Use guards in virtio-net for easier upstream merging (v2)
[qemu-kvm/fedora.git] / gdbstub.c
blobb02571a952487daae0138ffc8c37b530c1d953f1
1 /*
2 * gdb server stub
4 * Copyright (c) 2003-2005 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
20 #include "config.h"
21 #include "qemu-common.h"
22 #ifdef CONFIG_USER_ONLY
23 #include <stdlib.h>
24 #include <stdio.h>
25 #include <stdarg.h>
26 #include <string.h>
27 #include <errno.h>
28 #include <unistd.h>
29 #include <fcntl.h>
31 #include "qemu.h"
32 #else
33 #include "qemu-char.h"
34 #include "sysemu.h"
35 #include "gdbstub.h"
36 #include "qemu-kvm.h"
37 #endif
39 #define MAX_PACKET_LENGTH 4096
41 #include "qemu_socket.h"
42 #ifdef _WIN32
43 /* XXX: these constants may be independent of the host ones even for Unix */
44 #ifndef SIGTRAP
45 #define SIGTRAP 5
46 #endif
47 #ifndef SIGINT
48 #define SIGINT 2
49 #endif
50 #else
51 #include <signal.h>
52 #endif
54 //#define DEBUG_GDB
56 typedef struct GDBRegisterState {
57 int base_reg;
58 int num_regs;
59 gdb_reg_cb get_reg;
60 gdb_reg_cb set_reg;
61 const char *xml;
62 struct GDBRegisterState *next;
63 } GDBRegisterState;
65 enum RSState {
66 RS_IDLE,
67 RS_GETLINE,
68 RS_CHKSUM1,
69 RS_CHKSUM2,
70 RS_SYSCALL,
72 typedef struct GDBState {
73 CPUState *c_cpu; /* current CPU for step/continue ops */
74 CPUState *g_cpu; /* current CPU for other ops */
75 CPUState *query_cpu; /* for q{f|s}ThreadInfo */
76 enum RSState state; /* parsing state */
77 char line_buf[MAX_PACKET_LENGTH];
78 int line_buf_index;
79 int line_csum;
80 uint8_t last_packet[MAX_PACKET_LENGTH + 4];
81 int last_packet_len;
82 int signal;
83 #ifdef CONFIG_USER_ONLY
84 int fd;
85 int running_state;
86 #else
87 CharDriverState *chr;
88 #endif
89 } GDBState;
91 /* By default use no IRQs and no timers while single stepping so as to
92 * make single stepping like an ICE HW step.
94 static int sstep_flags = SSTEP_ENABLE|SSTEP_NOIRQ|SSTEP_NOTIMER;
96 static GDBState *gdbserver_state;
98 /* This is an ugly hack to cope with both new and old gdb.
99 If gdb sends qXfer:features:read then assume we're talking to a newish
100 gdb that understands target descriptions. */
101 static int gdb_has_xml;
103 #ifdef CONFIG_USER_ONLY
104 /* XXX: This is not thread safe. Do we care? */
105 static int gdbserver_fd = -1;
107 static int get_char(GDBState *s)
109 uint8_t ch;
110 int ret;
112 for(;;) {
113 ret = recv(s->fd, &ch, 1, 0);
114 if (ret < 0) {
115 if (errno == ECONNRESET)
116 s->fd = -1;
117 if (errno != EINTR && errno != EAGAIN)
118 return -1;
119 } else if (ret == 0) {
120 close(s->fd);
121 s->fd = -1;
122 return -1;
123 } else {
124 break;
127 return ch;
129 #endif
131 static gdb_syscall_complete_cb gdb_current_syscall_cb;
133 enum {
134 GDB_SYS_UNKNOWN,
135 GDB_SYS_ENABLED,
136 GDB_SYS_DISABLED,
137 } gdb_syscall_mode;
139 /* If gdb is connected when the first semihosting syscall occurs then use
140 remote gdb syscalls. Otherwise use native file IO. */
141 int use_gdb_syscalls(void)
143 if (gdb_syscall_mode == GDB_SYS_UNKNOWN) {
144 gdb_syscall_mode = (gdbserver_state ? GDB_SYS_ENABLED
145 : GDB_SYS_DISABLED);
147 return gdb_syscall_mode == GDB_SYS_ENABLED;
150 /* Resume execution. */
151 static inline void gdb_continue(GDBState *s)
153 #ifdef CONFIG_USER_ONLY
154 s->running_state = 1;
155 #else
156 vm_start();
157 #endif
160 static void put_buffer(GDBState *s, const uint8_t *buf, int len)
162 #ifdef CONFIG_USER_ONLY
163 int ret;
165 while (len > 0) {
166 ret = send(s->fd, buf, len, 0);
167 if (ret < 0) {
168 if (errno != EINTR && errno != EAGAIN)
169 return;
170 } else {
171 buf += ret;
172 len -= ret;
175 #else
176 qemu_chr_write(s->chr, buf, len);
177 #endif
180 static inline int fromhex(int v)
182 if (v >= '0' && v <= '9')
183 return v - '0';
184 else if (v >= 'A' && v <= 'F')
185 return v - 'A' + 10;
186 else if (v >= 'a' && v <= 'f')
187 return v - 'a' + 10;
188 else
189 return 0;
192 static inline int tohex(int v)
194 if (v < 10)
195 return v + '0';
196 else
197 return v - 10 + 'a';
200 static void memtohex(char *buf, const uint8_t *mem, int len)
202 int i, c;
203 char *q;
204 q = buf;
205 for(i = 0; i < len; i++) {
206 c = mem[i];
207 *q++ = tohex(c >> 4);
208 *q++ = tohex(c & 0xf);
210 *q = '\0';
213 static void hextomem(uint8_t *mem, const char *buf, int len)
215 int i;
217 for(i = 0; i < len; i++) {
218 mem[i] = (fromhex(buf[0]) << 4) | fromhex(buf[1]);
219 buf += 2;
223 /* return -1 if error, 0 if OK */
224 static int put_packet_binary(GDBState *s, const char *buf, int len)
226 int csum, i;
227 uint8_t *p;
229 for(;;) {
230 p = s->last_packet;
231 *(p++) = '$';
232 memcpy(p, buf, len);
233 p += len;
234 csum = 0;
235 for(i = 0; i < len; i++) {
236 csum += buf[i];
238 *(p++) = '#';
239 *(p++) = tohex((csum >> 4) & 0xf);
240 *(p++) = tohex((csum) & 0xf);
242 s->last_packet_len = p - s->last_packet;
243 put_buffer(s, (uint8_t *)s->last_packet, s->last_packet_len);
245 #ifdef CONFIG_USER_ONLY
246 i = get_char(s);
247 if (i < 0)
248 return -1;
249 if (i == '+')
250 break;
251 #else
252 break;
253 #endif
255 return 0;
258 /* return -1 if error, 0 if OK */
259 static int put_packet(GDBState *s, const char *buf)
261 #ifdef DEBUG_GDB
262 printf("reply='%s'\n", buf);
263 #endif
265 return put_packet_binary(s, buf, strlen(buf));
268 /* The GDB remote protocol transfers values in target byte order. This means
269 we can use the raw memory access routines to access the value buffer.
270 Conveniently, these also handle the case where the buffer is mis-aligned.
272 #define GET_REG8(val) do { \
273 stb_p(mem_buf, val); \
274 return 1; \
275 } while(0)
276 #define GET_REG16(val) do { \
277 stw_p(mem_buf, val); \
278 return 2; \
279 } while(0)
280 #define GET_REG32(val) do { \
281 stl_p(mem_buf, val); \
282 return 4; \
283 } while(0)
284 #define GET_REG64(val) do { \
285 stq_p(mem_buf, val); \
286 return 8; \
287 } while(0)
289 #if TARGET_LONG_BITS == 64
290 #define GET_REGL(val) GET_REG64(val)
291 #define ldtul_p(addr) ldq_p(addr)
292 #else
293 #define GET_REGL(val) GET_REG32(val)
294 #define ldtul_p(addr) ldl_p(addr)
295 #endif
297 #if defined(TARGET_I386)
299 #ifdef TARGET_X86_64
300 static const int gpr_map[16] = {
301 R_EAX, R_EBX, R_ECX, R_EDX, R_ESI, R_EDI, R_EBP, R_ESP,
302 8, 9, 10, 11, 12, 13, 14, 15
304 #else
305 static const int gpr_map[8] = {0, 1, 2, 3, 4, 5, 6, 7};
306 #endif
308 #define NUM_CORE_REGS (CPU_NB_REGS * 2 + 25)
310 static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
312 if (n < CPU_NB_REGS) {
313 GET_REGL(env->regs[gpr_map[n]]);
314 } else if (n >= CPU_NB_REGS + 8 && n < CPU_NB_REGS + 16) {
315 /* FIXME: byteswap float values. */
316 #ifdef USE_X86LDOUBLE
317 memcpy(mem_buf, &env->fpregs[n - (CPU_NB_REGS + 8)], 10);
318 #else
319 memset(mem_buf, 0, 10);
320 #endif
321 return 10;
322 } else if (n >= CPU_NB_REGS + 24) {
323 n -= CPU_NB_REGS + 24;
324 if (n < CPU_NB_REGS) {
325 stq_p(mem_buf, env->xmm_regs[n].XMM_Q(0));
326 stq_p(mem_buf + 8, env->xmm_regs[n].XMM_Q(1));
327 return 16;
328 } else if (n == CPU_NB_REGS) {
329 GET_REG32(env->mxcsr);
331 } else {
332 n -= CPU_NB_REGS;
333 switch (n) {
334 case 0: GET_REGL(env->eip);
335 case 1: GET_REG32(env->eflags);
336 case 2: GET_REG32(env->segs[R_CS].selector);
337 case 3: GET_REG32(env->segs[R_SS].selector);
338 case 4: GET_REG32(env->segs[R_DS].selector);
339 case 5: GET_REG32(env->segs[R_ES].selector);
340 case 6: GET_REG32(env->segs[R_FS].selector);
341 case 7: GET_REG32(env->segs[R_GS].selector);
342 /* 8...15 x87 regs. */
343 case 16: GET_REG32(env->fpuc);
344 case 17: GET_REG32((env->fpus & ~0x3800) | (env->fpstt & 0x7) << 11);
345 case 18: GET_REG32(0); /* ftag */
346 case 19: GET_REG32(0); /* fiseg */
347 case 20: GET_REG32(0); /* fioff */
348 case 21: GET_REG32(0); /* foseg */
349 case 22: GET_REG32(0); /* fooff */
350 case 23: GET_REG32(0); /* fop */
351 /* 24+ xmm regs. */
354 return 0;
357 static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int i)
359 uint32_t tmp;
361 if (i < CPU_NB_REGS) {
362 env->regs[gpr_map[i]] = ldtul_p(mem_buf);
363 return sizeof(target_ulong);
364 } else if (i >= CPU_NB_REGS + 8 && i < CPU_NB_REGS + 16) {
365 i -= CPU_NB_REGS + 8;
366 #ifdef USE_X86LDOUBLE
367 memcpy(&env->fpregs[i], mem_buf, 10);
368 #endif
369 return 10;
370 } else if (i >= CPU_NB_REGS + 24) {
371 i -= CPU_NB_REGS + 24;
372 if (i < CPU_NB_REGS) {
373 env->xmm_regs[i].XMM_Q(0) = ldq_p(mem_buf);
374 env->xmm_regs[i].XMM_Q(1) = ldq_p(mem_buf + 8);
375 return 16;
376 } else if (i == CPU_NB_REGS) {
377 env->mxcsr = ldl_p(mem_buf);
378 return 4;
380 } else {
381 i -= CPU_NB_REGS;
382 switch (i) {
383 case 0: env->eip = ldtul_p(mem_buf); return sizeof(target_ulong);
384 case 1: env->eflags = ldl_p(mem_buf); return 4;
385 #if defined(CONFIG_USER_ONLY)
386 #define LOAD_SEG(index, sreg)\
387 tmp = ldl_p(mem_buf);\
388 if (tmp != env->segs[sreg].selector)\
389 cpu_x86_load_seg(env, sreg, tmp);
390 #else
391 /* FIXME: Honor segment registers. Needs to avoid raising an exception
392 when the selector is invalid. */
393 #define LOAD_SEG(index, sreg) do {} while(0)
394 #endif
395 case 2: LOAD_SEG(10, R_CS); return 4;
396 case 3: LOAD_SEG(11, R_SS); return 4;
397 case 4: LOAD_SEG(12, R_DS); return 4;
398 case 5: LOAD_SEG(13, R_ES); return 4;
399 case 6: LOAD_SEG(14, R_FS); return 4;
400 case 7: LOAD_SEG(15, R_GS); return 4;
401 /* 8...15 x87 regs. */
402 case 16: env->fpuc = ldl_p(mem_buf); return 4;
403 case 17:
404 tmp = ldl_p(mem_buf);
405 env->fpstt = (tmp >> 11) & 7;
406 env->fpus = tmp & ~0x3800;
407 return 4;
408 case 18: /* ftag */ return 4;
409 case 19: /* fiseg */ return 4;
410 case 20: /* fioff */ return 4;
411 case 21: /* foseg */ return 4;
412 case 22: /* fooff */ return 4;
413 case 23: /* fop */ return 4;
414 /* 24+ xmm regs. */
417 /* Unrecognised register. */
418 return 0;
421 #elif defined (TARGET_PPC)
423 #define NUM_CORE_REGS 71
425 static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
427 if (n < 32) {
428 /* gprs */
429 GET_REGL(env->gpr[n]);
430 } else if (n < 64) {
431 /* fprs */
432 stfq_p(mem_buf, env->fpr[n-32]);
433 return 8;
434 } else {
435 switch (n) {
436 case 64: GET_REGL(env->nip);
437 case 65: GET_REGL(env->msr);
438 case 66:
440 uint32_t cr = 0;
441 int i;
442 for (i = 0; i < 8; i++)
443 cr |= env->crf[i] << (32 - ((i + 1) * 4));
444 GET_REG32(cr);
446 case 67: GET_REGL(env->lr);
447 case 68: GET_REGL(env->ctr);
448 case 69: GET_REGL(env->xer);
449 case 70: GET_REG32(0); /* fpscr */
452 return 0;
455 static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
457 if (n < 32) {
458 /* gprs */
459 env->gpr[n] = ldtul_p(mem_buf);
460 return sizeof(target_ulong);
461 } else if (n < 64) {
462 /* fprs */
463 env->fpr[n-32] = ldfq_p(mem_buf);
464 return 8;
465 } else {
466 switch (n) {
467 case 64:
468 env->nip = ldtul_p(mem_buf);
469 return sizeof(target_ulong);
470 case 65:
471 ppc_store_msr(env, ldtul_p(mem_buf));
472 return sizeof(target_ulong);
473 case 66:
475 uint32_t cr = ldl_p(mem_buf);
476 int i;
477 for (i = 0; i < 8; i++)
478 env->crf[i] = (cr >> (32 - ((i + 1) * 4))) & 0xF;
479 return 4;
481 case 67:
482 env->lr = ldtul_p(mem_buf);
483 return sizeof(target_ulong);
484 case 68:
485 env->ctr = ldtul_p(mem_buf);
486 return sizeof(target_ulong);
487 case 69:
488 env->xer = ldtul_p(mem_buf);
489 return sizeof(target_ulong);
490 case 70:
491 /* fpscr */
492 return 4;
495 return 0;
498 #elif defined (TARGET_SPARC)
500 #if defined(TARGET_SPARC64) && !defined(TARGET_ABI32)
501 #define NUM_CORE_REGS 86
502 #else
503 #define NUM_CORE_REGS 73
504 #endif
506 #ifdef TARGET_ABI32
507 #define GET_REGA(val) GET_REG32(val)
508 #else
509 #define GET_REGA(val) GET_REGL(val)
510 #endif
512 static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
514 if (n < 8) {
515 /* g0..g7 */
516 GET_REGA(env->gregs[n]);
518 if (n < 32) {
519 /* register window */
520 GET_REGA(env->regwptr[n - 8]);
522 #if defined(TARGET_ABI32) || !defined(TARGET_SPARC64)
523 if (n < 64) {
524 /* fprs */
525 GET_REG32(*((uint32_t *)&env->fpr[n - 32]));
527 /* Y, PSR, WIM, TBR, PC, NPC, FPSR, CPSR */
528 switch (n) {
529 case 64: GET_REGA(env->y);
530 case 65: GET_REGA(GET_PSR(env));
531 case 66: GET_REGA(env->wim);
532 case 67: GET_REGA(env->tbr);
533 case 68: GET_REGA(env->pc);
534 case 69: GET_REGA(env->npc);
535 case 70: GET_REGA(env->fsr);
536 case 71: GET_REGA(0); /* csr */
537 case 72: GET_REGA(0);
539 #else
540 if (n < 64) {
541 /* f0-f31 */
542 GET_REG32(*((uint32_t *)&env->fpr[n - 32]));
544 if (n < 80) {
545 /* f32-f62 (double width, even numbers only) */
546 uint64_t val;
548 val = (uint64_t)*((uint32_t *)&env->fpr[(n - 64) * 2 + 32]) << 32;
549 val |= *((uint32_t *)&env->fpr[(n - 64) * 2 + 33]);
550 GET_REG64(val);
552 switch (n) {
553 case 80: GET_REGL(env->pc);
554 case 81: GET_REGL(env->npc);
555 case 82: GET_REGL(((uint64_t)GET_CCR(env) << 32) |
556 ((env->asi & 0xff) << 24) |
557 ((env->pstate & 0xfff) << 8) |
558 GET_CWP64(env));
559 case 83: GET_REGL(env->fsr);
560 case 84: GET_REGL(env->fprs);
561 case 85: GET_REGL(env->y);
563 #endif
564 return 0;
567 static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
569 #if defined(TARGET_ABI32)
570 abi_ulong tmp;
572 tmp = ldl_p(mem_buf);
573 #else
574 target_ulong tmp;
576 tmp = ldtul_p(mem_buf);
577 #endif
579 if (n < 8) {
580 /* g0..g7 */
581 env->gregs[n] = tmp;
582 } else if (n < 32) {
583 /* register window */
584 env->regwptr[n - 8] = tmp;
586 #if defined(TARGET_ABI32) || !defined(TARGET_SPARC64)
587 else if (n < 64) {
588 /* fprs */
589 *((uint32_t *)&env->fpr[n - 32]) = tmp;
590 } else {
591 /* Y, PSR, WIM, TBR, PC, NPC, FPSR, CPSR */
592 switch (n) {
593 case 64: env->y = tmp; break;
594 case 65: PUT_PSR(env, tmp); break;
595 case 66: env->wim = tmp; break;
596 case 67: env->tbr = tmp; break;
597 case 68: env->pc = tmp; break;
598 case 69: env->npc = tmp; break;
599 case 70: env->fsr = tmp; break;
600 default: return 0;
603 return 4;
604 #else
605 else if (n < 64) {
606 /* f0-f31 */
607 env->fpr[n] = ldfl_p(mem_buf);
608 return 4;
609 } else if (n < 80) {
610 /* f32-f62 (double width, even numbers only) */
611 *((uint32_t *)&env->fpr[(n - 64) * 2 + 32]) = tmp >> 32;
612 *((uint32_t *)&env->fpr[(n - 64) * 2 + 33]) = tmp;
613 } else {
614 switch (n) {
615 case 80: env->pc = tmp; break;
616 case 81: env->npc = tmp; break;
617 case 82:
618 PUT_CCR(env, tmp >> 32);
619 env->asi = (tmp >> 24) & 0xff;
620 env->pstate = (tmp >> 8) & 0xfff;
621 PUT_CWP64(env, tmp & 0xff);
622 break;
623 case 83: env->fsr = tmp; break;
624 case 84: env->fprs = tmp; break;
625 case 85: env->y = tmp; break;
626 default: return 0;
629 return 8;
630 #endif
632 #elif defined (TARGET_ARM)
634 /* Old gdb always expect FPA registers. Newer (xml-aware) gdb only expect
635 whatever the target description contains. Due to a historical mishap
636 the FPA registers appear in between core integer regs and the CPSR.
637 We hack round this by giving the FPA regs zero size when talking to a
638 newer gdb. */
639 #define NUM_CORE_REGS 26
640 #define GDB_CORE_XML "arm-core.xml"
642 static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
644 if (n < 16) {
645 /* Core integer register. */
646 GET_REG32(env->regs[n]);
648 if (n < 24) {
649 /* FPA registers. */
650 if (gdb_has_xml)
651 return 0;
652 memset(mem_buf, 0, 12);
653 return 12;
655 switch (n) {
656 case 24:
657 /* FPA status register. */
658 if (gdb_has_xml)
659 return 0;
660 GET_REG32(0);
661 case 25:
662 /* CPSR */
663 GET_REG32(cpsr_read(env));
665 /* Unknown register. */
666 return 0;
669 static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
671 uint32_t tmp;
673 tmp = ldl_p(mem_buf);
675 /* Mask out low bit of PC to workaround gdb bugs. This will probably
676 cause problems if we ever implement the Jazelle DBX extensions. */
677 if (n == 15)
678 tmp &= ~1;
680 if (n < 16) {
681 /* Core integer register. */
682 env->regs[n] = tmp;
683 return 4;
685 if (n < 24) { /* 16-23 */
686 /* FPA registers (ignored). */
687 if (gdb_has_xml)
688 return 0;
689 return 12;
691 switch (n) {
692 case 24:
693 /* FPA status register (ignored). */
694 if (gdb_has_xml)
695 return 0;
696 return 4;
697 case 25:
698 /* CPSR */
699 cpsr_write (env, tmp, 0xffffffff);
700 return 4;
702 /* Unknown register. */
703 return 0;
706 #elif defined (TARGET_M68K)
708 #define NUM_CORE_REGS 18
710 #define GDB_CORE_XML "cf-core.xml"
712 static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
714 if (n < 8) {
715 /* D0-D7 */
716 GET_REG32(env->dregs[n]);
717 } else if (n < 16) {
718 /* A0-A7 */
719 GET_REG32(env->aregs[n - 8]);
720 } else {
721 switch (n) {
722 case 16: GET_REG32(env->sr);
723 case 17: GET_REG32(env->pc);
726 /* FP registers not included here because they vary between
727 ColdFire and m68k. Use XML bits for these. */
728 return 0;
731 static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
733 uint32_t tmp;
735 tmp = ldl_p(mem_buf);
737 if (n < 8) {
738 /* D0-D7 */
739 env->dregs[n] = tmp;
740 } else if (n < 8) {
741 /* A0-A7 */
742 env->aregs[n - 8] = tmp;
743 } else {
744 switch (n) {
745 case 16: env->sr = tmp; break;
746 case 17: env->pc = tmp; break;
747 default: return 0;
750 return 4;
752 #elif defined (TARGET_MIPS)
754 #define NUM_CORE_REGS 73
756 static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
758 if (n < 32) {
759 GET_REGL(env->active_tc.gpr[n]);
761 if (env->CP0_Config1 & (1 << CP0C1_FP)) {
762 if (n >= 38 && n < 70) {
763 if (env->CP0_Status & (1 << CP0St_FR))
764 GET_REGL(env->active_fpu.fpr[n - 38].d);
765 else
766 GET_REGL(env->active_fpu.fpr[n - 38].w[FP_ENDIAN_IDX]);
768 switch (n) {
769 case 70: GET_REGL((int32_t)env->active_fpu.fcr31);
770 case 71: GET_REGL((int32_t)env->active_fpu.fcr0);
773 switch (n) {
774 case 32: GET_REGL((int32_t)env->CP0_Status);
775 case 33: GET_REGL(env->active_tc.LO[0]);
776 case 34: GET_REGL(env->active_tc.HI[0]);
777 case 35: GET_REGL(env->CP0_BadVAddr);
778 case 36: GET_REGL((int32_t)env->CP0_Cause);
779 case 37: GET_REGL(env->active_tc.PC);
780 case 72: GET_REGL(0); /* fp */
781 case 89: GET_REGL((int32_t)env->CP0_PRid);
783 if (n >= 73 && n <= 88) {
784 /* 16 embedded regs. */
785 GET_REGL(0);
788 return 0;
791 /* convert MIPS rounding mode in FCR31 to IEEE library */
792 static unsigned int ieee_rm[] =
794 float_round_nearest_even,
795 float_round_to_zero,
796 float_round_up,
797 float_round_down
799 #define RESTORE_ROUNDING_MODE \
800 set_float_rounding_mode(ieee_rm[env->active_fpu.fcr31 & 3], &env->active_fpu.fp_status)
802 static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
804 target_ulong tmp;
806 tmp = ldtul_p(mem_buf);
808 if (n < 32) {
809 env->active_tc.gpr[n] = tmp;
810 return sizeof(target_ulong);
812 if (env->CP0_Config1 & (1 << CP0C1_FP)
813 && n >= 38 && n < 73) {
814 if (n < 70) {
815 if (env->CP0_Status & (1 << CP0St_FR))
816 env->active_fpu.fpr[n - 38].d = tmp;
817 else
818 env->active_fpu.fpr[n - 38].w[FP_ENDIAN_IDX] = tmp;
820 switch (n) {
821 case 70:
822 env->active_fpu.fcr31 = tmp & 0xFF83FFFF;
823 /* set rounding mode */
824 RESTORE_ROUNDING_MODE;
825 #ifndef CONFIG_SOFTFLOAT
826 /* no floating point exception for native float */
827 SET_FP_ENABLE(env->active_fpu.fcr31, 0);
828 #endif
829 break;
830 case 71: env->active_fpu.fcr0 = tmp; break;
832 return sizeof(target_ulong);
834 switch (n) {
835 case 32: env->CP0_Status = tmp; break;
836 case 33: env->active_tc.LO[0] = tmp; break;
837 case 34: env->active_tc.HI[0] = tmp; break;
838 case 35: env->CP0_BadVAddr = tmp; break;
839 case 36: env->CP0_Cause = tmp; break;
840 case 37: env->active_tc.PC = tmp; break;
841 case 72: /* fp, ignored */ break;
842 default:
843 if (n > 89)
844 return 0;
845 /* Other registers are readonly. Ignore writes. */
846 break;
849 return sizeof(target_ulong);
851 #elif defined (TARGET_SH4)
853 /* Hint: Use "set architecture sh4" in GDB to see fpu registers */
854 /* FIXME: We should use XML for this. */
856 #define NUM_CORE_REGS 59
858 static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
860 if (n < 8) {
861 if ((env->sr & (SR_MD | SR_RB)) == (SR_MD | SR_RB)) {
862 GET_REGL(env->gregs[n + 16]);
863 } else {
864 GET_REGL(env->gregs[n]);
866 } else if (n < 16) {
867 GET_REGL(env->gregs[n - 8]);
868 } else if (n >= 25 && n < 41) {
869 GET_REGL(env->fregs[(n - 25) + ((env->fpscr & FPSCR_FR) ? 16 : 0)]);
870 } else if (n >= 43 && n < 51) {
871 GET_REGL(env->gregs[n - 43]);
872 } else if (n >= 51 && n < 59) {
873 GET_REGL(env->gregs[n - (51 - 16)]);
875 switch (n) {
876 case 16: GET_REGL(env->pc);
877 case 17: GET_REGL(env->pr);
878 case 18: GET_REGL(env->gbr);
879 case 19: GET_REGL(env->vbr);
880 case 20: GET_REGL(env->mach);
881 case 21: GET_REGL(env->macl);
882 case 22: GET_REGL(env->sr);
883 case 23: GET_REGL(env->fpul);
884 case 24: GET_REGL(env->fpscr);
885 case 41: GET_REGL(env->ssr);
886 case 42: GET_REGL(env->spc);
889 return 0;
892 static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
894 uint32_t tmp;
896 tmp = ldl_p(mem_buf);
898 if (n < 8) {
899 if ((env->sr & (SR_MD | SR_RB)) == (SR_MD | SR_RB)) {
900 env->gregs[n + 16] = tmp;
901 } else {
902 env->gregs[n] = tmp;
904 return 4;
905 } else if (n < 16) {
906 env->gregs[n - 8] = tmp;
907 return 4;
908 } else if (n >= 25 && n < 41) {
909 env->fregs[(n - 25) + ((env->fpscr & FPSCR_FR) ? 16 : 0)] = tmp;
910 } else if (n >= 43 && n < 51) {
911 env->gregs[n - 43] = tmp;
912 return 4;
913 } else if (n >= 51 && n < 59) {
914 env->gregs[n - (51 - 16)] = tmp;
915 return 4;
917 switch (n) {
918 case 16: env->pc = tmp;
919 case 17: env->pr = tmp;
920 case 18: env->gbr = tmp;
921 case 19: env->vbr = tmp;
922 case 20: env->mach = tmp;
923 case 21: env->macl = tmp;
924 case 22: env->sr = tmp;
925 case 23: env->fpul = tmp;
926 case 24: env->fpscr = tmp;
927 case 41: env->ssr = tmp;
928 case 42: env->spc = tmp;
929 default: return 0;
932 return 4;
934 #elif defined (TARGET_CRIS)
936 #define NUM_CORE_REGS 49
938 static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
940 uint8_t srs;
942 srs = env->pregs[PR_SRS];
943 if (n < 16) {
944 GET_REG32(env->regs[n]);
947 if (n >= 21 && n < 32) {
948 GET_REG32(env->pregs[n - 16]);
950 if (n >= 33 && n < 49) {
951 GET_REG32(env->sregs[srs][n - 33]);
953 switch (n) {
954 case 16: GET_REG8(env->pregs[0]);
955 case 17: GET_REG8(env->pregs[1]);
956 case 18: GET_REG32(env->pregs[2]);
957 case 19: GET_REG8(srs);
958 case 20: GET_REG16(env->pregs[4]);
959 case 32: GET_REG32(env->pc);
962 return 0;
965 static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
967 uint32_t tmp;
969 if (n > 49)
970 return 0;
972 tmp = ldl_p(mem_buf);
974 if (n < 16) {
975 env->regs[n] = tmp;
978 if (n >= 21 && n < 32) {
979 env->pregs[n - 16] = tmp;
982 /* FIXME: Should support function regs be writable? */
983 switch (n) {
984 case 16: return 1;
985 case 17: return 1;
986 case 18: env->pregs[PR_PID] = tmp; break;
987 case 19: return 1;
988 case 20: return 2;
989 case 32: env->pc = tmp; break;
992 return 4;
994 #else
996 #define NUM_CORE_REGS 0
998 static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
1000 return 0;
1003 static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
1005 return 0;
1008 #endif
1010 static int num_g_regs = NUM_CORE_REGS;
1012 #ifdef GDB_CORE_XML
1013 /* Encode data using the encoding for 'x' packets. */
1014 static int memtox(char *buf, const char *mem, int len)
1016 char *p = buf;
1017 char c;
1019 while (len--) {
1020 c = *(mem++);
1021 switch (c) {
1022 case '#': case '$': case '*': case '}':
1023 *(p++) = '}';
1024 *(p++) = c ^ 0x20;
1025 break;
1026 default:
1027 *(p++) = c;
1028 break;
1031 return p - buf;
1034 const char *get_feature_xml(const char *p, const char **newp)
1036 extern const char *const xml_builtin[][2];
1037 size_t len;
1038 int i;
1039 const char *name;
1040 static char target_xml[1024];
1042 len = 0;
1043 while (p[len] && p[len] != ':')
1044 len++;
1045 *newp = p + len;
1047 name = NULL;
1048 if (strncmp(p, "target.xml", len) == 0) {
1049 /* Generate the XML description for this CPU. */
1050 if (!target_xml[0]) {
1051 GDBRegisterState *r;
1053 snprintf(target_xml, sizeof(target_xml),
1054 "<?xml version=\"1.0\"?>"
1055 "<!DOCTYPE target SYSTEM \"gdb-target.dtd\">"
1056 "<target>"
1057 "<xi:include href=\"%s\"/>",
1058 GDB_CORE_XML);
1060 for (r = first_cpu->gdb_regs; r; r = r->next) {
1061 strcat(target_xml, "<xi:include href=\"");
1062 strcat(target_xml, r->xml);
1063 strcat(target_xml, "\"/>");
1065 strcat(target_xml, "</target>");
1067 return target_xml;
1069 for (i = 0; ; i++) {
1070 name = xml_builtin[i][0];
1071 if (!name || (strncmp(name, p, len) == 0 && strlen(name) == len))
1072 break;
1074 return name ? xml_builtin[i][1] : NULL;
1076 #endif
1078 static int gdb_read_register(CPUState *env, uint8_t *mem_buf, int reg)
1080 GDBRegisterState *r;
1082 if (reg < NUM_CORE_REGS)
1083 return cpu_gdb_read_register(env, mem_buf, reg);
1085 for (r = env->gdb_regs; r; r = r->next) {
1086 if (r->base_reg <= reg && reg < r->base_reg + r->num_regs) {
1087 return r->get_reg(env, mem_buf, reg - r->base_reg);
1090 return 0;
1093 static int gdb_write_register(CPUState *env, uint8_t *mem_buf, int reg)
1095 GDBRegisterState *r;
1097 if (reg < NUM_CORE_REGS)
1098 return cpu_gdb_write_register(env, mem_buf, reg);
1100 for (r = env->gdb_regs; r; r = r->next) {
1101 if (r->base_reg <= reg && reg < r->base_reg + r->num_regs) {
1102 return r->set_reg(env, mem_buf, reg - r->base_reg);
1105 return 0;
1108 /* Register a supplemental set of CPU registers. If g_pos is nonzero it
1109 specifies the first register number and these registers are included in
1110 a standard "g" packet. Direction is relative to gdb, i.e. get_reg is
1111 gdb reading a CPU register, and set_reg is gdb modifying a CPU register.
1114 void gdb_register_coprocessor(CPUState * env,
1115 gdb_reg_cb get_reg, gdb_reg_cb set_reg,
1116 int num_regs, const char *xml, int g_pos)
1118 GDBRegisterState *s;
1119 GDBRegisterState **p;
1120 static int last_reg = NUM_CORE_REGS;
1122 s = (GDBRegisterState *)qemu_mallocz(sizeof(GDBRegisterState));
1123 s->base_reg = last_reg;
1124 s->num_regs = num_regs;
1125 s->get_reg = get_reg;
1126 s->set_reg = set_reg;
1127 s->xml = xml;
1128 p = &env->gdb_regs;
1129 while (*p) {
1130 /* Check for duplicates. */
1131 if (strcmp((*p)->xml, xml) == 0)
1132 return;
1133 p = &(*p)->next;
1135 /* Add to end of list. */
1136 last_reg += num_regs;
1137 *p = s;
1138 if (g_pos) {
1139 if (g_pos != s->base_reg) {
1140 fprintf(stderr, "Error: Bad gdb register numbering for '%s'\n"
1141 "Expected %d got %d\n", xml, g_pos, s->base_reg);
1142 } else {
1143 num_g_regs = last_reg;
1148 /* GDB breakpoint/watchpoint types */
1149 #define GDB_BREAKPOINT_SW 0
1150 #define GDB_BREAKPOINT_HW 1
1151 #define GDB_WATCHPOINT_WRITE 2
1152 #define GDB_WATCHPOINT_READ 3
1153 #define GDB_WATCHPOINT_ACCESS 4
1155 #ifndef CONFIG_USER_ONLY
1156 static const int xlat_gdb_type[] = {
1157 [GDB_WATCHPOINT_WRITE] = BP_GDB | BP_MEM_WRITE,
1158 [GDB_WATCHPOINT_READ] = BP_GDB | BP_MEM_READ,
1159 [GDB_WATCHPOINT_ACCESS] = BP_GDB | BP_MEM_ACCESS,
1161 #endif
1163 static int gdb_breakpoint_insert(target_ulong addr, target_ulong len, int type)
1165 CPUState *env;
1166 int err = 0;
1168 switch (type) {
1169 case GDB_BREAKPOINT_SW:
1170 case GDB_BREAKPOINT_HW:
1171 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1172 err = cpu_breakpoint_insert(env, addr, BP_GDB, NULL);
1173 if (err)
1174 break;
1176 return err;
1177 #ifndef CONFIG_USER_ONLY
1178 case GDB_WATCHPOINT_WRITE:
1179 case GDB_WATCHPOINT_READ:
1180 case GDB_WATCHPOINT_ACCESS:
1181 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1182 err = cpu_watchpoint_insert(env, addr, len, xlat_gdb_type[type],
1183 NULL);
1184 if (err)
1185 break;
1187 return err;
1188 #endif
1189 default:
1190 return -ENOSYS;
1194 static int gdb_breakpoint_remove(target_ulong addr, target_ulong len, int type)
1196 CPUState *env;
1197 int err = 0;
1199 switch (type) {
1200 case GDB_BREAKPOINT_SW:
1201 case GDB_BREAKPOINT_HW:
1202 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1203 err = cpu_breakpoint_remove(env, addr, BP_GDB);
1204 if (err)
1205 break;
1207 return err;
1208 #ifndef CONFIG_USER_ONLY
1209 case GDB_WATCHPOINT_WRITE:
1210 case GDB_WATCHPOINT_READ:
1211 case GDB_WATCHPOINT_ACCESS:
1212 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1213 err = cpu_watchpoint_remove(env, addr, len, xlat_gdb_type[type]);
1214 if (err)
1215 break;
1217 return err;
1218 #endif
1219 default:
1220 return -ENOSYS;
1224 static void gdb_breakpoint_remove_all(void)
1226 CPUState *env;
1228 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1229 cpu_breakpoint_remove_all(env, BP_GDB);
1230 #ifndef CONFIG_USER_ONLY
1231 cpu_watchpoint_remove_all(env, BP_GDB);
1232 #endif
1236 static int gdb_handle_packet(GDBState *s, const char *line_buf)
1238 CPUState *env;
1239 const char *p;
1240 int ch, reg_size, type, res, thread;
1241 char buf[MAX_PACKET_LENGTH];
1242 uint8_t mem_buf[MAX_PACKET_LENGTH];
1243 uint8_t *registers;
1244 target_ulong addr, len;
1246 #ifdef DEBUG_GDB
1247 printf("command='%s'\n", line_buf);
1248 #endif
1249 p = line_buf;
1250 ch = *p++;
1251 switch(ch) {
1252 case '?':
1253 /* TODO: Make this return the correct value for user-mode. */
1254 snprintf(buf, sizeof(buf), "T%02xthread:%02x;", SIGTRAP,
1255 s->c_cpu->cpu_index+1);
1256 put_packet(s, buf);
1257 /* Remove all the breakpoints when this query is issued,
1258 * because gdb is doing and initial connect and the state
1259 * should be cleaned up.
1261 gdb_breakpoint_remove_all();
1262 break;
1263 case 'c':
1264 if (*p != '\0') {
1265 addr = strtoull(p, (char **)&p, 16);
1266 #if defined(TARGET_I386)
1267 s->c_cpu->eip = addr;
1268 kvm_load_registers(s->c_cpu);
1269 #elif defined (TARGET_PPC)
1270 s->c_cpu->nip = addr;
1271 kvm_load_registers(s->c_cpu);
1272 #elif defined (TARGET_SPARC)
1273 s->c_cpu->pc = addr;
1274 s->c_cpu->npc = addr + 4;
1275 #elif defined (TARGET_ARM)
1276 s->c_cpu->regs[15] = addr;
1277 #elif defined (TARGET_SH4)
1278 s->c_cpu->pc = addr;
1279 #elif defined (TARGET_MIPS)
1280 s->c_cpu->active_tc.PC = addr;
1281 #elif defined (TARGET_CRIS)
1282 s->c_cpu->pc = addr;
1283 #endif
1285 gdb_continue(s);
1286 return RS_IDLE;
1287 case 'C':
1288 s->signal = strtoul(p, (char **)&p, 16);
1289 gdb_continue(s);
1290 return RS_IDLE;
1291 case 'k':
1292 /* Kill the target */
1293 fprintf(stderr, "\nQEMU: Terminated via GDBstub\n");
1294 exit(0);
1295 case 'D':
1296 /* Detach packet */
1297 gdb_breakpoint_remove_all();
1298 gdb_continue(s);
1299 put_packet(s, "OK");
1300 break;
1301 case 's':
1302 if (*p != '\0') {
1303 addr = strtoull(p, (char **)&p, 16);
1304 #if defined(TARGET_I386)
1305 s->c_cpu->eip = addr;
1306 kvm_load_registers(s->c_cpu);
1307 #elif defined (TARGET_PPC)
1308 s->c_cpu->nip = addr;
1309 kvm_load_registers(s->c_cpu);
1310 #elif defined (TARGET_SPARC)
1311 s->c_cpu->pc = addr;
1312 s->c_cpu->npc = addr + 4;
1313 #elif defined (TARGET_ARM)
1314 s->c_cpu->regs[15] = addr;
1315 #elif defined (TARGET_SH4)
1316 s->c_cpu->pc = addr;
1317 #elif defined (TARGET_MIPS)
1318 s->c_cpu->active_tc.PC = addr;
1319 #elif defined (TARGET_CRIS)
1320 s->c_cpu->pc = addr;
1321 #endif
1323 cpu_single_step(s->c_cpu, sstep_flags);
1324 gdb_continue(s);
1325 return RS_IDLE;
1326 case 'F':
1328 target_ulong ret;
1329 target_ulong err;
1331 ret = strtoull(p, (char **)&p, 16);
1332 if (*p == ',') {
1333 p++;
1334 err = strtoull(p, (char **)&p, 16);
1335 } else {
1336 err = 0;
1338 if (*p == ',')
1339 p++;
1340 type = *p;
1341 if (gdb_current_syscall_cb)
1342 gdb_current_syscall_cb(s->c_cpu, ret, err);
1343 if (type == 'C') {
1344 put_packet(s, "T02");
1345 } else {
1346 gdb_continue(s);
1349 break;
1350 case 'g':
1351 kvm_save_registers(env);
1352 len = 0;
1353 for (addr = 0; addr < num_g_regs; addr++) {
1354 reg_size = gdb_read_register(s->g_cpu, mem_buf + len, addr);
1355 len += reg_size;
1357 memtohex(buf, mem_buf, len);
1358 put_packet(s, buf);
1359 break;
1360 case 'G':
1361 registers = mem_buf;
1362 len = strlen(p) / 2;
1363 hextomem((uint8_t *)registers, p, len);
1364 for (addr = 0; addr < num_g_regs && len > 0; addr++) {
1365 reg_size = gdb_write_register(s->g_cpu, registers, addr);
1366 len -= reg_size;
1367 registers += reg_size;
1369 kvm_load_registers(env);
1370 put_packet(s, "OK");
1371 break;
1372 case 'm':
1373 addr = strtoull(p, (char **)&p, 16);
1374 if (*p == ',')
1375 p++;
1376 len = strtoull(p, NULL, 16);
1377 if (cpu_memory_rw_debug(s->g_cpu, addr, mem_buf, len, 0) != 0) {
1378 put_packet (s, "E14");
1379 } else {
1380 memtohex(buf, mem_buf, len);
1381 put_packet(s, buf);
1383 break;
1384 case 'M':
1385 addr = strtoull(p, (char **)&p, 16);
1386 if (*p == ',')
1387 p++;
1388 len = strtoull(p, (char **)&p, 16);
1389 if (*p == ':')
1390 p++;
1391 hextomem(mem_buf, p, len);
1392 if (cpu_memory_rw_debug(s->g_cpu, addr, mem_buf, len, 1) != 0)
1393 put_packet(s, "E14");
1394 else
1395 put_packet(s, "OK");
1396 break;
1397 case 'p':
1398 /* Older gdb are really dumb, and don't use 'g' if 'p' is avaialable.
1399 This works, but can be very slow. Anything new enough to
1400 understand XML also knows how to use this properly. */
1401 if (!gdb_has_xml)
1402 goto unknown_command;
1403 addr = strtoull(p, (char **)&p, 16);
1404 reg_size = gdb_read_register(s->g_cpu, mem_buf, addr);
1405 if (reg_size) {
1406 memtohex(buf, mem_buf, reg_size);
1407 put_packet(s, buf);
1408 } else {
1409 put_packet(s, "E14");
1411 break;
1412 case 'P':
1413 if (!gdb_has_xml)
1414 goto unknown_command;
1415 addr = strtoull(p, (char **)&p, 16);
1416 if (*p == '=')
1417 p++;
1418 reg_size = strlen(p) / 2;
1419 hextomem(mem_buf, p, reg_size);
1420 gdb_write_register(s->g_cpu, mem_buf, addr);
1421 put_packet(s, "OK");
1422 break;
1423 case 'Z':
1424 case 'z':
1425 type = strtoul(p, (char **)&p, 16);
1426 if (*p == ',')
1427 p++;
1428 addr = strtoull(p, (char **)&p, 16);
1429 if (*p == ',')
1430 p++;
1431 len = strtoull(p, (char **)&p, 16);
1432 if (ch == 'Z')
1433 res = gdb_breakpoint_insert(addr, len, type);
1434 else
1435 res = gdb_breakpoint_remove(addr, len, type);
1436 if (res >= 0)
1437 put_packet(s, "OK");
1438 else if (res == -ENOSYS)
1439 put_packet(s, "");
1440 else
1441 put_packet(s, "E22");
1442 break;
1443 case 'H':
1444 type = *p++;
1445 thread = strtoull(p, (char **)&p, 16);
1446 if (thread == -1 || thread == 0) {
1447 put_packet(s, "OK");
1448 break;
1450 for (env = first_cpu; env != NULL; env = env->next_cpu)
1451 if (env->cpu_index + 1 == thread)
1452 break;
1453 if (env == NULL) {
1454 put_packet(s, "E22");
1455 break;
1457 switch (type) {
1458 case 'c':
1459 s->c_cpu = env;
1460 put_packet(s, "OK");
1461 break;
1462 case 'g':
1463 s->g_cpu = env;
1464 put_packet(s, "OK");
1465 break;
1466 default:
1467 put_packet(s, "E22");
1468 break;
1470 break;
1471 case 'T':
1472 thread = strtoull(p, (char **)&p, 16);
1473 #ifndef CONFIG_USER_ONLY
1474 if (thread > 0 && thread < smp_cpus + 1)
1475 #else
1476 if (thread == 1)
1477 #endif
1478 put_packet(s, "OK");
1479 else
1480 put_packet(s, "E22");
1481 break;
1482 case 'q':
1483 case 'Q':
1484 /* parse any 'q' packets here */
1485 if (!strcmp(p,"qemu.sstepbits")) {
1486 /* Query Breakpoint bit definitions */
1487 snprintf(buf, sizeof(buf), "ENABLE=%x,NOIRQ=%x,NOTIMER=%x",
1488 SSTEP_ENABLE,
1489 SSTEP_NOIRQ,
1490 SSTEP_NOTIMER);
1491 put_packet(s, buf);
1492 break;
1493 } else if (strncmp(p,"qemu.sstep",10) == 0) {
1494 /* Display or change the sstep_flags */
1495 p += 10;
1496 if (*p != '=') {
1497 /* Display current setting */
1498 snprintf(buf, sizeof(buf), "0x%x", sstep_flags);
1499 put_packet(s, buf);
1500 break;
1502 p++;
1503 type = strtoul(p, (char **)&p, 16);
1504 sstep_flags = type;
1505 put_packet(s, "OK");
1506 break;
1507 } else if (strcmp(p,"C") == 0) {
1508 /* "Current thread" remains vague in the spec, so always return
1509 * the first CPU (gdb returns the first thread). */
1510 put_packet(s, "QC1");
1511 break;
1512 } else if (strcmp(p,"fThreadInfo") == 0) {
1513 s->query_cpu = first_cpu;
1514 goto report_cpuinfo;
1515 } else if (strcmp(p,"sThreadInfo") == 0) {
1516 report_cpuinfo:
1517 if (s->query_cpu) {
1518 snprintf(buf, sizeof(buf), "m%x", s->query_cpu->cpu_index+1);
1519 put_packet(s, buf);
1520 s->query_cpu = s->query_cpu->next_cpu;
1521 } else
1522 put_packet(s, "l");
1523 break;
1524 } else if (strncmp(p,"ThreadExtraInfo,", 16) == 0) {
1525 thread = strtoull(p+16, (char **)&p, 16);
1526 for (env = first_cpu; env != NULL; env = env->next_cpu)
1527 if (env->cpu_index + 1 == thread) {
1528 len = snprintf((char *)mem_buf, sizeof(mem_buf),
1529 "CPU#%d [%s]", env->cpu_index,
1530 env->halted ? "halted " : "running");
1531 memtohex(buf, mem_buf, len);
1532 put_packet(s, buf);
1533 break;
1535 break;
1537 #ifdef CONFIG_LINUX_USER
1538 else if (strncmp(p, "Offsets", 7) == 0) {
1539 TaskState *ts = s->c_cpu->opaque;
1541 snprintf(buf, sizeof(buf),
1542 "Text=" TARGET_ABI_FMT_lx ";Data=" TARGET_ABI_FMT_lx
1543 ";Bss=" TARGET_ABI_FMT_lx,
1544 ts->info->code_offset,
1545 ts->info->data_offset,
1546 ts->info->data_offset);
1547 put_packet(s, buf);
1548 break;
1550 #endif
1551 if (strncmp(p, "Supported", 9) == 0) {
1552 snprintf(buf, sizeof(buf), "PacketSize=%x", MAX_PACKET_LENGTH);
1553 #ifdef GDB_CORE_XML
1554 strcat(buf, ";qXfer:features:read+");
1555 #endif
1556 put_packet(s, buf);
1557 break;
1559 #ifdef GDB_CORE_XML
1560 if (strncmp(p, "Xfer:features:read:", 19) == 0) {
1561 const char *xml;
1562 target_ulong total_len;
1564 gdb_has_xml = 1;
1565 p += 19;
1566 xml = get_feature_xml(p, &p);
1567 if (!xml) {
1568 snprintf(buf, sizeof(buf), "E00");
1569 put_packet(s, buf);
1570 break;
1573 if (*p == ':')
1574 p++;
1575 addr = strtoul(p, (char **)&p, 16);
1576 if (*p == ',')
1577 p++;
1578 len = strtoul(p, (char **)&p, 16);
1580 total_len = strlen(xml);
1581 if (addr > total_len) {
1582 snprintf(buf, sizeof(buf), "E00");
1583 put_packet(s, buf);
1584 break;
1586 if (len > (MAX_PACKET_LENGTH - 5) / 2)
1587 len = (MAX_PACKET_LENGTH - 5) / 2;
1588 if (len < total_len - addr) {
1589 buf[0] = 'm';
1590 len = memtox(buf + 1, xml + addr, len);
1591 } else {
1592 buf[0] = 'l';
1593 len = memtox(buf + 1, xml + addr, total_len - addr);
1595 put_packet_binary(s, buf, len + 1);
1596 break;
1598 #endif
1599 /* Unrecognised 'q' command. */
1600 goto unknown_command;
1602 default:
1603 unknown_command:
1604 /* put empty packet */
1605 buf[0] = '\0';
1606 put_packet(s, buf);
1607 break;
1609 return RS_IDLE;
1612 extern void tb_flush(CPUState *env);
1614 void gdb_set_stop_cpu(CPUState *env)
1616 gdbserver_state->c_cpu = env;
1617 gdbserver_state->g_cpu = env;
1620 #ifndef CONFIG_USER_ONLY
1621 static void gdb_vm_stopped(void *opaque, int reason)
1623 GDBState *s = gdbserver_state;
1624 CPUState *env = s->c_cpu;
1625 char buf[256];
1626 const char *type;
1627 int ret;
1629 if (s->state == RS_SYSCALL)
1630 return;
1632 /* disable single step if it was enable */
1633 cpu_single_step(env, 0);
1635 if (reason == EXCP_DEBUG) {
1636 if (env->watchpoint_hit) {
1637 switch (env->watchpoint_hit->flags & BP_MEM_ACCESS) {
1638 case BP_MEM_READ:
1639 type = "r";
1640 break;
1641 case BP_MEM_ACCESS:
1642 type = "a";
1643 break;
1644 default:
1645 type = "";
1646 break;
1648 snprintf(buf, sizeof(buf),
1649 "T%02xthread:%02x;%swatch:" TARGET_FMT_lx ";",
1650 SIGTRAP, env->cpu_index+1, type,
1651 env->watchpoint_hit->vaddr);
1652 put_packet(s, buf);
1653 env->watchpoint_hit = NULL;
1654 return;
1656 tb_flush(env);
1657 ret = SIGTRAP;
1658 } else if (reason == EXCP_INTERRUPT) {
1659 ret = SIGINT;
1660 } else {
1661 ret = 0;
1663 snprintf(buf, sizeof(buf), "T%02xthread:%02x;", ret, env->cpu_index+1);
1664 put_packet(s, buf);
1666 #endif
1668 /* Send a gdb syscall request.
1669 This accepts limited printf-style format specifiers, specifically:
1670 %x - target_ulong argument printed in hex.
1671 %lx - 64-bit argument printed in hex.
1672 %s - string pointer (target_ulong) and length (int) pair. */
1673 void gdb_do_syscall(gdb_syscall_complete_cb cb, const char *fmt, ...)
1675 va_list va;
1676 char buf[256];
1677 char *p;
1678 target_ulong addr;
1679 uint64_t i64;
1680 GDBState *s;
1682 s = gdbserver_state;
1683 if (!s)
1684 return;
1685 gdb_current_syscall_cb = cb;
1686 s->state = RS_SYSCALL;
1687 #ifndef CONFIG_USER_ONLY
1688 vm_stop(EXCP_DEBUG);
1689 #endif
1690 s->state = RS_IDLE;
1691 va_start(va, fmt);
1692 p = buf;
1693 *(p++) = 'F';
1694 while (*fmt) {
1695 if (*fmt == '%') {
1696 fmt++;
1697 switch (*fmt++) {
1698 case 'x':
1699 addr = va_arg(va, target_ulong);
1700 p += snprintf(p, &buf[sizeof(buf)] - p, TARGET_FMT_lx, addr);
1701 break;
1702 case 'l':
1703 if (*(fmt++) != 'x')
1704 goto bad_format;
1705 i64 = va_arg(va, uint64_t);
1706 p += snprintf(p, &buf[sizeof(buf)] - p, "%" PRIx64, i64);
1707 break;
1708 case 's':
1709 addr = va_arg(va, target_ulong);
1710 p += snprintf(p, &buf[sizeof(buf)] - p, TARGET_FMT_lx "/%x",
1711 addr, va_arg(va, int));
1712 break;
1713 default:
1714 bad_format:
1715 fprintf(stderr, "gdbstub: Bad syscall format string '%s'\n",
1716 fmt - 1);
1717 break;
1719 } else {
1720 *(p++) = *(fmt++);
1723 *p = 0;
1724 va_end(va);
1725 put_packet(s, buf);
1726 #ifdef CONFIG_USER_ONLY
1727 gdb_handlesig(s->c_cpu, 0);
1728 #else
1729 cpu_interrupt(s->c_cpu, CPU_INTERRUPT_EXIT);
1730 #endif
1733 static void gdb_read_byte(GDBState *s, int ch)
1735 int i, csum;
1736 uint8_t reply;
1738 #ifndef CONFIG_USER_ONLY
1739 if (s->last_packet_len) {
1740 /* Waiting for a response to the last packet. If we see the start
1741 of a new command then abandon the previous response. */
1742 if (ch == '-') {
1743 #ifdef DEBUG_GDB
1744 printf("Got NACK, retransmitting\n");
1745 #endif
1746 put_buffer(s, (uint8_t *)s->last_packet, s->last_packet_len);
1748 #ifdef DEBUG_GDB
1749 else if (ch == '+')
1750 printf("Got ACK\n");
1751 else
1752 printf("Got '%c' when expecting ACK/NACK\n", ch);
1753 #endif
1754 if (ch == '+' || ch == '$')
1755 s->last_packet_len = 0;
1756 if (ch != '$')
1757 return;
1759 if (vm_running) {
1760 /* when the CPU is running, we cannot do anything except stop
1761 it when receiving a char */
1762 vm_stop(EXCP_INTERRUPT);
1763 } else
1764 #endif
1766 switch(s->state) {
1767 case RS_IDLE:
1768 if (ch == '$') {
1769 s->line_buf_index = 0;
1770 s->state = RS_GETLINE;
1772 break;
1773 case RS_GETLINE:
1774 if (ch == '#') {
1775 s->state = RS_CHKSUM1;
1776 } else if (s->line_buf_index >= sizeof(s->line_buf) - 1) {
1777 s->state = RS_IDLE;
1778 } else {
1779 s->line_buf[s->line_buf_index++] = ch;
1781 break;
1782 case RS_CHKSUM1:
1783 s->line_buf[s->line_buf_index] = '\0';
1784 s->line_csum = fromhex(ch) << 4;
1785 s->state = RS_CHKSUM2;
1786 break;
1787 case RS_CHKSUM2:
1788 s->line_csum |= fromhex(ch);
1789 csum = 0;
1790 for(i = 0; i < s->line_buf_index; i++) {
1791 csum += s->line_buf[i];
1793 if (s->line_csum != (csum & 0xff)) {
1794 reply = '-';
1795 put_buffer(s, &reply, 1);
1796 s->state = RS_IDLE;
1797 } else {
1798 reply = '+';
1799 put_buffer(s, &reply, 1);
1800 s->state = gdb_handle_packet(s, s->line_buf);
1802 break;
1803 default:
1804 abort();
1809 #ifdef CONFIG_USER_ONLY
1811 gdb_handlesig (CPUState *env, int sig)
1813 GDBState *s;
1814 char buf[256];
1815 int n;
1817 s = gdbserver_state;
1818 if (gdbserver_fd < 0 || s->fd < 0)
1819 return sig;
1821 /* disable single step if it was enabled */
1822 cpu_single_step(env, 0);
1823 tb_flush(env);
1825 if (sig != 0)
1827 snprintf(buf, sizeof(buf), "S%02x", sig);
1828 put_packet(s, buf);
1830 /* put_packet() might have detected that the peer terminated the
1831 connection. */
1832 if (s->fd < 0)
1833 return sig;
1835 sig = 0;
1836 s->state = RS_IDLE;
1837 s->running_state = 0;
1838 while (s->running_state == 0) {
1839 n = read (s->fd, buf, 256);
1840 if (n > 0)
1842 int i;
1844 for (i = 0; i < n; i++)
1845 gdb_read_byte (s, buf[i]);
1847 else if (n == 0 || errno != EAGAIN)
1849 /* XXX: Connection closed. Should probably wait for annother
1850 connection before continuing. */
1851 return sig;
1854 sig = s->signal;
1855 s->signal = 0;
1856 return sig;
1859 /* Tell the remote gdb that the process has exited. */
1860 void gdb_exit(CPUState *env, int code)
1862 GDBState *s;
1863 char buf[4];
1865 s = gdbserver_state;
1866 if (gdbserver_fd < 0 || s->fd < 0)
1867 return;
1869 snprintf(buf, sizeof(buf), "W%02x", code);
1870 put_packet(s, buf);
1874 static void gdb_accept(void)
1876 GDBState *s;
1877 struct sockaddr_in sockaddr;
1878 socklen_t len;
1879 int val, fd;
1881 for(;;) {
1882 len = sizeof(sockaddr);
1883 fd = accept(gdbserver_fd, (struct sockaddr *)&sockaddr, &len);
1884 if (fd < 0 && errno != EINTR) {
1885 perror("accept");
1886 return;
1887 } else if (fd >= 0) {
1888 break;
1892 /* set short latency */
1893 val = 1;
1894 setsockopt(fd, IPPROTO_TCP, TCP_NODELAY, (char *)&val, sizeof(val));
1896 s = qemu_mallocz(sizeof(GDBState));
1897 if (!s) {
1898 errno = ENOMEM;
1899 perror("accept");
1900 return;
1903 memset (s, 0, sizeof (GDBState));
1904 s->c_cpu = first_cpu;
1905 s->g_cpu = first_cpu;
1906 s->fd = fd;
1907 gdb_has_xml = 0;
1909 gdbserver_state = s;
1911 fcntl(fd, F_SETFL, O_NONBLOCK);
1914 static int gdbserver_open(int port)
1916 struct sockaddr_in sockaddr;
1917 int fd, val, ret;
1919 fd = socket(PF_INET, SOCK_STREAM, 0);
1920 if (fd < 0) {
1921 perror("socket");
1922 return -1;
1925 /* allow fast reuse */
1926 val = 1;
1927 setsockopt(fd, SOL_SOCKET, SO_REUSEADDR, (char *)&val, sizeof(val));
1929 sockaddr.sin_family = AF_INET;
1930 sockaddr.sin_port = htons(port);
1931 sockaddr.sin_addr.s_addr = 0;
1932 ret = bind(fd, (struct sockaddr *)&sockaddr, sizeof(sockaddr));
1933 if (ret < 0) {
1934 perror("bind");
1935 return -1;
1937 ret = listen(fd, 0);
1938 if (ret < 0) {
1939 perror("listen");
1940 return -1;
1942 return fd;
1945 int gdbserver_start(int port)
1947 gdbserver_fd = gdbserver_open(port);
1948 if (gdbserver_fd < 0)
1949 return -1;
1950 /* accept connections */
1951 gdb_accept();
1952 return 0;
1954 #else
1955 static int gdb_chr_can_receive(void *opaque)
1957 /* We can handle an arbitrarily large amount of data.
1958 Pick the maximum packet size, which is as good as anything. */
1959 return MAX_PACKET_LENGTH;
1962 static void gdb_chr_receive(void *opaque, const uint8_t *buf, int size)
1964 int i;
1966 for (i = 0; i < size; i++) {
1967 gdb_read_byte(gdbserver_state, buf[i]);
1971 static void gdb_chr_event(void *opaque, int event)
1973 switch (event) {
1974 case CHR_EVENT_RESET:
1975 vm_stop(EXCP_INTERRUPT);
1976 gdb_has_xml = 0;
1977 break;
1978 default:
1979 break;
1983 int gdbserver_start(const char *port)
1985 GDBState *s;
1986 char gdbstub_port_name[128];
1987 int port_num;
1988 char *p;
1989 CharDriverState *chr;
1991 if (!port || !*port)
1992 return -1;
1994 port_num = strtol(port, &p, 10);
1995 if (*p == 0) {
1996 /* A numeric value is interpreted as a port number. */
1997 snprintf(gdbstub_port_name, sizeof(gdbstub_port_name),
1998 "tcp::%d,nowait,nodelay,server", port_num);
1999 port = gdbstub_port_name;
2002 chr = qemu_chr_open("gdb", port);
2003 if (!chr)
2004 return -1;
2006 s = qemu_mallocz(sizeof(GDBState));
2007 if (!s) {
2008 return -1;
2010 s->c_cpu = first_cpu;
2011 s->g_cpu = first_cpu;
2012 s->chr = chr;
2013 gdbserver_state = s;
2014 qemu_chr_add_handlers(chr, gdb_chr_can_receive, gdb_chr_receive,
2015 gdb_chr_event, NULL);
2016 qemu_add_vm_stop_handler(gdb_vm_stopped, NULL);
2017 return 0;
2019 #endif