kvm: external module: include <linux/time.h>
[qemu-kvm/fedora.git] / gdbstub.c
blob3cec6e29fe19f510dbfd6ceddbe66d2a8dd98fa6
1 /*
2 * gdb server stub
4 * Copyright (c) 2003-2005 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
20 #include "config.h"
21 #ifdef CONFIG_USER_ONLY
22 #include <stdlib.h>
23 #include <stdio.h>
24 #include <stdarg.h>
25 #include <string.h>
26 #include <errno.h>
27 #include <unistd.h>
28 #include <fcntl.h>
30 #include "qemu.h"
31 #else
32 #include "qemu-common.h"
33 #include "qemu-char.h"
34 #include "sysemu.h"
35 #include "gdbstub.h"
36 #include "qemu-kvm.h"
37 #endif
39 #include "qemu_socket.h"
40 #ifdef _WIN32
41 /* XXX: these constants may be independent of the host ones even for Unix */
42 #ifndef SIGTRAP
43 #define SIGTRAP 5
44 #endif
45 #ifndef SIGINT
46 #define SIGINT 2
47 #endif
48 #else
49 #include <signal.h>
50 #endif
52 //#define DEBUG_GDB
54 enum RSState {
55 RS_IDLE,
56 RS_GETLINE,
57 RS_CHKSUM1,
58 RS_CHKSUM2,
59 RS_SYSCALL,
61 typedef struct GDBState {
62 CPUState *env; /* current CPU */
63 enum RSState state; /* parsing state */
64 char line_buf[4096];
65 int line_buf_index;
66 int line_csum;
67 uint8_t last_packet[4100];
68 int last_packet_len;
69 int signal;
70 #ifdef CONFIG_USER_ONLY
71 int fd;
72 int running_state;
73 #else
74 CharDriverState *chr;
75 #endif
76 } GDBState;
78 /* By default use no IRQs and no timers while single stepping so as to
79 * make single stepping like an ICE HW step.
81 static int sstep_flags = SSTEP_ENABLE|SSTEP_NOIRQ|SSTEP_NOTIMER;
83 #ifdef CONFIG_USER_ONLY
84 /* XXX: This is not thread safe. Do we care? */
85 static int gdbserver_fd = -1;
87 /* XXX: remove this hack. */
88 static GDBState gdbserver_state;
90 static int get_char(GDBState *s)
92 uint8_t ch;
93 int ret;
95 for(;;) {
96 ret = recv(s->fd, &ch, 1, 0);
97 if (ret < 0) {
98 if (errno == ECONNRESET)
99 s->fd = -1;
100 if (errno != EINTR && errno != EAGAIN)
101 return -1;
102 } else if (ret == 0) {
103 close(s->fd);
104 s->fd = -1;
105 return -1;
106 } else {
107 break;
110 return ch;
112 #endif
114 /* GDB stub state for use by semihosting syscalls. */
115 static GDBState *gdb_syscall_state;
116 static gdb_syscall_complete_cb gdb_current_syscall_cb;
118 enum {
119 GDB_SYS_UNKNOWN,
120 GDB_SYS_ENABLED,
121 GDB_SYS_DISABLED,
122 } gdb_syscall_mode;
124 /* If gdb is connected when the first semihosting syscall occurs then use
125 remote gdb syscalls. Otherwise use native file IO. */
126 int use_gdb_syscalls(void)
128 if (gdb_syscall_mode == GDB_SYS_UNKNOWN) {
129 gdb_syscall_mode = (gdb_syscall_state ? GDB_SYS_ENABLED
130 : GDB_SYS_DISABLED);
132 return gdb_syscall_mode == GDB_SYS_ENABLED;
135 /* Resume execution. */
136 static inline void gdb_continue(GDBState *s)
138 #ifdef CONFIG_USER_ONLY
139 s->running_state = 1;
140 #else
141 vm_start();
142 #endif
145 static void put_buffer(GDBState *s, const uint8_t *buf, int len)
147 #ifdef CONFIG_USER_ONLY
148 int ret;
150 while (len > 0) {
151 ret = send(s->fd, buf, len, 0);
152 if (ret < 0) {
153 if (errno != EINTR && errno != EAGAIN)
154 return;
155 } else {
156 buf += ret;
157 len -= ret;
160 #else
161 qemu_chr_write(s->chr, buf, len);
162 #endif
165 static inline int fromhex(int v)
167 if (v >= '0' && v <= '9')
168 return v - '0';
169 else if (v >= 'A' && v <= 'F')
170 return v - 'A' + 10;
171 else if (v >= 'a' && v <= 'f')
172 return v - 'a' + 10;
173 else
174 return 0;
177 static inline int tohex(int v)
179 if (v < 10)
180 return v + '0';
181 else
182 return v - 10 + 'a';
185 static void memtohex(char *buf, const uint8_t *mem, int len)
187 int i, c;
188 char *q;
189 q = buf;
190 for(i = 0; i < len; i++) {
191 c = mem[i];
192 *q++ = tohex(c >> 4);
193 *q++ = tohex(c & 0xf);
195 *q = '\0';
198 static void hextomem(uint8_t *mem, const char *buf, int len)
200 int i;
202 for(i = 0; i < len; i++) {
203 mem[i] = (fromhex(buf[0]) << 4) | fromhex(buf[1]);
204 buf += 2;
208 /* return -1 if error, 0 if OK */
209 static int put_packet(GDBState *s, char *buf)
211 int len, csum, i;
212 uint8_t *p;
214 #ifdef DEBUG_GDB
215 printf("reply='%s'\n", buf);
216 #endif
218 for(;;) {
219 p = s->last_packet;
220 *(p++) = '$';
221 len = strlen(buf);
222 memcpy(p, buf, len);
223 p += len;
224 csum = 0;
225 for(i = 0; i < len; i++) {
226 csum += buf[i];
228 *(p++) = '#';
229 *(p++) = tohex((csum >> 4) & 0xf);
230 *(p++) = tohex((csum) & 0xf);
232 s->last_packet_len = p - s->last_packet;
233 put_buffer(s, (uint8_t *)s->last_packet, s->last_packet_len);
235 #ifdef CONFIG_USER_ONLY
236 i = get_char(s);
237 if (i < 0)
238 return -1;
239 if (i == '+')
240 break;
241 #else
242 break;
243 #endif
245 return 0;
248 #if defined(TARGET_I386)
250 #ifdef TARGET_X86_64
251 static const uint8_t gdb_x86_64_regs[16] = {
252 R_EAX, R_EBX, R_ECX, R_EDX, R_ESI, R_EDI, R_EBP, R_ESP,
253 8, 9, 10, 11, 12, 13, 14, 15,
255 #endif
257 static int cpu_gdb_read_registers(CPUState *env, uint8_t *mem_buf)
259 int i, fpus, nb_regs;
260 uint8_t *p;
262 p = mem_buf;
263 #ifdef TARGET_X86_64
264 if (env->hflags & HF_CS64_MASK) {
265 nb_regs = 16;
266 for(i = 0; i < 16; i++) {
267 *(uint64_t *)p = tswap64(env->regs[gdb_x86_64_regs[i]]);
268 p += 8;
270 *(uint64_t *)p = tswap64(env->eip);
271 p += 8;
272 } else
273 #endif
275 nb_regs = 8;
276 for(i = 0; i < 8; i++) {
277 *(uint32_t *)p = tswap32(env->regs[i]);
278 p += 4;
280 *(uint32_t *)p = tswap32(env->eip);
281 p += 4;
284 *(uint32_t *)p = tswap32(env->eflags);
285 p += 4;
286 *(uint32_t *)p = tswap32(env->segs[R_CS].selector);
287 p += 4;
288 *(uint32_t *)p = tswap32(env->segs[R_SS].selector);
289 p += 4;
290 *(uint32_t *)p = tswap32(env->segs[R_DS].selector);
291 p += 4;
292 *(uint32_t *)p = tswap32(env->segs[R_ES].selector);
293 p += 4;
294 *(uint32_t *)p = tswap32(env->segs[R_FS].selector);
295 p += 4;
296 *(uint32_t *)p = tswap32(env->segs[R_GS].selector);
297 p += 4;
298 for(i = 0; i < 8; i++) {
299 /* XXX: convert floats */
300 #ifdef USE_X86LDOUBLE
301 memcpy(p, &env->fpregs[i], 10);
302 #else
303 memset(p, 0, 10);
304 #endif
305 p += 10;
307 *(uint32_t *)p = tswap32(env->fpuc); /* fctrl */
308 p += 4;
309 fpus = (env->fpus & ~0x3800) | (env->fpstt & 0x7) << 11;
310 *(uint32_t *)p = tswap32(fpus); /* fstat */
311 p += 4;
312 *(uint32_t *)p = 0; /* ftag */
313 p += 4;
314 *(uint32_t *)p = 0; /* fiseg */
315 p += 4;
316 *(uint32_t *)p = 0; /* fioff */
317 p += 4;
318 *(uint32_t *)p = 0; /* foseg */
319 p += 4;
320 *(uint32_t *)p = 0; /* fooff */
321 p += 4;
322 *(uint32_t *)p = 0; /* fop */
323 p += 4;
324 for(i = 0; i < nb_regs; i++) {
325 *(uint64_t *)p = tswap64(env->xmm_regs[i].XMM_Q(0));
326 p += 8;
327 *(uint64_t *)p = tswap64(env->xmm_regs[i].XMM_Q(1));
328 p += 8;
330 *(uint32_t *)p = tswap32(env->mxcsr);
331 p += 4;
332 return p - mem_buf;
335 static inline void cpu_gdb_load_seg(CPUState *env, const uint8_t **pp,
336 int sreg)
338 const uint8_t *p;
339 uint32_t sel;
340 p = *pp;
341 sel = tswap32(*(uint32_t *)p);
342 p += 4;
343 if (sel != env->segs[sreg].selector) {
344 #if defined(CONFIG_USER_ONLY)
345 cpu_x86_load_seg(env, sreg, sel);
346 #else
347 /* XXX: do it with a debug function which does not raise an
348 exception */
349 #endif
351 *pp = p;
354 static void cpu_gdb_write_registers(CPUState *env, uint8_t *mem_buf, int size)
356 const uint8_t *p = mem_buf;
357 int i, nb_regs;
358 uint16_t fpus;
360 #ifdef TARGET_X86_64
361 if (env->hflags & HF_CS64_MASK) {
362 nb_regs = 16;
363 for(i = 0; i < 16; i++) {
364 env->regs[gdb_x86_64_regs[i]] = tswap64(*(uint64_t *)p);
365 p += 8;
367 env->eip = tswap64(*(uint64_t *)p);
368 p += 8;
369 } else
370 #endif
372 nb_regs = 8;
373 for(i = 0; i < 8; i++) {
374 env->regs[i] = tswap32(*(uint32_t *)p);
375 p += 4;
377 env->eip = tswap32(*(uint32_t *)p);
378 p += 4;
380 env->eflags = tswap32(*(uint32_t *)p);
381 p += 4;
382 cpu_gdb_load_seg(env, &p, R_CS);
383 cpu_gdb_load_seg(env, &p, R_SS);
384 cpu_gdb_load_seg(env, &p, R_DS);
385 cpu_gdb_load_seg(env, &p, R_ES);
386 cpu_gdb_load_seg(env, &p, R_FS);
387 cpu_gdb_load_seg(env, &p, R_GS);
389 /* FPU state */
390 for(i = 0; i < 8; i++) {
391 /* XXX: convert floats */
392 #ifdef USE_X86LDOUBLE
393 memcpy(&env->fpregs[i], p, 10);
394 #endif
395 p += 10;
397 env->fpuc = tswap32(*(uint32_t *)p); /* fctrl */
398 p += 4;
399 fpus = tswap32(*(uint32_t *)p);
400 p += 4;
401 env->fpstt = (fpus >> 11) & 7;
402 env->fpus = fpus & ~0x3800;
403 p += 4 * 6;
405 if (size >= ((p - mem_buf) + 16 * nb_regs + 4)) {
406 /* SSE state */
407 for(i = 0; i < nb_regs; i++) {
408 env->xmm_regs[i].XMM_Q(0) = tswap64(*(uint64_t *)p);
409 p += 8;
410 env->xmm_regs[i].XMM_Q(1) = tswap64(*(uint64_t *)p);
411 p += 8;
413 env->mxcsr = tswap32(*(uint32_t *)p);
414 p += 4;
418 #elif defined (TARGET_PPC)
419 static int cpu_gdb_read_registers(CPUState *env, uint8_t *mem_buf)
421 uint32_t *registers = (uint32_t *)mem_buf, tmp;
422 int i;
424 /* fill in gprs */
425 for(i = 0; i < 32; i++) {
426 registers[i] = tswapl(env->gpr[i]);
428 /* fill in fprs */
429 for (i = 0; i < 32; i++) {
430 registers[(i * 2) + 32] = tswapl(*((uint32_t *)&env->fpr[i]));
431 registers[(i * 2) + 33] = tswapl(*((uint32_t *)&env->fpr[i] + 1));
433 /* nip, msr, ccr, lnk, ctr, xer, mq */
434 registers[96] = tswapl(env->nip);
435 registers[97] = tswapl(env->msr);
436 tmp = 0;
437 for (i = 0; i < 8; i++)
438 tmp |= env->crf[i] << (32 - ((i + 1) * 4));
439 registers[98] = tswapl(tmp);
440 registers[99] = tswapl(env->lr);
441 registers[100] = tswapl(env->ctr);
442 registers[101] = tswapl(ppc_load_xer(env));
443 registers[102] = 0;
445 return 103 * 4;
448 static void cpu_gdb_write_registers(CPUState *env, uint8_t *mem_buf, int size)
450 uint32_t *registers = (uint32_t *)mem_buf;
451 int i;
453 /* fill in gprs */
454 for (i = 0; i < 32; i++) {
455 env->gpr[i] = tswapl(registers[i]);
457 /* fill in fprs */
458 for (i = 0; i < 32; i++) {
459 *((uint32_t *)&env->fpr[i]) = tswapl(registers[(i * 2) + 32]);
460 *((uint32_t *)&env->fpr[i] + 1) = tswapl(registers[(i * 2) + 33]);
462 /* nip, msr, ccr, lnk, ctr, xer, mq */
463 env->nip = tswapl(registers[96]);
464 ppc_store_msr(env, tswapl(registers[97]));
465 registers[98] = tswapl(registers[98]);
466 for (i = 0; i < 8; i++)
467 env->crf[i] = (registers[98] >> (32 - ((i + 1) * 4))) & 0xF;
468 env->lr = tswapl(registers[99]);
469 env->ctr = tswapl(registers[100]);
470 ppc_store_xer(env, tswapl(registers[101]));
472 #elif defined (TARGET_SPARC)
473 static int cpu_gdb_read_registers(CPUState *env, uint8_t *mem_buf)
475 target_ulong *registers = (target_ulong *)mem_buf;
476 int i;
478 /* fill in g0..g7 */
479 for(i = 0; i < 8; i++) {
480 registers[i] = tswapl(env->gregs[i]);
482 /* fill in register window */
483 for(i = 0; i < 24; i++) {
484 registers[i + 8] = tswapl(env->regwptr[i]);
486 #ifndef TARGET_SPARC64
487 /* fill in fprs */
488 for (i = 0; i < 32; i++) {
489 registers[i + 32] = tswapl(*((uint32_t *)&env->fpr[i]));
491 /* Y, PSR, WIM, TBR, PC, NPC, FPSR, CPSR */
492 registers[64] = tswapl(env->y);
494 target_ulong tmp;
496 tmp = GET_PSR(env);
497 registers[65] = tswapl(tmp);
499 registers[66] = tswapl(env->wim);
500 registers[67] = tswapl(env->tbr);
501 registers[68] = tswapl(env->pc);
502 registers[69] = tswapl(env->npc);
503 registers[70] = tswapl(env->fsr);
504 registers[71] = 0; /* csr */
505 registers[72] = 0;
506 return 73 * sizeof(target_ulong);
507 #else
508 /* fill in fprs */
509 for (i = 0; i < 64; i += 2) {
510 uint64_t tmp;
512 tmp = ((uint64_t)*(uint32_t *)&env->fpr[i]) << 32;
513 tmp |= *(uint32_t *)&env->fpr[i + 1];
514 registers[i / 2 + 32] = tswap64(tmp);
516 registers[64] = tswapl(env->pc);
517 registers[65] = tswapl(env->npc);
518 registers[66] = tswapl(((uint64_t)GET_CCR(env) << 32) |
519 ((env->asi & 0xff) << 24) |
520 ((env->pstate & 0xfff) << 8) |
521 GET_CWP64(env));
522 registers[67] = tswapl(env->fsr);
523 registers[68] = tswapl(env->fprs);
524 registers[69] = tswapl(env->y);
525 return 70 * sizeof(target_ulong);
526 #endif
529 static void cpu_gdb_write_registers(CPUState *env, uint8_t *mem_buf, int size)
531 target_ulong *registers = (target_ulong *)mem_buf;
532 int i;
534 /* fill in g0..g7 */
535 for(i = 0; i < 7; i++) {
536 env->gregs[i] = tswapl(registers[i]);
538 /* fill in register window */
539 for(i = 0; i < 24; i++) {
540 env->regwptr[i] = tswapl(registers[i + 8]);
542 #ifndef TARGET_SPARC64
543 /* fill in fprs */
544 for (i = 0; i < 32; i++) {
545 *((uint32_t *)&env->fpr[i]) = tswapl(registers[i + 32]);
547 /* Y, PSR, WIM, TBR, PC, NPC, FPSR, CPSR */
548 env->y = tswapl(registers[64]);
549 PUT_PSR(env, tswapl(registers[65]));
550 env->wim = tswapl(registers[66]);
551 env->tbr = tswapl(registers[67]);
552 env->pc = tswapl(registers[68]);
553 env->npc = tswapl(registers[69]);
554 env->fsr = tswapl(registers[70]);
555 #else
556 for (i = 0; i < 64; i += 2) {
557 uint64_t tmp;
559 tmp = tswap64(registers[i / 2 + 32]);
560 *((uint32_t *)&env->fpr[i]) = tmp >> 32;
561 *((uint32_t *)&env->fpr[i + 1]) = tmp & 0xffffffff;
563 env->pc = tswapl(registers[64]);
564 env->npc = tswapl(registers[65]);
566 uint64_t tmp = tswapl(registers[66]);
568 PUT_CCR(env, tmp >> 32);
569 env->asi = (tmp >> 24) & 0xff;
570 env->pstate = (tmp >> 8) & 0xfff;
571 PUT_CWP64(env, tmp & 0xff);
573 env->fsr = tswapl(registers[67]);
574 env->fprs = tswapl(registers[68]);
575 env->y = tswapl(registers[69]);
576 #endif
578 #elif defined (TARGET_ARM)
579 static int cpu_gdb_read_registers(CPUState *env, uint8_t *mem_buf)
581 int i;
582 uint8_t *ptr;
584 ptr = mem_buf;
585 /* 16 core integer registers (4 bytes each). */
586 for (i = 0; i < 16; i++)
588 *(uint32_t *)ptr = tswapl(env->regs[i]);
589 ptr += 4;
591 /* 8 FPA registers (12 bytes each), FPS (4 bytes).
592 Not yet implemented. */
593 memset (ptr, 0, 8 * 12 + 4);
594 ptr += 8 * 12 + 4;
595 /* CPSR (4 bytes). */
596 *(uint32_t *)ptr = tswapl (cpsr_read(env));
597 ptr += 4;
599 return ptr - mem_buf;
602 static void cpu_gdb_write_registers(CPUState *env, uint8_t *mem_buf, int size)
604 int i;
605 uint8_t *ptr;
607 ptr = mem_buf;
608 /* Core integer registers. */
609 for (i = 0; i < 16; i++)
611 env->regs[i] = tswapl(*(uint32_t *)ptr);
612 ptr += 4;
614 /* Ignore FPA regs and scr. */
615 ptr += 8 * 12 + 4;
616 cpsr_write (env, tswapl(*(uint32_t *)ptr), 0xffffffff);
618 #elif defined (TARGET_M68K)
619 static int cpu_gdb_read_registers(CPUState *env, uint8_t *mem_buf)
621 int i;
622 uint8_t *ptr;
623 CPU_DoubleU u;
625 ptr = mem_buf;
626 /* D0-D7 */
627 for (i = 0; i < 8; i++) {
628 *(uint32_t *)ptr = tswapl(env->dregs[i]);
629 ptr += 4;
631 /* A0-A7 */
632 for (i = 0; i < 8; i++) {
633 *(uint32_t *)ptr = tswapl(env->aregs[i]);
634 ptr += 4;
636 *(uint32_t *)ptr = tswapl(env->sr);
637 ptr += 4;
638 *(uint32_t *)ptr = tswapl(env->pc);
639 ptr += 4;
640 /* F0-F7. The 68881/68040 have 12-bit extended precision registers.
641 ColdFire has 8-bit double precision registers. */
642 for (i = 0; i < 8; i++) {
643 u.d = env->fregs[i];
644 *(uint32_t *)ptr = tswap32(u.l.upper);
645 *(uint32_t *)ptr = tswap32(u.l.lower);
647 /* FP control regs (not implemented). */
648 memset (ptr, 0, 3 * 4);
649 ptr += 3 * 4;
651 return ptr - mem_buf;
654 static void cpu_gdb_write_registers(CPUState *env, uint8_t *mem_buf, int size)
656 int i;
657 uint8_t *ptr;
658 CPU_DoubleU u;
660 ptr = mem_buf;
661 /* D0-D7 */
662 for (i = 0; i < 8; i++) {
663 env->dregs[i] = tswapl(*(uint32_t *)ptr);
664 ptr += 4;
666 /* A0-A7 */
667 for (i = 0; i < 8; i++) {
668 env->aregs[i] = tswapl(*(uint32_t *)ptr);
669 ptr += 4;
671 env->sr = tswapl(*(uint32_t *)ptr);
672 ptr += 4;
673 env->pc = tswapl(*(uint32_t *)ptr);
674 ptr += 4;
675 /* F0-F7. The 68881/68040 have 12-bit extended precision registers.
676 ColdFire has 8-bit double precision registers. */
677 for (i = 0; i < 8; i++) {
678 u.l.upper = tswap32(*(uint32_t *)ptr);
679 u.l.lower = tswap32(*(uint32_t *)ptr);
680 env->fregs[i] = u.d;
682 /* FP control regs (not implemented). */
683 ptr += 3 * 4;
685 #elif defined (TARGET_MIPS)
686 static int cpu_gdb_read_registers(CPUState *env, uint8_t *mem_buf)
688 int i;
689 uint8_t *ptr;
691 ptr = mem_buf;
692 for (i = 0; i < 32; i++)
694 *(target_ulong *)ptr = tswapl(env->gpr[env->current_tc][i]);
695 ptr += sizeof(target_ulong);
698 *(target_ulong *)ptr = (int32_t)tswap32(env->CP0_Status);
699 ptr += sizeof(target_ulong);
701 *(target_ulong *)ptr = tswapl(env->LO[env->current_tc][0]);
702 ptr += sizeof(target_ulong);
704 *(target_ulong *)ptr = tswapl(env->HI[env->current_tc][0]);
705 ptr += sizeof(target_ulong);
707 *(target_ulong *)ptr = tswapl(env->CP0_BadVAddr);
708 ptr += sizeof(target_ulong);
710 *(target_ulong *)ptr = (int32_t)tswap32(env->CP0_Cause);
711 ptr += sizeof(target_ulong);
713 *(target_ulong *)ptr = tswapl(env->PC[env->current_tc]);
714 ptr += sizeof(target_ulong);
716 if (env->CP0_Config1 & (1 << CP0C1_FP))
718 for (i = 0; i < 32; i++)
720 if (env->CP0_Status & (1 << CP0St_FR))
721 *(target_ulong *)ptr = tswapl(env->fpu->fpr[i].d);
722 else
723 *(target_ulong *)ptr = tswap32(env->fpu->fpr[i].w[FP_ENDIAN_IDX]);
724 ptr += sizeof(target_ulong);
727 *(target_ulong *)ptr = (int32_t)tswap32(env->fpu->fcr31);
728 ptr += sizeof(target_ulong);
730 *(target_ulong *)ptr = (int32_t)tswap32(env->fpu->fcr0);
731 ptr += sizeof(target_ulong);
734 /* "fp", pseudo frame pointer. Not yet implemented in gdb. */
735 *(target_ulong *)ptr = 0;
736 ptr += sizeof(target_ulong);
738 /* Registers for embedded use, we just pad them. */
739 for (i = 0; i < 16; i++)
741 *(target_ulong *)ptr = 0;
742 ptr += sizeof(target_ulong);
745 /* Processor ID. */
746 *(target_ulong *)ptr = (int32_t)tswap32(env->CP0_PRid);
747 ptr += sizeof(target_ulong);
749 return ptr - mem_buf;
752 /* convert MIPS rounding mode in FCR31 to IEEE library */
753 static unsigned int ieee_rm[] =
755 float_round_nearest_even,
756 float_round_to_zero,
757 float_round_up,
758 float_round_down
760 #define RESTORE_ROUNDING_MODE \
761 set_float_rounding_mode(ieee_rm[env->fpu->fcr31 & 3], &env->fpu->fp_status)
763 static void cpu_gdb_write_registers(CPUState *env, uint8_t *mem_buf, int size)
765 int i;
766 uint8_t *ptr;
768 ptr = mem_buf;
769 for (i = 0; i < 32; i++)
771 env->gpr[env->current_tc][i] = tswapl(*(target_ulong *)ptr);
772 ptr += sizeof(target_ulong);
775 env->CP0_Status = tswapl(*(target_ulong *)ptr);
776 ptr += sizeof(target_ulong);
778 env->LO[env->current_tc][0] = tswapl(*(target_ulong *)ptr);
779 ptr += sizeof(target_ulong);
781 env->HI[env->current_tc][0] = tswapl(*(target_ulong *)ptr);
782 ptr += sizeof(target_ulong);
784 env->CP0_BadVAddr = tswapl(*(target_ulong *)ptr);
785 ptr += sizeof(target_ulong);
787 env->CP0_Cause = tswapl(*(target_ulong *)ptr);
788 ptr += sizeof(target_ulong);
790 env->PC[env->current_tc] = tswapl(*(target_ulong *)ptr);
791 ptr += sizeof(target_ulong);
793 if (env->CP0_Config1 & (1 << CP0C1_FP))
795 for (i = 0; i < 32; i++)
797 if (env->CP0_Status & (1 << CP0St_FR))
798 env->fpu->fpr[i].d = tswapl(*(target_ulong *)ptr);
799 else
800 env->fpu->fpr[i].w[FP_ENDIAN_IDX] = tswapl(*(target_ulong *)ptr);
801 ptr += sizeof(target_ulong);
804 env->fpu->fcr31 = tswapl(*(target_ulong *)ptr) & 0xFF83FFFF;
805 ptr += sizeof(target_ulong);
807 /* The remaining registers are assumed to be read-only. */
809 /* set rounding mode */
810 RESTORE_ROUNDING_MODE;
812 #ifndef CONFIG_SOFTFLOAT
813 /* no floating point exception for native float */
814 SET_FP_ENABLE(env->fcr31, 0);
815 #endif
818 #elif defined (TARGET_SH4)
820 /* Hint: Use "set architecture sh4" in GDB to see fpu registers */
822 static int cpu_gdb_read_registers(CPUState *env, uint8_t *mem_buf)
824 uint32_t *ptr = (uint32_t *)mem_buf;
825 int i;
827 #define SAVE(x) *ptr++=tswapl(x)
828 if ((env->sr & (SR_MD | SR_RB)) == (SR_MD | SR_RB)) {
829 for (i = 0; i < 8; i++) SAVE(env->gregs[i + 16]);
830 } else {
831 for (i = 0; i < 8; i++) SAVE(env->gregs[i]);
833 for (i = 8; i < 16; i++) SAVE(env->gregs[i]);
834 SAVE (env->pc);
835 SAVE (env->pr);
836 SAVE (env->gbr);
837 SAVE (env->vbr);
838 SAVE (env->mach);
839 SAVE (env->macl);
840 SAVE (env->sr);
841 SAVE (env->fpul);
842 SAVE (env->fpscr);
843 for (i = 0; i < 16; i++)
844 SAVE(env->fregs[i + ((env->fpscr & FPSCR_FR) ? 16 : 0)]);
845 SAVE (env->ssr);
846 SAVE (env->spc);
847 for (i = 0; i < 8; i++) SAVE(env->gregs[i]);
848 for (i = 0; i < 8; i++) SAVE(env->gregs[i + 16]);
849 return ((uint8_t *)ptr - mem_buf);
852 static void cpu_gdb_write_registers(CPUState *env, uint8_t *mem_buf, int size)
854 uint32_t *ptr = (uint32_t *)mem_buf;
855 int i;
857 #define LOAD(x) (x)=*ptr++;
858 if ((env->sr & (SR_MD | SR_RB)) == (SR_MD | SR_RB)) {
859 for (i = 0; i < 8; i++) LOAD(env->gregs[i + 16]);
860 } else {
861 for (i = 0; i < 8; i++) LOAD(env->gregs[i]);
863 for (i = 8; i < 16; i++) LOAD(env->gregs[i]);
864 LOAD (env->pc);
865 LOAD (env->pr);
866 LOAD (env->gbr);
867 LOAD (env->vbr);
868 LOAD (env->mach);
869 LOAD (env->macl);
870 LOAD (env->sr);
871 LOAD (env->fpul);
872 LOAD (env->fpscr);
873 for (i = 0; i < 16; i++)
874 LOAD(env->fregs[i + ((env->fpscr & FPSCR_FR) ? 16 : 0)]);
875 LOAD (env->ssr);
876 LOAD (env->spc);
877 for (i = 0; i < 8; i++) LOAD(env->gregs[i]);
878 for (i = 0; i < 8; i++) LOAD(env->gregs[i + 16]);
880 #elif defined (TARGET_CRIS)
882 static int cris_save_32 (unsigned char *d, uint32_t value)
884 *d++ = (value);
885 *d++ = (value >>= 8);
886 *d++ = (value >>= 8);
887 *d++ = (value >>= 8);
888 return 4;
890 static int cris_save_16 (unsigned char *d, uint32_t value)
892 *d++ = (value);
893 *d++ = (value >>= 8);
894 return 2;
896 static int cris_save_8 (unsigned char *d, uint32_t value)
898 *d++ = (value);
899 return 1;
902 /* FIXME: this will bug on archs not supporting unaligned word accesses. */
903 static int cpu_gdb_read_registers(CPUState *env, uint8_t *mem_buf)
905 uint8_t *ptr = mem_buf;
906 uint8_t srs;
907 int i;
909 for (i = 0; i < 16; i++)
910 ptr += cris_save_32 (ptr, env->regs[i]);
912 srs = env->pregs[PR_SRS];
914 ptr += cris_save_8 (ptr, env->pregs[0]);
915 ptr += cris_save_8 (ptr, env->pregs[1]);
916 ptr += cris_save_32 (ptr, env->pregs[2]);
917 ptr += cris_save_8 (ptr, srs);
918 ptr += cris_save_16 (ptr, env->pregs[4]);
920 for (i = 5; i < 16; i++)
921 ptr += cris_save_32 (ptr, env->pregs[i]);
923 ptr += cris_save_32 (ptr, env->pc);
925 for (i = 0; i < 16; i++)
926 ptr += cris_save_32 (ptr, env->sregs[srs][i]);
928 return ((uint8_t *)ptr - mem_buf);
931 static void cpu_gdb_write_registers(CPUState *env, uint8_t *mem_buf, int size)
933 uint32_t *ptr = (uint32_t *)mem_buf;
934 int i;
936 #define LOAD(x) (x)=*ptr++;
937 for (i = 0; i < 16; i++) LOAD(env->regs[i]);
938 LOAD (env->pc);
940 #else
941 static int cpu_gdb_read_registers(CPUState *env, uint8_t *mem_buf)
943 return 0;
946 static void cpu_gdb_write_registers(CPUState *env, uint8_t *mem_buf, int size)
950 #endif
952 static int gdb_handle_packet(GDBState *s, CPUState *env, const char *line_buf)
954 const char *p;
955 int ch, reg_size, type;
956 char buf[4096];
957 uint8_t mem_buf[4096];
958 uint32_t *registers;
959 target_ulong addr, len;
961 #ifdef DEBUG_GDB
962 printf("command='%s'\n", line_buf);
963 #endif
964 p = line_buf;
965 ch = *p++;
966 switch(ch) {
967 case '?':
968 /* TODO: Make this return the correct value for user-mode. */
969 snprintf(buf, sizeof(buf), "S%02x", SIGTRAP);
970 put_packet(s, buf);
971 /* Remove all the breakpoints when this query is issued,
972 * because gdb is doing and initial connect and the state
973 * should be cleaned up.
975 cpu_breakpoint_remove_all(env);
976 cpu_watchpoint_remove_all(env);
977 break;
978 case 'c':
979 if (*p != '\0') {
980 addr = strtoull(p, (char **)&p, 16);
981 #if defined(TARGET_I386)
982 env->eip = addr;
983 kvm_load_registers(env);
984 #elif defined (TARGET_PPC)
985 env->nip = addr;
986 kvm_load_registers(env);
987 #elif defined (TARGET_SPARC)
988 env->pc = addr;
989 env->npc = addr + 4;
990 #elif defined (TARGET_ARM)
991 env->regs[15] = addr;
992 #elif defined (TARGET_SH4)
993 env->pc = addr;
994 #elif defined (TARGET_MIPS)
995 env->PC[env->current_tc] = addr;
996 #elif defined (TARGET_CRIS)
997 env->pc = addr;
998 #endif
1000 gdb_continue(s);
1001 return RS_IDLE;
1002 case 'C':
1003 s->signal = strtoul(p, (char **)&p, 16);
1004 gdb_continue(s);
1005 return RS_IDLE;
1006 case 'k':
1007 /* Kill the target */
1008 fprintf(stderr, "\nQEMU: Terminated via GDBstub\n");
1009 exit(0);
1010 case 'D':
1011 /* Detach packet */
1012 cpu_breakpoint_remove_all(env);
1013 cpu_watchpoint_remove_all(env);
1014 gdb_continue(s);
1015 put_packet(s, "OK");
1016 break;
1017 case 's':
1018 if (*p != '\0') {
1019 addr = strtoull(p, (char **)&p, 16);
1020 #if defined(TARGET_I386)
1021 env->eip = addr;
1022 kvm_load_registers(env);
1023 #elif defined (TARGET_PPC)
1024 env->nip = addr;
1025 kvm_load_registers(env);
1026 #elif defined (TARGET_SPARC)
1027 env->pc = addr;
1028 env->npc = addr + 4;
1029 #elif defined (TARGET_ARM)
1030 env->regs[15] = addr;
1031 #elif defined (TARGET_SH4)
1032 env->pc = addr;
1033 #elif defined (TARGET_MIPS)
1034 env->PC[env->current_tc] = addr;
1035 #elif defined (TARGET_CRIS)
1036 env->pc = addr;
1037 #endif
1039 cpu_single_step(env, sstep_flags);
1040 gdb_continue(s);
1041 return RS_IDLE;
1042 case 'F':
1044 target_ulong ret;
1045 target_ulong err;
1047 ret = strtoull(p, (char **)&p, 16);
1048 if (*p == ',') {
1049 p++;
1050 err = strtoull(p, (char **)&p, 16);
1051 } else {
1052 err = 0;
1054 if (*p == ',')
1055 p++;
1056 type = *p;
1057 if (gdb_current_syscall_cb)
1058 gdb_current_syscall_cb(s->env, ret, err);
1059 if (type == 'C') {
1060 put_packet(s, "T02");
1061 } else {
1062 gdb_continue(s);
1065 break;
1066 case 'g':
1067 kvm_save_registers(env);
1068 reg_size = cpu_gdb_read_registers(env, mem_buf);
1069 memtohex(buf, mem_buf, reg_size);
1070 put_packet(s, buf);
1071 break;
1072 case 'G':
1073 registers = (void *)mem_buf;
1074 len = strlen(p) / 2;
1075 hextomem((uint8_t *)registers, p, len);
1076 cpu_gdb_write_registers(env, mem_buf, len);
1077 kvm_load_registers(env);
1078 put_packet(s, "OK");
1079 break;
1080 case 'm':
1081 addr = strtoull(p, (char **)&p, 16);
1082 if (*p == ',')
1083 p++;
1084 len = strtoull(p, NULL, 16);
1085 if (cpu_memory_rw_debug(env, addr, mem_buf, len, 0) != 0) {
1086 put_packet (s, "E14");
1087 } else {
1088 memtohex(buf, mem_buf, len);
1089 put_packet(s, buf);
1091 break;
1092 case 'M':
1093 addr = strtoull(p, (char **)&p, 16);
1094 if (*p == ',')
1095 p++;
1096 len = strtoull(p, (char **)&p, 16);
1097 if (*p == ':')
1098 p++;
1099 hextomem(mem_buf, p, len);
1100 if (cpu_memory_rw_debug(env, addr, mem_buf, len, 1) != 0)
1101 put_packet(s, "E14");
1102 else
1103 put_packet(s, "OK");
1104 break;
1105 case 'Z':
1106 type = strtoul(p, (char **)&p, 16);
1107 if (*p == ',')
1108 p++;
1109 addr = strtoull(p, (char **)&p, 16);
1110 if (*p == ',')
1111 p++;
1112 len = strtoull(p, (char **)&p, 16);
1113 if (type == 0 || type == 1) {
1114 if (cpu_breakpoint_insert(env, addr) < 0)
1115 goto breakpoint_error;
1116 put_packet(s, "OK");
1117 #ifndef CONFIG_USER_ONLY
1118 } else if (type == 2) {
1119 if (cpu_watchpoint_insert(env, addr) < 0)
1120 goto breakpoint_error;
1121 put_packet(s, "OK");
1122 #endif
1123 } else {
1124 breakpoint_error:
1125 put_packet(s, "E22");
1127 break;
1128 case 'z':
1129 type = strtoul(p, (char **)&p, 16);
1130 if (*p == ',')
1131 p++;
1132 addr = strtoull(p, (char **)&p, 16);
1133 if (*p == ',')
1134 p++;
1135 len = strtoull(p, (char **)&p, 16);
1136 if (type == 0 || type == 1) {
1137 cpu_breakpoint_remove(env, addr);
1138 put_packet(s, "OK");
1139 #ifndef CONFIG_USER_ONLY
1140 } else if (type == 2) {
1141 cpu_watchpoint_remove(env, addr);
1142 put_packet(s, "OK");
1143 #endif
1144 } else {
1145 goto breakpoint_error;
1147 break;
1148 case 'q':
1149 case 'Q':
1150 /* parse any 'q' packets here */
1151 if (!strcmp(p,"qemu.sstepbits")) {
1152 /* Query Breakpoint bit definitions */
1153 sprintf(buf,"ENABLE=%x,NOIRQ=%x,NOTIMER=%x",
1154 SSTEP_ENABLE,
1155 SSTEP_NOIRQ,
1156 SSTEP_NOTIMER);
1157 put_packet(s, buf);
1158 break;
1159 } else if (strncmp(p,"qemu.sstep",10) == 0) {
1160 /* Display or change the sstep_flags */
1161 p += 10;
1162 if (*p != '=') {
1163 /* Display current setting */
1164 sprintf(buf,"0x%x", sstep_flags);
1165 put_packet(s, buf);
1166 break;
1168 p++;
1169 type = strtoul(p, (char **)&p, 16);
1170 sstep_flags = type;
1171 put_packet(s, "OK");
1172 break;
1174 #ifdef CONFIG_LINUX_USER
1175 else if (strncmp(p, "Offsets", 7) == 0) {
1176 TaskState *ts = env->opaque;
1178 sprintf(buf,
1179 "Text=" TARGET_ABI_FMT_lx ";Data=" TARGET_ABI_FMT_lx
1180 ";Bss=" TARGET_ABI_FMT_lx,
1181 ts->info->code_offset,
1182 ts->info->data_offset,
1183 ts->info->data_offset);
1184 put_packet(s, buf);
1185 break;
1187 #endif
1188 /* Fall through. */
1189 default:
1190 /* put empty packet */
1191 buf[0] = '\0';
1192 put_packet(s, buf);
1193 break;
1195 return RS_IDLE;
1198 extern void tb_flush(CPUState *env);
1200 #ifndef CONFIG_USER_ONLY
1201 static void gdb_vm_stopped(void *opaque, int reason)
1203 GDBState *s = opaque;
1204 char buf[256];
1205 int ret;
1207 if (s->state == RS_SYSCALL)
1208 return;
1210 /* disable single step if it was enable */
1211 cpu_single_step(s->env, 0);
1213 if (reason == EXCP_DEBUG) {
1214 if (s->env->watchpoint_hit) {
1215 snprintf(buf, sizeof(buf), "T%02xwatch:" TARGET_FMT_lx ";",
1216 SIGTRAP,
1217 s->env->watchpoint[s->env->watchpoint_hit - 1].vaddr);
1218 put_packet(s, buf);
1219 s->env->watchpoint_hit = 0;
1220 return;
1222 tb_flush(s->env);
1223 ret = SIGTRAP;
1224 } else if (reason == EXCP_INTERRUPT) {
1225 ret = SIGINT;
1226 } else {
1227 ret = 0;
1229 snprintf(buf, sizeof(buf), "S%02x", ret);
1230 put_packet(s, buf);
1232 #endif
1234 /* Send a gdb syscall request.
1235 This accepts limited printf-style format specifiers, specifically:
1236 %x - target_ulong argument printed in hex.
1237 %lx - 64-bit argument printed in hex.
1238 %s - string pointer (target_ulong) and length (int) pair. */
1239 void gdb_do_syscall(gdb_syscall_complete_cb cb, char *fmt, ...)
1241 va_list va;
1242 char buf[256];
1243 char *p;
1244 target_ulong addr;
1245 uint64_t i64;
1246 GDBState *s;
1248 s = gdb_syscall_state;
1249 if (!s)
1250 return;
1251 gdb_current_syscall_cb = cb;
1252 s->state = RS_SYSCALL;
1253 #ifndef CONFIG_USER_ONLY
1254 vm_stop(EXCP_DEBUG);
1255 #endif
1256 s->state = RS_IDLE;
1257 va_start(va, fmt);
1258 p = buf;
1259 *(p++) = 'F';
1260 while (*fmt) {
1261 if (*fmt == '%') {
1262 fmt++;
1263 switch (*fmt++) {
1264 case 'x':
1265 addr = va_arg(va, target_ulong);
1266 p += sprintf(p, TARGET_FMT_lx, addr);
1267 break;
1268 case 'l':
1269 if (*(fmt++) != 'x')
1270 goto bad_format;
1271 i64 = va_arg(va, uint64_t);
1272 p += sprintf(p, "%" PRIx64, i64);
1273 break;
1274 case 's':
1275 addr = va_arg(va, target_ulong);
1276 p += sprintf(p, TARGET_FMT_lx "/%x", addr, va_arg(va, int));
1277 break;
1278 default:
1279 bad_format:
1280 fprintf(stderr, "gdbstub: Bad syscall format string '%s'\n",
1281 fmt - 1);
1282 break;
1284 } else {
1285 *(p++) = *(fmt++);
1288 *p = 0;
1289 va_end(va);
1290 put_packet(s, buf);
1291 #ifdef CONFIG_USER_ONLY
1292 gdb_handlesig(s->env, 0);
1293 #else
1294 cpu_interrupt(s->env, CPU_INTERRUPT_EXIT);
1295 #endif
1298 static void gdb_read_byte(GDBState *s, int ch)
1300 CPUState *env = s->env;
1301 int i, csum;
1302 uint8_t reply;
1304 #ifndef CONFIG_USER_ONLY
1305 if (s->last_packet_len) {
1306 /* Waiting for a response to the last packet. If we see the start
1307 of a new command then abandon the previous response. */
1308 if (ch == '-') {
1309 #ifdef DEBUG_GDB
1310 printf("Got NACK, retransmitting\n");
1311 #endif
1312 put_buffer(s, (uint8_t *)s->last_packet, s->last_packet_len);
1314 #ifdef DEBUG_GDB
1315 else if (ch == '+')
1316 printf("Got ACK\n");
1317 else
1318 printf("Got '%c' when expecting ACK/NACK\n", ch);
1319 #endif
1320 if (ch == '+' || ch == '$')
1321 s->last_packet_len = 0;
1322 if (ch != '$')
1323 return;
1325 if (vm_running) {
1326 /* when the CPU is running, we cannot do anything except stop
1327 it when receiving a char */
1328 vm_stop(EXCP_INTERRUPT);
1329 } else
1330 #endif
1332 switch(s->state) {
1333 case RS_IDLE:
1334 if (ch == '$') {
1335 s->line_buf_index = 0;
1336 s->state = RS_GETLINE;
1338 break;
1339 case RS_GETLINE:
1340 if (ch == '#') {
1341 s->state = RS_CHKSUM1;
1342 } else if (s->line_buf_index >= sizeof(s->line_buf) - 1) {
1343 s->state = RS_IDLE;
1344 } else {
1345 s->line_buf[s->line_buf_index++] = ch;
1347 break;
1348 case RS_CHKSUM1:
1349 s->line_buf[s->line_buf_index] = '\0';
1350 s->line_csum = fromhex(ch) << 4;
1351 s->state = RS_CHKSUM2;
1352 break;
1353 case RS_CHKSUM2:
1354 s->line_csum |= fromhex(ch);
1355 csum = 0;
1356 for(i = 0; i < s->line_buf_index; i++) {
1357 csum += s->line_buf[i];
1359 if (s->line_csum != (csum & 0xff)) {
1360 reply = '-';
1361 put_buffer(s, &reply, 1);
1362 s->state = RS_IDLE;
1363 } else {
1364 reply = '+';
1365 put_buffer(s, &reply, 1);
1366 s->state = gdb_handle_packet(s, env, s->line_buf);
1368 break;
1369 default:
1370 abort();
1375 #ifdef CONFIG_USER_ONLY
1377 gdb_handlesig (CPUState *env, int sig)
1379 GDBState *s;
1380 char buf[256];
1381 int n;
1383 s = &gdbserver_state;
1384 if (gdbserver_fd < 0 || s->fd < 0)
1385 return sig;
1387 /* disable single step if it was enabled */
1388 cpu_single_step(env, 0);
1389 tb_flush(env);
1391 if (sig != 0)
1393 snprintf(buf, sizeof(buf), "S%02x", sig);
1394 put_packet(s, buf);
1396 /* put_packet() might have detected that the peer terminated the
1397 connection. */
1398 if (s->fd < 0)
1399 return sig;
1401 sig = 0;
1402 s->state = RS_IDLE;
1403 s->running_state = 0;
1404 while (s->running_state == 0) {
1405 n = read (s->fd, buf, 256);
1406 if (n > 0)
1408 int i;
1410 for (i = 0; i < n; i++)
1411 gdb_read_byte (s, buf[i]);
1413 else if (n == 0 || errno != EAGAIN)
1415 /* XXX: Connection closed. Should probably wait for annother
1416 connection before continuing. */
1417 return sig;
1420 sig = s->signal;
1421 s->signal = 0;
1422 return sig;
1425 /* Tell the remote gdb that the process has exited. */
1426 void gdb_exit(CPUState *env, int code)
1428 GDBState *s;
1429 char buf[4];
1431 s = &gdbserver_state;
1432 if (gdbserver_fd < 0 || s->fd < 0)
1433 return;
1435 snprintf(buf, sizeof(buf), "W%02x", code);
1436 put_packet(s, buf);
1440 static void gdb_accept(void *opaque)
1442 GDBState *s;
1443 struct sockaddr_in sockaddr;
1444 socklen_t len;
1445 int val, fd;
1447 for(;;) {
1448 len = sizeof(sockaddr);
1449 fd = accept(gdbserver_fd, (struct sockaddr *)&sockaddr, &len);
1450 if (fd < 0 && errno != EINTR) {
1451 perror("accept");
1452 return;
1453 } else if (fd >= 0) {
1454 break;
1458 /* set short latency */
1459 val = 1;
1460 setsockopt(fd, IPPROTO_TCP, TCP_NODELAY, (char *)&val, sizeof(val));
1462 s = &gdbserver_state;
1463 memset (s, 0, sizeof (GDBState));
1464 s->env = first_cpu; /* XXX: allow to change CPU */
1465 s->fd = fd;
1467 gdb_syscall_state = s;
1469 fcntl(fd, F_SETFL, O_NONBLOCK);
1472 static int gdbserver_open(int port)
1474 struct sockaddr_in sockaddr;
1475 int fd, val, ret;
1477 fd = socket(PF_INET, SOCK_STREAM, 0);
1478 if (fd < 0) {
1479 perror("socket");
1480 return -1;
1483 /* allow fast reuse */
1484 val = 1;
1485 setsockopt(fd, SOL_SOCKET, SO_REUSEADDR, (char *)&val, sizeof(val));
1487 sockaddr.sin_family = AF_INET;
1488 sockaddr.sin_port = htons(port);
1489 sockaddr.sin_addr.s_addr = 0;
1490 ret = bind(fd, (struct sockaddr *)&sockaddr, sizeof(sockaddr));
1491 if (ret < 0) {
1492 perror("bind");
1493 return -1;
1495 ret = listen(fd, 0);
1496 if (ret < 0) {
1497 perror("listen");
1498 return -1;
1500 return fd;
1503 int gdbserver_start(int port)
1505 gdbserver_fd = gdbserver_open(port);
1506 if (gdbserver_fd < 0)
1507 return -1;
1508 /* accept connections */
1509 gdb_accept (NULL);
1510 return 0;
1512 #else
1513 static int gdb_chr_can_receive(void *opaque)
1515 return 1;
1518 static void gdb_chr_receive(void *opaque, const uint8_t *buf, int size)
1520 GDBState *s = opaque;
1521 int i;
1523 for (i = 0; i < size; i++) {
1524 gdb_read_byte(s, buf[i]);
1528 static void gdb_chr_event(void *opaque, int event)
1530 switch (event) {
1531 case CHR_EVENT_RESET:
1532 vm_stop(EXCP_INTERRUPT);
1533 gdb_syscall_state = opaque;
1534 break;
1535 default:
1536 break;
1540 int gdbserver_start(const char *port)
1542 GDBState *s;
1543 char gdbstub_port_name[128];
1544 int port_num;
1545 char *p;
1546 CharDriverState *chr;
1548 if (!port || !*port)
1549 return -1;
1551 port_num = strtol(port, &p, 10);
1552 if (*p == 0) {
1553 /* A numeric value is interpreted as a port number. */
1554 snprintf(gdbstub_port_name, sizeof(gdbstub_port_name),
1555 "tcp::%d,nowait,nodelay,server", port_num);
1556 port = gdbstub_port_name;
1559 chr = qemu_chr_open(port);
1560 if (!chr)
1561 return -1;
1563 s = qemu_mallocz(sizeof(GDBState));
1564 if (!s) {
1565 return -1;
1567 s->env = first_cpu; /* XXX: allow to change CPU */
1568 s->chr = chr;
1569 qemu_chr_add_handlers(chr, gdb_chr_can_receive, gdb_chr_receive,
1570 gdb_chr_event, s);
1571 qemu_add_vm_stop_handler(gdb_vm_stopped, s);
1572 return 0;
1574 #endif