpu_log_items; item->mask != 0; item++) {
5223 printf("%-10s %s\n", item->name, item->help);
5225 exit(1);
5227 cpu_set_log(mask);
5229 break;
5230 case QEMU_OPTION_s:
5231 gdbstub_dev = "tcp::" DEFAULT_GDBSTUB_PORT;
5232 break;
5233 case QEMU_OPTION_gdb:
5234 gdbstub_dev = optarg;
5235 break;
5236 case QEMU_OPTION_L:
5237 bios_dir = optarg;
5238 break;
5239 case QEMU_OPTION_bios:
5240 bios_name = optarg;
5241 break;
5242 case QEMU_OPTION_singlestep:
5243 singlestep = 1;
5244 break;
5245 case QEMU_OPTION_S:
5246 autostart = 0;
5247 break;
5248 #ifndef _WIN32
5249 case QEMU_OPTION_k:
5250 keyboard_layout = optarg;
5251 break;
5252 #endif
5253 case QEMU_OPTION_localtime:
5254 rtc_utc = 0;
5255 break;
5256 case QEMU_OPTION_vga:
5257 select_vgahw (optarg);
5258 break;
5259 #if defined(TARGET_PPC) || defined(TARGET_SPARC)
5260 case QEMU_OPTION_g:
5262 const char *p;
5263 int w, h, depth;
5264 p = optarg;
5265 w = strtol(p, (char **)&p, 10);
5266 if (w <= 0) {
5267 graphic_error:
5268 fprintf(stderr, "qemu: invalid resolution or depth\n");
5269 exit(1);
5271 if (*p != 'x')
5272 goto graphic_error;
5273 p++;
5274 h = strtol(p, (char **)&p, 10);
5275 if (h <= 0)
5276 goto graphic_error;
5277 if (*p == 'x') {
5278 p++;
5279 depth = strtol(p, (char **)&p, 10);
5280 if (depth != 8 && depth != 15 && depth != 16 &&
5281 depth != 24 && depth != 32)
5282 goto graphic_error;
5283 } else if (*p == '\0') {
5284 depth = graphic_depth;
5285 } else {
5286 goto graphic_error;
5289 graphic_width = w;
5290 graphic_height = h;
5291 graphic_depth = depth;
5293 break;
5294 #endif
5295 case QEMU_OPTION_echr:
5297 char *r;
5298 term_escape_char = strtol(optarg, &r, 0);
5299 if (r == optarg)
5300 printf("Bad argument to echr\n");
5301 break;
5303 case QEMU_OPTION_monitor:
5304 monitor_device = optarg;
5305 break;
5306 case QEMU_OPTION_serial:
5307 if (serial_device_index >= MAX_SERIAL_PORTS) {
5308 fprintf(stderr, "qemu: too many serial ports\n");
5309 exit(1);
5311 serial_devices[serial_device_index] = optarg;
5312 serial_device_index++;
5313 break;
5314 case QEMU_OPTION_watchdog:
5315 i = select_watchdog(optarg);
5316 if (i > 0)
5317 exit (i == 1 ? 1 : 0);
5318 break;
5319 case QEMU_OPTION_watchdog_action:
5320 if (select_watchdog_action(optarg) == -1) {
5321 fprintf(stderr, "Unknown -watchdog-action parameter\n");
5322 exit(1);
5324 break;
5325 case QEMU_OPTION_virtiocon:
5326 if (virtio_console_index >= MAX_VIRTIO_CONSOLES) {
5327 fprintf(stderr, "qemu: too many virtio consoles\n");
5328 exit(1);
5330 virtio_consoles[virtio_console_index] = optarg;
5331 virtio_console_index++;
5332 break;
5333 case QEMU_OPTION_parallel:
5334 if (parallel_device_index >= MAX_PARALLEL_PORTS) {
5335 fprintf(stderr, "qemu: too many parallel ports\n");
5336 exit(1);
5338 parallel_devices[parallel_device_index] = optarg;
5339 parallel_device_index++;
5340 break;
5341 case QEMU_OPTION_loadvm:
5342 loadvm = optarg;
5343 break;
5344 case QEMU_OPTION_full_screen:
5345 full_screen = 1;
5346 break;
5347 #ifdef CONFIG_SDL
5348 case QEMU_OPTION_no_frame:
5349 no_frame = 1;
5350 break;
5351 case QEMU_OPTION_alt_grab:
5352 alt_grab = 1;
5353 break;
5354 case QEMU_OPTION_no_quit:
5355 no_quit = 1;
5356 break;
5357 case QEMU_OPTION_sdl:
5358 display_type = DT_SDL;
5359 break;
5360 #endif
5361 case QEMU_OPTION_pidfile:
5362 pid_file = optarg;
5363 break;
5364 #ifdef TARGET_I386
5365 case QEMU_OPTION_win2k_hack:
5366 win2k_install_hack = 1;
5367 break;
5368 case QEMU_OPTION_rtc_td_hack:
5369 rtc_td_hack = 1;
5370 break;
5371 case QEMU_OPTION_acpitable:
5372 if(acpi_table_add(optarg) < 0) {
5373 fprintf(stderr, "Wrong acpi table provided\n");
5374 exit(1);
5376 break;
5377 case QEMU_OPTION_smbios:
5378 if(smbios_entry_add(optarg) < 0) {
5379 fprintf(stderr, "Wrong smbios provided\n");
5380 exit(1);
5382 break;
5383 #endif
5384 #ifdef CONFIG_KQEMU
5385 case QEMU_OPTION_no_kqemu:
5386 kqemu_allowed = 0;
5387 break;
5388 case QEMU_OPTION_kernel_kqemu:
5389 kqemu_allowed = 2;
5390 break;
5391 #endif
5392 #ifdef CONFIG_KVM
5393 case QEMU_OPTION_enable_kvm:
5394 kvm_allowed = 1;
5395 #ifdef CONFIG_KQEMU
5396 kqemu_allowed = 0;
5397 #endif
5398 break;
5399 #endif
5400 case QEMU_OPTION_usb:
5401 usb_enabled = 1;
5402 break;
5403 case QEMU_OPTION_usbdevice:
5404 usb_enabled = 1;
5405 if (usb_devices_index >= MAX_USB_CMDLINE) {
5406 fprintf(stderr, "Too many USB devices\n");
5407 exit(1);
5409 usb_devices[usb_devices_index] = optarg;
5410 usb_devices_index++;
5411 break;
5412 case QEMU_OPTION_smp:
5413 smp_cpus = atoi(optarg);
5414 if (smp_cpus < 1) {
5415 fprintf(stderr, "Invalid number of CPUs\n");
5416 exit(1);
5418 break;
5419 case QEMU_OPTION_vnc:
5420 display_type = DT_VNC;
5421 vnc_display = optarg;
5422 break;
5423 #ifdef TARGET_I386
5424 case QEMU_OPTION_no_acpi:
5425 acpi_enabled = 0;
5426 break;
5427 case QEMU_OPTION_no_hpet:
5428 no_hpet = 1;
5429 break;
5430 #endif
5431 case QEMU_OPTION_no_reboot:
5432 no_reboot = 1;
5433 break;
5434 case QEMU_OPTION_no_shutdown:
5435 no_shutdown = 1;
5436 break;
5437 case QEMU_OPTION_show_cursor:
5438 cursor_hide = 0;
5439 break;
5440 case QEMU_OPTION_uuid:
5441 if(qemu_uuid_parse(optarg, qemu_uuid) < 0) {
5442 fprintf(stderr, "Fail to parse UUID string."
5443 " Wrong format.\n");
5444 exit(1);
5446 break;
5447 #ifndef _WIN32
5448 case QEMU_OPTION_daemonize:
5449 daemonize = 1;
5450 break;
5451 #endif
5452 case QEMU_OPTION_option_rom:
5453 if (nb_option_roms >= MAX_OPTION_ROMS) {
5454 fprintf(stderr, "Too many option ROMs\n");
5455 exit(1);
5457 option_rom[nb_option_roms] = optarg;
5458 nb_option_roms++;
5459 break;
5460 #if defined(TARGET_ARM) || defined(TARGET_M68K)
5461 case QEMU_OPTION_semihosting:
5462 semihosting_enabled = 1;
5463 break;
5464 #endif
5465 case QEMU_OPTION_name:
5466 qemu_name = optarg;
5467 break;
5468 #if defined(TARGET_SPARC) || defined(TARGET_PPC)
5469 case QEMU_OPTION_prom_env:
5470 if (nb_prom_envs >= MAX_PROM_ENVS) {
5471 fprintf(stderr, "Too many prom variables\n");
5472 exit(1);
5474 prom_envs[nb_prom_envs] = optarg;
5475 nb_prom_envs++;
5476 break;
5477 #endif
5478 #ifdef TARGET_ARM
5479 case QEMU_OPTION_old_param:
5480 old_param = 1;
5481 break;
5482 #endif
5483 case QEMU_OPTION_clock:
5484 configure_alarms(optarg);
5485 break;
5486 case QEMU_OPTION_startdate:
5488 struct tm tm;
5489 time_t rtc_start_date;
5490 if (!strcmp(optarg, "now")) {
5491 rtc_date_offset = -1;
5492 } else {
5493 if (sscanf(optarg, "%d-%d-%dT%d:%d:%d",
5494 &tm.tm_year,
5495 &tm.tm_mon,
5496 &tm.tm_mday,
5497 &tm.tm_hour,
5498 &tm.tm_min,
5499 &tm.tm_sec) == 6) {
5500 /* OK */
5501 } else if (sscanf(optarg, "%d-%d-%d",
5502 &tm.tm_year,
5503 &tm.tm_mon,
5504 &tm.tm_mday) == 3) {
5505 tm.tm_hour = 0;
5506 tm.tm_min = 0;
5507 tm.tm_sec = 0;
5508 } else {
5509 goto date_fail;
5511 tm.tm_year -= 1900;
5512 tm.tm_mon--;
5513 rtc_start_date = mktimegm(&tm);
5514 if (rtc_start_date == -1) {
5515 date_fail:
5516 fprintf(stderr, "Invalid date format. Valid format are:\n"
5517 "'now' or '2006-06-17T16:01:21' or '2006-06-17'\n");
5518 exit(1);
5520 rtc_date_offset = time(NULL) - rtc_start_date;
5523 break;
5524 case QEMU_OPTION_tb_size:
5525 tb_size = strtol(optarg, NULL, 0);
5526 if (tb_size < 0)
5527 tb_size = 0;
5528 break;
5529 case QEMU_OPTION_icount:
5530 use_icount = 1;
5531 if (strcmp(optarg, "auto") == 0) {
5532 icount_time_shift = -1;
5533 } else {
5534 icount_time_shift = strtol(optarg, NULL, 0);
5536 break;
5537 case QEMU_OPTION_incoming:
5538 incoming = optarg;
5539 break;
5540 #ifndef _WIN32
5541 case QEMU_OPTION_chroot:
5542 chroot_dir = optarg;
5543 break;
5544 case QEMU_OPTION_runas:
5545 run_as = optarg;
5546 break;
5547 #endif
5548 #ifdef CONFIG_XEN
5549 case QEMU_OPTION_xen_domid:
5550 xen_domid = atoi(optarg);
5551 break;
5552 case QEMU_OPTION_xen_create:
5553 xen_mode = XEN_CREATE;
5554 break;
5555 case QEMU_OPTION_xen_attach:
5556 xen_mode = XEN_ATTACH;
5557 break;
5558 #endif
5563 #if defined(CONFIG_KVM) && defined(CONFIG_KQEMU)
5564 if (kvm_allowed && kqemu_allowed) {
5565 fprintf(stderr,
5566 "You can not enable both KVM and kqemu at the same time\n");
5567 exit(1);
5569 #endif
5571 machine->max_cpus = machine->max_cpus ?: 1; /* Default to UP */
5572 if (smp_cpus > machine->max_cpus) {
5573 fprintf(stderr, "Number of SMP cpus requested (%d), exceeds max cpus "
5574 "supported by machine `%s' (%d)\n", smp_cpus, machine->name,
5575 machine->max_cpus);
5576 exit(1);
5579 if (display_type == DT_NOGRAPHIC) {
5580 if (serial_device_index == 0)
5581 serial_devices[0] = "stdio";
5582 if (parallel_device_index == 0)
5583 parallel_devices[0] = "null";
5584 if (strncmp(monitor_device, "vc", 2) == 0)
5585 monitor_device = "stdio";
5588 #ifndef _WIN32
5589 if (daemonize) {
5590 pid_t pid;
5592 if (pipe(fds) == -1)
5593 exit(1);
5595 pid = fork();
5596 if (pid > 0) {
5597 uint8_t status;
5598 ssize_t len;
5600 close(fds[1]);
5602 again:
5603 len = read(fds[0], &status, 1);
5604 if (len == -1 && (errno == EINTR))
5605 goto again;
5607 if (len != 1)
5608 exit(1);
5609 else if (status == 1) {
5610 fprintf(stderr, "Could not acquire pidfile\n");
5611 exit(1);
5612 } else
5613 exit(0);
5614 } else if (pid < 0)
5615 exit(1);
5617 setsid();
5619 pid = fork();
5620 if (pid > 0)
5621 exit(0);
5622 else if (pid < 0)
5623 exit(1);
5625 umask(027);
5627 signal(SIGTSTP, SIG_IGN);
5628 signal(SIGTTOU, SIG_IGN);
5629 signal(SIGTTIN, SIG_IGN);
5632 if (pid_file && qemu_create_pidfile(pid_file) != 0) {
5633 if (daemonize) {
5634 uint8_t status = 1;
5635 write(fds[1], &status, 1);
5636 } else
5637 fprintf(stderr, "Could not acquire pid file\n");
5638 exit(1);
5640 #endif
5642 #ifdef CONFIG_KQEMU
5643 if (smp_cpus > 1)
5644 kqemu_allowed = 0;
5645 #endif
5646 if (qemu_init_main_loop()) {
5647 fprintf(stderr, "qemu_init_main_loop failed\n");
5648 exit(1);
5650 linux_boot = (kernel_filename != NULL);
5651 net_boot = (boot_devices_bitmap >> ('n' - 'a')) & 0xF;
5653 if (!linux_boot && *kernel_cmdline != '\0') {
5654 fprintf(stderr, "-append only allowed with -kernel option\n");
5655 exit(1);
5658 if (!linux_boot && initrd_filename != NULL) {
5659 fprintf(stderr, "-initrd only allowed with -kernel option\n");
5660 exit(1);
5663 /* boot to floppy or the default cd if no hard disk defined yet */
5664 if (!boot_devices[0]) {
5665 boot_devices = "cad";
5667 setvbuf(stdout, NULL, _IOLBF, 0);
5669 init_timers();
5670 if (init_timer_alarm() < 0) {
5671 fprintf(stderr, "could not initialize alarm timer\n");
5672 exit(1);
5674 if (use_icount && icount_time_shift < 0) {
5675 use_icount = 2;
5676 /* 125MIPS seems a reasonable initial guess at the guest speed.
5677 It will be corrected fairly quickly anyway. */
5678 icount_time_shift = 3;
5679 init_icount_adjust();
5682 #ifdef _WIN32
5683 socket_init();
5684 #endif
5686 /* init network clients */
5687 if (nb_net_clients == 0) {
5688 /* if no clients, we use a default config */
5689 net_clients[nb_net_clients++] = "nic";
5690 #ifdef CONFIG_SLIRP
5691 net_clients[nb_net_clients++] = "user";
5692 #endif
5695 for(i = 0;i < nb_net_clients; i++) {
5696 if (net_client_parse(net_clients[i]) < 0)
5697 exit(1);
5699 net_client_check();
5701 #ifdef TARGET_I386
5702 /* XXX: this should be moved in the PC machine instantiation code */
5703 if (net_boot != 0) {
5704 int netroms = 0;
5705 for (i = 0; i < nb_nics && i < 4; i++) {
5706 const char *model = nd_table[i].model;
5707 char buf[1024];
5708 if (net_boot & (1 << i)) {
5709 if (model == NULL)
5710 model = "ne2k_pci";
5711 snprintf(buf, sizeof(buf), "%s/pxe-%s.bin", bios_dir, model);
5712 if (get_image_size(buf) > 0) {
5713 if (nb_option_roms >= MAX_OPTION_ROMS) {
5714 fprintf(stderr, "Too many option ROMs\n");
5715 exit(1);
5717 option_rom[nb_option_roms] = strdup(buf);
5718 nb_option_roms++;
5719 netroms++;
5723 if (netroms == 0) {
5724 fprintf(stderr, "No valid PXE rom found for network device\n");
5725 exit(1);
5728 #endif
5730 /* init the bluetooth world */
5731 for (i = 0; i < nb_bt_opts; i++)
5732 if (bt_parse(bt_opts[i]))
5733 exit(1);
5735 /* init the memory */
5736 if (ram_size == 0)
5737 ram_size = DEFAULT_RAM_SIZE * 1024 * 1024;
5739 #ifdef CONFIG_KQEMU
5740 /* FIXME: This is a nasty hack because kqemu can't cope with dynamic
5741 guest ram allocation. It needs to go away. */
5742 if (kqemu_allowed) {
5743 kqemu_phys_ram_size = ram_size + 8 * 1024 * 1024 + 4 * 1024 * 1024;
5744 kqemu_phys_ram_base = qemu_vmalloc(kqemu_phys_ram_size);
5745 if (!kqemu_phys_ram_base) {
5746 fprintf(stderr, "Could not allocate physical memory\n");
5747 exit(1);
5750 #endif
5752 /* init the dynamic translator */
5753 cpu_exec_init_all(tb_size * 1024 * 1024);
5755 bdrv_init();
5756 dma_helper_init();
5758 /* we always create the cdrom drive, even if no disk is there */
5760 if (nb_drives_opt < MAX_DRIVES)
5761 drive_add(NULL, CDROM_ALIAS);
5763 /* we always create at least one floppy */
5765 if (nb_drives_opt < MAX_DRIVES)
5766 drive_add(NULL, FD_ALIAS, 0);
5768 /* we always create one sd slot, even if no card is in it */
5770 if (nb_drives_opt < MAX_DRIVES)
5771 drive_add(NULL, SD_ALIAS);
5773 /* open the virtual block devices */
5775 for(i = 0; i < nb_drives_opt; i++)
5776 if (drive_init(&drives_opt[i], snapshot, machine) == -1)
5777 exit(1);
5779 register_savevm("timer", 0, 2, timer_save, timer_load, NULL);
5780 register_savevm_live("ram", 0, 3, ram_save_live, NULL, ram_load, NULL);
5782 #ifndef _WIN32
5783 /* must be after terminal init, SDL library changes signal handlers */
5784 termsig_setup();
5785 #endif
5787 /* Maintain compatibility with multiple stdio monitors */
5788 if (!strcmp(monitor_device,"stdio")) {
5789 for (i = 0; i < MAX_SERIAL_PORTS; i++) {
5790 const char *devname = serial_devices[i];
5791 if (devname && !strcmp(devname,"mon:stdio")) {
5792 monitor_device = NULL;
5793 break;
5794 } else if (devname && !strcmp(devname,"stdio")) {
5795 monitor_device = NULL;
5796 serial_devices[i] = "mon:stdio";
5797 break;
5802 if (nb_numa_nodes > 0) {
5803 int i;
5805 if (nb_numa_nodes > smp_cpus) {
5806 nb_numa_nodes = smp_cpus;
5809 /* If no memory size if given for any node, assume the default case
5810 * and distribute the available memory equally across all nodes
5812 for (i = 0; i < nb_numa_nodes; i++) {
5813 if (node_mem[i] != 0)
5814 break;
5816 if (i == nb_numa_nodes) {
5817 uint64_t usedmem = 0;
5819 /* On Linux, the each node's border has to be 8MB aligned,
5820 * the final node gets the rest.
5822 for (i = 0; i < nb_numa_nodes - 1; i++) {
5823 node_mem[i] = (ram_size / nb_numa_nodes) & ~((1 << 23UL) - 1);
5824 usedmem += node_mem[i];
5826 node_mem[i] = ram_size - usedmem;
5829 for (i = 0; i < nb_numa_nodes; i++) {
5830 if (node_cpumask[i] != 0)
5831 break;
5833 /* assigning the VCPUs round-robin is easier to implement, guest OSes
5834 * must cope with this anyway, because there are BIOSes out there in
5835 * real machines which also use this scheme.
5837 if (i == nb_numa_nodes) {
5838 for (i = 0; i < smp_cpus; i++) {
5839 node_cpumask[i % nb_numa_nodes] |= 1 << i;
5844 if (kvm_enabled()) {
5845 int ret;
5847 ret = kvm_init(smp_cpus);
5848 if (ret < 0) {
5849 fprintf(stderr, "failed to initialize KVM\n");
5850 exit(1);
5854 if (monitor_device) {
5855 monitor_hd = qemu_chr_open("monitor", monitor_device, NULL);
5856 if (!monitor_hd) {
5857 fprintf(stderr, "qemu: could not open monitor device '%s'\n", monitor_device);
5858 exit(1);
5862 for(i = 0; i < MAX_SERIAL_PORTS; i++) {
5863 const char *devname = serial_devices[i];
5864 if (devname && strcmp(devname, "none")) {
5865 char label[32];
5866 snprintf(label, sizeof(label), "serial%d", i);
5867 serial_hds[i] = qemu_chr_open(label, devname, NULL);
5868 if (!serial_hds[i]) {
5869 fprintf(stderr, "qemu: could not open serial device '%s'\n",
5870 devname);
5871 exit(1);
5876 for(i = 0; i < MAX_PARALLEL_PORTS; i++) {
5877 const char *devname = parallel_devices[i];
5878 if (devname && strcmp(devname, "none")) {
5879 char label[32];
5880 snprintf(label, sizeof(label), "parallel%d", i);
5881 parallel_hds[i] = qemu_chr_open(label, devname, NULL);
5882 if (!parallel_hds[i]) {
5883 fprintf(stderr, "qemu: could not open parallel device '%s'\n",
5884 devname);
5885 exit(1);
5890 for(i = 0; i < MAX_VIRTIO_CONSOLES; i++) {
5891 const char *devname = virtio_consoles[i];
5892 if (devname && strcmp(devname, "none")) {
5893 char label[32];
5894 snprintf(label, sizeof(label), "virtcon%d", i);
5895 virtcon_hds[i] = qemu_chr_open(label, devname, NULL);
5896 if (!virtcon_hds[i]) {
5897 fprintf(stderr, "qemu: could not open virtio console '%s'\n",
5898 devname);
5899 exit(1);
5904 module_call_init(MODULE_INIT_DEVICE);
5906 machine->init(ram_size, boot_devices,
5907 kernel_filename, kernel_cmdline, initrd_filename, cpu_model);
5910 for (env = first_cpu; env != NULL; env = env->next_cpu) {
5911 for (i = 0; i < nb_numa_nodes; i++) {
5912 if (node_cpumask[i] & (1 << env->cpu_index)) {
5913 env->numa_node = i;
5918 current_machine = machine;
5920 /* Set KVM's vcpu state to qemu's initial CPUState. */
5921 if (kvm_enabled()) {
5922 int ret;
5924 ret = kvm_sync_vcpus();
5925 if (ret < 0) {
5926 fprintf(stderr, "failed to initialize vcpus\n");
5927 exit(1);
5931 /* init USB devices */
5932 if (usb_enabled) {
5933 for(i = 0; i < usb_devices_index; i++) {
5934 if (usb_device_add(usb_devices[i], 0) < 0) {
5935 fprintf(stderr, "Warning: could not add USB device %s\n",
5936 usb_devices[i]);
5941 if (!display_state)
5942 dumb_display_init();
5943 /* just use the first displaystate for the moment */
5944 ds = display_state;
5946 if (display_type == DT_DEFAULT) {
5947 #if defined(CONFIG_SDL) || defined(CONFIG_COCOA)
5948 display_type = DT_SDL;
5949 #else
5950 display_type = DT_VNC;
5951 vnc_display = "localhost:0,to=99";
5952 show_vnc_port = 1;
5953 #endif
5957 switch (display_type) {
5958 case DT_NOGRAPHIC:
5959 break;
5960 #if defined(CONFIG_CURSES)
5961 case DT_CURSES:
5962 curses_display_init(ds, full_screen);
5963 break;
5964 #endif
5965 #if defined(CONFIG_SDL)
5966 case DT_SDL:
5967 sdl_display_init(ds, full_screen, no_frame);
5968 break;
5969 #elif defined(CONFIG_COCOA)
5970 case DT_SDL:
5971 cocoa_display_init(ds, full_screen);
5972 break;
5973 #endif
5974 case DT_VNC:
5975 vnc_display_init(ds);
5976 if (vnc_display_open(ds, vnc_display) < 0)
5977 exit(1);
5979 if (show_vnc_port) {
5980 printf("VNC server running on `%s'\n", vnc_display_local_addr(ds));
5982 break;
5983 default:
5984 break;
5986 dpy_resize(ds);
5988 dcl = ds->listeners;
5989 while (dcl != NULL) {
5990 if (dcl->dpy_refresh != NULL) {
5991 ds->gui_timer = qemu_new_timer(rt_clock, gui_update, ds);
5992 qemu_mod_timer(ds->gui_timer, qemu_get_clock(rt_clock));
5994 dcl = dcl->next;
5997 if (display_type == DT_NOGRAPHIC || display_type == DT_VNC) {
5998 nographic_timer = qemu_new_timer(rt_clock, nographic_update, NULL);
5999 qemu_mod_timer(nographic_timer, qemu_get_clock(rt_clock));
6002 text_consoles_set_display(display_state);
6003 qemu_chr_initial_reset();
6005 if (monitor_device && monitor_hd)
6006 monitor_init(monitor_hd, MONITOR_USE_READLINE | MONITOR_IS_DEFAULT);
6008 for(i = 0; i < MAX_SERIAL_PORTS; i++) {
6009 const char *devname = serial_devices[i];
6010 if (devname && strcmp(devname, "none")) {
6011 char label[32];
6012 snprintf(label, sizeof(label), "serial%d", i);
6013 if (strstart(devname, "vc", 0))
6014 qemu_chr_printf(serial_hds[i], "serial%d console\r\n", i);
6018 for(i = 0; i < MAX_PARALLEL_PORTS; i++) {
6019 const char *devname = parallel_devices[i];
6020 if (devname && strcmp(devname, "none")) {
6021 char label[32];
6022 snprintf(label, sizeof(label), "parallel%d", i);
6023 if (strstart(devname, "vc", 0))
6024 qemu_chr_printf(parallel_hds[i], "parallel%d console\r\n", i);
6028 for(i = 0; i < MAX_VIRTIO_CONSOLES; i++) {
6029 const char *devname = virtio_consoles[i];
6030 if (virtcon_hds[i] && devname) {
6031 char label[32];
6032 snprintf(label, sizeof(label), "virtcon%d", i);
6033 if (strstart(devname, "vc", 0))
6034 qemu_chr_printf(virtcon_hds[i], "virtio console%d\r\n", i);
6038 if (gdbstub_dev && gdbserver_start(gdbstub_dev) < 0) {
6039 fprintf(stderr, "qemu: could not open gdbserver on device '%s'\n",
6040 gdbstub_dev);
6041 exit(1);
6044 if (loadvm)
6045 do_loadvm(cur_mon, loadvm);
6047 if (incoming) {
6048 autostart = 0; /* fixme how to deal with -daemonize */
6049 qemu_start_incoming_migration(incoming);
6052 if (autostart)
6053 vm_start();
6055 #ifndef _WIN32
6056 if (daemonize) {
6057 uint8_t status = 0;
6058 ssize_t len;
6060 again1:
6061 len = write(fds[1], &status, 1);
6062 if (len == -1 && (errno == EINTR))
6063 goto again1;
6065 if (len != 1)
6066 exit(1);
6068 chdir("/");
6069 TFR(fd = open("/dev/null", O_RDWR));
6070 if (fd == -1)
6071 exit(1);
6074 if (run_as) {
6075 pwd = getpwnam(run_as);
6076 if (!pwd) {
6077 fprintf(stderr, "User \"%s\" doesn't exist\n", run_as);
6078 exit(1);
6082 if (chroot_dir) {
6083 if (chroot(chroot_dir) < 0) {
6084 fprintf(stderr, "chroot failed\n");
6085 exit(1);
6087 chdir("/");
6090 if (run_as) {
6091 if (setgid(pwd->pw_gid) < 0) {
6092 fprintf(stderr, "Failed to setgid(%d)\n", pwd->pw_gid);
6093 exit(1);
6095 if (setuid(pwd->pw_uid) < 0) {
6096 fprintf(stderr, "Failed to setuid(%d)\n", pwd->pw_uid);
6097 exit(1);
6099 if (setuid(0) != -1) {
6100 fprintf(stderr, "Dropping privileges failed\n");
6101 exit(1);
6105 if (daemonize) {
6106 dup2(fd, 0);
6107 dup2(fd, 1);
6108 dup2(fd, 2);
6110 close(fd);
6112 #endif
6114 main_loop();
6115 quit_timers();
6116 net_cleanup();
6118 return 0;