4 * Copyright (c) 2003-2008 Fabrice Bellard
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
32 /* Needed early for HOST_BSD etc. */
33 #include "config-host.h"
38 #include <sys/times.h>
42 #include <sys/ioctl.h>
43 #include <sys/resource.h>
44 #include <sys/socket.h>
45 #include <netinet/in.h>
47 #if defined(__NetBSD__)
48 #include <net/if_tap.h>
51 #include <linux/if_tun.h>
53 #include <arpa/inet.h>
56 #include <sys/select.h>
59 #if defined(__FreeBSD__) || defined(__DragonFly__)
64 #elif defined (__GLIBC__) && defined (__FreeBSD_kernel__)
65 #include <freebsd/stdlib.h>
70 #include <linux/rtc.h>
72 /* For the benefit of older linux systems which don't supply it,
73 we use a local copy of hpet.h. */
74 /* #include <linux/hpet.h> */
77 #include <linux/ppdev.h>
78 #include <linux/parport.h>
82 #include <sys/ethernet.h>
83 #include <sys/sockio.h>
84 #include <netinet/arp.h>
85 #include <netinet/in.h>
86 #include <netinet/in_systm.h>
87 #include <netinet/ip.h>
88 #include <netinet/ip_icmp.h> // must come after ip.h
89 #include <netinet/udp.h>
90 #include <netinet/tcp.h>
98 #if defined(__OpenBSD__)
102 #if defined(CONFIG_VDE)
103 #include <libvdeplug.h>
109 #include <sys/timeb.h>
110 #include <mmsystem.h>
111 #define getopt_long_only getopt_long
112 #define memalign(align, size) malloc(size)
118 int qemu_main(int argc
, char **argv
, char **envp
);
119 int main(int argc
, char **argv
)
121 qemu_main(argc
, argv
, NULL
);
124 #define main qemu_main
126 #endif /* CONFIG_SDL */
130 #define main qemu_main
131 #endif /* CONFIG_COCOA */
134 #include "hw/boards.h"
136 #include "hw/pcmcia.h"
138 #include "hw/audiodev.h"
142 #include "hw/watchdog.h"
143 #include "hw/smbios.h"
151 #include "qemu-timer.h"
152 #include "qemu-char.h"
153 #include "cache-utils.h"
156 #include "audio/audio.h"
157 #include "migration.h"
160 #include "qemu-option.h"
164 #include "exec-all.h"
166 #include "qemu_socket.h"
168 #if defined(CONFIG_SLIRP)
169 #include "libslirp.h"
172 //#define DEBUG_UNUSED_IOPORT
173 //#define DEBUG_IOPORT
175 //#define DEBUG_SLIRP
179 # define LOG_IOPORT(...) qemu_log_mask(CPU_LOG_IOPORT, ## __VA_ARGS__)
181 # define LOG_IOPORT(...) do { } while (0)
184 #define DEFAULT_RAM_SIZE 128
186 /* Max number of USB devices that can be specified on the commandline. */
187 #define MAX_USB_CMDLINE 8
189 /* Max number of bluetooth switches on the commandline. */
190 #define MAX_BT_CMDLINE 10
192 /* XXX: use a two level table to limit memory usage */
193 #define MAX_IOPORTS 65536
195 static const char *data_dir
;
196 const char *bios_name
= NULL
;
197 static void *ioport_opaque
[MAX_IOPORTS
];
198 static IOPortReadFunc
*ioport_read_table
[3][MAX_IOPORTS
];
199 static IOPortWriteFunc
*ioport_write_table
[3][MAX_IOPORTS
];
200 /* Note: drives_table[MAX_DRIVES] is a dummy block driver if none available
201 to store the VM snapshots */
202 DriveInfo drives_table
[MAX_DRIVES
+1];
204 enum vga_retrace_method vga_retrace_method
= VGA_RETRACE_DUMB
;
205 static DisplayState
*display_state
;
206 DisplayType display_type
= DT_DEFAULT
;
207 const char* keyboard_layout
= NULL
;
208 int64_t ticks_per_sec
;
211 NICInfo nd_table
[MAX_NICS
];
213 static int autostart
;
214 static int rtc_utc
= 1;
215 static int rtc_date_offset
= -1; /* -1 means no change */
216 int cirrus_vga_enabled
= 1;
217 int std_vga_enabled
= 0;
218 int vmsvga_enabled
= 0;
219 int xenfb_enabled
= 0;
221 int graphic_width
= 1024;
222 int graphic_height
= 768;
223 int graphic_depth
= 8;
225 int graphic_width
= 800;
226 int graphic_height
= 600;
227 int graphic_depth
= 15;
229 static int full_screen
= 0;
231 static int no_frame
= 0;
234 CharDriverState
*serial_hds
[MAX_SERIAL_PORTS
];
235 CharDriverState
*parallel_hds
[MAX_PARALLEL_PORTS
];
236 CharDriverState
*virtcon_hds
[MAX_VIRTIO_CONSOLES
];
238 int win2k_install_hack
= 0;
244 const char *vnc_display
;
245 int acpi_enabled
= 1;
247 int no_virtio_balloon
= 0;
252 int graphic_rotate
= 0;
256 WatchdogTimerModel
*watchdog
= NULL
;
257 int watchdog_action
= WDT_RESET
;
258 const char *option_rom
[MAX_OPTION_ROMS
];
260 int semihosting_enabled
= 0;
264 const char *qemu_name
;
266 #if defined(TARGET_SPARC) || defined(TARGET_PPC)
267 unsigned int nb_prom_envs
= 0;
268 const char *prom_envs
[MAX_PROM_ENVS
];
271 struct drive_opt drives_opt
[MAX_DRIVES
];
274 uint64_t node_mem
[MAX_NODES
];
275 uint64_t node_cpumask
[MAX_NODES
];
277 static CPUState
*cur_cpu
;
278 static CPUState
*next_cpu
;
279 static int timer_alarm_pending
= 1;
280 /* Conversion factor from emulated instructions to virtual clock ticks. */
281 static int icount_time_shift
;
282 /* Arbitrarily pick 1MIPS as the minimum allowable speed. */
283 #define MAX_ICOUNT_SHIFT 10
284 /* Compensate for varying guest execution speed. */
285 static int64_t qemu_icount_bias
;
286 static QEMUTimer
*icount_rt_timer
;
287 static QEMUTimer
*icount_vm_timer
;
288 static QEMUTimer
*nographic_timer
;
290 uint8_t qemu_uuid
[16];
292 /***********************************************************/
293 /* x86 ISA bus support */
295 target_phys_addr_t isa_mem_base
= 0;
298 static IOPortReadFunc default_ioport_readb
, default_ioport_readw
, default_ioport_readl
;
299 static IOPortWriteFunc default_ioport_writeb
, default_ioport_writew
, default_ioport_writel
;
301 static uint32_t ioport_read(int index
, uint32_t address
)
303 static IOPortReadFunc
*default_func
[3] = {
304 default_ioport_readb
,
305 default_ioport_readw
,
308 IOPortReadFunc
*func
= ioport_read_table
[index
][address
];
310 func
= default_func
[index
];
311 return func(ioport_opaque
[address
], address
);
314 static void ioport_write(int index
, uint32_t address
, uint32_t data
)
316 static IOPortWriteFunc
*default_func
[3] = {
317 default_ioport_writeb
,
318 default_ioport_writew
,
319 default_ioport_writel
321 IOPortWriteFunc
*func
= ioport_write_table
[index
][address
];
323 func
= default_func
[index
];
324 func(ioport_opaque
[address
], address
, data
);
327 static uint32_t default_ioport_readb(void *opaque
, uint32_t address
)
329 #ifdef DEBUG_UNUSED_IOPORT
330 fprintf(stderr
, "unused inb: port=0x%04x\n", address
);
335 static void default_ioport_writeb(void *opaque
, uint32_t address
, uint32_t data
)
337 #ifdef DEBUG_UNUSED_IOPORT
338 fprintf(stderr
, "unused outb: port=0x%04x data=0x%02x\n", address
, data
);
342 /* default is to make two byte accesses */
343 static uint32_t default_ioport_readw(void *opaque
, uint32_t address
)
346 data
= ioport_read(0, address
);
347 address
= (address
+ 1) & (MAX_IOPORTS
- 1);
348 data
|= ioport_read(0, address
) << 8;
352 static void default_ioport_writew(void *opaque
, uint32_t address
, uint32_t data
)
354 ioport_write(0, address
, data
& 0xff);
355 address
= (address
+ 1) & (MAX_IOPORTS
- 1);
356 ioport_write(0, address
, (data
>> 8) & 0xff);
359 static uint32_t default_ioport_readl(void *opaque
, uint32_t address
)
361 #ifdef DEBUG_UNUSED_IOPORT
362 fprintf(stderr
, "unused inl: port=0x%04x\n", address
);
367 static void default_ioport_writel(void *opaque
, uint32_t address
, uint32_t data
)
369 #ifdef DEBUG_UNUSED_IOPORT
370 fprintf(stderr
, "unused outl: port=0x%04x data=0x%02x\n", address
, data
);
374 /* size is the word size in byte */
375 int register_ioport_read(int start
, int length
, int size
,
376 IOPortReadFunc
*func
, void *opaque
)
382 } else if (size
== 2) {
384 } else if (size
== 4) {
387 hw_error("register_ioport_read: invalid size");
390 for(i
= start
; i
< start
+ length
; i
+= size
) {
391 ioport_read_table
[bsize
][i
] = func
;
392 if (ioport_opaque
[i
] != NULL
&& ioport_opaque
[i
] != opaque
)
393 hw_error("register_ioport_read: invalid opaque");
394 ioport_opaque
[i
] = opaque
;
399 /* size is the word size in byte */
400 int register_ioport_write(int start
, int length
, int size
,
401 IOPortWriteFunc
*func
, void *opaque
)
407 } else if (size
== 2) {
409 } else if (size
== 4) {
412 hw_error("register_ioport_write: invalid size");
415 for(i
= start
; i
< start
+ length
; i
+= size
) {
416 ioport_write_table
[bsize
][i
] = func
;
417 if (ioport_opaque
[i
] != NULL
&& ioport_opaque
[i
] != opaque
)
418 hw_error("register_ioport_write: invalid opaque");
419 ioport_opaque
[i
] = opaque
;
424 void isa_unassign_ioport(int start
, int length
)
428 for(i
= start
; i
< start
+ length
; i
++) {
429 ioport_read_table
[0][i
] = default_ioport_readb
;
430 ioport_read_table
[1][i
] = default_ioport_readw
;
431 ioport_read_table
[2][i
] = default_ioport_readl
;
433 ioport_write_table
[0][i
] = default_ioport_writeb
;
434 ioport_write_table
[1][i
] = default_ioport_writew
;
435 ioport_write_table
[2][i
] = default_ioport_writel
;
437 ioport_opaque
[i
] = NULL
;
441 /***********************************************************/
443 void cpu_outb(CPUState
*env
, int addr
, int val
)
445 LOG_IOPORT("outb: %04x %02x\n", addr
, val
);
446 ioport_write(0, addr
, val
);
449 env
->last_io_time
= cpu_get_time_fast();
453 void cpu_outw(CPUState
*env
, int addr
, int val
)
455 LOG_IOPORT("outw: %04x %04x\n", addr
, val
);
456 ioport_write(1, addr
, val
);
459 env
->last_io_time
= cpu_get_time_fast();
463 void cpu_outl(CPUState
*env
, int addr
, int val
)
465 LOG_IOPORT("outl: %04x %08x\n", addr
, val
);
466 ioport_write(2, addr
, val
);
469 env
->last_io_time
= cpu_get_time_fast();
473 int cpu_inb(CPUState
*env
, int addr
)
476 val
= ioport_read(0, addr
);
477 LOG_IOPORT("inb : %04x %02x\n", addr
, val
);
480 env
->last_io_time
= cpu_get_time_fast();
485 int cpu_inw(CPUState
*env
, int addr
)
488 val
= ioport_read(1, addr
);
489 LOG_IOPORT("inw : %04x %04x\n", addr
, val
);
492 env
->last_io_time
= cpu_get_time_fast();
497 int cpu_inl(CPUState
*env
, int addr
)
500 val
= ioport_read(2, addr
);
501 LOG_IOPORT("inl : %04x %08x\n", addr
, val
);
504 env
->last_io_time
= cpu_get_time_fast();
509 /***********************************************************/
510 void hw_error(const char *fmt
, ...)
516 fprintf(stderr
, "qemu: hardware error: ");
517 vfprintf(stderr
, fmt
, ap
);
518 fprintf(stderr
, "\n");
519 for(env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
520 fprintf(stderr
, "CPU #%d:\n", env
->cpu_index
);
522 cpu_dump_state(env
, stderr
, fprintf
, X86_DUMP_FPU
);
524 cpu_dump_state(env
, stderr
, fprintf
, 0);
534 static QEMUBalloonEvent
*qemu_balloon_event
;
535 void *qemu_balloon_event_opaque
;
537 void qemu_add_balloon_handler(QEMUBalloonEvent
*func
, void *opaque
)
539 qemu_balloon_event
= func
;
540 qemu_balloon_event_opaque
= opaque
;
543 void qemu_balloon(ram_addr_t target
)
545 if (qemu_balloon_event
)
546 qemu_balloon_event(qemu_balloon_event_opaque
, target
);
549 ram_addr_t
qemu_balloon_status(void)
551 if (qemu_balloon_event
)
552 return qemu_balloon_event(qemu_balloon_event_opaque
, 0);
556 /***********************************************************/
559 static QEMUPutKBDEvent
*qemu_put_kbd_event
;
560 static void *qemu_put_kbd_event_opaque
;
561 static QEMUPutMouseEntry
*qemu_put_mouse_event_head
;
562 static QEMUPutMouseEntry
*qemu_put_mouse_event_current
;
564 void qemu_add_kbd_event_handler(QEMUPutKBDEvent
*func
, void *opaque
)
566 qemu_put_kbd_event_opaque
= opaque
;
567 qemu_put_kbd_event
= func
;
570 QEMUPutMouseEntry
*qemu_add_mouse_event_handler(QEMUPutMouseEvent
*func
,
571 void *opaque
, int absolute
,
574 QEMUPutMouseEntry
*s
, *cursor
;
576 s
= qemu_mallocz(sizeof(QEMUPutMouseEntry
));
578 s
->qemu_put_mouse_event
= func
;
579 s
->qemu_put_mouse_event_opaque
= opaque
;
580 s
->qemu_put_mouse_event_absolute
= absolute
;
581 s
->qemu_put_mouse_event_name
= qemu_strdup(name
);
584 if (!qemu_put_mouse_event_head
) {
585 qemu_put_mouse_event_head
= qemu_put_mouse_event_current
= s
;
589 cursor
= qemu_put_mouse_event_head
;
590 while (cursor
->next
!= NULL
)
591 cursor
= cursor
->next
;
594 qemu_put_mouse_event_current
= s
;
599 void qemu_remove_mouse_event_handler(QEMUPutMouseEntry
*entry
)
601 QEMUPutMouseEntry
*prev
= NULL
, *cursor
;
603 if (!qemu_put_mouse_event_head
|| entry
== NULL
)
606 cursor
= qemu_put_mouse_event_head
;
607 while (cursor
!= NULL
&& cursor
!= entry
) {
609 cursor
= cursor
->next
;
612 if (cursor
== NULL
) // does not exist or list empty
614 else if (prev
== NULL
) { // entry is head
615 qemu_put_mouse_event_head
= cursor
->next
;
616 if (qemu_put_mouse_event_current
== entry
)
617 qemu_put_mouse_event_current
= cursor
->next
;
618 qemu_free(entry
->qemu_put_mouse_event_name
);
623 prev
->next
= entry
->next
;
625 if (qemu_put_mouse_event_current
== entry
)
626 qemu_put_mouse_event_current
= prev
;
628 qemu_free(entry
->qemu_put_mouse_event_name
);
632 void kbd_put_keycode(int keycode
)
634 if (qemu_put_kbd_event
) {
635 qemu_put_kbd_event(qemu_put_kbd_event_opaque
, keycode
);
639 void kbd_mouse_event(int dx
, int dy
, int dz
, int buttons_state
)
641 QEMUPutMouseEvent
*mouse_event
;
642 void *mouse_event_opaque
;
645 if (!qemu_put_mouse_event_current
) {
650 qemu_put_mouse_event_current
->qemu_put_mouse_event
;
652 qemu_put_mouse_event_current
->qemu_put_mouse_event_opaque
;
655 if (graphic_rotate
) {
656 if (qemu_put_mouse_event_current
->qemu_put_mouse_event_absolute
)
659 width
= graphic_width
- 1;
660 mouse_event(mouse_event_opaque
,
661 width
- dy
, dx
, dz
, buttons_state
);
663 mouse_event(mouse_event_opaque
,
664 dx
, dy
, dz
, buttons_state
);
668 int kbd_mouse_is_absolute(void)
670 if (!qemu_put_mouse_event_current
)
673 return qemu_put_mouse_event_current
->qemu_put_mouse_event_absolute
;
676 void do_info_mice(Monitor
*mon
)
678 QEMUPutMouseEntry
*cursor
;
681 if (!qemu_put_mouse_event_head
) {
682 monitor_printf(mon
, "No mouse devices connected\n");
686 monitor_printf(mon
, "Mouse devices available:\n");
687 cursor
= qemu_put_mouse_event_head
;
688 while (cursor
!= NULL
) {
689 monitor_printf(mon
, "%c Mouse #%d: %s\n",
690 (cursor
== qemu_put_mouse_event_current
? '*' : ' '),
691 index
, cursor
->qemu_put_mouse_event_name
);
693 cursor
= cursor
->next
;
697 void do_mouse_set(Monitor
*mon
, int index
)
699 QEMUPutMouseEntry
*cursor
;
702 if (!qemu_put_mouse_event_head
) {
703 monitor_printf(mon
, "No mouse devices connected\n");
707 cursor
= qemu_put_mouse_event_head
;
708 while (cursor
!= NULL
&& index
!= i
) {
710 cursor
= cursor
->next
;
714 qemu_put_mouse_event_current
= cursor
;
716 monitor_printf(mon
, "Mouse at given index not found\n");
719 /* compute with 96 bit intermediate result: (a*b)/c */
720 uint64_t muldiv64(uint64_t a
, uint32_t b
, uint32_t c
)
725 #ifdef WORDS_BIGENDIAN
735 rl
= (uint64_t)u
.l
.low
* (uint64_t)b
;
736 rh
= (uint64_t)u
.l
.high
* (uint64_t)b
;
739 res
.l
.low
= (((rh
% c
) << 32) + (rl
& 0xffffffff)) / c
;
743 /***********************************************************/
744 /* real time host monotonic timer */
746 #define QEMU_TIMER_BASE 1000000000LL
750 static int64_t clock_freq
;
752 static void init_get_clock(void)
756 ret
= QueryPerformanceFrequency(&freq
);
758 fprintf(stderr
, "Could not calibrate ticks\n");
761 clock_freq
= freq
.QuadPart
;
764 static int64_t get_clock(void)
767 QueryPerformanceCounter(&ti
);
768 return muldiv64(ti
.QuadPart
, QEMU_TIMER_BASE
, clock_freq
);
773 static int use_rt_clock
;
775 static void init_get_clock(void)
778 #if defined(__linux__) || (defined(__FreeBSD__) && __FreeBSD_version >= 500000) \
779 || defined(__DragonFly__)
782 if (clock_gettime(CLOCK_MONOTONIC
, &ts
) == 0) {
789 static int64_t get_clock(void)
791 #if defined(__linux__) || (defined(__FreeBSD__) && __FreeBSD_version >= 500000) \
792 || defined(__DragonFly__)
795 clock_gettime(CLOCK_MONOTONIC
, &ts
);
796 return ts
.tv_sec
* 1000000000LL + ts
.tv_nsec
;
800 /* XXX: using gettimeofday leads to problems if the date
801 changes, so it should be avoided. */
803 gettimeofday(&tv
, NULL
);
804 return tv
.tv_sec
* 1000000000LL + (tv
.tv_usec
* 1000);
809 /* Return the virtual CPU time, based on the instruction counter. */
810 static int64_t cpu_get_icount(void)
813 CPUState
*env
= cpu_single_env
;;
814 icount
= qemu_icount
;
817 fprintf(stderr
, "Bad clock read\n");
818 icount
-= (env
->icount_decr
.u16
.low
+ env
->icount_extra
);
820 return qemu_icount_bias
+ (icount
<< icount_time_shift
);
823 /***********************************************************/
824 /* guest cycle counter */
826 static int64_t cpu_ticks_prev
;
827 static int64_t cpu_ticks_offset
;
828 static int64_t cpu_clock_offset
;
829 static int cpu_ticks_enabled
;
831 /* return the host CPU cycle counter and handle stop/restart */
832 int64_t cpu_get_ticks(void)
835 return cpu_get_icount();
837 if (!cpu_ticks_enabled
) {
838 return cpu_ticks_offset
;
841 ticks
= cpu_get_real_ticks();
842 if (cpu_ticks_prev
> ticks
) {
843 /* Note: non increasing ticks may happen if the host uses
845 cpu_ticks_offset
+= cpu_ticks_prev
- ticks
;
847 cpu_ticks_prev
= ticks
;
848 return ticks
+ cpu_ticks_offset
;
852 /* return the host CPU monotonic timer and handle stop/restart */
853 static int64_t cpu_get_clock(void)
856 if (!cpu_ticks_enabled
) {
857 return cpu_clock_offset
;
860 return ti
+ cpu_clock_offset
;
864 /* enable cpu_get_ticks() */
865 void cpu_enable_ticks(void)
867 if (!cpu_ticks_enabled
) {
868 cpu_ticks_offset
-= cpu_get_real_ticks();
869 cpu_clock_offset
-= get_clock();
870 cpu_ticks_enabled
= 1;
874 /* disable cpu_get_ticks() : the clock is stopped. You must not call
875 cpu_get_ticks() after that. */
876 void cpu_disable_ticks(void)
878 if (cpu_ticks_enabled
) {
879 cpu_ticks_offset
= cpu_get_ticks();
880 cpu_clock_offset
= cpu_get_clock();
881 cpu_ticks_enabled
= 0;
885 /***********************************************************/
888 #define QEMU_TIMER_REALTIME 0
889 #define QEMU_TIMER_VIRTUAL 1
893 /* XXX: add frequency */
901 struct QEMUTimer
*next
;
904 struct qemu_alarm_timer
{
908 int (*start
)(struct qemu_alarm_timer
*t
);
909 void (*stop
)(struct qemu_alarm_timer
*t
);
910 void (*rearm
)(struct qemu_alarm_timer
*t
);
914 #define ALARM_FLAG_DYNTICKS 0x1
915 #define ALARM_FLAG_EXPIRED 0x2
917 static inline int alarm_has_dynticks(struct qemu_alarm_timer
*t
)
919 return t
&& (t
->flags
& ALARM_FLAG_DYNTICKS
);
922 static void qemu_rearm_alarm_timer(struct qemu_alarm_timer
*t
)
924 if (!alarm_has_dynticks(t
))
930 /* TODO: MIN_TIMER_REARM_US should be optimized */
931 #define MIN_TIMER_REARM_US 250
933 static struct qemu_alarm_timer
*alarm_timer
;
937 struct qemu_alarm_win32
{
940 } alarm_win32_data
= {0, -1};
942 static int win32_start_timer(struct qemu_alarm_timer
*t
);
943 static void win32_stop_timer(struct qemu_alarm_timer
*t
);
944 static void win32_rearm_timer(struct qemu_alarm_timer
*t
);
948 static int unix_start_timer(struct qemu_alarm_timer
*t
);
949 static void unix_stop_timer(struct qemu_alarm_timer
*t
);
953 static int dynticks_start_timer(struct qemu_alarm_timer
*t
);
954 static void dynticks_stop_timer(struct qemu_alarm_timer
*t
);
955 static void dynticks_rearm_timer(struct qemu_alarm_timer
*t
);
957 static int hpet_start_timer(struct qemu_alarm_timer
*t
);
958 static void hpet_stop_timer(struct qemu_alarm_timer
*t
);
960 static int rtc_start_timer(struct qemu_alarm_timer
*t
);
961 static void rtc_stop_timer(struct qemu_alarm_timer
*t
);
963 #endif /* __linux__ */
967 /* Correlation between real and virtual time is always going to be
968 fairly approximate, so ignore small variation.
969 When the guest is idle real and virtual time will be aligned in
971 #define ICOUNT_WOBBLE (QEMU_TIMER_BASE / 10)
973 static void icount_adjust(void)
978 static int64_t last_delta
;
979 /* If the VM is not running, then do nothing. */
983 cur_time
= cpu_get_clock();
984 cur_icount
= qemu_get_clock(vm_clock
);
985 delta
= cur_icount
- cur_time
;
986 /* FIXME: This is a very crude algorithm, somewhat prone to oscillation. */
988 && last_delta
+ ICOUNT_WOBBLE
< delta
* 2
989 && icount_time_shift
> 0) {
990 /* The guest is getting too far ahead. Slow time down. */
994 && last_delta
- ICOUNT_WOBBLE
> delta
* 2
995 && icount_time_shift
< MAX_ICOUNT_SHIFT
) {
996 /* The guest is getting too far behind. Speed time up. */
1000 qemu_icount_bias
= cur_icount
- (qemu_icount
<< icount_time_shift
);
1003 static void icount_adjust_rt(void * opaque
)
1005 qemu_mod_timer(icount_rt_timer
,
1006 qemu_get_clock(rt_clock
) + 1000);
1010 static void icount_adjust_vm(void * opaque
)
1012 qemu_mod_timer(icount_vm_timer
,
1013 qemu_get_clock(vm_clock
) + QEMU_TIMER_BASE
/ 10);
1017 static void init_icount_adjust(void)
1019 /* Have both realtime and virtual time triggers for speed adjustment.
1020 The realtime trigger catches emulated time passing too slowly,
1021 the virtual time trigger catches emulated time passing too fast.
1022 Realtime triggers occur even when idle, so use them less frequently
1023 than VM triggers. */
1024 icount_rt_timer
= qemu_new_timer(rt_clock
, icount_adjust_rt
, NULL
);
1025 qemu_mod_timer(icount_rt_timer
,
1026 qemu_get_clock(rt_clock
) + 1000);
1027 icount_vm_timer
= qemu_new_timer(vm_clock
, icount_adjust_vm
, NULL
);
1028 qemu_mod_timer(icount_vm_timer
,
1029 qemu_get_clock(vm_clock
) + QEMU_TIMER_BASE
/ 10);
1032 static struct qemu_alarm_timer alarm_timers
[] = {
1035 {"dynticks", ALARM_FLAG_DYNTICKS
, dynticks_start_timer
,
1036 dynticks_stop_timer
, dynticks_rearm_timer
, NULL
},
1037 /* HPET - if available - is preferred */
1038 {"hpet", 0, hpet_start_timer
, hpet_stop_timer
, NULL
, NULL
},
1039 /* ...otherwise try RTC */
1040 {"rtc", 0, rtc_start_timer
, rtc_stop_timer
, NULL
, NULL
},
1042 {"unix", 0, unix_start_timer
, unix_stop_timer
, NULL
, NULL
},
1044 {"dynticks", ALARM_FLAG_DYNTICKS
, win32_start_timer
,
1045 win32_stop_timer
, win32_rearm_timer
, &alarm_win32_data
},
1046 {"win32", 0, win32_start_timer
,
1047 win32_stop_timer
, NULL
, &alarm_win32_data
},
1052 static void show_available_alarms(void)
1056 printf("Available alarm timers, in order of precedence:\n");
1057 for (i
= 0; alarm_timers
[i
].name
; i
++)
1058 printf("%s\n", alarm_timers
[i
].name
);
1061 static void configure_alarms(char const *opt
)
1065 int count
= ARRAY_SIZE(alarm_timers
) - 1;
1068 struct qemu_alarm_timer tmp
;
1070 if (!strcmp(opt
, "?")) {
1071 show_available_alarms();
1077 /* Reorder the array */
1078 name
= strtok(arg
, ",");
1080 for (i
= 0; i
< count
&& alarm_timers
[i
].name
; i
++) {
1081 if (!strcmp(alarm_timers
[i
].name
, name
))
1086 fprintf(stderr
, "Unknown clock %s\n", name
);
1095 tmp
= alarm_timers
[i
];
1096 alarm_timers
[i
] = alarm_timers
[cur
];
1097 alarm_timers
[cur
] = tmp
;
1101 name
= strtok(NULL
, ",");
1107 /* Disable remaining timers */
1108 for (i
= cur
; i
< count
; i
++)
1109 alarm_timers
[i
].name
= NULL
;
1111 show_available_alarms();
1116 QEMUClock
*rt_clock
;
1117 QEMUClock
*vm_clock
;
1119 static QEMUTimer
*active_timers
[2];
1121 static QEMUClock
*qemu_new_clock(int type
)
1124 clock
= qemu_mallocz(sizeof(QEMUClock
));
1129 QEMUTimer
*qemu_new_timer(QEMUClock
*clock
, QEMUTimerCB
*cb
, void *opaque
)
1133 ts
= qemu_mallocz(sizeof(QEMUTimer
));
1136 ts
->opaque
= opaque
;
1140 void qemu_free_timer(QEMUTimer
*ts
)
1145 /* stop a timer, but do not dealloc it */
1146 void qemu_del_timer(QEMUTimer
*ts
)
1150 /* NOTE: this code must be signal safe because
1151 qemu_timer_expired() can be called from a signal. */
1152 pt
= &active_timers
[ts
->clock
->type
];
1165 /* modify the current timer so that it will be fired when current_time
1166 >= expire_time. The corresponding callback will be called. */
1167 void qemu_mod_timer(QEMUTimer
*ts
, int64_t expire_time
)
1173 /* add the timer in the sorted list */
1174 /* NOTE: this code must be signal safe because
1175 qemu_timer_expired() can be called from a signal. */
1176 pt
= &active_timers
[ts
->clock
->type
];
1181 if (t
->expire_time
> expire_time
)
1185 ts
->expire_time
= expire_time
;
1189 /* Rearm if necessary */
1190 if (pt
== &active_timers
[ts
->clock
->type
]) {
1191 if ((alarm_timer
->flags
& ALARM_FLAG_EXPIRED
) == 0) {
1192 qemu_rearm_alarm_timer(alarm_timer
);
1194 /* Interrupt execution to force deadline recalculation. */
1196 qemu_notify_event();
1200 int qemu_timer_pending(QEMUTimer
*ts
)
1203 for(t
= active_timers
[ts
->clock
->type
]; t
!= NULL
; t
= t
->next
) {
1210 static inline int qemu_timer_expired(QEMUTimer
*timer_head
, int64_t current_time
)
1214 return (timer_head
->expire_time
<= current_time
);
1217 static void qemu_run_timers(QEMUTimer
**ptimer_head
, int64_t current_time
)
1223 if (!ts
|| ts
->expire_time
> current_time
)
1225 /* remove timer from the list before calling the callback */
1226 *ptimer_head
= ts
->next
;
1229 /* run the callback (the timer list can be modified) */
1234 int64_t qemu_get_clock(QEMUClock
*clock
)
1236 switch(clock
->type
) {
1237 case QEMU_TIMER_REALTIME
:
1238 return get_clock() / 1000000;
1240 case QEMU_TIMER_VIRTUAL
:
1242 return cpu_get_icount();
1244 return cpu_get_clock();
1249 static void init_timers(void)
1252 ticks_per_sec
= QEMU_TIMER_BASE
;
1253 rt_clock
= qemu_new_clock(QEMU_TIMER_REALTIME
);
1254 vm_clock
= qemu_new_clock(QEMU_TIMER_VIRTUAL
);
1258 void qemu_put_timer(QEMUFile
*f
, QEMUTimer
*ts
)
1260 uint64_t expire_time
;
1262 if (qemu_timer_pending(ts
)) {
1263 expire_time
= ts
->expire_time
;
1267 qemu_put_be64(f
, expire_time
);
1270 void qemu_get_timer(QEMUFile
*f
, QEMUTimer
*ts
)
1272 uint64_t expire_time
;
1274 expire_time
= qemu_get_be64(f
);
1275 if (expire_time
!= -1) {
1276 qemu_mod_timer(ts
, expire_time
);
1282 static void timer_save(QEMUFile
*f
, void *opaque
)
1284 if (cpu_ticks_enabled
) {
1285 hw_error("cannot save state if virtual timers are running");
1287 qemu_put_be64(f
, cpu_ticks_offset
);
1288 qemu_put_be64(f
, ticks_per_sec
);
1289 qemu_put_be64(f
, cpu_clock_offset
);
1292 static int timer_load(QEMUFile
*f
, void *opaque
, int version_id
)
1294 if (version_id
!= 1 && version_id
!= 2)
1296 if (cpu_ticks_enabled
) {
1299 cpu_ticks_offset
=qemu_get_be64(f
);
1300 ticks_per_sec
=qemu_get_be64(f
);
1301 if (version_id
== 2) {
1302 cpu_clock_offset
=qemu_get_be64(f
);
1307 static void qemu_event_increment(void);
1310 static void CALLBACK
host_alarm_handler(UINT uTimerID
, UINT uMsg
,
1311 DWORD_PTR dwUser
, DWORD_PTR dw1
,
1314 static void host_alarm_handler(int host_signum
)
1318 #define DISP_FREQ 1000
1320 static int64_t delta_min
= INT64_MAX
;
1321 static int64_t delta_max
, delta_cum
, last_clock
, delta
, ti
;
1323 ti
= qemu_get_clock(vm_clock
);
1324 if (last_clock
!= 0) {
1325 delta
= ti
- last_clock
;
1326 if (delta
< delta_min
)
1328 if (delta
> delta_max
)
1331 if (++count
== DISP_FREQ
) {
1332 printf("timer: min=%" PRId64
" us max=%" PRId64
" us avg=%" PRId64
" us avg_freq=%0.3f Hz\n",
1333 muldiv64(delta_min
, 1000000, ticks_per_sec
),
1334 muldiv64(delta_max
, 1000000, ticks_per_sec
),
1335 muldiv64(delta_cum
, 1000000 / DISP_FREQ
, ticks_per_sec
),
1336 (double)ticks_per_sec
/ ((double)delta_cum
/ DISP_FREQ
));
1338 delta_min
= INT64_MAX
;
1346 if (alarm_has_dynticks(alarm_timer
) ||
1348 qemu_timer_expired(active_timers
[QEMU_TIMER_VIRTUAL
],
1349 qemu_get_clock(vm_clock
))) ||
1350 qemu_timer_expired(active_timers
[QEMU_TIMER_REALTIME
],
1351 qemu_get_clock(rt_clock
))) {
1352 qemu_event_increment();
1353 if (alarm_timer
) alarm_timer
->flags
|= ALARM_FLAG_EXPIRED
;
1355 #ifndef CONFIG_IOTHREAD
1357 /* stop the currently executing cpu because a timer occured */
1360 if (next_cpu
->kqemu_enabled
) {
1361 kqemu_cpu_interrupt(next_cpu
);
1366 timer_alarm_pending
= 1;
1367 qemu_notify_event();
1371 static int64_t qemu_next_deadline(void)
1375 if (active_timers
[QEMU_TIMER_VIRTUAL
]) {
1376 delta
= active_timers
[QEMU_TIMER_VIRTUAL
]->expire_time
-
1377 qemu_get_clock(vm_clock
);
1379 /* To avoid problems with overflow limit this to 2^32. */
1389 #if defined(__linux__) || defined(_WIN32)
1390 static uint64_t qemu_next_deadline_dyntick(void)
1398 delta
= (qemu_next_deadline() + 999) / 1000;
1400 if (active_timers
[QEMU_TIMER_REALTIME
]) {
1401 rtdelta
= (active_timers
[QEMU_TIMER_REALTIME
]->expire_time
-
1402 qemu_get_clock(rt_clock
))*1000;
1403 if (rtdelta
< delta
)
1407 if (delta
< MIN_TIMER_REARM_US
)
1408 delta
= MIN_TIMER_REARM_US
;
1416 /* Sets a specific flag */
1417 static int fcntl_setfl(int fd
, int flag
)
1421 flags
= fcntl(fd
, F_GETFL
);
1425 if (fcntl(fd
, F_SETFL
, flags
| flag
) == -1)
1431 #if defined(__linux__)
1433 #define RTC_FREQ 1024
1435 static void enable_sigio_timer(int fd
)
1437 struct sigaction act
;
1440 sigfillset(&act
.sa_mask
);
1442 act
.sa_handler
= host_alarm_handler
;
1444 sigaction(SIGIO
, &act
, NULL
);
1445 fcntl_setfl(fd
, O_ASYNC
);
1446 fcntl(fd
, F_SETOWN
, getpid());
1449 static int hpet_start_timer(struct qemu_alarm_timer
*t
)
1451 struct hpet_info info
;
1454 fd
= open("/dev/hpet", O_RDONLY
);
1459 r
= ioctl(fd
, HPET_IRQFREQ
, RTC_FREQ
);
1461 fprintf(stderr
, "Could not configure '/dev/hpet' to have a 1024Hz timer. This is not a fatal\n"
1462 "error, but for better emulation accuracy type:\n"
1463 "'echo 1024 > /proc/sys/dev/hpet/max-user-freq' as root.\n");
1467 /* Check capabilities */
1468 r
= ioctl(fd
, HPET_INFO
, &info
);
1472 /* Enable periodic mode */
1473 r
= ioctl(fd
, HPET_EPI
, 0);
1474 if (info
.hi_flags
&& (r
< 0))
1477 /* Enable interrupt */
1478 r
= ioctl(fd
, HPET_IE_ON
, 0);
1482 enable_sigio_timer(fd
);
1483 t
->priv
= (void *)(long)fd
;
1491 static void hpet_stop_timer(struct qemu_alarm_timer
*t
)
1493 int fd
= (long)t
->priv
;
1498 static int rtc_start_timer(struct qemu_alarm_timer
*t
)
1501 unsigned long current_rtc_freq
= 0;
1503 TFR(rtc_fd
= open("/dev/rtc", O_RDONLY
));
1506 ioctl(rtc_fd
, RTC_IRQP_READ
, ¤t_rtc_freq
);
1507 if (current_rtc_freq
!= RTC_FREQ
&&
1508 ioctl(rtc_fd
, RTC_IRQP_SET
, RTC_FREQ
) < 0) {
1509 fprintf(stderr
, "Could not configure '/dev/rtc' to have a 1024 Hz timer. This is not a fatal\n"
1510 "error, but for better emulation accuracy either use a 2.6 host Linux kernel or\n"
1511 "type 'echo 1024 > /proc/sys/dev/rtc/max-user-freq' as root.\n");
1514 if (ioctl(rtc_fd
, RTC_PIE_ON
, 0) < 0) {
1520 enable_sigio_timer(rtc_fd
);
1522 t
->priv
= (void *)(long)rtc_fd
;
1527 static void rtc_stop_timer(struct qemu_alarm_timer
*t
)
1529 int rtc_fd
= (long)t
->priv
;
1534 static int dynticks_start_timer(struct qemu_alarm_timer
*t
)
1538 struct sigaction act
;
1540 sigfillset(&act
.sa_mask
);
1542 act
.sa_handler
= host_alarm_handler
;
1544 sigaction(SIGALRM
, &act
, NULL
);
1547 * Initialize ev struct to 0 to avoid valgrind complaining
1548 * about uninitialized data in timer_create call
1550 memset(&ev
, 0, sizeof(ev
));
1551 ev
.sigev_value
.sival_int
= 0;
1552 ev
.sigev_notify
= SIGEV_SIGNAL
;
1553 ev
.sigev_signo
= SIGALRM
;
1555 if (timer_create(CLOCK_REALTIME
, &ev
, &host_timer
)) {
1556 perror("timer_create");
1558 /* disable dynticks */
1559 fprintf(stderr
, "Dynamic Ticks disabled\n");
1564 t
->priv
= (void *)(long)host_timer
;
1569 static void dynticks_stop_timer(struct qemu_alarm_timer
*t
)
1571 timer_t host_timer
= (timer_t
)(long)t
->priv
;
1573 timer_delete(host_timer
);
1576 static void dynticks_rearm_timer(struct qemu_alarm_timer
*t
)
1578 timer_t host_timer
= (timer_t
)(long)t
->priv
;
1579 struct itimerspec timeout
;
1580 int64_t nearest_delta_us
= INT64_MAX
;
1583 if (!active_timers
[QEMU_TIMER_REALTIME
] &&
1584 !active_timers
[QEMU_TIMER_VIRTUAL
])
1587 nearest_delta_us
= qemu_next_deadline_dyntick();
1589 /* check whether a timer is already running */
1590 if (timer_gettime(host_timer
, &timeout
)) {
1592 fprintf(stderr
, "Internal timer error: aborting\n");
1595 current_us
= timeout
.it_value
.tv_sec
* 1000000 + timeout
.it_value
.tv_nsec
/1000;
1596 if (current_us
&& current_us
<= nearest_delta_us
)
1599 timeout
.it_interval
.tv_sec
= 0;
1600 timeout
.it_interval
.tv_nsec
= 0; /* 0 for one-shot timer */
1601 timeout
.it_value
.tv_sec
= nearest_delta_us
/ 1000000;
1602 timeout
.it_value
.tv_nsec
= (nearest_delta_us
% 1000000) * 1000;
1603 if (timer_settime(host_timer
, 0 /* RELATIVE */, &timeout
, NULL
)) {
1605 fprintf(stderr
, "Internal timer error: aborting\n");
1610 #endif /* defined(__linux__) */
1612 static int unix_start_timer(struct qemu_alarm_timer
*t
)
1614 struct sigaction act
;
1615 struct itimerval itv
;
1619 sigfillset(&act
.sa_mask
);
1621 act
.sa_handler
= host_alarm_handler
;
1623 sigaction(SIGALRM
, &act
, NULL
);
1625 itv
.it_interval
.tv_sec
= 0;
1626 /* for i386 kernel 2.6 to get 1 ms */
1627 itv
.it_interval
.tv_usec
= 999;
1628 itv
.it_value
.tv_sec
= 0;
1629 itv
.it_value
.tv_usec
= 10 * 1000;
1631 err
= setitimer(ITIMER_REAL
, &itv
, NULL
);
1638 static void unix_stop_timer(struct qemu_alarm_timer
*t
)
1640 struct itimerval itv
;
1642 memset(&itv
, 0, sizeof(itv
));
1643 setitimer(ITIMER_REAL
, &itv
, NULL
);
1646 #endif /* !defined(_WIN32) */
1651 static int win32_start_timer(struct qemu_alarm_timer
*t
)
1654 struct qemu_alarm_win32
*data
= t
->priv
;
1657 memset(&tc
, 0, sizeof(tc
));
1658 timeGetDevCaps(&tc
, sizeof(tc
));
1660 if (data
->period
< tc
.wPeriodMin
)
1661 data
->period
= tc
.wPeriodMin
;
1663 timeBeginPeriod(data
->period
);
1665 flags
= TIME_CALLBACK_FUNCTION
;
1666 if (alarm_has_dynticks(t
))
1667 flags
|= TIME_ONESHOT
;
1669 flags
|= TIME_PERIODIC
;
1671 data
->timerId
= timeSetEvent(1, // interval (ms)
1672 data
->period
, // resolution
1673 host_alarm_handler
, // function
1674 (DWORD
)t
, // parameter
1677 if (!data
->timerId
) {
1678 perror("Failed to initialize win32 alarm timer");
1679 timeEndPeriod(data
->period
);
1686 static void win32_stop_timer(struct qemu_alarm_timer
*t
)
1688 struct qemu_alarm_win32
*data
= t
->priv
;
1690 timeKillEvent(data
->timerId
);
1691 timeEndPeriod(data
->period
);
1694 static void win32_rearm_timer(struct qemu_alarm_timer
*t
)
1696 struct qemu_alarm_win32
*data
= t
->priv
;
1697 uint64_t nearest_delta_us
;
1699 if (!active_timers
[QEMU_TIMER_REALTIME
] &&
1700 !active_timers
[QEMU_TIMER_VIRTUAL
])
1703 nearest_delta_us
= qemu_next_deadline_dyntick();
1704 nearest_delta_us
/= 1000;
1706 timeKillEvent(data
->timerId
);
1708 data
->timerId
= timeSetEvent(1,
1712 TIME_ONESHOT
| TIME_PERIODIC
);
1714 if (!data
->timerId
) {
1715 perror("Failed to re-arm win32 alarm timer");
1717 timeEndPeriod(data
->period
);
1724 static int init_timer_alarm(void)
1726 struct qemu_alarm_timer
*t
= NULL
;
1729 for (i
= 0; alarm_timers
[i
].name
; i
++) {
1730 t
= &alarm_timers
[i
];
1750 static void quit_timers(void)
1752 alarm_timer
->stop(alarm_timer
);
1756 /***********************************************************/
1757 /* host time/date access */
1758 void qemu_get_timedate(struct tm
*tm
, int offset
)
1765 if (rtc_date_offset
== -1) {
1769 ret
= localtime(&ti
);
1771 ti
-= rtc_date_offset
;
1775 memcpy(tm
, ret
, sizeof(struct tm
));
1778 int qemu_timedate_diff(struct tm
*tm
)
1782 if (rtc_date_offset
== -1)
1784 seconds
= mktimegm(tm
);
1786 seconds
= mktime(tm
);
1788 seconds
= mktimegm(tm
) + rtc_date_offset
;
1790 return seconds
- time(NULL
);
1794 static void socket_cleanup(void)
1799 static int socket_init(void)
1804 ret
= WSAStartup(MAKEWORD(2,2), &Data
);
1806 err
= WSAGetLastError();
1807 fprintf(stderr
, "WSAStartup: %d\n", err
);
1810 atexit(socket_cleanup
);
1815 int get_param_value(char *buf
, int buf_size
,
1816 const char *tag
, const char *str
)
1823 p
= get_opt_name(option
, sizeof(option
), p
, '=');
1827 if (!strcmp(tag
, option
)) {
1828 (void)get_opt_value(buf
, buf_size
, p
);
1831 p
= get_opt_value(NULL
, 0, p
);
1840 int check_params(char *buf
, int buf_size
,
1841 const char * const *params
, const char *str
)
1847 while (*p
!= '\0') {
1848 p
= get_opt_name(buf
, buf_size
, p
, '=');
1853 for (i
= 0; params
[i
] != NULL
; i
++) {
1854 if (!strcmp(params
[i
], buf
)) {
1858 if (params
[i
] == NULL
) {
1861 p
= get_opt_value(NULL
, 0, p
);
1870 /***********************************************************/
1871 /* Bluetooth support */
1874 static struct HCIInfo
*hci_table
[MAX_NICS
];
1876 static struct bt_vlan_s
{
1877 struct bt_scatternet_s net
;
1879 struct bt_vlan_s
*next
;
1882 /* find or alloc a new bluetooth "VLAN" */
1883 static struct bt_scatternet_s
*qemu_find_bt_vlan(int id
)
1885 struct bt_vlan_s
**pvlan
, *vlan
;
1886 for (vlan
= first_bt_vlan
; vlan
!= NULL
; vlan
= vlan
->next
) {
1890 vlan
= qemu_mallocz(sizeof(struct bt_vlan_s
));
1892 pvlan
= &first_bt_vlan
;
1893 while (*pvlan
!= NULL
)
1894 pvlan
= &(*pvlan
)->next
;
1899 static void null_hci_send(struct HCIInfo
*hci
, const uint8_t *data
, int len
)
1903 static int null_hci_addr_set(struct HCIInfo
*hci
, const uint8_t *bd_addr
)
1908 static struct HCIInfo null_hci
= {
1909 .cmd_send
= null_hci_send
,
1910 .sco_send
= null_hci_send
,
1911 .acl_send
= null_hci_send
,
1912 .bdaddr_set
= null_hci_addr_set
,
1915 struct HCIInfo
*qemu_next_hci(void)
1917 if (cur_hci
== nb_hcis
)
1920 return hci_table
[cur_hci
++];
1923 static struct HCIInfo
*hci_init(const char *str
)
1926 struct bt_scatternet_s
*vlan
= 0;
1928 if (!strcmp(str
, "null"))
1931 else if (!strncmp(str
, "host", 4) && (str
[4] == '\0' || str
[4] == ':'))
1933 return bt_host_hci(str
[4] ? str
+ 5 : "hci0");
1934 else if (!strncmp(str
, "hci", 3)) {
1937 if (!strncmp(str
+ 3, ",vlan=", 6)) {
1938 vlan
= qemu_find_bt_vlan(strtol(str
+ 9, &endp
, 0));
1943 vlan
= qemu_find_bt_vlan(0);
1945 return bt_new_hci(vlan
);
1948 fprintf(stderr
, "qemu: Unknown bluetooth HCI `%s'.\n", str
);
1953 static int bt_hci_parse(const char *str
)
1955 struct HCIInfo
*hci
;
1958 if (nb_hcis
>= MAX_NICS
) {
1959 fprintf(stderr
, "qemu: Too many bluetooth HCIs (max %i).\n", MAX_NICS
);
1963 hci
= hci_init(str
);
1972 bdaddr
.b
[5] = 0x56 + nb_hcis
;
1973 hci
->bdaddr_set(hci
, bdaddr
.b
);
1975 hci_table
[nb_hcis
++] = hci
;
1980 static void bt_vhci_add(int vlan_id
)
1982 struct bt_scatternet_s
*vlan
= qemu_find_bt_vlan(vlan_id
);
1985 fprintf(stderr
, "qemu: warning: adding a VHCI to "
1986 "an empty scatternet %i\n", vlan_id
);
1988 bt_vhci_init(bt_new_hci(vlan
));
1991 static struct bt_device_s
*bt_device_add(const char *opt
)
1993 struct bt_scatternet_s
*vlan
;
1995 char *endp
= strstr(opt
, ",vlan=");
1996 int len
= (endp
? endp
- opt
: strlen(opt
)) + 1;
1999 pstrcpy(devname
, MIN(sizeof(devname
), len
), opt
);
2002 vlan_id
= strtol(endp
+ 6, &endp
, 0);
2004 fprintf(stderr
, "qemu: unrecognised bluetooth vlan Id\n");
2009 vlan
= qemu_find_bt_vlan(vlan_id
);
2012 fprintf(stderr
, "qemu: warning: adding a slave device to "
2013 "an empty scatternet %i\n", vlan_id
);
2015 if (!strcmp(devname
, "keyboard"))
2016 return bt_keyboard_init(vlan
);
2018 fprintf(stderr
, "qemu: unsupported bluetooth device `%s'\n", devname
);
2022 static int bt_parse(const char *opt
)
2024 const char *endp
, *p
;
2027 if (strstart(opt
, "hci", &endp
)) {
2028 if (!*endp
|| *endp
== ',') {
2030 if (!strstart(endp
, ",vlan=", 0))
2033 return bt_hci_parse(opt
);
2035 } else if (strstart(opt
, "vhci", &endp
)) {
2036 if (!*endp
|| *endp
== ',') {
2038 if (strstart(endp
, ",vlan=", &p
)) {
2039 vlan
= strtol(p
, (char **) &endp
, 0);
2041 fprintf(stderr
, "qemu: bad scatternet '%s'\n", p
);
2045 fprintf(stderr
, "qemu: bad parameter '%s'\n", endp
+ 1);
2054 } else if (strstart(opt
, "device:", &endp
))
2055 return !bt_device_add(endp
);
2057 fprintf(stderr
, "qemu: bad bluetooth parameter '%s'\n", opt
);
2061 /***********************************************************/
2062 /* QEMU Block devices */
2064 #define HD_ALIAS "index=%d,media=disk"
2065 #define CDROM_ALIAS "index=2,media=cdrom"
2066 #define FD_ALIAS "index=%d,if=floppy"
2067 #define PFLASH_ALIAS "if=pflash"
2068 #define MTD_ALIAS "if=mtd"
2069 #define SD_ALIAS "index=0,if=sd"
2071 static int drive_opt_get_free_idx(void)
2075 for (index
= 0; index
< MAX_DRIVES
; index
++)
2076 if (!drives_opt
[index
].used
) {
2077 drives_opt
[index
].used
= 1;
2084 static int drive_get_free_idx(void)
2088 for (index
= 0; index
< MAX_DRIVES
; index
++)
2089 if (!drives_table
[index
].used
) {
2090 drives_table
[index
].used
= 1;
2097 int drive_add(const char *file
, const char *fmt
, ...)
2100 int index
= drive_opt_get_free_idx();
2102 if (nb_drives_opt
>= MAX_DRIVES
|| index
== -1) {
2103 fprintf(stderr
, "qemu: too many drives\n");
2107 drives_opt
[index
].file
= file
;
2109 vsnprintf(drives_opt
[index
].opt
,
2110 sizeof(drives_opt
[0].opt
), fmt
, ap
);
2117 void drive_remove(int index
)
2119 drives_opt
[index
].used
= 0;
2123 int drive_get_index(BlockInterfaceType type
, int bus
, int unit
)
2127 /* seek interface, bus and unit */
2129 for (index
= 0; index
< MAX_DRIVES
; index
++)
2130 if (drives_table
[index
].type
== type
&&
2131 drives_table
[index
].bus
== bus
&&
2132 drives_table
[index
].unit
== unit
&&
2133 drives_table
[index
].used
)
2139 int drive_get_max_bus(BlockInterfaceType type
)
2145 for (index
= 0; index
< nb_drives
; index
++) {
2146 if(drives_table
[index
].type
== type
&&
2147 drives_table
[index
].bus
> max_bus
)
2148 max_bus
= drives_table
[index
].bus
;
2153 const char *drive_get_serial(BlockDriverState
*bdrv
)
2157 for (index
= 0; index
< nb_drives
; index
++)
2158 if (drives_table
[index
].bdrv
== bdrv
)
2159 return drives_table
[index
].serial
;
2164 BlockInterfaceErrorAction
drive_get_onerror(BlockDriverState
*bdrv
)
2168 for (index
= 0; index
< nb_drives
; index
++)
2169 if (drives_table
[index
].bdrv
== bdrv
)
2170 return drives_table
[index
].onerror
;
2172 return BLOCK_ERR_STOP_ENOSPC
;
2175 static void bdrv_format_print(void *opaque
, const char *name
)
2177 fprintf(stderr
, " %s", name
);
2180 void drive_uninit(BlockDriverState
*bdrv
)
2184 for (i
= 0; i
< MAX_DRIVES
; i
++)
2185 if (drives_table
[i
].bdrv
== bdrv
) {
2186 drives_table
[i
].bdrv
= NULL
;
2187 drives_table
[i
].used
= 0;
2188 drive_remove(drives_table
[i
].drive_opt_idx
);
2194 int drive_init(struct drive_opt
*arg
, int snapshot
, void *opaque
)
2200 const char *mediastr
= "";
2201 BlockInterfaceType type
;
2202 enum { MEDIA_DISK
, MEDIA_CDROM
} media
;
2203 int bus_id
, unit_id
;
2204 int cyls
, heads
, secs
, translation
;
2205 BlockDriverState
*bdrv
;
2206 BlockDriver
*drv
= NULL
;
2207 QEMUMachine
*machine
= opaque
;
2211 int bdrv_flags
, onerror
;
2212 int drives_table_idx
;
2213 char *str
= arg
->opt
;
2214 static const char * const params
[] = { "bus", "unit", "if", "index",
2215 "cyls", "heads", "secs", "trans",
2216 "media", "snapshot", "file",
2217 "cache", "format", "serial", "werror",
2220 if (check_params(buf
, sizeof(buf
), params
, str
) < 0) {
2221 fprintf(stderr
, "qemu: unknown parameter '%s' in '%s'\n",
2227 cyls
= heads
= secs
= 0;
2230 translation
= BIOS_ATA_TRANSLATION_AUTO
;
2234 if (machine
->use_scsi
) {
2236 max_devs
= MAX_SCSI_DEVS
;
2237 pstrcpy(devname
, sizeof(devname
), "scsi");
2240 max_devs
= MAX_IDE_DEVS
;
2241 pstrcpy(devname
, sizeof(devname
), "ide");
2245 /* extract parameters */
2247 if (get_param_value(buf
, sizeof(buf
), "bus", str
)) {
2248 bus_id
= strtol(buf
, NULL
, 0);
2250 fprintf(stderr
, "qemu: '%s' invalid bus id\n", str
);
2255 if (get_param_value(buf
, sizeof(buf
), "unit", str
)) {
2256 unit_id
= strtol(buf
, NULL
, 0);
2258 fprintf(stderr
, "qemu: '%s' invalid unit id\n", str
);
2263 if (get_param_value(buf
, sizeof(buf
), "if", str
)) {
2264 pstrcpy(devname
, sizeof(devname
), buf
);
2265 if (!strcmp(buf
, "ide")) {
2267 max_devs
= MAX_IDE_DEVS
;
2268 } else if (!strcmp(buf
, "scsi")) {
2270 max_devs
= MAX_SCSI_DEVS
;
2271 } else if (!strcmp(buf
, "floppy")) {
2274 } else if (!strcmp(buf
, "pflash")) {
2277 } else if (!strcmp(buf
, "mtd")) {
2280 } else if (!strcmp(buf
, "sd")) {
2283 } else if (!strcmp(buf
, "virtio")) {
2286 } else if (!strcmp(buf
, "xen")) {
2290 fprintf(stderr
, "qemu: '%s' unsupported bus type '%s'\n", str
, buf
);
2295 if (get_param_value(buf
, sizeof(buf
), "index", str
)) {
2296 index
= strtol(buf
, NULL
, 0);
2298 fprintf(stderr
, "qemu: '%s' invalid index\n", str
);
2303 if (get_param_value(buf
, sizeof(buf
), "cyls", str
)) {
2304 cyls
= strtol(buf
, NULL
, 0);
2307 if (get_param_value(buf
, sizeof(buf
), "heads", str
)) {
2308 heads
= strtol(buf
, NULL
, 0);
2311 if (get_param_value(buf
, sizeof(buf
), "secs", str
)) {
2312 secs
= strtol(buf
, NULL
, 0);
2315 if (cyls
|| heads
|| secs
) {
2316 if (cyls
< 1 || cyls
> 16383) {
2317 fprintf(stderr
, "qemu: '%s' invalid physical cyls number\n", str
);
2320 if (heads
< 1 || heads
> 16) {
2321 fprintf(stderr
, "qemu: '%s' invalid physical heads number\n", str
);
2324 if (secs
< 1 || secs
> 63) {
2325 fprintf(stderr
, "qemu: '%s' invalid physical secs number\n", str
);
2330 if (get_param_value(buf
, sizeof(buf
), "trans", str
)) {
2333 "qemu: '%s' trans must be used with cyls,heads and secs\n",
2337 if (!strcmp(buf
, "none"))
2338 translation
= BIOS_ATA_TRANSLATION_NONE
;
2339 else if (!strcmp(buf
, "lba"))
2340 translation
= BIOS_ATA_TRANSLATION_LBA
;
2341 else if (!strcmp(buf
, "auto"))
2342 translation
= BIOS_ATA_TRANSLATION_AUTO
;
2344 fprintf(stderr
, "qemu: '%s' invalid translation type\n", str
);
2349 if (get_param_value(buf
, sizeof(buf
), "media", str
)) {
2350 if (!strcmp(buf
, "disk")) {
2352 } else if (!strcmp(buf
, "cdrom")) {
2353 if (cyls
|| secs
|| heads
) {
2355 "qemu: '%s' invalid physical CHS format\n", str
);
2358 media
= MEDIA_CDROM
;
2360 fprintf(stderr
, "qemu: '%s' invalid media\n", str
);
2365 if (get_param_value(buf
, sizeof(buf
), "snapshot", str
)) {
2366 if (!strcmp(buf
, "on"))
2368 else if (!strcmp(buf
, "off"))
2371 fprintf(stderr
, "qemu: '%s' invalid snapshot option\n", str
);
2376 if (get_param_value(buf
, sizeof(buf
), "cache", str
)) {
2377 if (!strcmp(buf
, "off") || !strcmp(buf
, "none"))
2379 else if (!strcmp(buf
, "writethrough"))
2381 else if (!strcmp(buf
, "writeback"))
2384 fprintf(stderr
, "qemu: invalid cache option\n");
2389 if (get_param_value(buf
, sizeof(buf
), "format", str
)) {
2390 if (strcmp(buf
, "?") == 0) {
2391 fprintf(stderr
, "qemu: Supported formats:");
2392 bdrv_iterate_format(bdrv_format_print
, NULL
);
2393 fprintf(stderr
, "\n");
2396 drv
= bdrv_find_format(buf
);
2398 fprintf(stderr
, "qemu: '%s' invalid format\n", buf
);
2403 if (arg
->file
== NULL
)
2404 get_param_value(file
, sizeof(file
), "file", str
);
2406 pstrcpy(file
, sizeof(file
), arg
->file
);
2408 if (!get_param_value(serial
, sizeof(serial
), "serial", str
))
2409 memset(serial
, 0, sizeof(serial
));
2411 onerror
= BLOCK_ERR_STOP_ENOSPC
;
2412 if (get_param_value(buf
, sizeof(serial
), "werror", str
)) {
2413 if (type
!= IF_IDE
&& type
!= IF_SCSI
&& type
!= IF_VIRTIO
) {
2414 fprintf(stderr
, "werror is no supported by this format\n");
2417 if (!strcmp(buf
, "ignore"))
2418 onerror
= BLOCK_ERR_IGNORE
;
2419 else if (!strcmp(buf
, "enospc"))
2420 onerror
= BLOCK_ERR_STOP_ENOSPC
;
2421 else if (!strcmp(buf
, "stop"))
2422 onerror
= BLOCK_ERR_STOP_ANY
;
2423 else if (!strcmp(buf
, "report"))
2424 onerror
= BLOCK_ERR_REPORT
;
2426 fprintf(stderr
, "qemu: '%s' invalid write error action\n", buf
);
2431 /* compute bus and unit according index */
2434 if (bus_id
!= 0 || unit_id
!= -1) {
2436 "qemu: '%s' index cannot be used with bus and unit\n", str
);
2444 unit_id
= index
% max_devs
;
2445 bus_id
= index
/ max_devs
;
2449 /* if user doesn't specify a unit_id,
2450 * try to find the first free
2453 if (unit_id
== -1) {
2455 while (drive_get_index(type
, bus_id
, unit_id
) != -1) {
2457 if (max_devs
&& unit_id
>= max_devs
) {
2458 unit_id
-= max_devs
;
2466 if (max_devs
&& unit_id
>= max_devs
) {
2467 fprintf(stderr
, "qemu: '%s' unit %d too big (max is %d)\n",
2468 str
, unit_id
, max_devs
- 1);
2473 * ignore multiple definitions
2476 if (drive_get_index(type
, bus_id
, unit_id
) != -1)
2481 if (type
== IF_IDE
|| type
== IF_SCSI
)
2482 mediastr
= (media
== MEDIA_CDROM
) ? "-cd" : "-hd";
2484 snprintf(buf
, sizeof(buf
), "%s%i%s%i",
2485 devname
, bus_id
, mediastr
, unit_id
);
2487 snprintf(buf
, sizeof(buf
), "%s%s%i",
2488 devname
, mediastr
, unit_id
);
2489 bdrv
= bdrv_new(buf
);
2490 drives_table_idx
= drive_get_free_idx();
2491 drives_table
[drives_table_idx
].bdrv
= bdrv
;
2492 drives_table
[drives_table_idx
].type
= type
;
2493 drives_table
[drives_table_idx
].bus
= bus_id
;
2494 drives_table
[drives_table_idx
].unit
= unit_id
;
2495 drives_table
[drives_table_idx
].onerror
= onerror
;
2496 drives_table
[drives_table_idx
].drive_opt_idx
= arg
- drives_opt
;
2497 strncpy(drives_table
[drives_table_idx
].serial
, serial
, sizeof(serial
));
2507 bdrv_set_geometry_hint(bdrv
, cyls
, heads
, secs
);
2508 bdrv_set_translation_hint(bdrv
, translation
);
2512 bdrv_set_type_hint(bdrv
, BDRV_TYPE_CDROM
);
2517 /* FIXME: This isn't really a floppy, but it's a reasonable
2520 bdrv_set_type_hint(bdrv
, BDRV_TYPE_FLOPPY
);
2533 bdrv_flags
|= BDRV_O_SNAPSHOT
;
2534 cache
= 2; /* always use write-back with snapshot */
2536 if (cache
== 0) /* no caching */
2537 bdrv_flags
|= BDRV_O_NOCACHE
;
2538 else if (cache
== 2) /* write-back */
2539 bdrv_flags
|= BDRV_O_CACHE_WB
;
2540 else if (cache
== 3) /* not specified */
2541 bdrv_flags
|= BDRV_O_CACHE_DEF
;
2542 if (bdrv_open2(bdrv
, file
, bdrv_flags
, drv
) < 0) {
2543 fprintf(stderr
, "qemu: could not open disk image %s\n",
2547 if (bdrv_key_required(bdrv
))
2549 return drives_table_idx
;
2552 static void numa_add(const char *optarg
)
2556 unsigned long long value
, endvalue
;
2559 optarg
= get_opt_name(option
, 128, optarg
, ',') + 1;
2560 if (!strcmp(option
, "node")) {
2561 if (get_param_value(option
, 128, "nodeid", optarg
) == 0) {
2562 nodenr
= nb_numa_nodes
;
2564 nodenr
= strtoull(option
, NULL
, 10);
2567 if (get_param_value(option
, 128, "mem", optarg
) == 0) {
2568 node_mem
[nodenr
] = 0;
2570 value
= strtoull(option
, &endptr
, 0);
2572 case 0: case 'M': case 'm':
2579 node_mem
[nodenr
] = value
;
2581 if (get_param_value(option
, 128, "cpus", optarg
) == 0) {
2582 node_cpumask
[nodenr
] = 0;
2584 value
= strtoull(option
, &endptr
, 10);
2587 fprintf(stderr
, "only 64 CPUs in NUMA mode supported.\n");
2589 if (*endptr
== '-') {
2590 endvalue
= strtoull(endptr
+1, &endptr
, 10);
2591 if (endvalue
>= 63) {
2594 "only 63 CPUs in NUMA mode supported.\n");
2596 value
= (1 << (endvalue
+ 1)) - (1 << value
);
2601 node_cpumask
[nodenr
] = value
;
2608 /***********************************************************/
2611 static USBPort
*used_usb_ports
;
2612 static USBPort
*free_usb_ports
;
2614 /* ??? Maybe change this to register a hub to keep track of the topology. */
2615 void qemu_register_usb_port(USBPort
*port
, void *opaque
, int index
,
2616 usb_attachfn attach
)
2618 port
->opaque
= opaque
;
2619 port
->index
= index
;
2620 port
->attach
= attach
;
2621 port
->next
= free_usb_ports
;
2622 free_usb_ports
= port
;
2625 int usb_device_add_dev(USBDevice
*dev
)
2629 /* Find a USB port to add the device to. */
2630 port
= free_usb_ports
;
2634 /* Create a new hub and chain it on. */
2635 free_usb_ports
= NULL
;
2636 port
->next
= used_usb_ports
;
2637 used_usb_ports
= port
;
2639 hub
= usb_hub_init(VM_USB_HUB_SIZE
);
2640 usb_attach(port
, hub
);
2641 port
= free_usb_ports
;
2644 free_usb_ports
= port
->next
;
2645 port
->next
= used_usb_ports
;
2646 used_usb_ports
= port
;
2647 usb_attach(port
, dev
);
2651 static void usb_msd_password_cb(void *opaque
, int err
)
2653 USBDevice
*dev
= opaque
;
2656 usb_device_add_dev(dev
);
2658 dev
->handle_destroy(dev
);
2661 static int usb_device_add(const char *devname
, int is_hotplug
)
2666 if (!free_usb_ports
)
2669 if (strstart(devname
, "host:", &p
)) {
2670 dev
= usb_host_device_open(p
);
2671 } else if (!strcmp(devname
, "mouse")) {
2672 dev
= usb_mouse_init();
2673 } else if (!strcmp(devname
, "tablet")) {
2674 dev
= usb_tablet_init();
2675 } else if (!strcmp(devname
, "keyboard")) {
2676 dev
= usb_keyboard_init();
2677 } else if (strstart(devname
, "disk:", &p
)) {
2678 BlockDriverState
*bs
;
2680 dev
= usb_msd_init(p
);
2683 bs
= usb_msd_get_bdrv(dev
);
2684 if (bdrv_key_required(bs
)) {
2687 monitor_read_bdrv_key_start(cur_mon
, bs
, usb_msd_password_cb
,
2692 } else if (!strcmp(devname
, "wacom-tablet")) {
2693 dev
= usb_wacom_init();
2694 } else if (strstart(devname
, "serial:", &p
)) {
2695 dev
= usb_serial_init(p
);
2696 #ifdef CONFIG_BRLAPI
2697 } else if (!strcmp(devname
, "braille")) {
2698 dev
= usb_baum_init();
2700 } else if (strstart(devname
, "net:", &p
)) {
2703 if (net_client_init(NULL
, "nic", p
) < 0)
2705 nd_table
[nic
].model
= "usb";
2706 dev
= usb_net_init(&nd_table
[nic
]);
2707 } else if (!strcmp(devname
, "bt") || strstart(devname
, "bt:", &p
)) {
2708 dev
= usb_bt_init(devname
[2] ? hci_init(p
) :
2709 bt_new_hci(qemu_find_bt_vlan(0)));
2716 return usb_device_add_dev(dev
);
2719 int usb_device_del_addr(int bus_num
, int addr
)
2725 if (!used_usb_ports
)
2731 lastp
= &used_usb_ports
;
2732 port
= used_usb_ports
;
2733 while (port
&& port
->dev
->addr
!= addr
) {
2734 lastp
= &port
->next
;
2742 *lastp
= port
->next
;
2743 usb_attach(port
, NULL
);
2744 dev
->handle_destroy(dev
);
2745 port
->next
= free_usb_ports
;
2746 free_usb_ports
= port
;
2750 static int usb_device_del(const char *devname
)
2755 if (strstart(devname
, "host:", &p
))
2756 return usb_host_device_close(p
);
2758 if (!used_usb_ports
)
2761 p
= strchr(devname
, '.');
2764 bus_num
= strtoul(devname
, NULL
, 0);
2765 addr
= strtoul(p
+ 1, NULL
, 0);
2767 return usb_device_del_addr(bus_num
, addr
);
2770 void do_usb_add(Monitor
*mon
, const char *devname
)
2772 usb_device_add(devname
, 1);
2775 void do_usb_del(Monitor
*mon
, const char *devname
)
2777 usb_device_del(devname
);
2780 void usb_info(Monitor
*mon
)
2784 const char *speed_str
;
2787 monitor_printf(mon
, "USB support not enabled\n");
2791 for (port
= used_usb_ports
; port
; port
= port
->next
) {
2795 switch(dev
->speed
) {
2799 case USB_SPEED_FULL
:
2802 case USB_SPEED_HIGH
:
2809 monitor_printf(mon
, " Device %d.%d, Speed %s Mb/s, Product %s\n",
2810 0, dev
->addr
, speed_str
, dev
->devname
);
2814 /***********************************************************/
2815 /* PCMCIA/Cardbus */
2817 static struct pcmcia_socket_entry_s
{
2818 PCMCIASocket
*socket
;
2819 struct pcmcia_socket_entry_s
*next
;
2820 } *pcmcia_sockets
= 0;
2822 void pcmcia_socket_register(PCMCIASocket
*socket
)
2824 struct pcmcia_socket_entry_s
*entry
;
2826 entry
= qemu_malloc(sizeof(struct pcmcia_socket_entry_s
));
2827 entry
->socket
= socket
;
2828 entry
->next
= pcmcia_sockets
;
2829 pcmcia_sockets
= entry
;
2832 void pcmcia_socket_unregister(PCMCIASocket
*socket
)
2834 struct pcmcia_socket_entry_s
*entry
, **ptr
;
2836 ptr
= &pcmcia_sockets
;
2837 for (entry
= *ptr
; entry
; ptr
= &entry
->next
, entry
= *ptr
)
2838 if (entry
->socket
== socket
) {
2844 void pcmcia_info(Monitor
*mon
)
2846 struct pcmcia_socket_entry_s
*iter
;
2848 if (!pcmcia_sockets
)
2849 monitor_printf(mon
, "No PCMCIA sockets\n");
2851 for (iter
= pcmcia_sockets
; iter
; iter
= iter
->next
)
2852 monitor_printf(mon
, "%s: %s\n", iter
->socket
->slot_string
,
2853 iter
->socket
->attached
? iter
->socket
->card_string
:
2857 /***********************************************************/
2858 /* register display */
2860 struct DisplayAllocator default_allocator
= {
2861 defaultallocator_create_displaysurface
,
2862 defaultallocator_resize_displaysurface
,
2863 defaultallocator_free_displaysurface
2866 void register_displaystate(DisplayState
*ds
)
2876 DisplayState
*get_displaystate(void)
2878 return display_state
;
2881 DisplayAllocator
*register_displayallocator(DisplayState
*ds
, DisplayAllocator
*da
)
2883 if(ds
->allocator
== &default_allocator
) ds
->allocator
= da
;
2884 return ds
->allocator
;
2889 static void dumb_display_init(void)
2891 DisplayState
*ds
= qemu_mallocz(sizeof(DisplayState
));
2892 ds
->allocator
= &default_allocator
;
2893 ds
->surface
= qemu_create_displaysurface(ds
, 640, 480);
2894 register_displaystate(ds
);
2897 /***********************************************************/
2900 typedef struct IOHandlerRecord
{
2902 IOCanRWHandler
*fd_read_poll
;
2904 IOHandler
*fd_write
;
2907 /* temporary data */
2909 struct IOHandlerRecord
*next
;
2912 static IOHandlerRecord
*first_io_handler
;
2914 /* XXX: fd_read_poll should be suppressed, but an API change is
2915 necessary in the character devices to suppress fd_can_read(). */
2916 int qemu_set_fd_handler2(int fd
,
2917 IOCanRWHandler
*fd_read_poll
,
2919 IOHandler
*fd_write
,
2922 IOHandlerRecord
**pioh
, *ioh
;
2924 if (!fd_read
&& !fd_write
) {
2925 pioh
= &first_io_handler
;
2930 if (ioh
->fd
== fd
) {
2937 for(ioh
= first_io_handler
; ioh
!= NULL
; ioh
= ioh
->next
) {
2941 ioh
= qemu_mallocz(sizeof(IOHandlerRecord
));
2942 ioh
->next
= first_io_handler
;
2943 first_io_handler
= ioh
;
2946 ioh
->fd_read_poll
= fd_read_poll
;
2947 ioh
->fd_read
= fd_read
;
2948 ioh
->fd_write
= fd_write
;
2949 ioh
->opaque
= opaque
;
2955 int qemu_set_fd_handler(int fd
,
2957 IOHandler
*fd_write
,
2960 return qemu_set_fd_handler2(fd
, NULL
, fd_read
, fd_write
, opaque
);
2964 /***********************************************************/
2965 /* Polling handling */
2967 typedef struct PollingEntry
{
2970 struct PollingEntry
*next
;
2973 static PollingEntry
*first_polling_entry
;
2975 int qemu_add_polling_cb(PollingFunc
*func
, void *opaque
)
2977 PollingEntry
**ppe
, *pe
;
2978 pe
= qemu_mallocz(sizeof(PollingEntry
));
2980 pe
->opaque
= opaque
;
2981 for(ppe
= &first_polling_entry
; *ppe
!= NULL
; ppe
= &(*ppe
)->next
);
2986 void qemu_del_polling_cb(PollingFunc
*func
, void *opaque
)
2988 PollingEntry
**ppe
, *pe
;
2989 for(ppe
= &first_polling_entry
; *ppe
!= NULL
; ppe
= &(*ppe
)->next
) {
2991 if (pe
->func
== func
&& pe
->opaque
== opaque
) {
2999 /***********************************************************/
3000 /* Wait objects support */
3001 typedef struct WaitObjects
{
3003 HANDLE events
[MAXIMUM_WAIT_OBJECTS
+ 1];
3004 WaitObjectFunc
*func
[MAXIMUM_WAIT_OBJECTS
+ 1];
3005 void *opaque
[MAXIMUM_WAIT_OBJECTS
+ 1];
3008 static WaitObjects wait_objects
= {0};
3010 int qemu_add_wait_object(HANDLE handle
, WaitObjectFunc
*func
, void *opaque
)
3012 WaitObjects
*w
= &wait_objects
;
3014 if (w
->num
>= MAXIMUM_WAIT_OBJECTS
)
3016 w
->events
[w
->num
] = handle
;
3017 w
->func
[w
->num
] = func
;
3018 w
->opaque
[w
->num
] = opaque
;
3023 void qemu_del_wait_object(HANDLE handle
, WaitObjectFunc
*func
, void *opaque
)
3026 WaitObjects
*w
= &wait_objects
;
3029 for (i
= 0; i
< w
->num
; i
++) {
3030 if (w
->events
[i
] == handle
)
3033 w
->events
[i
] = w
->events
[i
+ 1];
3034 w
->func
[i
] = w
->func
[i
+ 1];
3035 w
->opaque
[i
] = w
->opaque
[i
+ 1];
3043 /***********************************************************/
3044 /* ram save/restore */
3046 static int ram_get_page(QEMUFile
*f
, uint8_t *buf
, int len
)
3050 v
= qemu_get_byte(f
);
3053 if (qemu_get_buffer(f
, buf
, len
) != len
)
3057 v
= qemu_get_byte(f
);
3058 memset(buf
, v
, len
);
3064 if (qemu_file_has_error(f
))
3070 static int ram_load_v1(QEMUFile
*f
, void *opaque
)
3075 if (qemu_get_be32(f
) != last_ram_offset
)
3077 for(i
= 0; i
< last_ram_offset
; i
+= TARGET_PAGE_SIZE
) {
3078 ret
= ram_get_page(f
, qemu_get_ram_ptr(i
), TARGET_PAGE_SIZE
);
3085 #define BDRV_HASH_BLOCK_SIZE 1024
3086 #define IOBUF_SIZE 4096
3087 #define RAM_CBLOCK_MAGIC 0xfabe
3089 typedef struct RamDecompressState
{
3092 uint8_t buf
[IOBUF_SIZE
];
3093 } RamDecompressState
;
3095 static int ram_decompress_open(RamDecompressState
*s
, QEMUFile
*f
)
3098 memset(s
, 0, sizeof(*s
));
3100 ret
= inflateInit(&s
->zstream
);
3106 static int ram_decompress_buf(RamDecompressState
*s
, uint8_t *buf
, int len
)
3110 s
->zstream
.avail_out
= len
;
3111 s
->zstream
.next_out
= buf
;
3112 while (s
->zstream
.avail_out
> 0) {
3113 if (s
->zstream
.avail_in
== 0) {
3114 if (qemu_get_be16(s
->f
) != RAM_CBLOCK_MAGIC
)
3116 clen
= qemu_get_be16(s
->f
);
3117 if (clen
> IOBUF_SIZE
)
3119 qemu_get_buffer(s
->f
, s
->buf
, clen
);
3120 s
->zstream
.avail_in
= clen
;
3121 s
->zstream
.next_in
= s
->buf
;
3123 ret
= inflate(&s
->zstream
, Z_PARTIAL_FLUSH
);
3124 if (ret
!= Z_OK
&& ret
!= Z_STREAM_END
) {
3131 static void ram_decompress_close(RamDecompressState
*s
)
3133 inflateEnd(&s
->zstream
);
3136 #define RAM_SAVE_FLAG_FULL 0x01
3137 #define RAM_SAVE_FLAG_COMPRESS 0x02
3138 #define RAM_SAVE_FLAG_MEM_SIZE 0x04
3139 #define RAM_SAVE_FLAG_PAGE 0x08
3140 #define RAM_SAVE_FLAG_EOS 0x10
3142 static int is_dup_page(uint8_t *page
, uint8_t ch
)
3144 uint32_t val
= ch
<< 24 | ch
<< 16 | ch
<< 8 | ch
;
3145 uint32_t *array
= (uint32_t *)page
;
3148 for (i
= 0; i
< (TARGET_PAGE_SIZE
/ 4); i
++) {
3149 if (array
[i
] != val
)
3156 static int ram_save_block(QEMUFile
*f
)
3158 static ram_addr_t current_addr
= 0;
3159 ram_addr_t saved_addr
= current_addr
;
3160 ram_addr_t addr
= 0;
3163 while (addr
< last_ram_offset
) {
3164 if (cpu_physical_memory_get_dirty(current_addr
, MIGRATION_DIRTY_FLAG
)) {
3167 cpu_physical_memory_reset_dirty(current_addr
,
3168 current_addr
+ TARGET_PAGE_SIZE
,
3169 MIGRATION_DIRTY_FLAG
);
3171 p
= qemu_get_ram_ptr(current_addr
);
3173 if (is_dup_page(p
, *p
)) {
3174 qemu_put_be64(f
, current_addr
| RAM_SAVE_FLAG_COMPRESS
);
3175 qemu_put_byte(f
, *p
);
3177 qemu_put_be64(f
, current_addr
| RAM_SAVE_FLAG_PAGE
);
3178 qemu_put_buffer(f
, p
, TARGET_PAGE_SIZE
);
3184 addr
+= TARGET_PAGE_SIZE
;
3185 current_addr
= (saved_addr
+ addr
) % last_ram_offset
;
3191 static uint64_t bytes_transferred
= 0;
3193 static ram_addr_t
ram_save_remaining(void)
3196 ram_addr_t count
= 0;
3198 for (addr
= 0; addr
< last_ram_offset
; addr
+= TARGET_PAGE_SIZE
) {
3199 if (cpu_physical_memory_get_dirty(addr
, MIGRATION_DIRTY_FLAG
))
3206 uint64_t ram_bytes_remaining(void)
3208 return ram_save_remaining() * TARGET_PAGE_SIZE
;
3211 uint64_t ram_bytes_transferred(void)
3213 return bytes_transferred
;
3216 uint64_t ram_bytes_total(void)
3218 return last_ram_offset
;
3221 static int ram_save_live(QEMUFile
*f
, int stage
, void *opaque
)
3224 uint64_t bytes_transferred_last
;
3226 uint64_t expected_time
= 0;
3228 if (cpu_physical_sync_dirty_bitmap(0, TARGET_PHYS_ADDR_MAX
) != 0) {
3229 qemu_file_set_error(f
);
3234 /* Make sure all dirty bits are set */
3235 for (addr
= 0; addr
< last_ram_offset
; addr
+= TARGET_PAGE_SIZE
) {
3236 if (!cpu_physical_memory_get_dirty(addr
, MIGRATION_DIRTY_FLAG
))
3237 cpu_physical_memory_set_dirty(addr
);
3240 /* Enable dirty memory tracking */
3241 cpu_physical_memory_set_dirty_tracking(1);
3243 qemu_put_be64(f
, last_ram_offset
| RAM_SAVE_FLAG_MEM_SIZE
);
3246 bytes_transferred_last
= bytes_transferred
;
3247 bwidth
= get_clock();
3249 while (!qemu_file_rate_limit(f
)) {
3252 ret
= ram_save_block(f
);
3253 bytes_transferred
+= ret
* TARGET_PAGE_SIZE
;
3254 if (ret
== 0) /* no more blocks */
3258 bwidth
= get_clock() - bwidth
;
3259 bwidth
= (bytes_transferred
- bytes_transferred_last
) / bwidth
;
3261 /* if we haven't transferred anything this round, force expected_time to a
3262 * a very high value, but without crashing */
3266 /* try transferring iterative blocks of memory */
3270 /* flush all remaining blocks regardless of rate limiting */
3271 while (ram_save_block(f
) != 0) {
3272 bytes_transferred
+= TARGET_PAGE_SIZE
;
3274 cpu_physical_memory_set_dirty_tracking(0);
3277 qemu_put_be64(f
, RAM_SAVE_FLAG_EOS
);
3279 expected_time
= ram_save_remaining() * TARGET_PAGE_SIZE
/ bwidth
;
3281 return (stage
== 2) && (expected_time
<= migrate_max_downtime());
3284 static int ram_load_dead(QEMUFile
*f
, void *opaque
)
3286 RamDecompressState s1
, *s
= &s1
;
3290 if (ram_decompress_open(s
, f
) < 0)
3292 for(i
= 0; i
< last_ram_offset
; i
+= BDRV_HASH_BLOCK_SIZE
) {
3293 if (ram_decompress_buf(s
, buf
, 1) < 0) {
3294 fprintf(stderr
, "Error while reading ram block header\n");
3298 if (ram_decompress_buf(s
, qemu_get_ram_ptr(i
),
3299 BDRV_HASH_BLOCK_SIZE
) < 0) {
3300 fprintf(stderr
, "Error while reading ram block address=0x%08" PRIx64
, (uint64_t)i
);
3305 printf("Error block header\n");
3309 ram_decompress_close(s
);
3314 static int ram_load(QEMUFile
*f
, void *opaque
, int version_id
)
3319 if (version_id
== 1)
3320 return ram_load_v1(f
, opaque
);
3322 if (version_id
== 2) {
3323 if (qemu_get_be32(f
) != last_ram_offset
)
3325 return ram_load_dead(f
, opaque
);
3328 if (version_id
!= 3)
3332 addr
= qemu_get_be64(f
);
3334 flags
= addr
& ~TARGET_PAGE_MASK
;
3335 addr
&= TARGET_PAGE_MASK
;
3337 if (flags
& RAM_SAVE_FLAG_MEM_SIZE
) {
3338 if (addr
!= last_ram_offset
)
3342 if (flags
& RAM_SAVE_FLAG_FULL
) {
3343 if (ram_load_dead(f
, opaque
) < 0)
3347 if (flags
& RAM_SAVE_FLAG_COMPRESS
) {
3348 uint8_t ch
= qemu_get_byte(f
);
3349 #if defined(__linux__)
3351 (!kvm_enabled() || kvm_has_sync_mmu())) {
3352 madvise(qemu_get_ram_ptr(addr
), TARGET_PAGE_SIZE
, MADV_DONTNEED
);
3355 memset(qemu_get_ram_ptr(addr
), ch
, TARGET_PAGE_SIZE
);
3356 } else if (flags
& RAM_SAVE_FLAG_PAGE
)
3357 qemu_get_buffer(f
, qemu_get_ram_ptr(addr
), TARGET_PAGE_SIZE
);
3358 } while (!(flags
& RAM_SAVE_FLAG_EOS
));
3363 void qemu_service_io(void)
3365 qemu_notify_event();
3368 /***********************************************************/
3369 /* bottom halves (can be seen as timers which expire ASAP) */
3380 static QEMUBH
*first_bh
= NULL
;
3382 QEMUBH
*qemu_bh_new(QEMUBHFunc
*cb
, void *opaque
)
3385 bh
= qemu_mallocz(sizeof(QEMUBH
));
3387 bh
->opaque
= opaque
;
3388 bh
->next
= first_bh
;
3393 int qemu_bh_poll(void)
3399 for (bh
= first_bh
; bh
; bh
= bh
->next
) {
3400 if (!bh
->deleted
&& bh
->scheduled
) {
3409 /* remove deleted bhs */
3423 void qemu_bh_schedule_idle(QEMUBH
*bh
)
3431 void qemu_bh_schedule(QEMUBH
*bh
)
3437 /* stop the currently executing CPU to execute the BH ASAP */
3438 qemu_notify_event();
3441 void qemu_bh_cancel(QEMUBH
*bh
)
3446 void qemu_bh_delete(QEMUBH
*bh
)
3452 static void qemu_bh_update_timeout(int *timeout
)
3456 for (bh
= first_bh
; bh
; bh
= bh
->next
) {
3457 if (!bh
->deleted
&& bh
->scheduled
) {
3459 /* idle bottom halves will be polled at least
3461 *timeout
= MIN(10, *timeout
);
3463 /* non-idle bottom halves will be executed
3472 /***********************************************************/
3473 /* machine registration */
3475 static QEMUMachine
*first_machine
= NULL
;
3476 QEMUMachine
*current_machine
= NULL
;
3478 int qemu_register_machine(QEMUMachine
*m
)
3481 pm
= &first_machine
;
3489 static QEMUMachine
*find_machine(const char *name
)
3493 for(m
= first_machine
; m
!= NULL
; m
= m
->next
) {
3494 if (!strcmp(m
->name
, name
))
3500 static QEMUMachine
*find_default_machine(void)
3504 for(m
= first_machine
; m
!= NULL
; m
= m
->next
) {
3505 if (m
->is_default
) {
3512 /***********************************************************/
3513 /* main execution loop */
3515 static void gui_update(void *opaque
)
3517 uint64_t interval
= GUI_REFRESH_INTERVAL
;
3518 DisplayState
*ds
= opaque
;
3519 DisplayChangeListener
*dcl
= ds
->listeners
;
3523 while (dcl
!= NULL
) {
3524 if (dcl
->gui_timer_interval
&&
3525 dcl
->gui_timer_interval
< interval
)
3526 interval
= dcl
->gui_timer_interval
;
3529 qemu_mod_timer(ds
->gui_timer
, interval
+ qemu_get_clock(rt_clock
));
3532 static void nographic_update(void *opaque
)
3534 uint64_t interval
= GUI_REFRESH_INTERVAL
;
3536 qemu_mod_timer(nographic_timer
, interval
+ qemu_get_clock(rt_clock
));
3539 struct vm_change_state_entry
{
3540 VMChangeStateHandler
*cb
;
3542 LIST_ENTRY (vm_change_state_entry
) entries
;
3545 static LIST_HEAD(vm_change_state_head
, vm_change_state_entry
) vm_change_state_head
;
3547 VMChangeStateEntry
*qemu_add_vm_change_state_handler(VMChangeStateHandler
*cb
,
3550 VMChangeStateEntry
*e
;
3552 e
= qemu_mallocz(sizeof (*e
));
3556 LIST_INSERT_HEAD(&vm_change_state_head
, e
, entries
);
3560 void qemu_del_vm_change_state_handler(VMChangeStateEntry
*e
)
3562 LIST_REMOVE (e
, entries
);
3566 static void vm_state_notify(int running
, int reason
)
3568 VMChangeStateEntry
*e
;
3570 for (e
= vm_change_state_head
.lh_first
; e
; e
= e
->entries
.le_next
) {
3571 e
->cb(e
->opaque
, running
, reason
);
3575 static void resume_all_vcpus(void);
3576 static void pause_all_vcpus(void);
3583 vm_state_notify(1, 0);
3584 qemu_rearm_alarm_timer(alarm_timer
);
3589 /* reset/shutdown handler */
3591 typedef struct QEMUResetEntry
{
3592 QEMUResetHandler
*func
;
3595 struct QEMUResetEntry
*next
;
3598 static QEMUResetEntry
*first_reset_entry
;
3599 static int reset_requested
;
3600 static int shutdown_requested
;
3601 static int powerdown_requested
;
3602 static int debug_requested
;
3603 static int vmstop_requested
;
3605 int qemu_shutdown_requested(void)
3607 int r
= shutdown_requested
;
3608 shutdown_requested
= 0;
3612 int qemu_reset_requested(void)
3614 int r
= reset_requested
;
3615 reset_requested
= 0;
3619 int qemu_powerdown_requested(void)
3621 int r
= powerdown_requested
;
3622 powerdown_requested
= 0;
3626 static int qemu_debug_requested(void)
3628 int r
= debug_requested
;
3629 debug_requested
= 0;
3633 static int qemu_vmstop_requested(void)
3635 int r
= vmstop_requested
;
3636 vmstop_requested
= 0;
3640 static void do_vm_stop(int reason
)
3643 cpu_disable_ticks();
3646 vm_state_notify(0, reason
);
3650 void qemu_register_reset(QEMUResetHandler
*func
, int order
, void *opaque
)
3652 QEMUResetEntry
**pre
, *re
;
3654 pre
= &first_reset_entry
;
3655 while (*pre
!= NULL
&& (*pre
)->order
>= order
) {
3656 pre
= &(*pre
)->next
;
3658 re
= qemu_mallocz(sizeof(QEMUResetEntry
));
3660 re
->opaque
= opaque
;
3666 void qemu_system_reset(void)
3670 /* reset all devices */
3671 for(re
= first_reset_entry
; re
!= NULL
; re
= re
->next
) {
3672 re
->func(re
->opaque
);
3676 void qemu_system_reset_request(void)
3679 shutdown_requested
= 1;
3681 reset_requested
= 1;
3683 qemu_notify_event();
3686 void qemu_system_shutdown_request(void)
3688 shutdown_requested
= 1;
3689 qemu_notify_event();
3692 void qemu_system_powerdown_request(void)
3694 powerdown_requested
= 1;
3695 qemu_notify_event();
3698 #ifdef CONFIG_IOTHREAD
3699 static void qemu_system_vmstop_request(int reason
)
3701 vmstop_requested
= reason
;
3702 qemu_notify_event();
3707 static int io_thread_fd
= -1;
3709 static void qemu_event_increment(void)
3711 static const char byte
= 0;
3713 if (io_thread_fd
== -1)
3716 write(io_thread_fd
, &byte
, sizeof(byte
));
3719 static void qemu_event_read(void *opaque
)
3721 int fd
= (unsigned long)opaque
;
3724 /* Drain the notify pipe */
3727 len
= read(fd
, buffer
, sizeof(buffer
));
3728 } while ((len
== -1 && errno
== EINTR
) || len
> 0);
3731 static int qemu_event_init(void)
3740 err
= fcntl_setfl(fds
[0], O_NONBLOCK
);
3744 err
= fcntl_setfl(fds
[1], O_NONBLOCK
);
3748 qemu_set_fd_handler2(fds
[0], NULL
, qemu_event_read
, NULL
,
3749 (void *)(unsigned long)fds
[0]);
3751 io_thread_fd
= fds
[1];
3760 HANDLE qemu_event_handle
;
3762 static void dummy_event_handler(void *opaque
)
3766 static int qemu_event_init(void)
3768 qemu_event_handle
= CreateEvent(NULL
, FALSE
, FALSE
, NULL
);
3769 if (!qemu_event_handle
) {
3770 perror("Failed CreateEvent");
3773 qemu_add_wait_object(qemu_event_handle
, dummy_event_handler
, NULL
);
3777 static void qemu_event_increment(void)
3779 SetEvent(qemu_event_handle
);
3783 static int cpu_can_run(CPUState
*env
)
3792 #ifndef CONFIG_IOTHREAD
3793 static int qemu_init_main_loop(void)
3795 return qemu_event_init();
3798 void qemu_init_vcpu(void *_env
)
3800 CPUState
*env
= _env
;
3807 int qemu_cpu_self(void *env
)
3812 static void resume_all_vcpus(void)
3816 static void pause_all_vcpus(void)
3820 void qemu_cpu_kick(void *env
)
3825 void qemu_notify_event(void)
3827 CPUState
*env
= cpu_single_env
;
3832 if (env
->kqemu_enabled
)
3833 kqemu_cpu_interrupt(env
);
3838 #define qemu_mutex_lock_iothread() do { } while (0)
3839 #define qemu_mutex_unlock_iothread() do { } while (0)
3841 void vm_stop(int reason
)
3846 #else /* CONFIG_IOTHREAD */
3848 #include "qemu-thread.h"
3850 QemuMutex qemu_global_mutex
;
3851 static QemuMutex qemu_fair_mutex
;
3853 static QemuThread io_thread
;
3855 static QemuThread
*tcg_cpu_thread
;
3856 static QemuCond
*tcg_halt_cond
;
3858 static int qemu_system_ready
;
3860 static QemuCond qemu_cpu_cond
;
3862 static QemuCond qemu_system_cond
;
3863 static QemuCond qemu_pause_cond
;
3865 static void block_io_signals(void);
3866 static void unblock_io_signals(void);
3867 static int tcg_has_work(void);
3869 static int qemu_init_main_loop(void)
3873 ret
= qemu_event_init();
3877 qemu_cond_init(&qemu_pause_cond
);
3878 qemu_mutex_init(&qemu_fair_mutex
);
3879 qemu_mutex_init(&qemu_global_mutex
);
3880 qemu_mutex_lock(&qemu_global_mutex
);
3882 unblock_io_signals();
3883 qemu_thread_self(&io_thread
);
3888 static void qemu_wait_io_event(CPUState
*env
)
3890 while (!tcg_has_work())
3891 qemu_cond_timedwait(env
->halt_cond
, &qemu_global_mutex
, 1000);
3893 qemu_mutex_unlock(&qemu_global_mutex
);
3896 * Users of qemu_global_mutex can be starved, having no chance
3897 * to acquire it since this path will get to it first.
3898 * So use another lock to provide fairness.
3900 qemu_mutex_lock(&qemu_fair_mutex
);
3901 qemu_mutex_unlock(&qemu_fair_mutex
);
3903 qemu_mutex_lock(&qemu_global_mutex
);
3907 qemu_cond_signal(&qemu_pause_cond
);
3911 static int qemu_cpu_exec(CPUState
*env
);
3913 static void *kvm_cpu_thread_fn(void *arg
)
3915 CPUState
*env
= arg
;
3918 qemu_thread_self(env
->thread
);
3920 /* signal CPU creation */
3921 qemu_mutex_lock(&qemu_global_mutex
);
3923 qemu_cond_signal(&qemu_cpu_cond
);
3925 /* and wait for machine initialization */
3926 while (!qemu_system_ready
)
3927 qemu_cond_timedwait(&qemu_system_cond
, &qemu_global_mutex
, 100);
3930 if (cpu_can_run(env
))
3932 qemu_wait_io_event(env
);
3938 static void tcg_cpu_exec(void);
3940 static void *tcg_cpu_thread_fn(void *arg
)
3942 CPUState
*env
= arg
;
3945 qemu_thread_self(env
->thread
);
3947 /* signal CPU creation */
3948 qemu_mutex_lock(&qemu_global_mutex
);
3949 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
)
3951 qemu_cond_signal(&qemu_cpu_cond
);
3953 /* and wait for machine initialization */
3954 while (!qemu_system_ready
)
3955 qemu_cond_timedwait(&qemu_system_cond
, &qemu_global_mutex
, 100);
3959 qemu_wait_io_event(cur_cpu
);
3965 void qemu_cpu_kick(void *_env
)
3967 CPUState
*env
= _env
;
3968 qemu_cond_broadcast(env
->halt_cond
);
3970 qemu_thread_signal(env
->thread
, SIGUSR1
);
3973 int qemu_cpu_self(void *env
)
3975 return (cpu_single_env
!= NULL
);
3978 static void cpu_signal(int sig
)
3981 cpu_exit(cpu_single_env
);
3984 static void block_io_signals(void)
3987 struct sigaction sigact
;
3990 sigaddset(&set
, SIGUSR2
);
3991 sigaddset(&set
, SIGIO
);
3992 sigaddset(&set
, SIGALRM
);
3993 pthread_sigmask(SIG_BLOCK
, &set
, NULL
);
3996 sigaddset(&set
, SIGUSR1
);
3997 pthread_sigmask(SIG_UNBLOCK
, &set
, NULL
);
3999 memset(&sigact
, 0, sizeof(sigact
));
4000 sigact
.sa_handler
= cpu_signal
;
4001 sigaction(SIGUSR1
, &sigact
, NULL
);
4004 static void unblock_io_signals(void)
4009 sigaddset(&set
, SIGUSR2
);
4010 sigaddset(&set
, SIGIO
);
4011 sigaddset(&set
, SIGALRM
);
4012 pthread_sigmask(SIG_UNBLOCK
, &set
, NULL
);
4015 sigaddset(&set
, SIGUSR1
);
4016 pthread_sigmask(SIG_BLOCK
, &set
, NULL
);
4019 static void qemu_signal_lock(unsigned int msecs
)
4021 qemu_mutex_lock(&qemu_fair_mutex
);
4023 while (qemu_mutex_trylock(&qemu_global_mutex
)) {
4024 qemu_thread_signal(tcg_cpu_thread
, SIGUSR1
);
4025 if (!qemu_mutex_timedlock(&qemu_global_mutex
, msecs
))
4028 qemu_mutex_unlock(&qemu_fair_mutex
);
4031 static void qemu_mutex_lock_iothread(void)
4033 if (kvm_enabled()) {
4034 qemu_mutex_lock(&qemu_fair_mutex
);
4035 qemu_mutex_lock(&qemu_global_mutex
);
4036 qemu_mutex_unlock(&qemu_fair_mutex
);
4038 qemu_signal_lock(100);
4041 static void qemu_mutex_unlock_iothread(void)
4043 qemu_mutex_unlock(&qemu_global_mutex
);
4046 static int all_vcpus_paused(void)
4048 CPUState
*penv
= first_cpu
;
4053 penv
= (CPUState
*)penv
->next_cpu
;
4059 static void pause_all_vcpus(void)
4061 CPUState
*penv
= first_cpu
;
4065 qemu_thread_signal(penv
->thread
, SIGUSR1
);
4066 qemu_cpu_kick(penv
);
4067 penv
= (CPUState
*)penv
->next_cpu
;
4070 while (!all_vcpus_paused()) {
4071 qemu_cond_timedwait(&qemu_pause_cond
, &qemu_global_mutex
, 100);
4074 qemu_thread_signal(penv
->thread
, SIGUSR1
);
4075 penv
= (CPUState
*)penv
->next_cpu
;
4080 static void resume_all_vcpus(void)
4082 CPUState
*penv
= first_cpu
;
4087 qemu_thread_signal(penv
->thread
, SIGUSR1
);
4088 qemu_cpu_kick(penv
);
4089 penv
= (CPUState
*)penv
->next_cpu
;
4093 static void tcg_init_vcpu(void *_env
)
4095 CPUState
*env
= _env
;
4096 /* share a single thread for all cpus with TCG */
4097 if (!tcg_cpu_thread
) {
4098 env
->thread
= qemu_mallocz(sizeof(QemuThread
));
4099 env
->halt_cond
= qemu_mallocz(sizeof(QemuCond
));
4100 qemu_cond_init(env
->halt_cond
);
4101 qemu_thread_create(env
->thread
, tcg_cpu_thread_fn
, env
);
4102 while (env
->created
== 0)
4103 qemu_cond_timedwait(&qemu_cpu_cond
, &qemu_global_mutex
, 100);
4104 tcg_cpu_thread
= env
->thread
;
4105 tcg_halt_cond
= env
->halt_cond
;
4107 env
->thread
= tcg_cpu_thread
;
4108 env
->halt_cond
= tcg_halt_cond
;
4112 static void kvm_start_vcpu(CPUState
*env
)
4115 env
->thread
= qemu_mallocz(sizeof(QemuThread
));
4116 env
->halt_cond
= qemu_mallocz(sizeof(QemuCond
));
4117 qemu_cond_init(env
->halt_cond
);
4118 qemu_thread_create(env
->thread
, kvm_cpu_thread_fn
, env
);
4119 while (env
->created
== 0)
4120 qemu_cond_timedwait(&qemu_cpu_cond
, &qemu_global_mutex
, 100);
4123 void qemu_init_vcpu(void *_env
)
4125 CPUState
*env
= _env
;
4128 kvm_start_vcpu(env
);
4133 void qemu_notify_event(void)
4135 qemu_event_increment();
4138 void vm_stop(int reason
)
4141 qemu_thread_self(&me
);
4143 if (!qemu_thread_equal(&me
, &io_thread
)) {
4144 qemu_system_vmstop_request(reason
);
4146 * FIXME: should not return to device code in case
4147 * vm_stop() has been requested.
4149 if (cpu_single_env
) {
4150 cpu_exit(cpu_single_env
);
4151 cpu_single_env
->stop
= 1;
4162 static void host_main_loop_wait(int *timeout
)
4168 /* XXX: need to suppress polling by better using win32 events */
4170 for(pe
= first_polling_entry
; pe
!= NULL
; pe
= pe
->next
) {
4171 ret
|= pe
->func(pe
->opaque
);
4175 WaitObjects
*w
= &wait_objects
;
4177 ret
= WaitForMultipleObjects(w
->num
, w
->events
, FALSE
, *timeout
);
4178 if (WAIT_OBJECT_0
+ 0 <= ret
&& ret
<= WAIT_OBJECT_0
+ w
->num
- 1) {
4179 if (w
->func
[ret
- WAIT_OBJECT_0
])
4180 w
->func
[ret
- WAIT_OBJECT_0
](w
->opaque
[ret
- WAIT_OBJECT_0
]);
4182 /* Check for additional signaled events */
4183 for(i
= (ret
- WAIT_OBJECT_0
+ 1); i
< w
->num
; i
++) {
4185 /* Check if event is signaled */
4186 ret2
= WaitForSingleObject(w
->events
[i
], 0);
4187 if(ret2
== WAIT_OBJECT_0
) {
4189 w
->func
[i
](w
->opaque
[i
]);
4190 } else if (ret2
== WAIT_TIMEOUT
) {
4192 err
= GetLastError();
4193 fprintf(stderr
, "WaitForSingleObject error %d %d\n", i
, err
);
4196 } else if (ret
== WAIT_TIMEOUT
) {
4198 err
= GetLastError();
4199 fprintf(stderr
, "WaitForMultipleObjects error %d %d\n", ret
, err
);
4206 static void host_main_loop_wait(int *timeout
)
4211 void main_loop_wait(int timeout
)
4213 IOHandlerRecord
*ioh
;
4214 fd_set rfds
, wfds
, xfds
;
4218 qemu_bh_update_timeout(&timeout
);
4220 host_main_loop_wait(&timeout
);
4222 /* poll any events */
4223 /* XXX: separate device handlers from system ones */
4228 for(ioh
= first_io_handler
; ioh
!= NULL
; ioh
= ioh
->next
) {
4232 (!ioh
->fd_read_poll
||
4233 ioh
->fd_read_poll(ioh
->opaque
) != 0)) {
4234 FD_SET(ioh
->fd
, &rfds
);
4238 if (ioh
->fd_write
) {
4239 FD_SET(ioh
->fd
, &wfds
);
4245 tv
.tv_sec
= timeout
/ 1000;
4246 tv
.tv_usec
= (timeout
% 1000) * 1000;
4248 #if defined(CONFIG_SLIRP)
4249 if (slirp_is_inited()) {
4250 slirp_select_fill(&nfds
, &rfds
, &wfds
, &xfds
);
4253 qemu_mutex_unlock_iothread();
4254 ret
= select(nfds
+ 1, &rfds
, &wfds
, &xfds
, &tv
);
4255 qemu_mutex_lock_iothread();
4257 IOHandlerRecord
**pioh
;
4259 for(ioh
= first_io_handler
; ioh
!= NULL
; ioh
= ioh
->next
) {
4260 if (!ioh
->deleted
&& ioh
->fd_read
&& FD_ISSET(ioh
->fd
, &rfds
)) {
4261 ioh
->fd_read(ioh
->opaque
);
4263 if (!ioh
->deleted
&& ioh
->fd_write
&& FD_ISSET(ioh
->fd
, &wfds
)) {
4264 ioh
->fd_write(ioh
->opaque
);
4268 /* remove deleted IO handlers */
4269 pioh
= &first_io_handler
;
4279 #if defined(CONFIG_SLIRP)
4280 if (slirp_is_inited()) {
4286 slirp_select_poll(&rfds
, &wfds
, &xfds
);
4290 /* rearm timer, if not periodic */
4291 if (alarm_timer
->flags
& ALARM_FLAG_EXPIRED
) {
4292 alarm_timer
->flags
&= ~ALARM_FLAG_EXPIRED
;
4293 qemu_rearm_alarm_timer(alarm_timer
);
4296 /* vm time timers */
4298 if (!cur_cpu
|| likely(!(cur_cpu
->singlestep_enabled
& SSTEP_NOTIMER
)))
4299 qemu_run_timers(&active_timers
[QEMU_TIMER_VIRTUAL
],
4300 qemu_get_clock(vm_clock
));
4303 /* real time timers */
4304 qemu_run_timers(&active_timers
[QEMU_TIMER_REALTIME
],
4305 qemu_get_clock(rt_clock
));
4307 /* Check bottom-halves last in case any of the earlier events triggered
4313 static int qemu_cpu_exec(CPUState
*env
)
4316 #ifdef CONFIG_PROFILER
4320 #ifdef CONFIG_PROFILER
4321 ti
= profile_getclock();
4326 qemu_icount
-= (env
->icount_decr
.u16
.low
+ env
->icount_extra
);
4327 env
->icount_decr
.u16
.low
= 0;
4328 env
->icount_extra
= 0;
4329 count
= qemu_next_deadline();
4330 count
= (count
+ (1 << icount_time_shift
) - 1)
4331 >> icount_time_shift
;
4332 qemu_icount
+= count
;
4333 decr
= (count
> 0xffff) ? 0xffff : count
;
4335 env
->icount_decr
.u16
.low
= decr
;
4336 env
->icount_extra
= count
;
4338 ret
= cpu_exec(env
);
4339 #ifdef CONFIG_PROFILER
4340 qemu_time
+= profile_getclock() - ti
;
4343 /* Fold pending instructions back into the
4344 instruction counter, and clear the interrupt flag. */
4345 qemu_icount
-= (env
->icount_decr
.u16
.low
4346 + env
->icount_extra
);
4347 env
->icount_decr
.u32
= 0;
4348 env
->icount_extra
= 0;
4353 static void tcg_cpu_exec(void)
4357 if (next_cpu
== NULL
)
4358 next_cpu
= first_cpu
;
4359 for (; next_cpu
!= NULL
; next_cpu
= next_cpu
->next_cpu
) {
4360 CPUState
*env
= cur_cpu
= next_cpu
;
4364 if (timer_alarm_pending
) {
4365 timer_alarm_pending
= 0;
4368 if (cpu_can_run(env
))
4369 ret
= qemu_cpu_exec(env
);
4370 if (ret
== EXCP_DEBUG
) {
4371 gdb_set_stop_cpu(env
);
4372 debug_requested
= 1;
4378 static int cpu_has_work(CPUState
*env
)
4386 if (qemu_cpu_has_work(env
))
4391 static int tcg_has_work(void)
4395 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
)
4396 if (cpu_has_work(env
))
4401 static int qemu_calculate_timeout(void)
4403 #ifndef CONFIG_IOTHREAD
4408 else if (tcg_has_work())
4410 else if (!use_icount
)
4413 /* XXX: use timeout computed from timers */
4416 /* Advance virtual time to the next event. */
4417 if (use_icount
== 1) {
4418 /* When not using an adaptive execution frequency
4419 we tend to get badly out of sync with real time,
4420 so just delay for a reasonable amount of time. */
4423 delta
= cpu_get_icount() - cpu_get_clock();
4426 /* If virtual time is ahead of real time then just
4428 timeout
= (delta
/ 1000000) + 1;
4430 /* Wait for either IO to occur or the next
4432 add
= qemu_next_deadline();
4433 /* We advance the timer before checking for IO.
4434 Limit the amount we advance so that early IO
4435 activity won't get the guest too far ahead. */
4439 add
= (add
+ (1 << icount_time_shift
) - 1)
4440 >> icount_time_shift
;
4442 timeout
= delta
/ 1000000;
4449 #else /* CONFIG_IOTHREAD */
4454 static int vm_can_run(void)
4456 if (powerdown_requested
)
4458 if (reset_requested
)
4460 if (shutdown_requested
)
4462 if (debug_requested
)
4467 static void main_loop(void)
4471 #ifdef CONFIG_IOTHREAD
4472 qemu_system_ready
= 1;
4473 qemu_cond_broadcast(&qemu_system_cond
);
4478 #ifdef CONFIG_PROFILER
4481 #ifndef CONFIG_IOTHREAD
4484 #ifdef CONFIG_PROFILER
4485 ti
= profile_getclock();
4487 main_loop_wait(qemu_calculate_timeout());
4488 #ifdef CONFIG_PROFILER
4489 dev_time
+= profile_getclock() - ti
;
4491 } while (vm_can_run());
4493 if (qemu_debug_requested())
4494 vm_stop(EXCP_DEBUG
);
4495 if (qemu_shutdown_requested()) {
4502 if (qemu_reset_requested()) {
4504 qemu_system_reset();
4507 if (qemu_powerdown_requested())
4508 qemu_system_powerdown();
4509 if ((r
= qemu_vmstop_requested()))
4515 static void version(void)
4517 printf("QEMU PC emulator version " QEMU_VERSION QEMU_PKGVERSION
", Copyright (c) 2003-2008 Fabrice Bellard\n");
4520 static void help(int exitcode
)
4523 printf("usage: %s [options] [disk_image]\n"
4525 "'disk_image' is a raw hard image image for IDE hard disk 0\n"
4527 #define DEF(option, opt_arg, opt_enum, opt_help) \
4529 #define DEFHEADING(text) stringify(text) "\n"
4530 #include "qemu-options.h"
4535 "During emulation, the following keys are useful:\n"
4536 "ctrl-alt-f toggle full screen\n"
4537 "ctrl-alt-n switch to virtual console 'n'\n"
4538 "ctrl-alt toggle mouse and keyboard grab\n"
4540 "When using -nographic, press 'ctrl-a h' to get some help.\n"
4545 DEFAULT_NETWORK_SCRIPT
,
4546 DEFAULT_NETWORK_DOWN_SCRIPT
,
4548 DEFAULT_GDBSTUB_PORT
,
4553 #define HAS_ARG 0x0001
4556 #define DEF(option, opt_arg, opt_enum, opt_help) \
4558 #define DEFHEADING(text)
4559 #include "qemu-options.h"
4565 typedef struct QEMUOption
{
4571 static const QEMUOption qemu_options
[] = {
4572 { "h", 0, QEMU_OPTION_h
},
4573 #define DEF(option, opt_arg, opt_enum, opt_help) \
4574 { option, opt_arg, opt_enum },
4575 #define DEFHEADING(text)
4576 #include "qemu-options.h"
4584 struct soundhw soundhw
[] = {
4585 #ifdef HAS_AUDIO_CHOICE
4586 #if defined(TARGET_I386) || defined(TARGET_MIPS)
4592 { .init_isa
= pcspk_audio_init
}
4599 "Creative Sound Blaster 16",
4602 { .init_isa
= SB16_init
}
4606 #ifdef CONFIG_CS4231A
4612 { .init_isa
= cs4231a_init
}
4620 "Yamaha YMF262 (OPL3)",
4622 "Yamaha YM3812 (OPL2)",
4626 { .init_isa
= Adlib_init
}
4633 "Gravis Ultrasound GF1",
4636 { .init_isa
= GUS_init
}
4643 "Intel 82801AA AC97 Audio",
4646 { .init_pci
= ac97_init
}
4650 #ifdef CONFIG_ES1370
4653 "ENSONIQ AudioPCI ES1370",
4656 { .init_pci
= es1370_init
}
4660 #endif /* HAS_AUDIO_CHOICE */
4662 { NULL
, NULL
, 0, 0, { NULL
} }
4665 static void select_soundhw (const char *optarg
)
4669 if (*optarg
== '?') {
4672 printf ("Valid sound card names (comma separated):\n");
4673 for (c
= soundhw
; c
->name
; ++c
) {
4674 printf ("%-11s %s\n", c
->name
, c
->descr
);
4676 printf ("\n-soundhw all will enable all of the above\n");
4677 exit (*optarg
!= '?');
4685 if (!strcmp (optarg
, "all")) {
4686 for (c
= soundhw
; c
->name
; ++c
) {
4694 e
= strchr (p
, ',');
4695 l
= !e
? strlen (p
) : (size_t) (e
- p
);
4697 for (c
= soundhw
; c
->name
; ++c
) {
4698 if (!strncmp (c
->name
, p
, l
)) {
4707 "Unknown sound card name (too big to show)\n");
4710 fprintf (stderr
, "Unknown sound card name `%.*s'\n",
4715 p
+= l
+ (e
!= NULL
);
4719 goto show_valid_cards
;
4724 static void select_vgahw (const char *p
)
4728 cirrus_vga_enabled
= 0;
4729 std_vga_enabled
= 0;
4732 if (strstart(p
, "std", &opts
)) {
4733 std_vga_enabled
= 1;
4734 } else if (strstart(p
, "cirrus", &opts
)) {
4735 cirrus_vga_enabled
= 1;
4736 } else if (strstart(p
, "vmware", &opts
)) {
4738 } else if (strstart(p
, "xenfb", &opts
)) {
4740 } else if (!strstart(p
, "none", &opts
)) {
4742 fprintf(stderr
, "Unknown vga type: %s\n", p
);
4746 const char *nextopt
;
4748 if (strstart(opts
, ",retrace=", &nextopt
)) {
4750 if (strstart(opts
, "dumb", &nextopt
))
4751 vga_retrace_method
= VGA_RETRACE_DUMB
;
4752 else if (strstart(opts
, "precise", &nextopt
))
4753 vga_retrace_method
= VGA_RETRACE_PRECISE
;
4754 else goto invalid_vga
;
4755 } else goto invalid_vga
;
4761 static BOOL WINAPI
qemu_ctrl_handler(DWORD type
)
4763 exit(STATUS_CONTROL_C_EXIT
);
4768 int qemu_uuid_parse(const char *str
, uint8_t *uuid
)
4772 if(strlen(str
) != 36)
4775 ret
= sscanf(str
, UUID_FMT
, &uuid
[0], &uuid
[1], &uuid
[2], &uuid
[3],
4776 &uuid
[4], &uuid
[5], &uuid
[6], &uuid
[7], &uuid
[8], &uuid
[9],
4777 &uuid
[10], &uuid
[11], &uuid
[12], &uuid
[13], &uuid
[14], &uuid
[15]);
4783 smbios_add_field(1, offsetof(struct smbios_type_1
, uuid
), 16, uuid
);
4789 #define MAX_NET_CLIENTS 32
4793 static void termsig_handler(int signal
)
4795 qemu_system_shutdown_request();
4798 static void sigchld_handler(int signal
)
4800 waitpid(-1, NULL
, WNOHANG
);
4803 static void sighandler_setup(void)
4805 struct sigaction act
;
4807 memset(&act
, 0, sizeof(act
));
4808 act
.sa_handler
= termsig_handler
;
4809 sigaction(SIGINT
, &act
, NULL
);
4810 sigaction(SIGHUP
, &act
, NULL
);
4811 sigaction(SIGTERM
, &act
, NULL
);
4813 act
.sa_handler
= sigchld_handler
;
4814 act
.sa_flags
= SA_NOCLDSTOP
;
4815 sigaction(SIGCHLD
, &act
, NULL
);
4821 /* Look for support files in the same directory as the executable. */
4822 static char *find_datadir(const char *argv0
)
4828 len
= GetModuleFileName(NULL
, buf
, sizeof(buf
) - 1);
4835 while (p
!= buf
&& *p
!= '\\')
4838 if (access(buf
, R_OK
) == 0) {
4839 return qemu_strdup(buf
);
4845 /* Find a likely location for support files using the location of the binary.
4846 For installed binaries this will be "$bindir/../share/qemu". When
4847 running from the build tree this will be "$bindir/../pc-bios". */
4848 #define SHARE_SUFFIX "/share/qemu"
4849 #define BUILD_SUFFIX "/pc-bios"
4850 static char *find_datadir(const char *argv0
)
4860 #if defined(__linux__)
4863 len
= readlink("/proc/self/exe", buf
, sizeof(buf
) - 1);
4869 #elif defined(__FreeBSD__)
4872 len
= readlink("/proc/curproc/file", buf
, sizeof(buf
) - 1);
4879 /* If we don't have any way of figuring out the actual executable
4880 location then try argv[0]. */
4885 p
= realpath(argv0
, p
);
4893 max_len
= strlen(dir
) +
4894 MAX(strlen(SHARE_SUFFIX
), strlen(BUILD_SUFFIX
)) + 1;
4895 res
= qemu_mallocz(max_len
);
4896 snprintf(res
, max_len
, "%s%s", dir
, SHARE_SUFFIX
);
4897 if (access(res
, R_OK
)) {
4898 snprintf(res
, max_len
, "%s%s", dir
, BUILD_SUFFIX
);
4899 if (access(res
, R_OK
)) {
4913 char *qemu_find_file(int type
, const char *name
)
4919 /* If name contains path separators then try it as a straight path. */
4920 if ((strchr(name
, '/') || strchr(name
, '\\'))
4921 && access(name
, R_OK
) == 0) {
4922 return strdup(name
);
4925 case QEMU_FILE_TYPE_BIOS
:
4928 case QEMU_FILE_TYPE_KEYMAP
:
4929 subdir
= "keymaps/";
4934 len
= strlen(data_dir
) + strlen(name
) + strlen(subdir
) + 2;
4935 buf
= qemu_mallocz(len
);
4936 snprintf(buf
, len
, "%s/%s%s", data_dir
, subdir
, name
);
4937 if (access(buf
, R_OK
)) {
4944 int main(int argc
, char **argv
, char **envp
)
4946 const char *gdbstub_dev
= NULL
;
4947 uint32_t boot_devices_bitmap
= 0;
4949 int snapshot
, linux_boot
, net_boot
;
4950 const char *initrd_filename
;
4951 const char *kernel_filename
, *kernel_cmdline
;
4952 const char *boot_devices
= "";
4954 DisplayChangeListener
*dcl
;
4955 int cyls
, heads
, secs
, translation
;
4956 const char *net_clients
[MAX_NET_CLIENTS
];
4958 const char *bt_opts
[MAX_BT_CMDLINE
];
4962 const char *r
, *optarg
;
4963 CharDriverState
*monitor_hd
= NULL
;
4964 const char *monitor_device
;
4965 const char *serial_devices
[MAX_SERIAL_PORTS
];
4966 int serial_device_index
;
4967 const char *parallel_devices
[MAX_PARALLEL_PORTS
];
4968 int parallel_device_index
;
4969 const char *virtio_consoles
[MAX_VIRTIO_CONSOLES
];
4970 int virtio_console_index
;
4971 const char *loadvm
= NULL
;
4972 QEMUMachine
*machine
;
4973 const char *cpu_model
;
4974 const char *usb_devices
[MAX_USB_CMDLINE
];
4975 int usb_devices_index
;
4980 const char *pid_file
= NULL
;
4981 const char *incoming
= NULL
;
4984 struct passwd
*pwd
= NULL
;
4985 const char *chroot_dir
= NULL
;
4986 const char *run_as
= NULL
;
4989 int show_vnc_port
= 0;
4991 qemu_cache_utils_init(envp
);
4993 LIST_INIT (&vm_change_state_head
);
4996 struct sigaction act
;
4997 sigfillset(&act
.sa_mask
);
4999 act
.sa_handler
= SIG_IGN
;
5000 sigaction(SIGPIPE
, &act
, NULL
);
5003 SetConsoleCtrlHandler(qemu_ctrl_handler
, TRUE
);
5004 /* Note: cpu_interrupt() is currently not SMP safe, so we force
5005 QEMU to run on a single CPU */
5010 h
= GetCurrentProcess();
5011 if (GetProcessAffinityMask(h
, &mask
, &smask
)) {
5012 for(i
= 0; i
< 32; i
++) {
5013 if (mask
& (1 << i
))
5018 SetProcessAffinityMask(h
, mask
);
5024 module_call_init(MODULE_INIT_MACHINE
);
5025 machine
= find_default_machine();
5027 initrd_filename
= NULL
;
5030 kernel_filename
= NULL
;
5031 kernel_cmdline
= "";
5032 cyls
= heads
= secs
= 0;
5033 translation
= BIOS_ATA_TRANSLATION_AUTO
;
5034 monitor_device
= "vc:80Cx24C";
5036 serial_devices
[0] = "vc:80Cx24C";
5037 for(i
= 1; i
< MAX_SERIAL_PORTS
; i
++)
5038 serial_devices
[i
] = NULL
;
5039 serial_device_index
= 0;
5041 parallel_devices
[0] = "vc:80Cx24C";
5042 for(i
= 1; i
< MAX_PARALLEL_PORTS
; i
++)
5043 parallel_devices
[i
] = NULL
;
5044 parallel_device_index
= 0;
5046 for(i
= 0; i
< MAX_VIRTIO_CONSOLES
; i
++)
5047 virtio_consoles
[i
] = NULL
;
5048 virtio_console_index
= 0;
5050 for (i
= 0; i
< MAX_NODES
; i
++) {
5052 node_cpumask
[i
] = 0;
5055 usb_devices_index
= 0;
5069 register_watchdogs();
5077 hda_index
= drive_add(argv
[optind
++], HD_ALIAS
, 0);
5079 const QEMUOption
*popt
;
5082 /* Treat --foo the same as -foo. */
5085 popt
= qemu_options
;
5088 fprintf(stderr
, "%s: invalid option -- '%s'\n",
5092 if (!strcmp(popt
->name
, r
+ 1))
5096 if (popt
->flags
& HAS_ARG
) {
5097 if (optind
>= argc
) {
5098 fprintf(stderr
, "%s: option '%s' requires an argument\n",
5102 optarg
= argv
[optind
++];
5107 switch(popt
->index
) {
5109 machine
= find_machine(optarg
);
5112 printf("Supported machines are:\n");
5113 for(m
= first_machine
; m
!= NULL
; m
= m
->next
) {
5114 printf("%-10s %s%s\n",
5116 m
->is_default
? " (default)" : "");
5118 exit(*optarg
!= '?');
5121 case QEMU_OPTION_cpu
:
5122 /* hw initialization will check this */
5123 if (*optarg
== '?') {
5124 /* XXX: implement xxx_cpu_list for targets that still miss it */
5125 #if defined(cpu_list)
5126 cpu_list(stdout
, &fprintf
);
5133 case QEMU_OPTION_initrd
:
5134 initrd_filename
= optarg
;
5136 case QEMU_OPTION_hda
:
5138 hda_index
= drive_add(optarg
, HD_ALIAS
, 0);
5140 hda_index
= drive_add(optarg
, HD_ALIAS
5141 ",cyls=%d,heads=%d,secs=%d%s",
5142 0, cyls
, heads
, secs
,
5143 translation
== BIOS_ATA_TRANSLATION_LBA
?
5145 translation
== BIOS_ATA_TRANSLATION_NONE
?
5146 ",trans=none" : "");
5148 case QEMU_OPTION_hdb
:
5149 case QEMU_OPTION_hdc
:
5150 case QEMU_OPTION_hdd
:
5151 drive_add(optarg
, HD_ALIAS
, popt
->index
- QEMU_OPTION_hda
);
5153 case QEMU_OPTION_drive
:
5154 drive_add(NULL
, "%s", optarg
);
5156 case QEMU_OPTION_mtdblock
:
5157 drive_add(optarg
, MTD_ALIAS
);
5159 case QEMU_OPTION_sd
:
5160 drive_add(optarg
, SD_ALIAS
);
5162 case QEMU_OPTION_pflash
:
5163 drive_add(optarg
, PFLASH_ALIAS
);
5165 case QEMU_OPTION_snapshot
:
5168 case QEMU_OPTION_hdachs
:
5172 cyls
= strtol(p
, (char **)&p
, 0);
5173 if (cyls
< 1 || cyls
> 16383)
5178 heads
= strtol(p
, (char **)&p
, 0);
5179 if (heads
< 1 || heads
> 16)
5184 secs
= strtol(p
, (char **)&p
, 0);
5185 if (secs
< 1 || secs
> 63)
5189 if (!strcmp(p
, "none"))
5190 translation
= BIOS_ATA_TRANSLATION_NONE
;
5191 else if (!strcmp(p
, "lba"))
5192 translation
= BIOS_ATA_TRANSLATION_LBA
;
5193 else if (!strcmp(p
, "auto"))
5194 translation
= BIOS_ATA_TRANSLATION_AUTO
;
5197 } else if (*p
!= '\0') {
5199 fprintf(stderr
, "qemu: invalid physical CHS format\n");
5202 if (hda_index
!= -1)
5203 snprintf(drives_opt
[hda_index
].opt
,
5204 sizeof(drives_opt
[hda_index
].opt
),
5205 HD_ALIAS
",cyls=%d,heads=%d,secs=%d%s",
5206 0, cyls
, heads
, secs
,
5207 translation
== BIOS_ATA_TRANSLATION_LBA
?
5209 translation
== BIOS_ATA_TRANSLATION_NONE
?
5210 ",trans=none" : "");
5213 case QEMU_OPTION_numa
:
5214 if (nb_numa_nodes
>= MAX_NODES
) {
5215 fprintf(stderr
, "qemu: too many NUMA nodes\n");
5220 case QEMU_OPTION_nographic
:
5221 display_type
= DT_NOGRAPHIC
;
5223 #ifdef CONFIG_CURSES
5224 case QEMU_OPTION_curses
:
5225 display_type
= DT_CURSES
;
5228 case QEMU_OPTION_portrait
:
5231 case QEMU_OPTION_kernel
:
5232 kernel_filename
= optarg
;
5234 case QEMU_OPTION_append
:
5235 kernel_cmdline
= optarg
;
5237 case QEMU_OPTION_cdrom
:
5238 drive_add(optarg
, CDROM_ALIAS
);
5240 case QEMU_OPTION_boot
:
5241 boot_devices
= optarg
;
5242 /* We just do some generic consistency checks */
5244 /* Could easily be extended to 64 devices if needed */
5247 boot_devices_bitmap
= 0;
5248 for (p
= boot_devices
; *p
!= '\0'; p
++) {
5249 /* Allowed boot devices are:
5250 * a b : floppy disk drives
5251 * c ... f : IDE disk drives
5252 * g ... m : machine implementation dependant drives
5253 * n ... p : network devices
5254 * It's up to each machine implementation to check
5255 * if the given boot devices match the actual hardware
5256 * implementation and firmware features.
5258 if (*p
< 'a' || *p
> 'q') {
5259 fprintf(stderr
, "Invalid boot device '%c'\n", *p
);
5262 if (boot_devices_bitmap
& (1 << (*p
- 'a'))) {
5264 "Boot device '%c' was given twice\n",*p
);
5267 boot_devices_bitmap
|= 1 << (*p
- 'a');
5271 case QEMU_OPTION_fda
:
5272 case QEMU_OPTION_fdb
:
5273 drive_add(optarg
, FD_ALIAS
, popt
->index
- QEMU_OPTION_fda
);
5276 case QEMU_OPTION_no_fd_bootchk
:
5280 case QEMU_OPTION_net
:
5281 if (nb_net_clients
>= MAX_NET_CLIENTS
) {
5282 fprintf(stderr
, "qemu: too many network clients\n");
5285 net_clients
[nb_net_clients
] = optarg
;
5289 case QEMU_OPTION_tftp
:
5290 tftp_prefix
= optarg
;
5292 case QEMU_OPTION_bootp
:
5293 bootp_filename
= optarg
;
5296 case QEMU_OPTION_smb
:
5297 net_slirp_smb(optarg
);
5300 case QEMU_OPTION_redir
:
5301 net_slirp_redir(NULL
, optarg
, NULL
);
5304 case QEMU_OPTION_bt
:
5305 if (nb_bt_opts
>= MAX_BT_CMDLINE
) {
5306 fprintf(stderr
, "qemu: too many bluetooth options\n");
5309 bt_opts
[nb_bt_opts
++] = optarg
;
5312 case QEMU_OPTION_audio_help
:
5316 case QEMU_OPTION_soundhw
:
5317 select_soundhw (optarg
);
5323 case QEMU_OPTION_version
:
5327 case QEMU_OPTION_m
: {
5331 value
= strtoul(optarg
, &ptr
, 10);
5333 case 0: case 'M': case 'm':
5340 fprintf(stderr
, "qemu: invalid ram size: %s\n", optarg
);
5344 /* On 32-bit hosts, QEMU is limited by virtual address space */
5345 if (value
> (2047 << 20)
5346 #ifndef CONFIG_KQEMU
5347 && HOST_LONG_BITS
== 32
5350 fprintf(stderr
, "qemu: at most 2047 MB RAM can be simulated\n");
5353 if (value
!= (uint64_t)(ram_addr_t
)value
) {
5354 fprintf(stderr
, "qemu: ram size too large\n");
5363 const CPULogItem
*item
;
5365 mask
= cpu_str_to_log_mask(optarg
);
5367 printf("Log items (comma separated):\n");
5368 for(item
= cpu_log_items
; item
->mask
!= 0; item
++) {
5369 printf("%-10s %s\n", item
->name
, item
->help
);
5377 gdbstub_dev
= "tcp::" DEFAULT_GDBSTUB_PORT
;
5379 case QEMU_OPTION_gdb
:
5380 gdbstub_dev
= optarg
;
5385 case QEMU_OPTION_bios
:
5388 case QEMU_OPTION_singlestep
:
5396 keyboard_layout
= optarg
;
5399 case QEMU_OPTION_localtime
:
5402 case QEMU_OPTION_vga
:
5403 select_vgahw (optarg
);
5405 #if defined(TARGET_PPC) || defined(TARGET_SPARC)
5411 w
= strtol(p
, (char **)&p
, 10);
5414 fprintf(stderr
, "qemu: invalid resolution or depth\n");
5420 h
= strtol(p
, (char **)&p
, 10);
5425 depth
= strtol(p
, (char **)&p
, 10);
5426 if (depth
!= 8 && depth
!= 15 && depth
!= 16 &&
5427 depth
!= 24 && depth
!= 32)
5429 } else if (*p
== '\0') {
5430 depth
= graphic_depth
;
5437 graphic_depth
= depth
;
5441 case QEMU_OPTION_echr
:
5444 term_escape_char
= strtol(optarg
, &r
, 0);
5446 printf("Bad argument to echr\n");
5449 case QEMU_OPTION_monitor
:
5450 monitor_device
= optarg
;
5452 case QEMU_OPTION_serial
:
5453 if (serial_device_index
>= MAX_SERIAL_PORTS
) {
5454 fprintf(stderr
, "qemu: too many serial ports\n");
5457 serial_devices
[serial_device_index
] = optarg
;
5458 serial_device_index
++;
5460 case QEMU_OPTION_watchdog
:
5461 i
= select_watchdog(optarg
);
5463 exit (i
== 1 ? 1 : 0);
5465 case QEMU_OPTION_watchdog_action
:
5466 if (select_watchdog_action(optarg
) == -1) {
5467 fprintf(stderr
, "Unknown -watchdog-action parameter\n");
5471 case QEMU_OPTION_virtiocon
:
5472 if (virtio_console_index
>= MAX_VIRTIO_CONSOLES
) {
5473 fprintf(stderr
, "qemu: too many virtio consoles\n");
5476 virtio_consoles
[virtio_console_index
] = optarg
;
5477 virtio_console_index
++;
5479 case QEMU_OPTION_parallel
:
5480 if (parallel_device_index
>= MAX_PARALLEL_PORTS
) {
5481 fprintf(stderr
, "qemu: too many parallel ports\n");
5484 parallel_devices
[parallel_device_index
] = optarg
;
5485 parallel_device_index
++;
5487 case QEMU_OPTION_loadvm
:
5490 case QEMU_OPTION_full_screen
:
5494 case QEMU_OPTION_no_frame
:
5497 case QEMU_OPTION_alt_grab
:
5500 case QEMU_OPTION_no_quit
:
5503 case QEMU_OPTION_sdl
:
5504 display_type
= DT_SDL
;
5507 case QEMU_OPTION_pidfile
:
5511 case QEMU_OPTION_win2k_hack
:
5512 win2k_install_hack
= 1;
5514 case QEMU_OPTION_rtc_td_hack
:
5517 case QEMU_OPTION_acpitable
:
5518 if(acpi_table_add(optarg
) < 0) {
5519 fprintf(stderr
, "Wrong acpi table provided\n");
5523 case QEMU_OPTION_smbios
:
5524 if(smbios_entry_add(optarg
) < 0) {
5525 fprintf(stderr
, "Wrong smbios provided\n");
5531 case QEMU_OPTION_no_kqemu
:
5534 case QEMU_OPTION_kernel_kqemu
:
5539 case QEMU_OPTION_enable_kvm
:
5546 case QEMU_OPTION_usb
:
5549 case QEMU_OPTION_usbdevice
:
5551 if (usb_devices_index
>= MAX_USB_CMDLINE
) {
5552 fprintf(stderr
, "Too many USB devices\n");
5555 usb_devices
[usb_devices_index
] = optarg
;
5556 usb_devices_index
++;
5558 case QEMU_OPTION_smp
:
5559 smp_cpus
= atoi(optarg
);
5561 fprintf(stderr
, "Invalid number of CPUs\n");
5565 case QEMU_OPTION_vnc
:
5566 display_type
= DT_VNC
;
5567 vnc_display
= optarg
;
5570 case QEMU_OPTION_no_acpi
:
5573 case QEMU_OPTION_no_hpet
:
5576 case QEMU_OPTION_no_virtio_balloon
:
5577 no_virtio_balloon
= 1;
5580 case QEMU_OPTION_no_reboot
:
5583 case QEMU_OPTION_no_shutdown
:
5586 case QEMU_OPTION_show_cursor
:
5589 case QEMU_OPTION_uuid
:
5590 if(qemu_uuid_parse(optarg
, qemu_uuid
) < 0) {
5591 fprintf(stderr
, "Fail to parse UUID string."
5592 " Wrong format.\n");
5597 case QEMU_OPTION_daemonize
:
5601 case QEMU_OPTION_option_rom
:
5602 if (nb_option_roms
>= MAX_OPTION_ROMS
) {
5603 fprintf(stderr
, "Too many option ROMs\n");
5606 option_rom
[nb_option_roms
] = optarg
;
5609 #if defined(TARGET_ARM) || defined(TARGET_M68K)
5610 case QEMU_OPTION_semihosting
:
5611 semihosting_enabled
= 1;
5614 case QEMU_OPTION_name
:
5617 #if defined(TARGET_SPARC) || defined(TARGET_PPC)
5618 case QEMU_OPTION_prom_env
:
5619 if (nb_prom_envs
>= MAX_PROM_ENVS
) {
5620 fprintf(stderr
, "Too many prom variables\n");
5623 prom_envs
[nb_prom_envs
] = optarg
;
5628 case QEMU_OPTION_old_param
:
5632 case QEMU_OPTION_clock
:
5633 configure_alarms(optarg
);
5635 case QEMU_OPTION_startdate
:
5638 time_t rtc_start_date
;
5639 if (!strcmp(optarg
, "now")) {
5640 rtc_date_offset
= -1;
5642 if (sscanf(optarg
, "%d-%d-%dT%d:%d:%d",
5650 } else if (sscanf(optarg
, "%d-%d-%d",
5653 &tm
.tm_mday
) == 3) {
5662 rtc_start_date
= mktimegm(&tm
);
5663 if (rtc_start_date
== -1) {
5665 fprintf(stderr
, "Invalid date format. Valid format are:\n"
5666 "'now' or '2006-06-17T16:01:21' or '2006-06-17'\n");
5669 rtc_date_offset
= time(NULL
) - rtc_start_date
;
5673 case QEMU_OPTION_tb_size
:
5674 tb_size
= strtol(optarg
, NULL
, 0);
5678 case QEMU_OPTION_icount
:
5680 if (strcmp(optarg
, "auto") == 0) {
5681 icount_time_shift
= -1;
5683 icount_time_shift
= strtol(optarg
, NULL
, 0);
5686 case QEMU_OPTION_incoming
:
5690 case QEMU_OPTION_chroot
:
5691 chroot_dir
= optarg
;
5693 case QEMU_OPTION_runas
:
5698 case QEMU_OPTION_xen_domid
:
5699 xen_domid
= atoi(optarg
);
5701 case QEMU_OPTION_xen_create
:
5702 xen_mode
= XEN_CREATE
;
5704 case QEMU_OPTION_xen_attach
:
5705 xen_mode
= XEN_ATTACH
;
5712 /* If no data_dir is specified then try to find it relative to the
5715 data_dir
= find_datadir(argv
[0]);
5717 /* If all else fails use the install patch specified when building. */
5719 data_dir
= CONFIG_QEMU_SHAREDIR
;
5722 #if defined(CONFIG_KVM) && defined(CONFIG_KQEMU)
5723 if (kvm_allowed
&& kqemu_allowed
) {
5725 "You can not enable both KVM and kqemu at the same time\n");
5730 machine
->max_cpus
= machine
->max_cpus
?: 1; /* Default to UP */
5731 if (smp_cpus
> machine
->max_cpus
) {
5732 fprintf(stderr
, "Number of SMP cpus requested (%d), exceeds max cpus "
5733 "supported by machine `%s' (%d)\n", smp_cpus
, machine
->name
,
5738 if (display_type
== DT_NOGRAPHIC
) {
5739 if (serial_device_index
== 0)
5740 serial_devices
[0] = "stdio";
5741 if (parallel_device_index
== 0)
5742 parallel_devices
[0] = "null";
5743 if (strncmp(monitor_device
, "vc", 2) == 0)
5744 monitor_device
= "stdio";
5751 if (pipe(fds
) == -1)
5762 len
= read(fds
[0], &status
, 1);
5763 if (len
== -1 && (errno
== EINTR
))
5768 else if (status
== 1) {
5769 fprintf(stderr
, "Could not acquire pidfile\n");
5786 signal(SIGTSTP
, SIG_IGN
);
5787 signal(SIGTTOU
, SIG_IGN
);
5788 signal(SIGTTIN
, SIG_IGN
);
5791 if (pid_file
&& qemu_create_pidfile(pid_file
) != 0) {
5794 write(fds
[1], &status
, 1);
5796 fprintf(stderr
, "Could not acquire pid file\n");
5805 if (qemu_init_main_loop()) {
5806 fprintf(stderr
, "qemu_init_main_loop failed\n");
5809 linux_boot
= (kernel_filename
!= NULL
);
5811 if (!linux_boot
&& *kernel_cmdline
!= '\0') {
5812 fprintf(stderr
, "-append only allowed with -kernel option\n");
5816 if (!linux_boot
&& initrd_filename
!= NULL
) {
5817 fprintf(stderr
, "-initrd only allowed with -kernel option\n");
5821 /* boot to floppy or the default cd if no hard disk defined yet */
5822 if (!boot_devices
[0]) {
5823 boot_devices
= "cad";
5825 setvbuf(stdout
, NULL
, _IOLBF
, 0);
5828 if (init_timer_alarm() < 0) {
5829 fprintf(stderr
, "could not initialize alarm timer\n");
5832 if (use_icount
&& icount_time_shift
< 0) {
5834 /* 125MIPS seems a reasonable initial guess at the guest speed.
5835 It will be corrected fairly quickly anyway. */
5836 icount_time_shift
= 3;
5837 init_icount_adjust();
5844 /* init network clients */
5845 if (nb_net_clients
== 0) {
5846 /* if no clients, we use a default config */
5847 net_clients
[nb_net_clients
++] = "nic";
5849 net_clients
[nb_net_clients
++] = "user";
5853 for(i
= 0;i
< nb_net_clients
; i
++) {
5854 if (net_client_parse(net_clients
[i
]) < 0)
5858 net_boot
= (boot_devices_bitmap
>> ('n' - 'a')) & 0xF;
5859 net_set_boot_mask(net_boot
);
5863 /* init the bluetooth world */
5864 for (i
= 0; i
< nb_bt_opts
; i
++)
5865 if (bt_parse(bt_opts
[i
]))
5868 /* init the memory */
5870 ram_size
= DEFAULT_RAM_SIZE
* 1024 * 1024;
5873 /* FIXME: This is a nasty hack because kqemu can't cope with dynamic
5874 guest ram allocation. It needs to go away. */
5875 if (kqemu_allowed
) {
5876 kqemu_phys_ram_size
= ram_size
+ 8 * 1024 * 1024 + 4 * 1024 * 1024;
5877 kqemu_phys_ram_base
= qemu_vmalloc(kqemu_phys_ram_size
);
5878 if (!kqemu_phys_ram_base
) {
5879 fprintf(stderr
, "Could not allocate physical memory\n");
5885 /* init the dynamic translator */
5886 cpu_exec_init_all(tb_size
* 1024 * 1024);
5890 /* we always create the cdrom drive, even if no disk is there */
5892 if (nb_drives_opt
< MAX_DRIVES
)
5893 drive_add(NULL
, CDROM_ALIAS
);
5895 /* we always create at least one floppy */
5897 if (nb_drives_opt
< MAX_DRIVES
)
5898 drive_add(NULL
, FD_ALIAS
, 0);
5900 /* we always create one sd slot, even if no card is in it */
5902 if (nb_drives_opt
< MAX_DRIVES
)
5903 drive_add(NULL
, SD_ALIAS
);
5905 /* open the virtual block devices */
5907 for(i
= 0; i
< nb_drives_opt
; i
++)
5908 if (drive_init(&drives_opt
[i
], snapshot
, machine
) == -1)
5911 register_savevm("timer", 0, 2, timer_save
, timer_load
, NULL
);
5912 register_savevm_live("ram", 0, 3, ram_save_live
, NULL
, ram_load
, NULL
);
5915 /* must be after terminal init, SDL library changes signal handlers */
5919 /* Maintain compatibility with multiple stdio monitors */
5920 if (!strcmp(monitor_device
,"stdio")) {
5921 for (i
= 0; i
< MAX_SERIAL_PORTS
; i
++) {
5922 const char *devname
= serial_devices
[i
];
5923 if (devname
&& !strcmp(devname
,"mon:stdio")) {
5924 monitor_device
= NULL
;
5926 } else if (devname
&& !strcmp(devname
,"stdio")) {
5927 monitor_device
= NULL
;
5928 serial_devices
[i
] = "mon:stdio";
5934 if (nb_numa_nodes
> 0) {
5937 if (nb_numa_nodes
> smp_cpus
) {
5938 nb_numa_nodes
= smp_cpus
;
5941 /* If no memory size if given for any node, assume the default case
5942 * and distribute the available memory equally across all nodes
5944 for (i
= 0; i
< nb_numa_nodes
; i
++) {
5945 if (node_mem
[i
] != 0)
5948 if (i
== nb_numa_nodes
) {
5949 uint64_t usedmem
= 0;
5951 /* On Linux, the each node's border has to be 8MB aligned,
5952 * the final node gets the rest.
5954 for (i
= 0; i
< nb_numa_nodes
- 1; i
++) {
5955 node_mem
[i
] = (ram_size
/ nb_numa_nodes
) & ~((1 << 23UL) - 1);
5956 usedmem
+= node_mem
[i
];
5958 node_mem
[i
] = ram_size
- usedmem
;
5961 for (i
= 0; i
< nb_numa_nodes
; i
++) {
5962 if (node_cpumask
[i
] != 0)
5965 /* assigning the VCPUs round-robin is easier to implement, guest OSes
5966 * must cope with this anyway, because there are BIOSes out there in
5967 * real machines which also use this scheme.
5969 if (i
== nb_numa_nodes
) {
5970 for (i
= 0; i
< smp_cpus
; i
++) {
5971 node_cpumask
[i
% nb_numa_nodes
] |= 1 << i
;
5976 if (kvm_enabled()) {
5979 ret
= kvm_init(smp_cpus
);
5981 fprintf(stderr
, "failed to initialize KVM\n");
5986 if (monitor_device
) {
5987 monitor_hd
= qemu_chr_open("monitor", monitor_device
, NULL
);
5989 fprintf(stderr
, "qemu: could not open monitor device '%s'\n", monitor_device
);
5994 for(i
= 0; i
< MAX_SERIAL_PORTS
; i
++) {
5995 const char *devname
= serial_devices
[i
];
5996 if (devname
&& strcmp(devname
, "none")) {
5998 snprintf(label
, sizeof(label
), "serial%d", i
);
5999 serial_hds
[i
] = qemu_chr_open(label
, devname
, NULL
);
6000 if (!serial_hds
[i
]) {
6001 fprintf(stderr
, "qemu: could not open serial device '%s'\n",
6008 for(i
= 0; i
< MAX_PARALLEL_PORTS
; i
++) {
6009 const char *devname
= parallel_devices
[i
];
6010 if (devname
&& strcmp(devname
, "none")) {
6012 snprintf(label
, sizeof(label
), "parallel%d", i
);
6013 parallel_hds
[i
] = qemu_chr_open(label
, devname
, NULL
);
6014 if (!parallel_hds
[i
]) {
6015 fprintf(stderr
, "qemu: could not open parallel device '%s'\n",
6022 for(i
= 0; i
< MAX_VIRTIO_CONSOLES
; i
++) {
6023 const char *devname
= virtio_consoles
[i
];
6024 if (devname
&& strcmp(devname
, "none")) {
6026 snprintf(label
, sizeof(label
), "virtcon%d", i
);
6027 virtcon_hds
[i
] = qemu_chr_open(label
, devname
, NULL
);
6028 if (!virtcon_hds
[i
]) {
6029 fprintf(stderr
, "qemu: could not open virtio console '%s'\n",
6036 module_call_init(MODULE_INIT_DEVICE
);
6038 machine
->init(ram_size
, boot_devices
,
6039 kernel_filename
, kernel_cmdline
, initrd_filename
, cpu_model
);
6042 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
6043 for (i
= 0; i
< nb_numa_nodes
; i
++) {
6044 if (node_cpumask
[i
] & (1 << env
->cpu_index
)) {
6050 current_machine
= machine
;
6052 /* Set KVM's vcpu state to qemu's initial CPUState. */
6053 if (kvm_enabled()) {
6056 ret
= kvm_sync_vcpus();
6058 fprintf(stderr
, "failed to initialize vcpus\n");
6063 /* init USB devices */
6065 for(i
= 0; i
< usb_devices_index
; i
++) {
6066 if (usb_device_add(usb_devices
[i
], 0) < 0) {
6067 fprintf(stderr
, "Warning: could not add USB device %s\n",
6074 dumb_display_init();
6075 /* just use the first displaystate for the moment */
6078 if (display_type
== DT_DEFAULT
) {
6079 #if defined(CONFIG_SDL) || defined(CONFIG_COCOA)
6080 display_type
= DT_SDL
;
6082 display_type
= DT_VNC
;
6083 vnc_display
= "localhost:0,to=99";
6089 switch (display_type
) {
6092 #if defined(CONFIG_CURSES)
6094 curses_display_init(ds
, full_screen
);
6097 #if defined(CONFIG_SDL)
6099 sdl_display_init(ds
, full_screen
, no_frame
);
6101 #elif defined(CONFIG_COCOA)
6103 cocoa_display_init(ds
, full_screen
);
6107 vnc_display_init(ds
);
6108 if (vnc_display_open(ds
, vnc_display
) < 0)
6111 if (show_vnc_port
) {
6112 printf("VNC server running on `%s'\n", vnc_display_local_addr(ds
));
6120 dcl
= ds
->listeners
;
6121 while (dcl
!= NULL
) {
6122 if (dcl
->dpy_refresh
!= NULL
) {
6123 ds
->gui_timer
= qemu_new_timer(rt_clock
, gui_update
, ds
);
6124 qemu_mod_timer(ds
->gui_timer
, qemu_get_clock(rt_clock
));
6129 if (display_type
== DT_NOGRAPHIC
|| display_type
== DT_VNC
) {
6130 nographic_timer
= qemu_new_timer(rt_clock
, nographic_update
, NULL
);
6131 qemu_mod_timer(nographic_timer
, qemu_get_clock(rt_clock
));
6134 text_consoles_set_display(display_state
);
6135 qemu_chr_initial_reset();
6137 if (monitor_device
&& monitor_hd
)
6138 monitor_init(monitor_hd
, MONITOR_USE_READLINE
| MONITOR_IS_DEFAULT
);
6140 for(i
= 0; i
< MAX_SERIAL_PORTS
; i
++) {
6141 const char *devname
= serial_devices
[i
];
6142 if (devname
&& strcmp(devname
, "none")) {
6143 if (strstart(devname
, "vc", 0))
6144 qemu_chr_printf(serial_hds
[i
], "serial%d console\r\n", i
);
6148 for(i
= 0; i
< MAX_PARALLEL_PORTS
; i
++) {
6149 const char *devname
= parallel_devices
[i
];
6150 if (devname
&& strcmp(devname
, "none")) {
6151 if (strstart(devname
, "vc", 0))
6152 qemu_chr_printf(parallel_hds
[i
], "parallel%d console\r\n", i
);
6156 for(i
= 0; i
< MAX_VIRTIO_CONSOLES
; i
++) {
6157 const char *devname
= virtio_consoles
[i
];
6158 if (virtcon_hds
[i
] && devname
) {
6159 if (strstart(devname
, "vc", 0))
6160 qemu_chr_printf(virtcon_hds
[i
], "virtio console%d\r\n", i
);
6164 if (gdbstub_dev
&& gdbserver_start(gdbstub_dev
) < 0) {
6165 fprintf(stderr
, "qemu: could not open gdbserver on device '%s'\n",
6171 do_loadvm(cur_mon
, loadvm
);
6174 autostart
= 0; /* fixme how to deal with -daemonize */
6175 qemu_start_incoming_migration(incoming
);
6187 len
= write(fds
[1], &status
, 1);
6188 if (len
== -1 && (errno
== EINTR
))
6195 TFR(fd
= open("/dev/null", O_RDWR
));
6201 pwd
= getpwnam(run_as
);
6203 fprintf(stderr
, "User \"%s\" doesn't exist\n", run_as
);
6209 if (chroot(chroot_dir
) < 0) {
6210 fprintf(stderr
, "chroot failed\n");
6217 if (setgid(pwd
->pw_gid
) < 0) {
6218 fprintf(stderr
, "Failed to setgid(%d)\n", pwd
->pw_gid
);
6221 if (setuid(pwd
->pw_uid
) < 0) {
6222 fprintf(stderr
, "Failed to setuid(%d)\n", pwd
->pw_uid
);
6225 if (setuid(0) != -1) {
6226 fprintf(stderr
, "Dropping privileges failed\n");