Avoid harmless unhandled wrmsr 0xc0010117 messages
[qemu-kvm/fedora.git] / hw / virtio.c
blob45b472e90454f289b2c55cb48702ac40369cd6e7
1 /*
2 * Virtio Support
4 * Copyright IBM, Corp. 2007
6 * Authors:
7 * Anthony Liguori <aliguori@us.ibm.com>
9 * This work is licensed under the terms of the GNU GPL, version 2. See
10 * the COPYING file in the top-level directory.
14 #include <inttypes.h>
16 #include "virtio.h"
17 #include "sysemu.h"
19 #define VIRTIO_ZERO_COPY
21 /* from Linux's linux/virtio_pci.h */
23 /* A 32-bit r/o bitmask of the features supported by the host */
24 #define VIRTIO_PCI_HOST_FEATURES 0
26 /* A 32-bit r/w bitmask of features activated by the guest */
27 #define VIRTIO_PCI_GUEST_FEATURES 4
29 /* A 32-bit r/w PFN for the currently selected queue */
30 #define VIRTIO_PCI_QUEUE_PFN 8
32 /* A 16-bit r/o queue size for the currently selected queue */
33 #define VIRTIO_PCI_QUEUE_NUM 12
35 /* A 16-bit r/w queue selector */
36 #define VIRTIO_PCI_QUEUE_SEL 14
38 /* A 16-bit r/w queue notifier */
39 #define VIRTIO_PCI_QUEUE_NOTIFY 16
41 /* An 8-bit device status register. */
42 #define VIRTIO_PCI_STATUS 18
44 /* An 8-bit r/o interrupt status register. Reading the value will return the
45 * current contents of the ISR and will also clear it. This is effectively
46 * a read-and-acknowledge. */
47 #define VIRTIO_PCI_ISR 19
49 #define VIRTIO_PCI_CONFIG 20
51 /* Virtio ABI version, if we increment this, we break the guest driver. */
52 #define VIRTIO_PCI_ABI_VERSION 0
54 /* How many bits to shift physical queue address written to QUEUE_PFN.
55 * 12 is historical, and due to x86 page size. */
56 #define VIRTIO_PCI_QUEUE_ADDR_SHIFT 12
58 /* The alignment to use between consumer and producer parts of vring.
59 * x86 pagesize again. */
60 #define VIRTIO_PCI_VRING_ALIGN 4096
62 /* QEMU doesn't strictly need write barriers since everything runs in
63 * lock-step. We'll leave the calls to wmb() in though to make it obvious for
64 * KVM or if kqemu gets SMP support.
66 #define wmb() do { } while (0)
68 typedef struct VRingDesc
70 uint64_t addr;
71 uint32_t len;
72 uint16_t flags;
73 uint16_t next;
74 } VRingDesc;
76 typedef struct VRingAvail
78 uint16_t flags;
79 uint16_t idx;
80 uint16_t ring[0];
81 } VRingAvail;
83 typedef struct VRingUsedElem
85 uint32_t id;
86 uint32_t len;
87 } VRingUsedElem;
89 typedef struct VRingUsed
91 uint16_t flags;
92 uint16_t idx;
93 VRingUsedElem ring[0];
94 } VRingUsed;
96 typedef struct VRing
98 unsigned int num;
99 target_phys_addr_t desc;
100 target_phys_addr_t avail;
101 target_phys_addr_t used;
102 } VRing;
104 struct VirtQueue
106 VRing vring;
107 uint32_t pfn;
108 uint16_t last_avail_idx;
109 int inuse;
110 void (*handle_output)(VirtIODevice *vdev, VirtQueue *vq);
113 #define VIRTIO_PCI_QUEUE_MAX 16
115 /* virt queue functions */
116 #ifdef VIRTIO_ZERO_COPY
117 static void *virtio_map_gpa(target_phys_addr_t addr, size_t size)
119 ram_addr_t off;
120 target_phys_addr_t addr1;
122 off = cpu_get_physical_page_desc(addr);
123 if ((off & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
124 fprintf(stderr, "virtio DMA to IO ram\n");
125 exit(1);
128 off = (off & TARGET_PAGE_MASK) | (addr & ~TARGET_PAGE_MASK);
130 for (addr1 = addr + TARGET_PAGE_SIZE;
131 addr1 < TARGET_PAGE_ALIGN(addr + size);
132 addr1 += TARGET_PAGE_SIZE) {
133 ram_addr_t off1;
135 off1 = cpu_get_physical_page_desc(addr1);
136 if ((off1 & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
137 fprintf(stderr, "virtio DMA to IO ram\n");
138 exit(1);
141 off1 = (off1 & TARGET_PAGE_MASK) | (addr1 & ~TARGET_PAGE_MASK);
143 if (off1 != (off + (addr1 - addr))) {
144 fprintf(stderr, "discontigous virtio memory\n");
145 exit(1);
149 return phys_ram_base + off;
151 #endif
153 static void virtqueue_init(VirtQueue *vq, target_phys_addr_t pa)
155 vq->vring.desc = pa;
156 vq->vring.avail = pa + vq->vring.num * sizeof(VRingDesc);
157 vq->vring.used = vring_align(vq->vring.avail +
158 offsetof(VRingAvail, ring[vq->vring.num]),
159 VIRTIO_PCI_VRING_ALIGN);
162 static inline uint64_t vring_desc_addr(VirtQueue *vq, int i)
164 target_phys_addr_t pa;
165 pa = vq->vring.desc + sizeof(VRingDesc) * i + offsetof(VRingDesc, addr);
166 return ldq_phys(pa);
169 static inline uint32_t vring_desc_len(VirtQueue *vq, int i)
171 target_phys_addr_t pa;
172 pa = vq->vring.desc + sizeof(VRingDesc) * i + offsetof(VRingDesc, len);
173 return ldl_phys(pa);
176 static inline uint16_t vring_desc_flags(VirtQueue *vq, int i)
178 target_phys_addr_t pa;
179 pa = vq->vring.desc + sizeof(VRingDesc) * i + offsetof(VRingDesc, flags);
180 return lduw_phys(pa);
183 static inline uint16_t vring_desc_next(VirtQueue *vq, int i)
185 target_phys_addr_t pa;
186 pa = vq->vring.desc + sizeof(VRingDesc) * i + offsetof(VRingDesc, next);
187 return lduw_phys(pa);
190 static inline uint16_t vring_avail_flags(VirtQueue *vq)
192 target_phys_addr_t pa;
193 pa = vq->vring.avail + offsetof(VRingAvail, flags);
194 return lduw_phys(pa);
197 static inline uint16_t vring_avail_idx(VirtQueue *vq)
199 target_phys_addr_t pa;
200 pa = vq->vring.avail + offsetof(VRingAvail, idx);
201 return lduw_phys(pa);
204 static inline uint16_t vring_avail_ring(VirtQueue *vq, int i)
206 target_phys_addr_t pa;
207 pa = vq->vring.avail + offsetof(VRingAvail, ring[i]);
208 return lduw_phys(pa);
211 static inline void vring_used_ring_id(VirtQueue *vq, int i, uint32_t val)
213 target_phys_addr_t pa;
214 pa = vq->vring.used + offsetof(VRingUsed, ring[i].id);
215 stl_phys(pa, val);
218 static inline void vring_used_ring_len(VirtQueue *vq, int i, uint32_t val)
220 target_phys_addr_t pa;
221 pa = vq->vring.used + offsetof(VRingUsed, ring[i].len);
222 stl_phys(pa, val);
225 static uint16_t vring_used_idx(VirtQueue *vq)
227 target_phys_addr_t pa;
228 pa = vq->vring.used + offsetof(VRingUsed, idx);
229 return lduw_phys(pa);
232 static inline void vring_used_idx_increment(VirtQueue *vq, uint16_t val)
234 target_phys_addr_t pa;
235 pa = vq->vring.used + offsetof(VRingUsed, idx);
236 stw_phys(pa, vring_used_idx(vq) + val);
239 static inline void vring_used_flags_set_bit(VirtQueue *vq, int mask)
241 target_phys_addr_t pa;
242 pa = vq->vring.used + offsetof(VRingUsed, flags);
243 stw_phys(pa, lduw_phys(pa) | mask);
246 static inline void vring_used_flags_unset_bit(VirtQueue *vq, int mask)
248 target_phys_addr_t pa;
249 pa = vq->vring.used + offsetof(VRingUsed, flags);
250 stw_phys(pa, lduw_phys(pa) & ~mask);
253 void virtio_queue_set_notification(VirtQueue *vq, int enable)
255 if (enable)
256 vring_used_flags_unset_bit(vq, VRING_USED_F_NO_NOTIFY);
257 else
258 vring_used_flags_set_bit(vq, VRING_USED_F_NO_NOTIFY);
261 int virtio_queue_ready(VirtQueue *vq)
263 return vq->vring.avail != 0;
266 int virtio_queue_empty(VirtQueue *vq)
268 return vring_avail_idx(vq) == vq->last_avail_idx;
271 void virtqueue_fill(VirtQueue *vq, const VirtQueueElement *elem,
272 unsigned int len, unsigned int idx)
274 unsigned int offset;
275 int i;
277 #ifndef VIRTIO_ZERO_COPY
278 for (i = 0; i < elem->out_num; i++)
279 qemu_free(elem->out_sg[i].iov_base);
280 #endif
282 offset = 0;
283 for (i = 0; i < elem->in_num; i++) {
284 size_t size = MIN(len - offset, elem->in_sg[i].iov_len);
286 #ifdef VIRTIO_ZERO_COPY
287 if (size) {
288 ram_addr_t addr = (uint8_t *)elem->in_sg[i].iov_base - phys_ram_base;
289 ram_addr_t off;
291 for (off = 0; off < size; off += TARGET_PAGE_SIZE)
292 cpu_physical_memory_set_dirty(addr + off);
294 #else
295 if (size)
296 cpu_physical_memory_write(elem->in_addr[i],
297 elem->in_sg[i].iov_base,
298 size);
300 qemu_free(elem->in_sg[i].iov_base);
301 #endif
303 offset += size;
306 idx = (idx + vring_used_idx(vq)) % vq->vring.num;
308 /* Get a pointer to the next entry in the used ring. */
309 vring_used_ring_id(vq, idx, elem->index);
310 vring_used_ring_len(vq, idx, len);
313 void virtqueue_flush(VirtQueue *vq, unsigned int count)
315 /* Make sure buffer is written before we update index. */
316 wmb();
317 vring_used_idx_increment(vq, count);
318 vq->inuse -= count;
321 void virtqueue_push(VirtQueue *vq, const VirtQueueElement *elem,
322 unsigned int len)
324 virtqueue_fill(vq, elem, len, 0);
325 virtqueue_flush(vq, 1);
328 static int virtqueue_num_heads(VirtQueue *vq, unsigned int idx)
330 uint16_t num_heads = vring_avail_idx(vq) - idx;
332 /* Check it isn't doing very strange things with descriptor numbers. */
333 if (num_heads > vq->vring.num) {
334 fprintf(stderr, "Guest moved used index from %u to %u",
335 idx, vring_avail_idx(vq));
336 exit(1);
339 return num_heads;
342 static unsigned int virtqueue_get_head(VirtQueue *vq, unsigned int idx)
344 unsigned int head;
346 /* Grab the next descriptor number they're advertising, and increment
347 * the index we've seen. */
348 head = vring_avail_ring(vq, idx % vq->vring.num);
350 /* If their number is silly, that's a fatal mistake. */
351 if (head >= vq->vring.num) {
352 fprintf(stderr, "Guest says index %u is available", head);
353 exit(1);
356 return head;
359 static unsigned virtqueue_next_desc(VirtQueue *vq, unsigned int i)
361 unsigned int next;
363 /* If this descriptor says it doesn't chain, we're done. */
364 if (!(vring_desc_flags(vq, i) & VRING_DESC_F_NEXT))
365 return vq->vring.num;
367 /* Check they're not leading us off end of descriptors. */
368 next = vring_desc_next(vq, i);
369 /* Make sure compiler knows to grab that: we don't want it changing! */
370 wmb();
372 if (next >= vq->vring.num) {
373 fprintf(stderr, "Desc next is %u", next);
374 exit(1);
377 return next;
380 int virtqueue_avail_bytes(VirtQueue *vq, int in_bytes, int out_bytes)
382 unsigned int idx;
383 int num_bufs, in_total, out_total;
385 idx = vq->last_avail_idx;
387 num_bufs = in_total = out_total = 0;
388 while (virtqueue_num_heads(vq, idx)) {
389 int i;
391 i = virtqueue_get_head(vq, idx++);
392 do {
393 /* If we've got too many, that implies a descriptor loop. */
394 if (++num_bufs > vq->vring.num) {
395 fprintf(stderr, "Looped descriptor");
396 exit(1);
399 if (vring_desc_flags(vq, i) & VRING_DESC_F_WRITE) {
400 if (in_bytes > 0 &&
401 (in_total += vring_desc_len(vq, i)) >= in_bytes)
402 return 1;
403 } else {
404 if (out_bytes > 0 &&
405 (out_total += vring_desc_len(vq, i)) >= out_bytes)
406 return 1;
408 } while ((i = virtqueue_next_desc(vq, i)) != vq->vring.num);
411 return 0;
414 int virtqueue_pop(VirtQueue *vq, VirtQueueElement *elem)
416 unsigned int i, head;
418 if (!virtqueue_num_heads(vq, vq->last_avail_idx))
419 return 0;
421 /* When we start there are none of either input nor output. */
422 elem->out_num = elem->in_num = 0;
424 i = head = virtqueue_get_head(vq, vq->last_avail_idx++);
425 do {
426 struct iovec *sg;
428 if (vring_desc_flags(vq, i) & VRING_DESC_F_WRITE) {
429 elem->in_addr[elem->in_num] = vring_desc_addr(vq, i);
430 sg = &elem->in_sg[elem->in_num++];
431 } else
432 sg = &elem->out_sg[elem->out_num++];
434 /* Grab the first descriptor, and check it's OK. */
435 sg->iov_len = vring_desc_len(vq, i);
437 #ifdef VIRTIO_ZERO_COPY
438 sg->iov_base = virtio_map_gpa(vring_desc_addr(vq, i), sg->iov_len);
439 #else
440 /* cap individual scatter element size to prevent unbounded allocations
441 of memory from the guest. Practically speaking, no virtio driver
442 will ever pass more than a page in each element. We set the cap to
443 be 2MB in case for some reason a large page makes it way into the
444 sg list. When we implement a zero copy API, this limitation will
445 disappear */
446 if (sg->iov_len > (2 << 20))
447 sg->iov_len = 2 << 20;
449 sg->iov_base = qemu_malloc(sg->iov_len);
450 if (!(vring_desc_flags(vq, i) & VRING_DESC_F_WRITE)) {
451 cpu_physical_memory_read(vring_desc_addr(vq, i),
452 sg->iov_base,
453 sg->iov_len);
455 #endif
456 if (sg->iov_base == NULL) {
457 fprintf(stderr, "Invalid mapping\n");
458 exit(1);
461 /* If we've got too many, that implies a descriptor loop. */
462 if ((elem->in_num + elem->out_num) > vq->vring.num) {
463 fprintf(stderr, "Looped descriptor");
464 exit(1);
466 } while ((i = virtqueue_next_desc(vq, i)) != vq->vring.num);
468 elem->index = head;
470 vq->inuse++;
472 return elem->in_num + elem->out_num;
475 /* virtio device */
477 static VirtIODevice *to_virtio_device(PCIDevice *pci_dev)
479 return (VirtIODevice *)pci_dev;
482 static void virtio_update_irq(VirtIODevice *vdev)
484 qemu_set_irq(vdev->pci_dev.irq[0], vdev->isr & 1);
487 static void virtio_reset(void *opaque)
489 VirtIODevice *vdev = opaque;
490 int i;
492 if (vdev->reset)
493 vdev->reset(vdev);
495 vdev->features = 0;
496 vdev->queue_sel = 0;
497 vdev->status = 0;
498 vdev->isr = 0;
499 virtio_update_irq(vdev);
501 for(i = 0; i < VIRTIO_PCI_QUEUE_MAX; i++) {
502 vdev->vq[i].vring.desc = 0;
503 vdev->vq[i].vring.avail = 0;
504 vdev->vq[i].vring.used = 0;
505 vdev->vq[i].last_avail_idx = 0;
506 vdev->vq[i].pfn = 0;
510 static void virtio_ioport_write(void *opaque, uint32_t addr, uint32_t val)
512 VirtIODevice *vdev = to_virtio_device(opaque);
513 ram_addr_t pa;
515 addr -= vdev->addr;
517 switch (addr) {
518 case VIRTIO_PCI_GUEST_FEATURES:
519 /* Guest does not negotiate properly? We have to assume nothing. */
520 if (val & (1 << VIRTIO_F_BAD_FEATURE)) {
521 if (vdev->bad_features)
522 val = vdev->bad_features(vdev);
523 else
524 val = 0;
526 if (vdev->set_features)
527 vdev->set_features(vdev, val);
528 vdev->features = val;
529 break;
530 case VIRTIO_PCI_QUEUE_PFN:
531 pa = (ram_addr_t)val << VIRTIO_PCI_QUEUE_ADDR_SHIFT;
532 vdev->vq[vdev->queue_sel].pfn = val;
533 if (pa == 0) {
534 virtio_reset(vdev);
535 } else {
536 virtqueue_init(&vdev->vq[vdev->queue_sel], pa);
538 break;
539 case VIRTIO_PCI_QUEUE_SEL:
540 if (val < VIRTIO_PCI_QUEUE_MAX)
541 vdev->queue_sel = val;
542 break;
543 case VIRTIO_PCI_QUEUE_NOTIFY:
544 if (val < VIRTIO_PCI_QUEUE_MAX && vdev->vq[val].vring.desc)
545 vdev->vq[val].handle_output(vdev, &vdev->vq[val]);
546 break;
547 case VIRTIO_PCI_STATUS:
548 vdev->status = val & 0xFF;
549 if (vdev->status == 0)
550 virtio_reset(vdev);
551 break;
555 static uint32_t virtio_ioport_read(void *opaque, uint32_t addr)
557 VirtIODevice *vdev = to_virtio_device(opaque);
558 uint32_t ret = 0xFFFFFFFF;
560 addr -= vdev->addr;
562 switch (addr) {
563 case VIRTIO_PCI_HOST_FEATURES:
564 ret = vdev->get_features(vdev);
565 ret |= (1 << VIRTIO_F_NOTIFY_ON_EMPTY) | (1 << VIRTIO_F_BAD_FEATURE);
566 break;
567 case VIRTIO_PCI_GUEST_FEATURES:
568 ret = vdev->features;
569 break;
570 case VIRTIO_PCI_QUEUE_PFN:
571 ret = vdev->vq[vdev->queue_sel].pfn;
572 break;
573 case VIRTIO_PCI_QUEUE_NUM:
574 ret = vdev->vq[vdev->queue_sel].vring.num;
575 break;
576 case VIRTIO_PCI_QUEUE_SEL:
577 ret = vdev->queue_sel;
578 break;
579 case VIRTIO_PCI_STATUS:
580 ret = vdev->status;
581 break;
582 case VIRTIO_PCI_ISR:
583 /* reading from the ISR also clears it. */
584 ret = vdev->isr;
585 vdev->isr = 0;
586 virtio_update_irq(vdev);
587 break;
588 default:
589 break;
592 return ret;
595 static uint32_t virtio_config_readb(void *opaque, uint32_t addr)
597 VirtIODevice *vdev = opaque;
598 uint8_t val;
600 vdev->get_config(vdev, vdev->config);
602 addr -= vdev->addr + VIRTIO_PCI_CONFIG;
603 if (addr > (vdev->config_len - sizeof(val)))
604 return (uint32_t)-1;
606 memcpy(&val, vdev->config + addr, sizeof(val));
607 return val;
610 static uint32_t virtio_config_readw(void *opaque, uint32_t addr)
612 VirtIODevice *vdev = opaque;
613 uint16_t val;
615 vdev->get_config(vdev, vdev->config);
617 addr -= vdev->addr + VIRTIO_PCI_CONFIG;
618 if (addr > (vdev->config_len - sizeof(val)))
619 return (uint32_t)-1;
621 memcpy(&val, vdev->config + addr, sizeof(val));
622 return val;
625 static uint32_t virtio_config_readl(void *opaque, uint32_t addr)
627 VirtIODevice *vdev = opaque;
628 uint32_t val;
630 vdev->get_config(vdev, vdev->config);
632 addr -= vdev->addr + VIRTIO_PCI_CONFIG;
633 if (addr > (vdev->config_len - sizeof(val)))
634 return (uint32_t)-1;
636 memcpy(&val, vdev->config + addr, sizeof(val));
637 return val;
640 static void virtio_config_writeb(void *opaque, uint32_t addr, uint32_t data)
642 VirtIODevice *vdev = opaque;
643 uint8_t val = data;
645 addr -= vdev->addr + VIRTIO_PCI_CONFIG;
646 if (addr > (vdev->config_len - sizeof(val)))
647 return;
649 memcpy(vdev->config + addr, &val, sizeof(val));
651 if (vdev->set_config)
652 vdev->set_config(vdev, vdev->config);
655 static void virtio_config_writew(void *opaque, uint32_t addr, uint32_t data)
657 VirtIODevice *vdev = opaque;
658 uint16_t val = data;
660 addr -= vdev->addr + VIRTIO_PCI_CONFIG;
661 if (addr > (vdev->config_len - sizeof(val)))
662 return;
664 memcpy(vdev->config + addr, &val, sizeof(val));
666 if (vdev->set_config)
667 vdev->set_config(vdev, vdev->config);
670 static void virtio_config_writel(void *opaque, uint32_t addr, uint32_t data)
672 VirtIODevice *vdev = opaque;
673 uint32_t val = data;
675 addr -= vdev->addr + VIRTIO_PCI_CONFIG;
676 if (addr > (vdev->config_len - sizeof(val)))
677 return;
679 memcpy(vdev->config + addr, &val, sizeof(val));
681 if (vdev->set_config)
682 vdev->set_config(vdev, vdev->config);
685 static void virtio_map(PCIDevice *pci_dev, int region_num,
686 uint32_t addr, uint32_t size, int type)
688 VirtIODevice *vdev = to_virtio_device(pci_dev);
689 int i;
691 vdev->addr = addr;
692 for (i = 0; i < 3; i++) {
693 register_ioport_write(addr, 20, 1 << i, virtio_ioport_write, vdev);
694 register_ioport_read(addr, 20, 1 << i, virtio_ioport_read, vdev);
697 if (vdev->config_len) {
698 register_ioport_write(addr + 20, vdev->config_len, 1,
699 virtio_config_writeb, vdev);
700 register_ioport_write(addr + 20, vdev->config_len, 2,
701 virtio_config_writew, vdev);
702 register_ioport_write(addr + 20, vdev->config_len, 4,
703 virtio_config_writel, vdev);
704 register_ioport_read(addr + 20, vdev->config_len, 1,
705 virtio_config_readb, vdev);
706 register_ioport_read(addr + 20, vdev->config_len, 2,
707 virtio_config_readw, vdev);
708 register_ioport_read(addr + 20, vdev->config_len, 4,
709 virtio_config_readl, vdev);
711 vdev->get_config(vdev, vdev->config);
715 VirtQueue *virtio_add_queue(VirtIODevice *vdev, int queue_size,
716 void (*handle_output)(VirtIODevice *, VirtQueue *))
718 int i;
720 for (i = 0; i < VIRTIO_PCI_QUEUE_MAX; i++) {
721 if (vdev->vq[i].vring.num == 0)
722 break;
725 if (i == VIRTIO_PCI_QUEUE_MAX || queue_size > VIRTQUEUE_MAX_SIZE)
726 abort();
728 vdev->vq[i].vring.num = queue_size;
729 vdev->vq[i].handle_output = handle_output;
731 return &vdev->vq[i];
734 void virtio_notify(VirtIODevice *vdev, VirtQueue *vq)
736 /* Always notify when queue is empty (when feature acknowledge) */
737 if ((vring_avail_flags(vq) & VRING_AVAIL_F_NO_INTERRUPT) &&
738 (!(vdev->features & (1 << VIRTIO_F_NOTIFY_ON_EMPTY)) ||
739 (vq->inuse || vring_avail_idx(vq) != vq->last_avail_idx)))
740 return;
742 vdev->isr |= 0x01;
743 virtio_update_irq(vdev);
746 void virtio_notify_config(VirtIODevice *vdev)
748 if (!(vdev->status & VIRTIO_CONFIG_S_DRIVER_OK))
749 return;
751 vdev->isr |= 0x03;
752 virtio_update_irq(vdev);
755 void virtio_save(VirtIODevice *vdev, QEMUFile *f)
757 int i;
759 pci_device_save(&vdev->pci_dev, f);
761 qemu_put_be32s(f, &vdev->addr);
762 qemu_put_8s(f, &vdev->status);
763 qemu_put_8s(f, &vdev->isr);
764 qemu_put_be16s(f, &vdev->queue_sel);
765 qemu_put_be32s(f, &vdev->features);
766 qemu_put_be32(f, vdev->config_len);
767 qemu_put_buffer(f, vdev->config, vdev->config_len);
769 for (i = 0; i < VIRTIO_PCI_QUEUE_MAX; i++) {
770 if (vdev->vq[i].vring.num == 0)
771 break;
774 qemu_put_be32(f, i);
776 for (i = 0; i < VIRTIO_PCI_QUEUE_MAX; i++) {
777 if (vdev->vq[i].vring.num == 0)
778 break;
780 qemu_put_be32(f, vdev->vq[i].vring.num);
781 qemu_put_be32s(f, &vdev->vq[i].pfn);
782 qemu_put_be16s(f, &vdev->vq[i].last_avail_idx);
786 void virtio_load(VirtIODevice *vdev, QEMUFile *f)
788 int num, i;
790 pci_device_load(&vdev->pci_dev, f);
792 qemu_get_be32s(f, &vdev->addr);
793 qemu_get_8s(f, &vdev->status);
794 qemu_get_8s(f, &vdev->isr);
795 qemu_get_be16s(f, &vdev->queue_sel);
796 qemu_get_be32s(f, &vdev->features);
797 vdev->config_len = qemu_get_be32(f);
798 qemu_get_buffer(f, vdev->config, vdev->config_len);
800 num = qemu_get_be32(f);
802 for (i = 0; i < num; i++) {
803 vdev->vq[i].vring.num = qemu_get_be32(f);
804 qemu_get_be32s(f, &vdev->vq[i].pfn);
805 qemu_get_be16s(f, &vdev->vq[i].last_avail_idx);
807 if (vdev->vq[i].pfn) {
808 target_phys_addr_t pa;
810 pa = (ram_addr_t)vdev->vq[i].pfn << VIRTIO_PCI_QUEUE_ADDR_SHIFT;
811 virtqueue_init(&vdev->vq[i], pa);
815 virtio_update_irq(vdev);
818 void virtio_cleanup(VirtIODevice *vdev)
820 if (vdev->config)
821 qemu_free(vdev->config);
822 qemu_free(vdev->vq);
825 VirtIODevice *virtio_init_pci(PCIBus *bus, const char *name,
826 uint16_t vendor, uint16_t device,
827 uint16_t subvendor, uint16_t subdevice,
828 uint16_t class_code, uint8_t pif,
829 size_t config_size, size_t struct_size)
831 VirtIODevice *vdev;
832 PCIDevice *pci_dev;
833 uint8_t *config;
834 uint32_t size;
836 pci_dev = pci_register_device(bus, name, struct_size,
837 -1, NULL, NULL);
838 if (!pci_dev)
839 return NULL;
841 vdev = to_virtio_device(pci_dev);
843 vdev->status = 0;
844 vdev->isr = 0;
845 vdev->queue_sel = 0;
846 vdev->vq = qemu_mallocz(sizeof(VirtQueue) * VIRTIO_PCI_QUEUE_MAX);
848 config = pci_dev->config;
849 pci_config_set_vendor_id(config, vendor);
850 pci_config_set_device_id(config, device);
852 config[0x08] = VIRTIO_PCI_ABI_VERSION;
854 config[0x09] = pif;
855 pci_config_set_class(config, class_code);
856 config[0x0e] = 0x00;
858 config[0x2c] = subvendor & 0xFF;
859 config[0x2d] = (subvendor >> 8) & 0xFF;
860 config[0x2e] = subdevice & 0xFF;
861 config[0x2f] = (subdevice >> 8) & 0xFF;
863 config[0x3d] = 1;
865 vdev->name = name;
866 vdev->config_len = config_size;
867 if (vdev->config_len)
868 vdev->config = qemu_mallocz(config_size);
869 else
870 vdev->config = NULL;
872 size = 20 + config_size;
873 if (size & (size-1))
874 size = 1 << qemu_fls(size);
876 pci_register_io_region(pci_dev, 0, size, PCI_ADDRESS_SPACE_IO,
877 virtio_map);
878 qemu_register_reset(virtio_reset, vdev);
880 return vdev;