Whack [LS]MW
[qemu-kvm/fedora.git] / hw / etraxfs_timer.c
blob1144369b1c244ae2d357e4bd228ed5292d4563cc
1 /*
2 * QEMU ETRAX Timers
4 * Copyright (c) 2007 Edgar E. Iglesias, Axis Communications AB.
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
24 #include <stdio.h>
25 #include <sys/time.h>
26 #include "hw.h"
27 #include "sysemu.h"
28 #include "qemu-timer.h"
29 #include "etraxfs.h"
31 #define D(x)
33 #define RW_TMR0_DIV 0x00
34 #define R_TMR0_DATA 0x04
35 #define RW_TMR0_CTRL 0x08
36 #define RW_TMR1_DIV 0x10
37 #define R_TMR1_DATA 0x14
38 #define RW_TMR1_CTRL 0x18
39 #define R_TIME 0x38
40 #define RW_WD_CTRL 0x40
41 #define R_WD_STAT 0x44
42 #define RW_INTR_MASK 0x48
43 #define RW_ACK_INTR 0x4c
44 #define R_INTR 0x50
45 #define R_MASKED_INTR 0x54
47 struct fs_timer_t {
48 CPUState *env;
49 qemu_irq *irq;
50 qemu_irq *nmi;
52 QEMUBH *bh_t0;
53 QEMUBH *bh_t1;
54 QEMUBH *bh_wd;
55 ptimer_state *ptimer_t0;
56 ptimer_state *ptimer_t1;
57 ptimer_state *ptimer_wd;
58 struct timeval last;
60 int wd_hits;
62 /* Control registers. */
63 uint32_t rw_tmr0_div;
64 uint32_t r_tmr0_data;
65 uint32_t rw_tmr0_ctrl;
67 uint32_t rw_tmr1_div;
68 uint32_t r_tmr1_data;
69 uint32_t rw_tmr1_ctrl;
71 uint32_t rw_wd_ctrl;
73 uint32_t rw_intr_mask;
74 uint32_t rw_ack_intr;
75 uint32_t r_intr;
76 uint32_t r_masked_intr;
79 static uint32_t timer_readl (void *opaque, target_phys_addr_t addr)
81 struct fs_timer_t *t = opaque;
82 uint32_t r = 0;
84 switch (addr) {
85 case R_TMR0_DATA:
86 r = ptimer_get_count(t->ptimer_t0);
87 break;
88 case R_TMR1_DATA:
89 r = ptimer_get_count(t->ptimer_t1);
90 break;
91 case R_TIME:
92 r = qemu_get_clock(vm_clock) / 10;
93 break;
94 case RW_INTR_MASK:
95 r = t->rw_intr_mask;
96 break;
97 case R_MASKED_INTR:
98 r = t->r_intr & t->rw_intr_mask;
99 break;
100 default:
101 D(printf ("%s %x\n", __func__, addr));
102 break;
104 return r;
107 #define TIMER_SLOWDOWN 1
108 static void update_ctrl(struct fs_timer_t *t, int tnum)
110 unsigned int op;
111 unsigned int freq;
112 unsigned int freq_hz;
113 unsigned int div;
114 uint32_t ctrl;
116 ptimer_state *timer;
118 if (tnum == 0) {
119 ctrl = t->rw_tmr0_ctrl;
120 div = t->rw_tmr0_div;
121 timer = t->ptimer_t0;
122 } else {
123 ctrl = t->rw_tmr1_ctrl;
124 div = t->rw_tmr1_div;
125 timer = t->ptimer_t1;
129 op = ctrl & 3;
130 freq = ctrl >> 2;
131 freq_hz = 32000000;
133 switch (freq)
135 case 0:
136 case 1:
137 D(printf ("extern or disabled timer clock?\n"));
138 break;
139 case 4: freq_hz = 29493000; break;
140 case 5: freq_hz = 32000000; break;
141 case 6: freq_hz = 32768000; break;
142 case 7: freq_hz = 100000000; break;
143 default:
144 abort();
145 break;
148 D(printf ("freq_hz=%d div=%d\n", freq_hz, div));
149 div = div * TIMER_SLOWDOWN;
150 div /= 1000;
151 freq_hz /= 1000;
152 ptimer_set_freq(timer, freq_hz);
153 ptimer_set_limit(timer, div, 0);
155 switch (op)
157 case 0:
158 /* Load. */
159 ptimer_set_limit(timer, div, 1);
160 break;
161 case 1:
162 /* Hold. */
163 ptimer_stop(timer);
164 break;
165 case 2:
166 /* Run. */
167 ptimer_run(timer, 0);
168 break;
169 default:
170 abort();
171 break;
175 static void timer_update_irq(struct fs_timer_t *t)
177 t->r_intr &= ~(t->rw_ack_intr);
178 t->r_masked_intr = t->r_intr & t->rw_intr_mask;
180 D(printf("%s: masked_intr=%x\n", __func__, t->r_masked_intr));
181 if (t->r_masked_intr)
182 qemu_irq_raise(t->irq[0]);
183 else
184 qemu_irq_lower(t->irq[0]);
187 static void timer0_hit(void *opaque)
189 struct fs_timer_t *t = opaque;
190 t->r_intr |= 1;
191 timer_update_irq(t);
194 static void timer1_hit(void *opaque)
196 struct fs_timer_t *t = opaque;
197 t->r_intr |= 2;
198 timer_update_irq(t);
201 static void watchdog_hit(void *opaque)
203 struct fs_timer_t *t = opaque;
204 if (t->wd_hits == 0) {
205 /* real hw gives a single tick before reseting but we are
206 a bit friendlier to compensate for our slower execution. */
207 ptimer_set_count(t->ptimer_wd, 10);
208 ptimer_run(t->ptimer_wd, 1);
209 qemu_irq_raise(t->nmi[0]);
211 else
212 qemu_system_reset_request();
214 t->wd_hits++;
217 static inline void timer_watchdog_update(struct fs_timer_t *t, uint32_t value)
219 unsigned int wd_en = t->rw_wd_ctrl & (1 << 8);
220 unsigned int wd_key = t->rw_wd_ctrl >> 9;
221 unsigned int wd_cnt = t->rw_wd_ctrl & 511;
222 unsigned int new_key = value >> 9 & ((1 << 7) - 1);
223 unsigned int new_cmd = (value >> 8) & 1;
225 /* If the watchdog is enabled, they written key must match the
226 complement of the previous. */
227 wd_key = ~wd_key & ((1 << 7) - 1);
229 if (wd_en && wd_key != new_key)
230 return;
232 D(printf("en=%d new_key=%x oldkey=%x cmd=%d cnt=%d\n",
233 wd_en, new_key, wd_key, new_cmd, wd_cnt));
235 if (t->wd_hits)
236 qemu_irq_lower(t->nmi[0]);
238 t->wd_hits = 0;
240 ptimer_set_freq(t->ptimer_wd, 760);
241 if (wd_cnt == 0)
242 wd_cnt = 256;
243 ptimer_set_count(t->ptimer_wd, wd_cnt);
244 if (new_cmd)
245 ptimer_run(t->ptimer_wd, 1);
246 else
247 ptimer_stop(t->ptimer_wd);
249 t->rw_wd_ctrl = value;
252 static void
253 timer_writel (void *opaque, target_phys_addr_t addr, uint32_t value)
255 struct fs_timer_t *t = opaque;
257 switch (addr)
259 case RW_TMR0_DIV:
260 t->rw_tmr0_div = value;
261 break;
262 case RW_TMR0_CTRL:
263 D(printf ("RW_TMR0_CTRL=%x\n", value));
264 t->rw_tmr0_ctrl = value;
265 update_ctrl(t, 0);
266 break;
267 case RW_TMR1_DIV:
268 t->rw_tmr1_div = value;
269 break;
270 case RW_TMR1_CTRL:
271 D(printf ("RW_TMR1_CTRL=%x\n", value));
272 t->rw_tmr1_ctrl = value;
273 update_ctrl(t, 1);
274 break;
275 case RW_INTR_MASK:
276 D(printf ("RW_INTR_MASK=%x\n", value));
277 t->rw_intr_mask = value;
278 timer_update_irq(t);
279 break;
280 case RW_WD_CTRL:
281 timer_watchdog_update(t, value);
282 break;
283 case RW_ACK_INTR:
284 t->rw_ack_intr = value;
285 timer_update_irq(t);
286 t->rw_ack_intr = 0;
287 break;
288 default:
289 printf ("%s " TARGET_FMT_plx " %x\n",
290 __func__, addr, value);
291 break;
295 static CPUReadMemoryFunc *timer_read[] = {
296 NULL, NULL,
297 &timer_readl,
300 static CPUWriteMemoryFunc *timer_write[] = {
301 NULL, NULL,
302 &timer_writel,
305 static void etraxfs_timer_reset(void *opaque)
307 struct fs_timer_t *t = opaque;
309 ptimer_stop(t->ptimer_t0);
310 ptimer_stop(t->ptimer_t1);
311 ptimer_stop(t->ptimer_wd);
312 t->rw_wd_ctrl = 0;
313 t->r_intr = 0;
314 t->rw_intr_mask = 0;
315 qemu_irq_lower(t->irq[0]);
318 void etraxfs_timer_init(CPUState *env, qemu_irq *irqs, qemu_irq *nmi,
319 target_phys_addr_t base)
321 static struct fs_timer_t *t;
322 int timer_regs;
324 t = qemu_mallocz(sizeof *t);
326 t->bh_t0 = qemu_bh_new(timer0_hit, t);
327 t->bh_t1 = qemu_bh_new(timer1_hit, t);
328 t->bh_wd = qemu_bh_new(watchdog_hit, t);
329 t->ptimer_t0 = ptimer_init(t->bh_t0);
330 t->ptimer_t1 = ptimer_init(t->bh_t1);
331 t->ptimer_wd = ptimer_init(t->bh_wd);
332 t->irq = irqs;
333 t->nmi = nmi;
334 t->env = env;
336 timer_regs = cpu_register_io_memory(0, timer_read, timer_write, t);
337 cpu_register_physical_memory (base, 0x5c, timer_regs);
339 qemu_register_reset(etraxfs_timer_reset, t);