Present kvm with corret apic phys id.
[qemu-kvm/fedora.git] / target-i386 / kvm.c
blob6613fbd3fbade8f1fcc5e7fbf25223614ff8a3d6
1 /*
2 * QEMU KVM support
4 * Copyright (C) 2006-2008 Qumranet Technologies
5 * Copyright IBM, Corp. 2008
7 * Authors:
8 * Anthony Liguori <aliguori@us.ibm.com>
10 * This work is licensed under the terms of the GNU GPL, version 2 or later.
11 * See the COPYING file in the top-level directory.
15 #include <sys/types.h>
16 #include <sys/ioctl.h>
17 #include <sys/mman.h>
19 #include <linux/kvm.h>
21 #include "qemu-common.h"
22 #include "sysemu.h"
23 #include "kvm.h"
24 #include "cpu.h"
26 //#define DEBUG_KVM
28 #ifdef DEBUG_KVM
29 #define dprintf(fmt, ...) \
30 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
31 #else
32 #define dprintf(fmt, ...) \
33 do { } while (0)
34 #endif
36 int kvm_arch_init_vcpu(CPUState *env)
38 struct {
39 struct kvm_cpuid2 cpuid;
40 struct kvm_cpuid_entry2 entries[100];
41 } __attribute__((packed)) cpuid_data;
42 uint32_t limit, i, j, cpuid_i;
43 uint32_t unused;
45 cpuid_i = 0;
47 cpu_x86_cpuid(env, 0, 0, &limit, &unused, &unused, &unused);
49 for (i = 0; i <= limit; i++) {
50 struct kvm_cpuid_entry2 *c = &cpuid_data.entries[cpuid_i++];
52 switch (i) {
53 case 2: {
54 /* Keep reading function 2 till all the input is received */
55 int times;
57 c->function = i;
58 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC |
59 KVM_CPUID_FLAG_STATE_READ_NEXT;
60 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
61 times = c->eax & 0xff;
63 for (j = 1; j < times; ++j) {
64 c = &cpuid_data.entries[cpuid_i++];
65 c->function = i;
66 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC;
67 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
69 break;
71 case 4:
72 case 0xb:
73 case 0xd:
74 for (j = 0; ; j++) {
75 c->function = i;
76 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
77 c->index = j;
78 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
80 if (i == 4 && c->eax == 0)
81 break;
82 if (i == 0xb && !(c->ecx & 0xff00))
83 break;
84 if (i == 0xd && c->eax == 0)
85 break;
87 c = &cpuid_data.entries[cpuid_i++];
89 break;
90 default:
91 c->function = i;
92 c->flags = 0;
93 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
94 break;
97 cpu_x86_cpuid(env, 0x80000000, 0, &limit, &unused, &unused, &unused);
99 for (i = 0x80000000; i <= limit; i++) {
100 struct kvm_cpuid_entry2 *c = &cpuid_data.entries[cpuid_i++];
102 c->function = i;
103 c->flags = 0;
104 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
107 cpuid_data.cpuid.nent = cpuid_i;
109 return kvm_vcpu_ioctl(env, KVM_SET_CPUID2, &cpuid_data);
112 static int kvm_has_msr_star(CPUState *env)
114 static int has_msr_star;
115 int ret;
117 /* first time */
118 if (has_msr_star == 0) {
119 struct kvm_msr_list msr_list, *kvm_msr_list;
121 has_msr_star = -1;
123 /* Obtain MSR list from KVM. These are the MSRs that we must
124 * save/restore */
125 msr_list.nmsrs = 0;
126 ret = kvm_ioctl(env->kvm_state, KVM_GET_MSR_INDEX_LIST, &msr_list);
127 if (ret < 0)
128 return 0;
130 kvm_msr_list = qemu_mallocz(sizeof(msr_list) +
131 msr_list.nmsrs * sizeof(msr_list.indices[0]));
133 kvm_msr_list->nmsrs = msr_list.nmsrs;
134 ret = kvm_ioctl(env->kvm_state, KVM_GET_MSR_INDEX_LIST, kvm_msr_list);
135 if (ret >= 0) {
136 int i;
138 for (i = 0; i < kvm_msr_list->nmsrs; i++) {
139 if (kvm_msr_list->indices[i] == MSR_STAR) {
140 has_msr_star = 1;
141 break;
146 free(kvm_msr_list);
149 if (has_msr_star == 1)
150 return 1;
151 return 0;
154 int kvm_arch_init(KVMState *s, int smp_cpus)
156 int ret;
158 /* create vm86 tss. KVM uses vm86 mode to emulate 16-bit code
159 * directly. In order to use vm86 mode, a TSS is needed. Since this
160 * must be part of guest physical memory, we need to allocate it. Older
161 * versions of KVM just assumed that it would be at the end of physical
162 * memory but that doesn't work with more than 4GB of memory. We simply
163 * refuse to work with those older versions of KVM. */
164 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, KVM_CAP_SET_TSS_ADDR);
165 if (ret <= 0) {
166 fprintf(stderr, "kvm does not support KVM_CAP_SET_TSS_ADDR\n");
167 return ret;
170 /* this address is 3 pages before the bios, and the bios should present
171 * as unavaible memory. FIXME, need to ensure the e820 map deals with
172 * this?
174 return kvm_vm_ioctl(s, KVM_SET_TSS_ADDR, 0xfffbd000);
177 static void set_v8086_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
179 lhs->selector = rhs->selector;
180 lhs->base = rhs->base;
181 lhs->limit = rhs->limit;
182 lhs->type = 3;
183 lhs->present = 1;
184 lhs->dpl = 3;
185 lhs->db = 0;
186 lhs->s = 1;
187 lhs->l = 0;
188 lhs->g = 0;
189 lhs->avl = 0;
190 lhs->unusable = 0;
193 static void set_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
195 unsigned flags = rhs->flags;
196 lhs->selector = rhs->selector;
197 lhs->base = rhs->base;
198 lhs->limit = rhs->limit;
199 lhs->type = (flags >> DESC_TYPE_SHIFT) & 15;
200 lhs->present = (flags & DESC_P_MASK) != 0;
201 lhs->dpl = rhs->selector & 3;
202 lhs->db = (flags >> DESC_B_SHIFT) & 1;
203 lhs->s = (flags & DESC_S_MASK) != 0;
204 lhs->l = (flags >> DESC_L_SHIFT) & 1;
205 lhs->g = (flags & DESC_G_MASK) != 0;
206 lhs->avl = (flags & DESC_AVL_MASK) != 0;
207 lhs->unusable = 0;
210 static void get_seg(SegmentCache *lhs, const struct kvm_segment *rhs)
212 lhs->selector = rhs->selector;
213 lhs->base = rhs->base;
214 lhs->limit = rhs->limit;
215 lhs->flags =
216 (rhs->type << DESC_TYPE_SHIFT)
217 | (rhs->present * DESC_P_MASK)
218 | (rhs->dpl << DESC_DPL_SHIFT)
219 | (rhs->db << DESC_B_SHIFT)
220 | (rhs->s * DESC_S_MASK)
221 | (rhs->l << DESC_L_SHIFT)
222 | (rhs->g * DESC_G_MASK)
223 | (rhs->avl * DESC_AVL_MASK);
226 static void kvm_getput_reg(__u64 *kvm_reg, target_ulong *qemu_reg, int set)
228 if (set)
229 *kvm_reg = *qemu_reg;
230 else
231 *qemu_reg = *kvm_reg;
234 static int kvm_getput_regs(CPUState *env, int set)
236 struct kvm_regs regs;
237 int ret = 0;
239 if (!set) {
240 ret = kvm_vcpu_ioctl(env, KVM_GET_REGS, &regs);
241 if (ret < 0)
242 return ret;
245 kvm_getput_reg(&regs.rax, &env->regs[R_EAX], set);
246 kvm_getput_reg(&regs.rbx, &env->regs[R_EBX], set);
247 kvm_getput_reg(&regs.rcx, &env->regs[R_ECX], set);
248 kvm_getput_reg(&regs.rdx, &env->regs[R_EDX], set);
249 kvm_getput_reg(&regs.rsi, &env->regs[R_ESI], set);
250 kvm_getput_reg(&regs.rdi, &env->regs[R_EDI], set);
251 kvm_getput_reg(&regs.rsp, &env->regs[R_ESP], set);
252 kvm_getput_reg(&regs.rbp, &env->regs[R_EBP], set);
253 #ifdef TARGET_X86_64
254 kvm_getput_reg(&regs.r8, &env->regs[8], set);
255 kvm_getput_reg(&regs.r9, &env->regs[9], set);
256 kvm_getput_reg(&regs.r10, &env->regs[10], set);
257 kvm_getput_reg(&regs.r11, &env->regs[11], set);
258 kvm_getput_reg(&regs.r12, &env->regs[12], set);
259 kvm_getput_reg(&regs.r13, &env->regs[13], set);
260 kvm_getput_reg(&regs.r14, &env->regs[14], set);
261 kvm_getput_reg(&regs.r15, &env->regs[15], set);
262 #endif
264 kvm_getput_reg(&regs.rflags, &env->eflags, set);
265 kvm_getput_reg(&regs.rip, &env->eip, set);
267 if (set)
268 ret = kvm_vcpu_ioctl(env, KVM_SET_REGS, &regs);
270 return ret;
273 static int kvm_put_fpu(CPUState *env)
275 struct kvm_fpu fpu;
276 int i;
278 memset(&fpu, 0, sizeof fpu);
279 fpu.fsw = env->fpus & ~(7 << 11);
280 fpu.fsw |= (env->fpstt & 7) << 11;
281 fpu.fcw = env->fpuc;
282 for (i = 0; i < 8; ++i)
283 fpu.ftwx |= (!env->fptags[i]) << i;
284 memcpy(fpu.fpr, env->fpregs, sizeof env->fpregs);
285 memcpy(fpu.xmm, env->xmm_regs, sizeof env->xmm_regs);
286 fpu.mxcsr = env->mxcsr;
288 return kvm_vcpu_ioctl(env, KVM_SET_FPU, &fpu);
291 static int kvm_put_sregs(CPUState *env)
293 struct kvm_sregs sregs;
295 memcpy(sregs.interrupt_bitmap,
296 env->interrupt_bitmap,
297 sizeof(sregs.interrupt_bitmap));
299 if ((env->eflags & VM_MASK)) {
300 set_v8086_seg(&sregs.cs, &env->segs[R_CS]);
301 set_v8086_seg(&sregs.ds, &env->segs[R_DS]);
302 set_v8086_seg(&sregs.es, &env->segs[R_ES]);
303 set_v8086_seg(&sregs.fs, &env->segs[R_FS]);
304 set_v8086_seg(&sregs.gs, &env->segs[R_GS]);
305 set_v8086_seg(&sregs.ss, &env->segs[R_SS]);
306 } else {
307 set_seg(&sregs.cs, &env->segs[R_CS]);
308 set_seg(&sregs.ds, &env->segs[R_DS]);
309 set_seg(&sregs.es, &env->segs[R_ES]);
310 set_seg(&sregs.fs, &env->segs[R_FS]);
311 set_seg(&sregs.gs, &env->segs[R_GS]);
312 set_seg(&sregs.ss, &env->segs[R_SS]);
314 if (env->cr[0] & CR0_PE_MASK) {
315 /* force ss cpl to cs cpl */
316 sregs.ss.selector = (sregs.ss.selector & ~3) |
317 (sregs.cs.selector & 3);
318 sregs.ss.dpl = sregs.ss.selector & 3;
322 set_seg(&sregs.tr, &env->tr);
323 set_seg(&sregs.ldt, &env->ldt);
325 sregs.idt.limit = env->idt.limit;
326 sregs.idt.base = env->idt.base;
327 sregs.gdt.limit = env->gdt.limit;
328 sregs.gdt.base = env->gdt.base;
330 sregs.cr0 = env->cr[0];
331 sregs.cr2 = env->cr[2];
332 sregs.cr3 = env->cr[3];
333 sregs.cr4 = env->cr[4];
335 sregs.cr8 = cpu_get_apic_tpr(env);
336 sregs.apic_base = cpu_get_apic_base(env);
338 sregs.efer = env->efer;
340 return kvm_vcpu_ioctl(env, KVM_SET_SREGS, &sregs);
343 static void kvm_msr_entry_set(struct kvm_msr_entry *entry,
344 uint32_t index, uint64_t value)
346 entry->index = index;
347 entry->data = value;
350 static int kvm_put_msrs(CPUState *env)
352 struct {
353 struct kvm_msrs info;
354 struct kvm_msr_entry entries[100];
355 } msr_data;
356 struct kvm_msr_entry *msrs = msr_data.entries;
357 int n = 0;
359 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_CS, env->sysenter_cs);
360 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_ESP, env->sysenter_esp);
361 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_EIP, env->sysenter_eip);
362 if (kvm_has_msr_star(env))
363 kvm_msr_entry_set(&msrs[n++], MSR_STAR, env->star);
364 kvm_msr_entry_set(&msrs[n++], MSR_IA32_TSC, env->tsc);
365 kvm_msr_entry_set(&msrs[n++], MSR_VM_HSAVE_PA, env->vm_hsave);
366 #ifdef TARGET_X86_64
367 /* FIXME if lm capable */
368 kvm_msr_entry_set(&msrs[n++], MSR_CSTAR, env->cstar);
369 kvm_msr_entry_set(&msrs[n++], MSR_KERNELGSBASE, env->kernelgsbase);
370 kvm_msr_entry_set(&msrs[n++], MSR_FMASK, env->fmask);
371 kvm_msr_entry_set(&msrs[n++], MSR_LSTAR, env->lstar);
372 #endif
373 msr_data.info.nmsrs = n;
375 return kvm_vcpu_ioctl(env, KVM_SET_MSRS, &msr_data);
380 static int kvm_get_fpu(CPUState *env)
382 struct kvm_fpu fpu;
383 int i, ret;
385 ret = kvm_vcpu_ioctl(env, KVM_GET_FPU, &fpu);
386 if (ret < 0)
387 return ret;
389 env->fpstt = (fpu.fsw >> 11) & 7;
390 env->fpus = fpu.fsw;
391 env->fpuc = fpu.fcw;
392 for (i = 0; i < 8; ++i)
393 env->fptags[i] = !((fpu.ftwx >> i) & 1);
394 memcpy(env->fpregs, fpu.fpr, sizeof env->fpregs);
395 memcpy(env->xmm_regs, fpu.xmm, sizeof env->xmm_regs);
396 env->mxcsr = fpu.mxcsr;
398 return 0;
401 static int kvm_get_sregs(CPUState *env)
403 struct kvm_sregs sregs;
404 uint32_t hflags;
405 int ret;
407 ret = kvm_vcpu_ioctl(env, KVM_GET_SREGS, &sregs);
408 if (ret < 0)
409 return ret;
411 memcpy(env->interrupt_bitmap,
412 sregs.interrupt_bitmap,
413 sizeof(sregs.interrupt_bitmap));
415 get_seg(&env->segs[R_CS], &sregs.cs);
416 get_seg(&env->segs[R_DS], &sregs.ds);
417 get_seg(&env->segs[R_ES], &sregs.es);
418 get_seg(&env->segs[R_FS], &sregs.fs);
419 get_seg(&env->segs[R_GS], &sregs.gs);
420 get_seg(&env->segs[R_SS], &sregs.ss);
422 get_seg(&env->tr, &sregs.tr);
423 get_seg(&env->ldt, &sregs.ldt);
425 env->idt.limit = sregs.idt.limit;
426 env->idt.base = sregs.idt.base;
427 env->gdt.limit = sregs.gdt.limit;
428 env->gdt.base = sregs.gdt.base;
430 env->cr[0] = sregs.cr0;
431 env->cr[2] = sregs.cr2;
432 env->cr[3] = sregs.cr3;
433 env->cr[4] = sregs.cr4;
435 cpu_set_apic_base(env, sregs.apic_base);
437 env->efer = sregs.efer;
438 //cpu_set_apic_tpr(env, sregs.cr8);
440 #define HFLAG_COPY_MASK ~( \
441 HF_CPL_MASK | HF_PE_MASK | HF_MP_MASK | HF_EM_MASK | \
442 HF_TS_MASK | HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK | \
443 HF_OSFXSR_MASK | HF_LMA_MASK | HF_CS32_MASK | \
444 HF_SS32_MASK | HF_CS64_MASK | HF_ADDSEG_MASK)
448 hflags = (env->segs[R_CS].flags >> DESC_DPL_SHIFT) & HF_CPL_MASK;
449 hflags |= (env->cr[0] & CR0_PE_MASK) << (HF_PE_SHIFT - CR0_PE_SHIFT);
450 hflags |= (env->cr[0] << (HF_MP_SHIFT - CR0_MP_SHIFT)) &
451 (HF_MP_MASK | HF_EM_MASK | HF_TS_MASK);
452 hflags |= (env->eflags & (HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK));
453 hflags |= (env->cr[4] & CR4_OSFXSR_MASK) <<
454 (HF_OSFXSR_SHIFT - CR4_OSFXSR_SHIFT);
456 if (env->efer & MSR_EFER_LMA) {
457 hflags |= HF_LMA_MASK;
460 if ((hflags & HF_LMA_MASK) && (env->segs[R_CS].flags & DESC_L_MASK)) {
461 hflags |= HF_CS32_MASK | HF_SS32_MASK | HF_CS64_MASK;
462 } else {
463 hflags |= (env->segs[R_CS].flags & DESC_B_MASK) >>
464 (DESC_B_SHIFT - HF_CS32_SHIFT);
465 hflags |= (env->segs[R_SS].flags & DESC_B_MASK) >>
466 (DESC_B_SHIFT - HF_SS32_SHIFT);
467 if (!(env->cr[0] & CR0_PE_MASK) ||
468 (env->eflags & VM_MASK) ||
469 !(hflags & HF_CS32_MASK)) {
470 hflags |= HF_ADDSEG_MASK;
471 } else {
472 hflags |= ((env->segs[R_DS].base |
473 env->segs[R_ES].base |
474 env->segs[R_SS].base) != 0) <<
475 HF_ADDSEG_SHIFT;
478 env->hflags = (env->hflags & HFLAG_COPY_MASK) | hflags;
480 return 0;
483 static int kvm_get_msrs(CPUState *env)
485 struct {
486 struct kvm_msrs info;
487 struct kvm_msr_entry entries[100];
488 } msr_data;
489 struct kvm_msr_entry *msrs = msr_data.entries;
490 int ret, i, n;
492 n = 0;
493 msrs[n++].index = MSR_IA32_SYSENTER_CS;
494 msrs[n++].index = MSR_IA32_SYSENTER_ESP;
495 msrs[n++].index = MSR_IA32_SYSENTER_EIP;
496 if (kvm_has_msr_star(env))
497 msrs[n++].index = MSR_STAR;
498 msrs[n++].index = MSR_IA32_TSC;
499 msrs[n++].index = MSR_VM_HSAVE_PA;
500 #ifdef TARGET_X86_64
501 /* FIXME lm_capable_kernel */
502 msrs[n++].index = MSR_CSTAR;
503 msrs[n++].index = MSR_KERNELGSBASE;
504 msrs[n++].index = MSR_FMASK;
505 msrs[n++].index = MSR_LSTAR;
506 #endif
507 msr_data.info.nmsrs = n;
508 ret = kvm_vcpu_ioctl(env, KVM_GET_MSRS, &msr_data);
509 if (ret < 0)
510 return ret;
512 for (i = 0; i < ret; i++) {
513 switch (msrs[i].index) {
514 case MSR_IA32_SYSENTER_CS:
515 env->sysenter_cs = msrs[i].data;
516 break;
517 case MSR_IA32_SYSENTER_ESP:
518 env->sysenter_esp = msrs[i].data;
519 break;
520 case MSR_IA32_SYSENTER_EIP:
521 env->sysenter_eip = msrs[i].data;
522 break;
523 case MSR_STAR:
524 env->star = msrs[i].data;
525 break;
526 #ifdef TARGET_X86_64
527 case MSR_CSTAR:
528 env->cstar = msrs[i].data;
529 break;
530 case MSR_KERNELGSBASE:
531 env->kernelgsbase = msrs[i].data;
532 break;
533 case MSR_FMASK:
534 env->fmask = msrs[i].data;
535 break;
536 case MSR_LSTAR:
537 env->lstar = msrs[i].data;
538 break;
539 #endif
540 case MSR_IA32_TSC:
541 env->tsc = msrs[i].data;
542 break;
543 case MSR_VM_HSAVE_PA:
544 env->vm_hsave = msrs[i].data;
545 break;
549 return 0;
552 int kvm_arch_put_registers(CPUState *env)
554 int ret;
556 ret = kvm_getput_regs(env, 1);
557 if (ret < 0)
558 return ret;
560 ret = kvm_put_fpu(env);
561 if (ret < 0)
562 return ret;
564 ret = kvm_put_sregs(env);
565 if (ret < 0)
566 return ret;
568 ret = kvm_put_msrs(env);
569 if (ret < 0)
570 return ret;
572 return 0;
575 int kvm_arch_get_registers(CPUState *env)
577 int ret;
579 ret = kvm_getput_regs(env, 0);
580 if (ret < 0)
581 return ret;
583 ret = kvm_get_fpu(env);
584 if (ret < 0)
585 return ret;
587 ret = kvm_get_sregs(env);
588 if (ret < 0)
589 return ret;
591 ret = kvm_get_msrs(env);
592 if (ret < 0)
593 return ret;
595 return 0;
598 int kvm_arch_pre_run(CPUState *env, struct kvm_run *run)
600 /* Try to inject an interrupt if the guest can accept it */
601 if (run->ready_for_interrupt_injection &&
602 (env->interrupt_request & CPU_INTERRUPT_HARD) &&
603 (env->eflags & IF_MASK)) {
604 int irq;
606 env->interrupt_request &= ~CPU_INTERRUPT_HARD;
607 irq = cpu_get_pic_interrupt(env);
608 if (irq >= 0) {
609 struct kvm_interrupt intr;
610 intr.irq = irq;
611 /* FIXME: errors */
612 dprintf("injected interrupt %d\n", irq);
613 kvm_vcpu_ioctl(env, KVM_INTERRUPT, &intr);
617 /* If we have an interrupt but the guest is not ready to receive an
618 * interrupt, request an interrupt window exit. This will
619 * cause a return to userspace as soon as the guest is ready to
620 * receive interrupts. */
621 if ((env->interrupt_request & CPU_INTERRUPT_HARD))
622 run->request_interrupt_window = 1;
623 else
624 run->request_interrupt_window = 0;
626 dprintf("setting tpr\n");
627 run->cr8 = cpu_get_apic_tpr(env);
629 return 0;
632 int kvm_arch_post_run(CPUState *env, struct kvm_run *run)
634 if (run->if_flag)
635 env->eflags |= IF_MASK;
636 else
637 env->eflags &= ~IF_MASK;
639 cpu_set_apic_tpr(env, run->cr8);
640 cpu_set_apic_base(env, run->apic_base);
642 return 0;
645 static int kvm_handle_halt(CPUState *env)
647 if (!((env->interrupt_request & CPU_INTERRUPT_HARD) &&
648 (env->eflags & IF_MASK)) &&
649 !(env->interrupt_request & CPU_INTERRUPT_NMI)) {
650 env->halted = 1;
651 env->exception_index = EXCP_HLT;
652 return 0;
655 return 1;
658 int kvm_arch_handle_exit(CPUState *env, struct kvm_run *run)
660 int ret = 0;
662 switch (run->exit_reason) {
663 case KVM_EXIT_HLT:
664 dprintf("handle_hlt\n");
665 ret = kvm_handle_halt(env);
666 break;
669 return ret;