Regenerate bios for smp boot hang fix
[qemu-kvm/fedora.git] / qemu-kvm-x86.c
blobaa36be8801625d38469d3b451b44ca1c3782c7c8
1 /*
2 * qemu/kvm integration, x86 specific code
4 * Copyright (C) 2006-2008 Qumranet Technologies
6 * Licensed under the terms of the GNU GPL version 2 or higher.
7 */
9 #include "config.h"
10 #include "config-host.h"
12 #include <string.h>
13 #include "hw/hw.h"
14 #include "gdbstub.h"
15 #include <sys/io.h>
17 #include "qemu-kvm.h"
18 #include <libkvm.h>
19 #include <pthread.h>
20 #include <sys/utsname.h>
21 #include <linux/kvm_para.h>
23 #define MSR_IA32_TSC 0x10
25 static struct kvm_msr_list *kvm_msr_list;
26 extern unsigned int kvm_shadow_memory;
27 extern kvm_context_t kvm_context;
28 static int kvm_has_msr_star;
30 static int lm_capable_kernel;
32 int kvm_qemu_create_memory_alias(uint64_t phys_start,
33 uint64_t len,
34 uint64_t target_phys)
36 return kvm_create_memory_alias(kvm_context, phys_start, len, target_phys);
39 int kvm_qemu_destroy_memory_alias(uint64_t phys_start)
41 return kvm_destroy_memory_alias(kvm_context, phys_start);
44 int kvm_arch_qemu_create_context(void)
46 int i;
47 struct utsname utsname;
49 uname(&utsname);
50 lm_capable_kernel = strcmp(utsname.machine, "x86_64") == 0;
52 if (kvm_shadow_memory)
53 kvm_set_shadow_pages(kvm_context, kvm_shadow_memory);
55 kvm_msr_list = kvm_get_msr_list(kvm_context);
56 if (!kvm_msr_list)
57 return -1;
58 for (i = 0; i < kvm_msr_list->nmsrs; ++i)
59 if (kvm_msr_list->indices[i] == MSR_STAR)
60 kvm_has_msr_star = 1;
61 return 0;
64 static void set_msr_entry(struct kvm_msr_entry *entry, uint32_t index,
65 uint64_t data)
67 entry->index = index;
68 entry->data = data;
71 /* returns 0 on success, non-0 on failure */
72 static int get_msr_entry(struct kvm_msr_entry *entry, CPUState *env)
74 switch (entry->index) {
75 case MSR_IA32_SYSENTER_CS:
76 env->sysenter_cs = entry->data;
77 break;
78 case MSR_IA32_SYSENTER_ESP:
79 env->sysenter_esp = entry->data;
80 break;
81 case MSR_IA32_SYSENTER_EIP:
82 env->sysenter_eip = entry->data;
83 break;
84 case MSR_STAR:
85 env->star = entry->data;
86 break;
87 #ifdef TARGET_X86_64
88 case MSR_CSTAR:
89 env->cstar = entry->data;
90 break;
91 case MSR_KERNELGSBASE:
92 env->kernelgsbase = entry->data;
93 break;
94 case MSR_FMASK:
95 env->fmask = entry->data;
96 break;
97 case MSR_LSTAR:
98 env->lstar = entry->data;
99 break;
100 #endif
101 case MSR_IA32_TSC:
102 env->tsc = entry->data;
103 break;
104 case MSR_VM_HSAVE_PA:
105 env->vm_hsave = entry->data;
106 break;
107 default:
108 printf("Warning unknown msr index 0x%x\n", entry->index);
109 return 1;
111 return 0;
114 #ifdef TARGET_X86_64
115 #define MSR_COUNT 9
116 #else
117 #define MSR_COUNT 5
118 #endif
120 static void set_v8086_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
122 lhs->selector = rhs->selector;
123 lhs->base = rhs->base;
124 lhs->limit = rhs->limit;
125 lhs->type = 3;
126 lhs->present = 1;
127 lhs->dpl = 3;
128 lhs->db = 0;
129 lhs->s = 1;
130 lhs->l = 0;
131 lhs->g = 0;
132 lhs->avl = 0;
133 lhs->unusable = 0;
136 static void set_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
138 unsigned flags = rhs->flags;
139 lhs->selector = rhs->selector;
140 lhs->base = rhs->base;
141 lhs->limit = rhs->limit;
142 lhs->type = (flags >> DESC_TYPE_SHIFT) & 15;
143 lhs->present = (flags & DESC_P_MASK) != 0;
144 lhs->dpl = rhs->selector & 3;
145 lhs->db = (flags >> DESC_B_SHIFT) & 1;
146 lhs->s = (flags & DESC_S_MASK) != 0;
147 lhs->l = (flags >> DESC_L_SHIFT) & 1;
148 lhs->g = (flags & DESC_G_MASK) != 0;
149 lhs->avl = (flags & DESC_AVL_MASK) != 0;
150 lhs->unusable = 0;
153 static void get_seg(SegmentCache *lhs, const struct kvm_segment *rhs)
155 lhs->selector = rhs->selector;
156 lhs->base = rhs->base;
157 lhs->limit = rhs->limit;
158 lhs->flags =
159 (rhs->type << DESC_TYPE_SHIFT)
160 | (rhs->present * DESC_P_MASK)
161 | (rhs->dpl << DESC_DPL_SHIFT)
162 | (rhs->db << DESC_B_SHIFT)
163 | (rhs->s * DESC_S_MASK)
164 | (rhs->l << DESC_L_SHIFT)
165 | (rhs->g * DESC_G_MASK)
166 | (rhs->avl * DESC_AVL_MASK);
169 void kvm_arch_load_regs(CPUState *env)
171 struct kvm_regs regs;
172 struct kvm_fpu fpu;
173 struct kvm_sregs sregs;
174 struct kvm_msr_entry msrs[MSR_COUNT];
175 int rc, n, i;
177 regs.rax = env->regs[R_EAX];
178 regs.rbx = env->regs[R_EBX];
179 regs.rcx = env->regs[R_ECX];
180 regs.rdx = env->regs[R_EDX];
181 regs.rsi = env->regs[R_ESI];
182 regs.rdi = env->regs[R_EDI];
183 regs.rsp = env->regs[R_ESP];
184 regs.rbp = env->regs[R_EBP];
185 #ifdef TARGET_X86_64
186 regs.r8 = env->regs[8];
187 regs.r9 = env->regs[9];
188 regs.r10 = env->regs[10];
189 regs.r11 = env->regs[11];
190 regs.r12 = env->regs[12];
191 regs.r13 = env->regs[13];
192 regs.r14 = env->regs[14];
193 regs.r15 = env->regs[15];
194 #endif
196 regs.rflags = env->eflags;
197 regs.rip = env->eip;
199 kvm_set_regs(kvm_context, env->cpu_index, &regs);
201 memset(&fpu, 0, sizeof fpu);
202 fpu.fsw = env->fpus & ~(7 << 11);
203 fpu.fsw |= (env->fpstt & 7) << 11;
204 fpu.fcw = env->fpuc;
205 for (i = 0; i < 8; ++i)
206 fpu.ftwx |= (!env->fptags[i]) << i;
207 memcpy(fpu.fpr, env->fpregs, sizeof env->fpregs);
208 memcpy(fpu.xmm, env->xmm_regs, sizeof env->xmm_regs);
209 fpu.mxcsr = env->mxcsr;
210 kvm_set_fpu(kvm_context, env->cpu_index, &fpu);
212 memcpy(sregs.interrupt_bitmap, env->interrupt_bitmap, sizeof(sregs.interrupt_bitmap));
214 if ((env->eflags & VM_MASK)) {
215 set_v8086_seg(&sregs.cs, &env->segs[R_CS]);
216 set_v8086_seg(&sregs.ds, &env->segs[R_DS]);
217 set_v8086_seg(&sregs.es, &env->segs[R_ES]);
218 set_v8086_seg(&sregs.fs, &env->segs[R_FS]);
219 set_v8086_seg(&sregs.gs, &env->segs[R_GS]);
220 set_v8086_seg(&sregs.ss, &env->segs[R_SS]);
221 } else {
222 set_seg(&sregs.cs, &env->segs[R_CS]);
223 set_seg(&sregs.ds, &env->segs[R_DS]);
224 set_seg(&sregs.es, &env->segs[R_ES]);
225 set_seg(&sregs.fs, &env->segs[R_FS]);
226 set_seg(&sregs.gs, &env->segs[R_GS]);
227 set_seg(&sregs.ss, &env->segs[R_SS]);
229 if (env->cr[0] & CR0_PE_MASK) {
230 /* force ss cpl to cs cpl */
231 sregs.ss.selector = (sregs.ss.selector & ~3) |
232 (sregs.cs.selector & 3);
233 sregs.ss.dpl = sregs.ss.selector & 3;
237 set_seg(&sregs.tr, &env->tr);
238 set_seg(&sregs.ldt, &env->ldt);
240 sregs.idt.limit = env->idt.limit;
241 sregs.idt.base = env->idt.base;
242 sregs.gdt.limit = env->gdt.limit;
243 sregs.gdt.base = env->gdt.base;
245 sregs.cr0 = env->cr[0];
246 sregs.cr2 = env->cr[2];
247 sregs.cr3 = env->cr[3];
248 sregs.cr4 = env->cr[4];
250 sregs.cr8 = cpu_get_apic_tpr(env);
251 sregs.apic_base = cpu_get_apic_base(env);
253 sregs.efer = env->efer;
255 kvm_set_sregs(kvm_context, env->cpu_index, &sregs);
257 /* msrs */
258 n = 0;
259 set_msr_entry(&msrs[n++], MSR_IA32_SYSENTER_CS, env->sysenter_cs);
260 set_msr_entry(&msrs[n++], MSR_IA32_SYSENTER_ESP, env->sysenter_esp);
261 set_msr_entry(&msrs[n++], MSR_IA32_SYSENTER_EIP, env->sysenter_eip);
262 if (kvm_has_msr_star)
263 set_msr_entry(&msrs[n++], MSR_STAR, env->star);
264 set_msr_entry(&msrs[n++], MSR_IA32_TSC, env->tsc);
265 set_msr_entry(&msrs[n++], MSR_VM_HSAVE_PA, env->vm_hsave);
266 #ifdef TARGET_X86_64
267 if (lm_capable_kernel) {
268 set_msr_entry(&msrs[n++], MSR_CSTAR, env->cstar);
269 set_msr_entry(&msrs[n++], MSR_KERNELGSBASE, env->kernelgsbase);
270 set_msr_entry(&msrs[n++], MSR_FMASK, env->fmask);
271 set_msr_entry(&msrs[n++], MSR_LSTAR , env->lstar);
273 #endif
275 rc = kvm_set_msrs(kvm_context, env->cpu_index, msrs, n);
276 if (rc == -1)
277 perror("kvm_set_msrs FAILED");
280 void kvm_save_mpstate(CPUState *env)
282 #ifdef KVM_CAP_MP_STATE
283 int r;
284 struct kvm_mp_state mp_state;
286 r = kvm_get_mpstate(kvm_context, env->cpu_index, &mp_state);
287 if (r < 0)
288 env->mp_state = -1;
289 else
290 env->mp_state = mp_state.mp_state;
291 #endif
294 void kvm_load_mpstate(CPUState *env)
296 #ifdef KVM_CAP_MP_STATE
297 struct kvm_mp_state mp_state = { .mp_state = env->mp_state };
300 * -1 indicates that the host did not support GET_MP_STATE ioctl,
301 * so don't touch it.
303 if (env->mp_state != -1)
304 kvm_set_mpstate(kvm_context, env->cpu_index, &mp_state);
305 #endif
308 void kvm_arch_save_regs(CPUState *env)
310 struct kvm_regs regs;
311 struct kvm_fpu fpu;
312 struct kvm_sregs sregs;
313 struct kvm_msr_entry msrs[MSR_COUNT];
314 uint32_t hflags;
315 uint32_t i, n, rc;
317 kvm_get_regs(kvm_context, env->cpu_index, &regs);
319 env->regs[R_EAX] = regs.rax;
320 env->regs[R_EBX] = regs.rbx;
321 env->regs[R_ECX] = regs.rcx;
322 env->regs[R_EDX] = regs.rdx;
323 env->regs[R_ESI] = regs.rsi;
324 env->regs[R_EDI] = regs.rdi;
325 env->regs[R_ESP] = regs.rsp;
326 env->regs[R_EBP] = regs.rbp;
327 #ifdef TARGET_X86_64
328 env->regs[8] = regs.r8;
329 env->regs[9] = regs.r9;
330 env->regs[10] = regs.r10;
331 env->regs[11] = regs.r11;
332 env->regs[12] = regs.r12;
333 env->regs[13] = regs.r13;
334 env->regs[14] = regs.r14;
335 env->regs[15] = regs.r15;
336 #endif
338 env->eflags = regs.rflags;
339 env->eip = regs.rip;
341 kvm_get_fpu(kvm_context, env->cpu_index, &fpu);
342 env->fpstt = (fpu.fsw >> 11) & 7;
343 env->fpus = fpu.fsw;
344 env->fpuc = fpu.fcw;
345 for (i = 0; i < 8; ++i)
346 env->fptags[i] = !((fpu.ftwx >> i) & 1);
347 memcpy(env->fpregs, fpu.fpr, sizeof env->fpregs);
348 memcpy(env->xmm_regs, fpu.xmm, sizeof env->xmm_regs);
349 env->mxcsr = fpu.mxcsr;
351 kvm_get_sregs(kvm_context, env->cpu_index, &sregs);
353 memcpy(env->interrupt_bitmap, sregs.interrupt_bitmap, sizeof(env->interrupt_bitmap));
355 get_seg(&env->segs[R_CS], &sregs.cs);
356 get_seg(&env->segs[R_DS], &sregs.ds);
357 get_seg(&env->segs[R_ES], &sregs.es);
358 get_seg(&env->segs[R_FS], &sregs.fs);
359 get_seg(&env->segs[R_GS], &sregs.gs);
360 get_seg(&env->segs[R_SS], &sregs.ss);
362 get_seg(&env->tr, &sregs.tr);
363 get_seg(&env->ldt, &sregs.ldt);
365 env->idt.limit = sregs.idt.limit;
366 env->idt.base = sregs.idt.base;
367 env->gdt.limit = sregs.gdt.limit;
368 env->gdt.base = sregs.gdt.base;
370 env->cr[0] = sregs.cr0;
371 env->cr[2] = sregs.cr2;
372 env->cr[3] = sregs.cr3;
373 env->cr[4] = sregs.cr4;
375 cpu_set_apic_base(env, sregs.apic_base);
377 env->efer = sregs.efer;
378 //cpu_set_apic_tpr(env, sregs.cr8);
380 #define HFLAG_COPY_MASK ~( \
381 HF_CPL_MASK | HF_PE_MASK | HF_MP_MASK | HF_EM_MASK | \
382 HF_TS_MASK | HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK | \
383 HF_OSFXSR_MASK | HF_LMA_MASK | HF_CS32_MASK | \
384 HF_SS32_MASK | HF_CS64_MASK | HF_ADDSEG_MASK)
388 hflags = (env->segs[R_CS].flags >> DESC_DPL_SHIFT) & HF_CPL_MASK;
389 hflags |= (env->cr[0] & CR0_PE_MASK) << (HF_PE_SHIFT - CR0_PE_SHIFT);
390 hflags |= (env->cr[0] << (HF_MP_SHIFT - CR0_MP_SHIFT)) &
391 (HF_MP_MASK | HF_EM_MASK | HF_TS_MASK);
392 hflags |= (env->eflags & (HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK));
393 hflags |= (env->cr[4] & CR4_OSFXSR_MASK) <<
394 (HF_OSFXSR_SHIFT - CR4_OSFXSR_SHIFT);
396 if (env->efer & MSR_EFER_LMA) {
397 hflags |= HF_LMA_MASK;
400 if ((hflags & HF_LMA_MASK) && (env->segs[R_CS].flags & DESC_L_MASK)) {
401 hflags |= HF_CS32_MASK | HF_SS32_MASK | HF_CS64_MASK;
402 } else {
403 hflags |= (env->segs[R_CS].flags & DESC_B_MASK) >>
404 (DESC_B_SHIFT - HF_CS32_SHIFT);
405 hflags |= (env->segs[R_SS].flags & DESC_B_MASK) >>
406 (DESC_B_SHIFT - HF_SS32_SHIFT);
407 if (!(env->cr[0] & CR0_PE_MASK) ||
408 (env->eflags & VM_MASK) ||
409 !(hflags & HF_CS32_MASK)) {
410 hflags |= HF_ADDSEG_MASK;
411 } else {
412 hflags |= ((env->segs[R_DS].base |
413 env->segs[R_ES].base |
414 env->segs[R_SS].base) != 0) <<
415 HF_ADDSEG_SHIFT;
418 env->hflags = (env->hflags & HFLAG_COPY_MASK) | hflags;
419 env->cc_src = env->eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
420 env->df = 1 - (2 * ((env->eflags >> 10) & 1));
421 env->cc_op = CC_OP_EFLAGS;
422 env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
424 /* msrs */
425 n = 0;
426 msrs[n++].index = MSR_IA32_SYSENTER_CS;
427 msrs[n++].index = MSR_IA32_SYSENTER_ESP;
428 msrs[n++].index = MSR_IA32_SYSENTER_EIP;
429 if (kvm_has_msr_star)
430 msrs[n++].index = MSR_STAR;
431 msrs[n++].index = MSR_IA32_TSC;
432 msrs[n++].index = MSR_VM_HSAVE_PA;
433 #ifdef TARGET_X86_64
434 if (lm_capable_kernel) {
435 msrs[n++].index = MSR_CSTAR;
436 msrs[n++].index = MSR_KERNELGSBASE;
437 msrs[n++].index = MSR_FMASK;
438 msrs[n++].index = MSR_LSTAR;
440 #endif
441 rc = kvm_get_msrs(kvm_context, env->cpu_index, msrs, n);
442 if (rc == -1) {
443 perror("kvm_get_msrs FAILED");
445 else {
446 n = rc; /* actual number of MSRs */
447 for (i=0 ; i<n; i++) {
448 if (get_msr_entry(&msrs[i], env))
449 return;
454 static void host_cpuid(uint32_t function, uint32_t *eax, uint32_t *ebx,
455 uint32_t *ecx, uint32_t *edx)
457 uint32_t vec[4];
459 #ifdef __x86_64__
460 asm volatile("cpuid"
461 : "=a"(vec[0]), "=b"(vec[1]),
462 "=c"(vec[2]), "=d"(vec[3])
463 : "0"(function) : "cc");
464 #else
465 asm volatile("pusha \n\t"
466 "cpuid \n\t"
467 "mov %%eax, 0(%1) \n\t"
468 "mov %%ebx, 4(%1) \n\t"
469 "mov %%ecx, 8(%1) \n\t"
470 "mov %%edx, 12(%1) \n\t"
471 "popa"
472 : : "a"(function), "S"(vec)
473 : "memory", "cc");
474 #endif
476 if (eax)
477 *eax = vec[0];
478 if (ebx)
479 *ebx = vec[1];
480 if (ecx)
481 *ecx = vec[2];
482 if (edx)
483 *edx = vec[3];
487 static void do_cpuid_ent(struct kvm_cpuid_entry *e, uint32_t function,
488 CPUState *env)
490 env->regs[R_EAX] = function;
491 qemu_kvm_cpuid_on_env(env);
492 e->function = function;
493 e->eax = env->regs[R_EAX];
494 e->ebx = env->regs[R_EBX];
495 e->ecx = env->regs[R_ECX];
496 e->edx = env->regs[R_EDX];
497 if (function == 0x80000001) {
498 uint32_t h_eax, h_edx;
500 host_cpuid(function, &h_eax, NULL, NULL, &h_edx);
502 // long mode
503 if ((h_edx & 0x20000000) == 0 || !lm_capable_kernel)
504 e->edx &= ~0x20000000u;
505 // syscall
506 if ((h_edx & 0x00000800) == 0)
507 e->edx &= ~0x00000800u;
508 // nx
509 if ((h_edx & 0x00100000) == 0)
510 e->edx &= ~0x00100000u;
511 // svm
512 if (!kvm_nested && (e->ecx & 4))
513 e->ecx &= ~4u;
515 // sysenter isn't supported on compatibility mode on AMD. and syscall
516 // isn't supported in compatibility mode on Intel. so advertise the
517 // actuall cpu, and say goodbye to migration between different vendors
518 // is you use compatibility mode.
519 if (function == 0) {
520 uint32_t bcd[3];
522 host_cpuid(0, NULL, &bcd[0], &bcd[1], &bcd[2]);
523 e->ebx = bcd[0];
524 e->ecx = bcd[1];
525 e->edx = bcd[2];
527 // "Hypervisor present" bit for Microsoft guests
528 if (function == 1)
529 e->ecx |= (1u << 31);
531 // 3dnow isn't properly emulated yet
532 if (function == 0x80000001)
533 e->edx &= ~0xc0000000;
536 struct kvm_para_features {
537 int cap;
538 int feature;
539 } para_features[] = {
540 #ifdef KVM_CAP_CLOCKSOURCE
541 { KVM_CAP_CLOCKSOURCE, KVM_FEATURE_CLOCKSOURCE },
542 #endif
543 #ifdef KVM_CAP_NOP_IO_DELAY
544 { KVM_CAP_NOP_IO_DELAY, KVM_FEATURE_NOP_IO_DELAY },
545 #endif
546 #ifdef KVM_CAP_PV_MMU
547 { KVM_CAP_PV_MMU, KVM_FEATURE_MMU_OP },
548 #endif
549 #ifdef KVM_CAP_CR3_CACHE
550 { KVM_CAP_CR3_CACHE, KVM_FEATURE_CR3_CACHE },
551 #endif
552 { -1, -1 }
555 static int get_para_features(kvm_context_t kvm_context)
557 int i, features = 0;
559 for (i = 0; i < ARRAY_SIZE(para_features)-1; i++) {
560 if (kvm_check_extension(kvm_context, para_features[i].cap))
561 features |= (1 << para_features[i].feature);
564 return features;
567 int kvm_arch_qemu_init_env(CPUState *cenv)
569 struct kvm_cpuid_entry cpuid_ent[100];
570 #ifdef KVM_CPUID_SIGNATURE
571 struct kvm_cpuid_entry *pv_ent;
572 uint32_t signature[3];
573 #endif
574 int cpuid_nent = 0;
575 CPUState copy;
576 uint32_t i, limit;
578 copy = *cenv;
580 #ifdef KVM_CPUID_SIGNATURE
581 /* Paravirtualization CPUIDs */
582 memcpy(signature, "KVMKVMKVM\0\0\0", 12);
583 pv_ent = &cpuid_ent[cpuid_nent++];
584 memset(pv_ent, 0, sizeof(*pv_ent));
585 pv_ent->function = KVM_CPUID_SIGNATURE;
586 pv_ent->eax = 0;
587 pv_ent->ebx = signature[0];
588 pv_ent->ecx = signature[1];
589 pv_ent->edx = signature[2];
591 pv_ent = &cpuid_ent[cpuid_nent++];
592 memset(pv_ent, 0, sizeof(*pv_ent));
593 pv_ent->function = KVM_CPUID_FEATURES;
594 pv_ent->eax = get_para_features(kvm_context);
595 #endif
597 copy.regs[R_EAX] = 0;
598 qemu_kvm_cpuid_on_env(&copy);
599 limit = copy.regs[R_EAX];
601 for (i = 0; i <= limit; ++i)
602 do_cpuid_ent(&cpuid_ent[cpuid_nent++], i, &copy);
604 copy.regs[R_EAX] = 0x80000000;
605 qemu_kvm_cpuid_on_env(&copy);
606 limit = copy.regs[R_EAX];
608 for (i = 0x80000000; i <= limit; ++i)
609 do_cpuid_ent(&cpuid_ent[cpuid_nent++], i, &copy);
611 kvm_setup_cpuid(kvm_context, cenv->cpu_index, cpuid_nent, cpuid_ent);
612 return 0;
615 int kvm_arch_halt(void *opaque, int vcpu)
617 CPUState *env = cpu_single_env;
619 if (!((env->interrupt_request & CPU_INTERRUPT_HARD) &&
620 (env->eflags & IF_MASK)) &&
621 !(env->interrupt_request & CPU_INTERRUPT_NMI)) {
622 env->halted = 1;
623 env->exception_index = EXCP_HLT;
625 return 1;
628 void kvm_arch_pre_kvm_run(void *opaque, CPUState *env)
630 if (!kvm_irqchip_in_kernel(kvm_context))
631 kvm_set_cr8(kvm_context, env->cpu_index, cpu_get_apic_tpr(env));
634 void kvm_arch_post_kvm_run(void *opaque, CPUState *env)
636 int vcpu = env->cpu_index;
638 cpu_single_env = env;
640 env->eflags = kvm_get_interrupt_flag(kvm_context, vcpu)
641 ? env->eflags | IF_MASK : env->eflags & ~IF_MASK;
643 cpu_set_apic_tpr(env, kvm_get_cr8(kvm_context, vcpu));
644 cpu_set_apic_base(env, kvm_get_apic_base(kvm_context, vcpu));
647 int kvm_arch_has_work(CPUState *env)
649 if (((env->interrupt_request & (CPU_INTERRUPT_HARD | CPU_INTERRUPT_EXIT)) &&
650 (env->eflags & IF_MASK)) ||
651 (env->interrupt_request & CPU_INTERRUPT_NMI))
652 return 1;
653 return 0;
656 int kvm_arch_try_push_interrupts(void *opaque)
658 CPUState *env = cpu_single_env;
659 int r, irq;
661 if (kvm_is_ready_for_interrupt_injection(kvm_context, env->cpu_index) &&
662 (env->interrupt_request & CPU_INTERRUPT_HARD) &&
663 (env->eflags & IF_MASK)) {
664 env->interrupt_request &= ~CPU_INTERRUPT_HARD;
665 irq = cpu_get_pic_interrupt(env);
666 if (irq >= 0) {
667 r = kvm_inject_irq(kvm_context, env->cpu_index, irq);
668 if (r < 0)
669 printf("cpu %d fail inject %x\n", env->cpu_index, irq);
673 return (env->interrupt_request & CPU_INTERRUPT_HARD) != 0;
676 #ifdef KVM_CAP_USER_NMI
677 void kvm_arch_push_nmi(void *opaque)
679 CPUState *env = cpu_single_env;
680 int r;
682 if (likely(!(env->interrupt_request & CPU_INTERRUPT_NMI)))
683 return;
685 env->interrupt_request &= ~CPU_INTERRUPT_NMI;
686 r = kvm_inject_nmi(kvm_context, env->cpu_index);
687 if (r < 0)
688 printf("cpu %d fail inject NMI\n", env->cpu_index);
690 #endif /* KVM_CAP_USER_NMI */
692 void kvm_arch_update_regs_for_sipi(CPUState *env)
694 SegmentCache cs = env->segs[R_CS];
696 kvm_arch_save_regs(env);
697 env->segs[R_CS] = cs;
698 env->eip = 0;
699 kvm_arch_load_regs(env);
702 int handle_tpr_access(void *opaque, int vcpu,
703 uint64_t rip, int is_write)
705 kvm_tpr_access_report(cpu_single_env, rip, is_write);
706 return 0;
709 void kvm_arch_cpu_reset(CPUState *env)
711 kvm_arch_load_regs(env);
712 if (env->cpu_index != 0) {
713 if (kvm_irqchip_in_kernel(kvm_context)) {
714 #ifdef KVM_CAP_MP_STATE
715 kvm_reset_mpstate(kvm_context, env->cpu_index);
716 #endif
717 } else {
718 env->interrupt_request &= ~CPU_INTERRUPT_HARD;
719 env->halted = 1;
720 env->exception_index = EXCP_HLT;
725 int kvm_arch_insert_sw_breakpoint(CPUState *env, struct kvm_sw_breakpoint *bp)
727 uint8_t int3 = 0xcc;
729 if (cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 0) ||
730 cpu_memory_rw_debug(env, bp->pc, &int3, 1, 1))
731 return -EINVAL;
732 return 0;
735 int kvm_arch_remove_sw_breakpoint(CPUState *env, struct kvm_sw_breakpoint *bp)
737 uint8_t int3;
739 if (cpu_memory_rw_debug(env, bp->pc, &int3, 1, 0) || int3 != 0xcc ||
740 cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 1))
741 return -EINVAL;
742 return 0;
745 #ifdef KVM_CAP_SET_GUEST_DEBUG
746 static struct {
747 target_ulong addr;
748 int len;
749 int type;
750 } hw_breakpoint[4];
752 static int nb_hw_breakpoint;
754 static int find_hw_breakpoint(target_ulong addr, int len, int type)
756 int n;
758 for (n = 0; n < nb_hw_breakpoint; n++)
759 if (hw_breakpoint[n].addr == addr && hw_breakpoint[n].type == type &&
760 (hw_breakpoint[n].len == len || len == -1))
761 return n;
762 return -1;
765 int kvm_arch_insert_hw_breakpoint(target_ulong addr,
766 target_ulong len, int type)
768 switch (type) {
769 case GDB_BREAKPOINT_HW:
770 len = 1;
771 break;
772 case GDB_WATCHPOINT_WRITE:
773 case GDB_WATCHPOINT_ACCESS:
774 switch (len) {
775 case 1:
776 break;
777 case 2:
778 case 4:
779 case 8:
780 if (addr & (len - 1))
781 return -EINVAL;
782 break;
783 default:
784 return -EINVAL;
786 break;
787 default:
788 return -ENOSYS;
791 if (nb_hw_breakpoint == 4)
792 return -ENOBUFS;
794 if (find_hw_breakpoint(addr, len, type) >= 0)
795 return -EEXIST;
797 hw_breakpoint[nb_hw_breakpoint].addr = addr;
798 hw_breakpoint[nb_hw_breakpoint].len = len;
799 hw_breakpoint[nb_hw_breakpoint].type = type;
800 nb_hw_breakpoint++;
802 return 0;
805 int kvm_arch_remove_hw_breakpoint(target_ulong addr,
806 target_ulong len, int type)
808 int n;
810 n = find_hw_breakpoint(addr, (type == GDB_BREAKPOINT_HW) ? 1 : len, type);
811 if (n < 0)
812 return -ENOENT;
814 nb_hw_breakpoint--;
815 hw_breakpoint[n] = hw_breakpoint[nb_hw_breakpoint];
817 return 0;
820 void kvm_arch_remove_all_hw_breakpoints(void)
822 nb_hw_breakpoint = 0;
825 static CPUWatchpoint hw_watchpoint;
827 int kvm_arch_debug(struct kvm_debug_exit_arch *arch_info)
829 int handle = 0;
830 int n;
832 if (arch_info->exception == 1) {
833 if (arch_info->dr6 & (1 << 14)) {
834 if (cpu_single_env->singlestep_enabled)
835 handle = 1;
836 } else {
837 for (n = 0; n < 4; n++)
838 if (arch_info->dr6 & (1 << n))
839 switch ((arch_info->dr7 >> (16 + n*4)) & 0x3) {
840 case 0x0:
841 handle = 1;
842 break;
843 case 0x1:
844 handle = 1;
845 cpu_single_env->watchpoint_hit = &hw_watchpoint;
846 hw_watchpoint.vaddr = hw_breakpoint[n].addr;
847 hw_watchpoint.flags = BP_MEM_WRITE;
848 break;
849 case 0x3:
850 handle = 1;
851 cpu_single_env->watchpoint_hit = &hw_watchpoint;
852 hw_watchpoint.vaddr = hw_breakpoint[n].addr;
853 hw_watchpoint.flags = BP_MEM_ACCESS;
854 break;
857 } else if (kvm_find_sw_breakpoint(arch_info->pc))
858 handle = 1;
860 if (!handle)
861 kvm_update_guest_debug(cpu_single_env,
862 (arch_info->exception == 1) ?
863 KVM_GUESTDBG_INJECT_DB : KVM_GUESTDBG_INJECT_BP);
865 return handle;
868 void kvm_arch_update_guest_debug(CPUState *env, struct kvm_guest_debug *dbg)
870 const uint8_t type_code[] = {
871 [GDB_BREAKPOINT_HW] = 0x0,
872 [GDB_WATCHPOINT_WRITE] = 0x1,
873 [GDB_WATCHPOINT_ACCESS] = 0x3
875 const uint8_t len_code[] = {
876 [1] = 0x0, [2] = 0x1, [4] = 0x3, [8] = 0x2
878 int n;
880 if (!TAILQ_EMPTY(&kvm_sw_breakpoints))
881 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
883 if (nb_hw_breakpoint > 0) {
884 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP;
885 dbg->arch.debugreg[7] = 0x0600;
886 for (n = 0; n < nb_hw_breakpoint; n++) {
887 dbg->arch.debugreg[n] = hw_breakpoint[n].addr;
888 dbg->arch.debugreg[7] |= (2 << (n * 2)) |
889 (type_code[hw_breakpoint[n].type] << (16 + n*4)) |
890 (len_code[hw_breakpoint[n].len] << (18 + n*4));
894 #endif
896 void kvm_arch_do_ioperm(void *_data)
898 struct ioperm_data *data = _data;
899 ioperm(data->start_port, data->num, data->turn_on);