kvm: libkvm: punch holes through memslots
[qemu-kvm/fedora.git] / target-mips / op_helper.c
blobf4313280e8a239328d3faf00e733be2743963bf7
1 /*
2 * MIPS emulation helpers for qemu.
4 * Copyright (c) 2004-2005 Jocelyn Mayer
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
20 #include <stdlib.h>
21 #include "exec.h"
23 #define GETPC() (__builtin_return_address(0))
25 /*****************************************************************************/
26 /* Exceptions processing helpers */
28 void do_raise_exception_err (uint32_t exception, int error_code)
30 #if 1
31 if (logfile && exception < 0x100)
32 fprintf(logfile, "%s: %d %d\n", __func__, exception, error_code);
33 #endif
34 env->exception_index = exception;
35 env->error_code = error_code;
36 T0 = 0;
37 cpu_loop_exit();
40 void do_raise_exception (uint32_t exception)
42 do_raise_exception_err(exception, 0);
45 void do_restore_state (void *pc_ptr)
47 TranslationBlock *tb;
48 unsigned long pc = (unsigned long) pc_ptr;
50 tb = tb_find_pc (pc);
51 cpu_restore_state (tb, env, pc, NULL);
54 void do_raise_exception_direct_err (uint32_t exception, int error_code)
56 do_restore_state (GETPC ());
57 do_raise_exception_err (exception, error_code);
60 void do_raise_exception_direct (uint32_t exception)
62 do_raise_exception_direct_err (exception, 0);
65 #define MEMSUFFIX _raw
66 #include "op_helper_mem.c"
67 #undef MEMSUFFIX
68 #if !defined(CONFIG_USER_ONLY)
69 #define MEMSUFFIX _user
70 #include "op_helper_mem.c"
71 #undef MEMSUFFIX
72 #define MEMSUFFIX _kernel
73 #include "op_helper_mem.c"
74 #undef MEMSUFFIX
75 #endif
77 #if defined(TARGET_MIPSN32) || defined(TARGET_MIPS64)
78 #if TARGET_LONG_BITS > HOST_LONG_BITS
79 /* Those might call libgcc functions. */
80 void do_dsll (void)
82 T0 = T0 << T1;
85 void do_dsll32 (void)
87 T0 = T0 << (T1 + 32);
90 void do_dsra (void)
92 T0 = (int64_t)T0 >> T1;
95 void do_dsra32 (void)
97 T0 = (int64_t)T0 >> (T1 + 32);
100 void do_dsrl (void)
102 T0 = T0 >> T1;
105 void do_dsrl32 (void)
107 T0 = T0 >> (T1 + 32);
110 void do_drotr (void)
112 target_ulong tmp;
114 if (T1) {
115 tmp = T0 << (0x40 - T1);
116 T0 = (T0 >> T1) | tmp;
120 void do_drotr32 (void)
122 target_ulong tmp;
124 if (T1) {
125 tmp = T0 << (0x40 - (32 + T1));
126 T0 = (T0 >> (32 + T1)) | tmp;
130 void do_dsllv (void)
132 T0 = T1 << (T0 & 0x3F);
135 void do_dsrav (void)
137 T0 = (int64_t)T1 >> (T0 & 0x3F);
140 void do_dsrlv (void)
142 T0 = T1 >> (T0 & 0x3F);
145 void do_drotrv (void)
147 target_ulong tmp;
149 T0 &= 0x3F;
150 if (T0) {
151 tmp = T1 << (0x40 - T0);
152 T0 = (T1 >> T0) | tmp;
153 } else
154 T0 = T1;
156 #endif /* TARGET_LONG_BITS > HOST_LONG_BITS */
157 #endif /* TARGET_MIPSN32 || TARGET_MIPS64 */
159 /* 64 bits arithmetic for 32 bits hosts */
160 #if TARGET_LONG_BITS > HOST_LONG_BITS
161 static inline uint64_t get_HILO (void)
163 return (env->HI[0][env->current_tc] << 32) | (uint32_t)env->LO[0][env->current_tc];
166 static inline void set_HILO (uint64_t HILO)
168 env->LO[0][env->current_tc] = (int32_t)HILO;
169 env->HI[0][env->current_tc] = (int32_t)(HILO >> 32);
172 void do_mult (void)
174 set_HILO((int64_t)(int32_t)T0 * (int64_t)(int32_t)T1);
177 void do_multu (void)
179 set_HILO((uint64_t)(uint32_t)T0 * (uint64_t)(uint32_t)T1);
182 void do_madd (void)
184 int64_t tmp;
186 tmp = ((int64_t)(int32_t)T0 * (int64_t)(int32_t)T1);
187 set_HILO((int64_t)get_HILO() + tmp);
190 void do_maddu (void)
192 uint64_t tmp;
194 tmp = ((uint64_t)(uint32_t)T0 * (uint64_t)(uint32_t)T1);
195 set_HILO(get_HILO() + tmp);
198 void do_msub (void)
200 int64_t tmp;
202 tmp = ((int64_t)(int32_t)T0 * (int64_t)(int32_t)T1);
203 set_HILO((int64_t)get_HILO() - tmp);
206 void do_msubu (void)
208 uint64_t tmp;
210 tmp = ((uint64_t)(uint32_t)T0 * (uint64_t)(uint32_t)T1);
211 set_HILO(get_HILO() - tmp);
213 #endif
215 #if HOST_LONG_BITS < 64
216 void do_div (void)
218 /* 64bit datatypes because we may see overflow/underflow. */
219 if (T1 != 0) {
220 env->LO[0][env->current_tc] = (int32_t)((int64_t)(int32_t)T0 / (int32_t)T1);
221 env->HI[0][env->current_tc] = (int32_t)((int64_t)(int32_t)T0 % (int32_t)T1);
224 #endif
226 #if defined(TARGET_MIPSN32) || defined(TARGET_MIPS64)
227 void do_ddiv (void)
229 if (T1 != 0) {
230 lldiv_t res = lldiv((int64_t)T0, (int64_t)T1);
231 env->LO[0][env->current_tc] = res.quot;
232 env->HI[0][env->current_tc] = res.rem;
236 #if TARGET_LONG_BITS > HOST_LONG_BITS
237 void do_ddivu (void)
239 if (T1 != 0) {
240 env->LO[0][env->current_tc] = T0 / T1;
241 env->HI[0][env->current_tc] = T0 % T1;
244 #endif
245 #endif /* TARGET_MIPSN32 || TARGET_MIPS64 */
247 #if defined(CONFIG_USER_ONLY)
248 void do_mfc0_random (void)
250 cpu_abort(env, "mfc0 random\n");
253 void do_mfc0_count (void)
255 cpu_abort(env, "mfc0 count\n");
258 void cpu_mips_store_count(CPUState *env, uint32_t value)
260 cpu_abort(env, "mtc0 count\n");
263 void cpu_mips_store_compare(CPUState *env, uint32_t value)
265 cpu_abort(env, "mtc0 compare\n");
268 void cpu_mips_start_count(CPUState *env)
270 cpu_abort(env, "start count\n");
273 void cpu_mips_stop_count(CPUState *env)
275 cpu_abort(env, "stop count\n");
278 void cpu_mips_update_irq(CPUState *env)
280 cpu_abort(env, "mtc0 status / mtc0 cause\n");
283 void do_mtc0_status_debug(uint32_t old, uint32_t val)
285 cpu_abort(env, "mtc0 status debug\n");
288 void do_mtc0_status_irqraise_debug (void)
290 cpu_abort(env, "mtc0 status irqraise debug\n");
293 void cpu_mips_tlb_flush (CPUState *env, int flush_global)
295 cpu_abort(env, "mips_tlb_flush\n");
298 #else
300 /* CP0 helpers */
301 void do_mfc0_random (void)
303 T0 = (int32_t)cpu_mips_get_random(env);
306 void do_mfc0_count (void)
308 T0 = (int32_t)cpu_mips_get_count(env);
311 void do_mtc0_status_debug(uint32_t old, uint32_t val)
313 fprintf(logfile, "Status %08x (%08x) => %08x (%08x) Cause %08x",
314 old, old & env->CP0_Cause & CP0Ca_IP_mask,
315 val, val & env->CP0_Cause & CP0Ca_IP_mask,
316 env->CP0_Cause);
317 (env->hflags & MIPS_HFLAG_UM) ? fputs(", UM\n", logfile)
318 : fputs("\n", logfile);
321 void do_mtc0_status_irqraise_debug(void)
323 fprintf(logfile, "Raise pending IRQs\n");
326 void fpu_handle_exception(void)
328 #ifdef CONFIG_SOFTFLOAT
329 int flags = get_float_exception_flags(&env->fpu->fp_status);
330 unsigned int cpuflags = 0, enable, cause = 0;
332 enable = GET_FP_ENABLE(env->fpu->fcr31);
334 /* determine current flags */
335 if (flags & float_flag_invalid) {
336 cpuflags |= FP_INVALID;
337 cause |= FP_INVALID & enable;
339 if (flags & float_flag_divbyzero) {
340 cpuflags |= FP_DIV0;
341 cause |= FP_DIV0 & enable;
343 if (flags & float_flag_overflow) {
344 cpuflags |= FP_OVERFLOW;
345 cause |= FP_OVERFLOW & enable;
347 if (flags & float_flag_underflow) {
348 cpuflags |= FP_UNDERFLOW;
349 cause |= FP_UNDERFLOW & enable;
351 if (flags & float_flag_inexact) {
352 cpuflags |= FP_INEXACT;
353 cause |= FP_INEXACT & enable;
355 SET_FP_FLAGS(env->fpu->fcr31, cpuflags);
356 SET_FP_CAUSE(env->fpu->fcr31, cause);
357 #else
358 SET_FP_FLAGS(env->fpu->fcr31, 0);
359 SET_FP_CAUSE(env->fpu->fcr31, 0);
360 #endif
363 /* TLB management */
364 void cpu_mips_tlb_flush (CPUState *env, int flush_global)
366 /* Flush qemu's TLB and discard all shadowed entries. */
367 tlb_flush (env, flush_global);
368 env->tlb->tlb_in_use = env->tlb->nb_tlb;
371 static void r4k_mips_tlb_flush_extra (CPUState *env, int first)
373 /* Discard entries from env->tlb[first] onwards. */
374 while (env->tlb->tlb_in_use > first) {
375 r4k_invalidate_tlb(env, --env->tlb->tlb_in_use, 0);
379 static void r4k_fill_tlb (int idx)
381 r4k_tlb_t *tlb;
383 /* XXX: detect conflicting TLBs and raise a MCHECK exception when needed */
384 tlb = &env->tlb->mmu.r4k.tlb[idx];
385 tlb->VPN = env->CP0_EntryHi & (TARGET_PAGE_MASK << 1);
386 #if defined(TARGET_MIPSN32) || defined(TARGET_MIPS64)
387 tlb->VPN &= env->SEGMask;
388 #endif
389 tlb->ASID = env->CP0_EntryHi & 0xFF;
390 tlb->PageMask = env->CP0_PageMask;
391 tlb->G = env->CP0_EntryLo0 & env->CP0_EntryLo1 & 1;
392 tlb->V0 = (env->CP0_EntryLo0 & 2) != 0;
393 tlb->D0 = (env->CP0_EntryLo0 & 4) != 0;
394 tlb->C0 = (env->CP0_EntryLo0 >> 3) & 0x7;
395 tlb->PFN[0] = (env->CP0_EntryLo0 >> 6) << 12;
396 tlb->V1 = (env->CP0_EntryLo1 & 2) != 0;
397 tlb->D1 = (env->CP0_EntryLo1 & 4) != 0;
398 tlb->C1 = (env->CP0_EntryLo1 >> 3) & 0x7;
399 tlb->PFN[1] = (env->CP0_EntryLo1 >> 6) << 12;
402 void r4k_do_tlbwi (void)
404 /* Discard cached TLB entries. We could avoid doing this if the
405 tlbwi is just upgrading access permissions on the current entry;
406 that might be a further win. */
407 r4k_mips_tlb_flush_extra (env, env->tlb->nb_tlb);
409 r4k_invalidate_tlb(env, env->CP0_Index % env->tlb->nb_tlb, 0);
410 r4k_fill_tlb(env->CP0_Index % env->tlb->nb_tlb);
413 void r4k_do_tlbwr (void)
415 int r = cpu_mips_get_random(env);
417 r4k_invalidate_tlb(env, r, 1);
418 r4k_fill_tlb(r);
421 void r4k_do_tlbp (void)
423 r4k_tlb_t *tlb;
424 target_ulong mask;
425 target_ulong tag;
426 target_ulong VPN;
427 uint8_t ASID;
428 int i;
430 ASID = env->CP0_EntryHi & 0xFF;
431 for (i = 0; i < env->tlb->nb_tlb; i++) {
432 tlb = &env->tlb->mmu.r4k.tlb[i];
433 /* 1k pages are not supported. */
434 mask = tlb->PageMask | ~(TARGET_PAGE_MASK << 1);
435 tag = env->CP0_EntryHi & ~mask;
436 VPN = tlb->VPN & ~mask;
437 /* Check ASID, virtual page number & size */
438 if ((tlb->G == 1 || tlb->ASID == ASID) && VPN == tag) {
439 /* TLB match */
440 env->CP0_Index = i;
441 break;
444 if (i == env->tlb->nb_tlb) {
445 /* No match. Discard any shadow entries, if any of them match. */
446 for (i = env->tlb->nb_tlb; i < env->tlb->tlb_in_use; i++) {
447 tlb = &env->tlb->mmu.r4k.tlb[i];
448 /* 1k pages are not supported. */
449 mask = tlb->PageMask | ~(TARGET_PAGE_MASK << 1);
450 tag = env->CP0_EntryHi & ~mask;
451 VPN = tlb->VPN & ~mask;
452 /* Check ASID, virtual page number & size */
453 if ((tlb->G == 1 || tlb->ASID == ASID) && VPN == tag) {
454 r4k_mips_tlb_flush_extra (env, i);
455 break;
459 env->CP0_Index |= 0x80000000;
463 void r4k_do_tlbr (void)
465 r4k_tlb_t *tlb;
466 uint8_t ASID;
468 ASID = env->CP0_EntryHi & 0xFF;
469 tlb = &env->tlb->mmu.r4k.tlb[env->CP0_Index % env->tlb->nb_tlb];
471 /* If this will change the current ASID, flush qemu's TLB. */
472 if (ASID != tlb->ASID)
473 cpu_mips_tlb_flush (env, 1);
475 r4k_mips_tlb_flush_extra(env, env->tlb->nb_tlb);
477 env->CP0_EntryHi = tlb->VPN | tlb->ASID;
478 env->CP0_PageMask = tlb->PageMask;
479 env->CP0_EntryLo0 = tlb->G | (tlb->V0 << 1) | (tlb->D0 << 2) |
480 (tlb->C0 << 3) | (tlb->PFN[0] >> 6);
481 env->CP0_EntryLo1 = tlb->G | (tlb->V1 << 1) | (tlb->D1 << 2) |
482 (tlb->C1 << 3) | (tlb->PFN[1] >> 6);
485 #endif /* !CONFIG_USER_ONLY */
487 void dump_ldst (const unsigned char *func)
489 if (loglevel)
490 fprintf(logfile, "%s => " TARGET_FMT_lx " " TARGET_FMT_lx "\n", __func__, T0, T1);
493 void dump_sc (void)
495 if (loglevel) {
496 fprintf(logfile, "%s " TARGET_FMT_lx " at " TARGET_FMT_lx " (" TARGET_FMT_lx ")\n", __func__,
497 T1, T0, env->CP0_LLAddr);
501 void debug_pre_eret (void)
503 fprintf(logfile, "ERET: PC " TARGET_FMT_lx " EPC " TARGET_FMT_lx,
504 env->PC[env->current_tc], env->CP0_EPC);
505 if (env->CP0_Status & (1 << CP0St_ERL))
506 fprintf(logfile, " ErrorEPC " TARGET_FMT_lx, env->CP0_ErrorEPC);
507 if (env->hflags & MIPS_HFLAG_DM)
508 fprintf(logfile, " DEPC " TARGET_FMT_lx, env->CP0_DEPC);
509 fputs("\n", logfile);
512 void debug_post_eret (void)
514 fprintf(logfile, " => PC " TARGET_FMT_lx " EPC " TARGET_FMT_lx,
515 env->PC[env->current_tc], env->CP0_EPC);
516 if (env->CP0_Status & (1 << CP0St_ERL))
517 fprintf(logfile, " ErrorEPC " TARGET_FMT_lx, env->CP0_ErrorEPC);
518 if (env->hflags & MIPS_HFLAG_DM)
519 fprintf(logfile, " DEPC " TARGET_FMT_lx, env->CP0_DEPC);
520 if (env->hflags & MIPS_HFLAG_UM)
521 fputs(", UM\n", logfile);
522 else
523 fputs("\n", logfile);
526 void do_pmon (int function)
528 function /= 2;
529 switch (function) {
530 case 2: /* TODO: char inbyte(int waitflag); */
531 if (env->gpr[4][env->current_tc] == 0)
532 env->gpr[2][env->current_tc] = -1;
533 /* Fall through */
534 case 11: /* TODO: char inbyte (void); */
535 env->gpr[2][env->current_tc] = -1;
536 break;
537 case 3:
538 case 12:
539 printf("%c", (char)(env->gpr[4][env->current_tc] & 0xFF));
540 break;
541 case 17:
542 break;
543 case 158:
545 unsigned char *fmt = (void *)(unsigned long)env->gpr[4][env->current_tc];
546 printf("%s", fmt);
548 break;
552 #if !defined(CONFIG_USER_ONLY)
554 static void do_unaligned_access (target_ulong addr, int is_write, int is_user, void *retaddr);
556 #define MMUSUFFIX _mmu
557 #define ALIGNED_ONLY
559 #define SHIFT 0
560 #include "softmmu_template.h"
562 #define SHIFT 1
563 #include "softmmu_template.h"
565 #define SHIFT 2
566 #include "softmmu_template.h"
568 #define SHIFT 3
569 #include "softmmu_template.h"
571 static void do_unaligned_access (target_ulong addr, int is_write, int is_user, void *retaddr)
573 env->CP0_BadVAddr = addr;
574 do_restore_state (retaddr);
575 do_raise_exception ((is_write == 1) ? EXCP_AdES : EXCP_AdEL);
578 void tlb_fill (target_ulong addr, int is_write, int is_user, void *retaddr)
580 TranslationBlock *tb;
581 CPUState *saved_env;
582 unsigned long pc;
583 int ret;
585 /* XXX: hack to restore env in all cases, even if not called from
586 generated code */
587 saved_env = env;
588 env = cpu_single_env;
589 ret = cpu_mips_handle_mmu_fault(env, addr, is_write, is_user, 1);
590 if (ret) {
591 if (retaddr) {
592 /* now we have a real cpu fault */
593 pc = (unsigned long)retaddr;
594 tb = tb_find_pc(pc);
595 if (tb) {
596 /* the PC is inside the translated code. It means that we have
597 a virtual CPU fault */
598 cpu_restore_state(tb, env, pc, NULL);
601 do_raise_exception_err(env->exception_index, env->error_code);
603 env = saved_env;
606 #endif
608 /* Complex FPU operations which may need stack space. */
610 #define FLOAT_SIGN32 (1 << 31)
611 #define FLOAT_SIGN64 (1ULL << 63)
612 #define FLOAT_ONE32 (0x3f8 << 20)
613 #define FLOAT_ONE64 (0x3ffULL << 52)
614 #define FLOAT_TWO32 (1 << 30)
615 #define FLOAT_TWO64 (1ULL << 62)
616 #define FLOAT_QNAN32 0x7fbfffff
617 #define FLOAT_QNAN64 0x7ff7ffffffffffffULL
618 #define FLOAT_SNAN32 0x7fffffff
619 #define FLOAT_SNAN64 0x7fffffffffffffffULL
621 /* convert MIPS rounding mode in FCR31 to IEEE library */
622 unsigned int ieee_rm[] = {
623 float_round_nearest_even,
624 float_round_to_zero,
625 float_round_up,
626 float_round_down
629 #define RESTORE_ROUNDING_MODE \
630 set_float_rounding_mode(ieee_rm[env->fpu->fcr31 & 3], &env->fpu->fp_status)
632 void do_cfc1 (int reg)
634 switch (reg) {
635 case 0:
636 T0 = (int32_t)env->fpu->fcr0;
637 break;
638 case 25:
639 T0 = ((env->fpu->fcr31 >> 24) & 0xfe) | ((env->fpu->fcr31 >> 23) & 0x1);
640 break;
641 case 26:
642 T0 = env->fpu->fcr31 & 0x0003f07c;
643 break;
644 case 28:
645 T0 = (env->fpu->fcr31 & 0x00000f83) | ((env->fpu->fcr31 >> 22) & 0x4);
646 break;
647 default:
648 T0 = (int32_t)env->fpu->fcr31;
649 break;
653 void do_ctc1 (int reg)
655 switch(reg) {
656 case 25:
657 if (T0 & 0xffffff00)
658 return;
659 env->fpu->fcr31 = (env->fpu->fcr31 & 0x017fffff) | ((T0 & 0xfe) << 24) |
660 ((T0 & 0x1) << 23);
661 break;
662 case 26:
663 if (T0 & 0x007c0000)
664 return;
665 env->fpu->fcr31 = (env->fpu->fcr31 & 0xfffc0f83) | (T0 & 0x0003f07c);
666 break;
667 case 28:
668 if (T0 & 0x007c0000)
669 return;
670 env->fpu->fcr31 = (env->fpu->fcr31 & 0xfefff07c) | (T0 & 0x00000f83) |
671 ((T0 & 0x4) << 22);
672 break;
673 case 31:
674 if (T0 & 0x007c0000)
675 return;
676 env->fpu->fcr31 = T0;
677 break;
678 default:
679 return;
681 /* set rounding mode */
682 RESTORE_ROUNDING_MODE;
683 set_float_exception_flags(0, &env->fpu->fp_status);
684 if ((GET_FP_ENABLE(env->fpu->fcr31) | 0x20) & GET_FP_CAUSE(env->fpu->fcr31))
685 do_raise_exception(EXCP_FPE);
688 inline char ieee_ex_to_mips(char xcpt)
690 return (xcpt & float_flag_inexact) >> 5 |
691 (xcpt & float_flag_underflow) >> 3 |
692 (xcpt & float_flag_overflow) >> 1 |
693 (xcpt & float_flag_divbyzero) << 1 |
694 (xcpt & float_flag_invalid) << 4;
697 inline char mips_ex_to_ieee(char xcpt)
699 return (xcpt & FP_INEXACT) << 5 |
700 (xcpt & FP_UNDERFLOW) << 3 |
701 (xcpt & FP_OVERFLOW) << 1 |
702 (xcpt & FP_DIV0) >> 1 |
703 (xcpt & FP_INVALID) >> 4;
706 inline void update_fcr31(void)
708 int tmp = ieee_ex_to_mips(get_float_exception_flags(&env->fpu->fp_status));
710 SET_FP_CAUSE(env->fpu->fcr31, tmp);
711 if (GET_FP_ENABLE(env->fpu->fcr31) & tmp)
712 do_raise_exception(EXCP_FPE);
713 else
714 UPDATE_FP_FLAGS(env->fpu->fcr31, tmp);
717 #define FLOAT_OP(name, p) void do_float_##name##_##p(void)
719 FLOAT_OP(cvtd, s)
721 set_float_exception_flags(0, &env->fpu->fp_status);
722 FDT2 = float32_to_float64(FST0, &env->fpu->fp_status);
723 update_fcr31();
725 FLOAT_OP(cvtd, w)
727 set_float_exception_flags(0, &env->fpu->fp_status);
728 FDT2 = int32_to_float64(WT0, &env->fpu->fp_status);
729 update_fcr31();
731 FLOAT_OP(cvtd, l)
733 set_float_exception_flags(0, &env->fpu->fp_status);
734 FDT2 = int64_to_float64(DT0, &env->fpu->fp_status);
735 update_fcr31();
737 FLOAT_OP(cvtl, d)
739 set_float_exception_flags(0, &env->fpu->fp_status);
740 DT2 = float64_to_int64(FDT0, &env->fpu->fp_status);
741 update_fcr31();
742 if (GET_FP_CAUSE(env->fpu->fcr31) & (FP_OVERFLOW | FP_INVALID))
743 DT2 = FLOAT_SNAN64;
745 FLOAT_OP(cvtl, s)
747 set_float_exception_flags(0, &env->fpu->fp_status);
748 DT2 = float32_to_int64(FST0, &env->fpu->fp_status);
749 update_fcr31();
750 if (GET_FP_CAUSE(env->fpu->fcr31) & (FP_OVERFLOW | FP_INVALID))
751 DT2 = FLOAT_SNAN64;
754 FLOAT_OP(cvtps, pw)
756 set_float_exception_flags(0, &env->fpu->fp_status);
757 FST2 = int32_to_float32(WT0, &env->fpu->fp_status);
758 FSTH2 = int32_to_float32(WTH0, &env->fpu->fp_status);
759 update_fcr31();
761 FLOAT_OP(cvtpw, ps)
763 set_float_exception_flags(0, &env->fpu->fp_status);
764 WT2 = float32_to_int32(FST0, &env->fpu->fp_status);
765 WTH2 = float32_to_int32(FSTH0, &env->fpu->fp_status);
766 update_fcr31();
767 if (GET_FP_CAUSE(env->fpu->fcr31) & (FP_OVERFLOW | FP_INVALID))
768 WT2 = FLOAT_SNAN32;
770 FLOAT_OP(cvts, d)
772 set_float_exception_flags(0, &env->fpu->fp_status);
773 FST2 = float64_to_float32(FDT0, &env->fpu->fp_status);
774 update_fcr31();
776 FLOAT_OP(cvts, w)
778 set_float_exception_flags(0, &env->fpu->fp_status);
779 FST2 = int32_to_float32(WT0, &env->fpu->fp_status);
780 update_fcr31();
782 FLOAT_OP(cvts, l)
784 set_float_exception_flags(0, &env->fpu->fp_status);
785 FST2 = int64_to_float32(DT0, &env->fpu->fp_status);
786 update_fcr31();
788 FLOAT_OP(cvts, pl)
790 set_float_exception_flags(0, &env->fpu->fp_status);
791 WT2 = WT0;
792 update_fcr31();
794 FLOAT_OP(cvts, pu)
796 set_float_exception_flags(0, &env->fpu->fp_status);
797 WT2 = WTH0;
798 update_fcr31();
800 FLOAT_OP(cvtw, s)
802 set_float_exception_flags(0, &env->fpu->fp_status);
803 WT2 = float32_to_int32(FST0, &env->fpu->fp_status);
804 update_fcr31();
805 if (GET_FP_CAUSE(env->fpu->fcr31) & (FP_OVERFLOW | FP_INVALID))
806 WT2 = FLOAT_SNAN32;
808 FLOAT_OP(cvtw, d)
810 set_float_exception_flags(0, &env->fpu->fp_status);
811 WT2 = float64_to_int32(FDT0, &env->fpu->fp_status);
812 update_fcr31();
813 if (GET_FP_CAUSE(env->fpu->fcr31) & (FP_OVERFLOW | FP_INVALID))
814 WT2 = FLOAT_SNAN32;
817 FLOAT_OP(roundl, d)
819 set_float_rounding_mode(float_round_nearest_even, &env->fpu->fp_status);
820 DT2 = float64_to_int64(FDT0, &env->fpu->fp_status);
821 RESTORE_ROUNDING_MODE;
822 update_fcr31();
823 if (GET_FP_CAUSE(env->fpu->fcr31) & (FP_OVERFLOW | FP_INVALID))
824 DT2 = FLOAT_SNAN64;
826 FLOAT_OP(roundl, s)
828 set_float_rounding_mode(float_round_nearest_even, &env->fpu->fp_status);
829 DT2 = float32_to_int64(FST0, &env->fpu->fp_status);
830 RESTORE_ROUNDING_MODE;
831 update_fcr31();
832 if (GET_FP_CAUSE(env->fpu->fcr31) & (FP_OVERFLOW | FP_INVALID))
833 DT2 = FLOAT_SNAN64;
835 FLOAT_OP(roundw, d)
837 set_float_rounding_mode(float_round_nearest_even, &env->fpu->fp_status);
838 WT2 = float64_to_int32(FDT0, &env->fpu->fp_status);
839 RESTORE_ROUNDING_MODE;
840 update_fcr31();
841 if (GET_FP_CAUSE(env->fpu->fcr31) & (FP_OVERFLOW | FP_INVALID))
842 WT2 = FLOAT_SNAN32;
844 FLOAT_OP(roundw, s)
846 set_float_rounding_mode(float_round_nearest_even, &env->fpu->fp_status);
847 WT2 = float32_to_int32(FST0, &env->fpu->fp_status);
848 RESTORE_ROUNDING_MODE;
849 update_fcr31();
850 if (GET_FP_CAUSE(env->fpu->fcr31) & (FP_OVERFLOW | FP_INVALID))
851 WT2 = FLOAT_SNAN32;
854 FLOAT_OP(truncl, d)
856 DT2 = float64_to_int64_round_to_zero(FDT0, &env->fpu->fp_status);
857 update_fcr31();
858 if (GET_FP_CAUSE(env->fpu->fcr31) & (FP_OVERFLOW | FP_INVALID))
859 DT2 = FLOAT_SNAN64;
861 FLOAT_OP(truncl, s)
863 DT2 = float32_to_int64_round_to_zero(FST0, &env->fpu->fp_status);
864 update_fcr31();
865 if (GET_FP_CAUSE(env->fpu->fcr31) & (FP_OVERFLOW | FP_INVALID))
866 DT2 = FLOAT_SNAN64;
868 FLOAT_OP(truncw, d)
870 WT2 = float64_to_int32_round_to_zero(FDT0, &env->fpu->fp_status);
871 update_fcr31();
872 if (GET_FP_CAUSE(env->fpu->fcr31) & (FP_OVERFLOW | FP_INVALID))
873 WT2 = FLOAT_SNAN32;
875 FLOAT_OP(truncw, s)
877 WT2 = float32_to_int32_round_to_zero(FST0, &env->fpu->fp_status);
878 update_fcr31();
879 if (GET_FP_CAUSE(env->fpu->fcr31) & (FP_OVERFLOW | FP_INVALID))
880 WT2 = FLOAT_SNAN32;
883 FLOAT_OP(ceill, d)
885 set_float_rounding_mode(float_round_up, &env->fpu->fp_status);
886 DT2 = float64_to_int64(FDT0, &env->fpu->fp_status);
887 RESTORE_ROUNDING_MODE;
888 update_fcr31();
889 if (GET_FP_CAUSE(env->fpu->fcr31) & (FP_OVERFLOW | FP_INVALID))
890 DT2 = FLOAT_SNAN64;
892 FLOAT_OP(ceill, s)
894 set_float_rounding_mode(float_round_up, &env->fpu->fp_status);
895 DT2 = float32_to_int64(FST0, &env->fpu->fp_status);
896 RESTORE_ROUNDING_MODE;
897 update_fcr31();
898 if (GET_FP_CAUSE(env->fpu->fcr31) & (FP_OVERFLOW | FP_INVALID))
899 DT2 = FLOAT_SNAN64;
901 FLOAT_OP(ceilw, d)
903 set_float_rounding_mode(float_round_up, &env->fpu->fp_status);
904 WT2 = float64_to_int32(FDT0, &env->fpu->fp_status);
905 RESTORE_ROUNDING_MODE;
906 update_fcr31();
907 if (GET_FP_CAUSE(env->fpu->fcr31) & (FP_OVERFLOW | FP_INVALID))
908 WT2 = FLOAT_SNAN32;
910 FLOAT_OP(ceilw, s)
912 set_float_rounding_mode(float_round_up, &env->fpu->fp_status);
913 WT2 = float32_to_int32(FST0, &env->fpu->fp_status);
914 RESTORE_ROUNDING_MODE;
915 update_fcr31();
916 if (GET_FP_CAUSE(env->fpu->fcr31) & (FP_OVERFLOW | FP_INVALID))
917 WT2 = FLOAT_SNAN32;
920 FLOAT_OP(floorl, d)
922 set_float_rounding_mode(float_round_down, &env->fpu->fp_status);
923 DT2 = float64_to_int64(FDT0, &env->fpu->fp_status);
924 RESTORE_ROUNDING_MODE;
925 update_fcr31();
926 if (GET_FP_CAUSE(env->fpu->fcr31) & (FP_OVERFLOW | FP_INVALID))
927 DT2 = FLOAT_SNAN64;
929 FLOAT_OP(floorl, s)
931 set_float_rounding_mode(float_round_down, &env->fpu->fp_status);
932 DT2 = float32_to_int64(FST0, &env->fpu->fp_status);
933 RESTORE_ROUNDING_MODE;
934 update_fcr31();
935 if (GET_FP_CAUSE(env->fpu->fcr31) & (FP_OVERFLOW | FP_INVALID))
936 DT2 = FLOAT_SNAN64;
938 FLOAT_OP(floorw, d)
940 set_float_rounding_mode(float_round_down, &env->fpu->fp_status);
941 WT2 = float64_to_int32(FDT0, &env->fpu->fp_status);
942 RESTORE_ROUNDING_MODE;
943 update_fcr31();
944 if (GET_FP_CAUSE(env->fpu->fcr31) & (FP_OVERFLOW | FP_INVALID))
945 WT2 = FLOAT_SNAN32;
947 FLOAT_OP(floorw, s)
949 set_float_rounding_mode(float_round_down, &env->fpu->fp_status);
950 WT2 = float32_to_int32(FST0, &env->fpu->fp_status);
951 RESTORE_ROUNDING_MODE;
952 update_fcr31();
953 if (GET_FP_CAUSE(env->fpu->fcr31) & (FP_OVERFLOW | FP_INVALID))
954 WT2 = FLOAT_SNAN32;
957 /* MIPS specific unary operations */
958 FLOAT_OP(recip, d)
960 set_float_exception_flags(0, &env->fpu->fp_status);
961 FDT2 = float64_div(FLOAT_ONE64, FDT0, &env->fpu->fp_status);
962 update_fcr31();
964 FLOAT_OP(recip, s)
966 set_float_exception_flags(0, &env->fpu->fp_status);
967 FST2 = float32_div(FLOAT_ONE32, FST0, &env->fpu->fp_status);
968 update_fcr31();
971 FLOAT_OP(rsqrt, d)
973 set_float_exception_flags(0, &env->fpu->fp_status);
974 FDT2 = float64_sqrt(FDT0, &env->fpu->fp_status);
975 FDT2 = float64_div(FLOAT_ONE64, FDT2, &env->fpu->fp_status);
976 update_fcr31();
978 FLOAT_OP(rsqrt, s)
980 set_float_exception_flags(0, &env->fpu->fp_status);
981 FST2 = float32_sqrt(FST0, &env->fpu->fp_status);
982 FST2 = float32_div(FLOAT_ONE32, FST2, &env->fpu->fp_status);
983 update_fcr31();
986 FLOAT_OP(recip1, d)
988 set_float_exception_flags(0, &env->fpu->fp_status);
989 FDT2 = float64_div(FLOAT_ONE64, FDT0, &env->fpu->fp_status);
990 update_fcr31();
992 FLOAT_OP(recip1, s)
994 set_float_exception_flags(0, &env->fpu->fp_status);
995 FST2 = float32_div(FLOAT_ONE32, FST0, &env->fpu->fp_status);
996 update_fcr31();
998 FLOAT_OP(recip1, ps)
1000 set_float_exception_flags(0, &env->fpu->fp_status);
1001 FST2 = float32_div(FLOAT_ONE32, FST0, &env->fpu->fp_status);
1002 FSTH2 = float32_div(FLOAT_ONE32, FSTH0, &env->fpu->fp_status);
1003 update_fcr31();
1006 FLOAT_OP(rsqrt1, d)
1008 set_float_exception_flags(0, &env->fpu->fp_status);
1009 FDT2 = float64_sqrt(FDT0, &env->fpu->fp_status);
1010 FDT2 = float64_div(FLOAT_ONE64, FDT2, &env->fpu->fp_status);
1011 update_fcr31();
1013 FLOAT_OP(rsqrt1, s)
1015 set_float_exception_flags(0, &env->fpu->fp_status);
1016 FST2 = float32_sqrt(FST0, &env->fpu->fp_status);
1017 FST2 = float32_div(FLOAT_ONE32, FST2, &env->fpu->fp_status);
1018 update_fcr31();
1020 FLOAT_OP(rsqrt1, ps)
1022 set_float_exception_flags(0, &env->fpu->fp_status);
1023 FST2 = float32_sqrt(FST0, &env->fpu->fp_status);
1024 FSTH2 = float32_sqrt(FSTH0, &env->fpu->fp_status);
1025 FST2 = float32_div(FLOAT_ONE32, FST2, &env->fpu->fp_status);
1026 FSTH2 = float32_div(FLOAT_ONE32, FSTH2, &env->fpu->fp_status);
1027 update_fcr31();
1030 /* binary operations */
1031 #define FLOAT_BINOP(name) \
1032 FLOAT_OP(name, d) \
1034 set_float_exception_flags(0, &env->fpu->fp_status); \
1035 FDT2 = float64_ ## name (FDT0, FDT1, &env->fpu->fp_status); \
1036 update_fcr31(); \
1037 if (GET_FP_CAUSE(env->fpu->fcr31) & FP_INVALID) \
1038 FDT2 = FLOAT_QNAN64; \
1040 FLOAT_OP(name, s) \
1042 set_float_exception_flags(0, &env->fpu->fp_status); \
1043 FST2 = float32_ ## name (FST0, FST1, &env->fpu->fp_status); \
1044 update_fcr31(); \
1045 if (GET_FP_CAUSE(env->fpu->fcr31) & FP_INVALID) \
1046 FST2 = FLOAT_QNAN32; \
1048 FLOAT_OP(name, ps) \
1050 set_float_exception_flags(0, &env->fpu->fp_status); \
1051 FST2 = float32_ ## name (FST0, FST1, &env->fpu->fp_status); \
1052 FSTH2 = float32_ ## name (FSTH0, FSTH1, &env->fpu->fp_status); \
1053 update_fcr31(); \
1054 if (GET_FP_CAUSE(env->fpu->fcr31) & FP_INVALID) { \
1055 FST2 = FLOAT_QNAN32; \
1056 FSTH2 = FLOAT_QNAN32; \
1059 FLOAT_BINOP(add)
1060 FLOAT_BINOP(sub)
1061 FLOAT_BINOP(mul)
1062 FLOAT_BINOP(div)
1063 #undef FLOAT_BINOP
1065 /* MIPS specific binary operations */
1066 FLOAT_OP(recip2, d)
1068 set_float_exception_flags(0, &env->fpu->fp_status);
1069 FDT2 = float64_mul(FDT0, FDT2, &env->fpu->fp_status);
1070 FDT2 = float64_sub(FDT2, FLOAT_ONE64, &env->fpu->fp_status) ^ FLOAT_SIGN64;
1071 update_fcr31();
1073 FLOAT_OP(recip2, s)
1075 set_float_exception_flags(0, &env->fpu->fp_status);
1076 FST2 = float32_mul(FST0, FST2, &env->fpu->fp_status);
1077 FST2 = float32_sub(FST2, FLOAT_ONE32, &env->fpu->fp_status) ^ FLOAT_SIGN32;
1078 update_fcr31();
1080 FLOAT_OP(recip2, ps)
1082 set_float_exception_flags(0, &env->fpu->fp_status);
1083 FST2 = float32_mul(FST0, FST2, &env->fpu->fp_status);
1084 FSTH2 = float32_mul(FSTH0, FSTH2, &env->fpu->fp_status);
1085 FST2 = float32_sub(FST2, FLOAT_ONE32, &env->fpu->fp_status) ^ FLOAT_SIGN32;
1086 FSTH2 = float32_sub(FSTH2, FLOAT_ONE32, &env->fpu->fp_status) ^ FLOAT_SIGN32;
1087 update_fcr31();
1090 FLOAT_OP(rsqrt2, d)
1092 set_float_exception_flags(0, &env->fpu->fp_status);
1093 FDT2 = float64_mul(FDT0, FDT2, &env->fpu->fp_status);
1094 FDT2 = float64_sub(FDT2, FLOAT_ONE64, &env->fpu->fp_status);
1095 FDT2 = float64_div(FDT2, FLOAT_TWO64, &env->fpu->fp_status) ^ FLOAT_SIGN64;
1096 update_fcr31();
1098 FLOAT_OP(rsqrt2, s)
1100 set_float_exception_flags(0, &env->fpu->fp_status);
1101 FST2 = float32_mul(FST0, FST2, &env->fpu->fp_status);
1102 FST2 = float32_sub(FST2, FLOAT_ONE32, &env->fpu->fp_status);
1103 FST2 = float32_div(FST2, FLOAT_TWO32, &env->fpu->fp_status) ^ FLOAT_SIGN32;
1104 update_fcr31();
1106 FLOAT_OP(rsqrt2, ps)
1108 set_float_exception_flags(0, &env->fpu->fp_status);
1109 FST2 = float32_mul(FST0, FST2, &env->fpu->fp_status);
1110 FSTH2 = float32_mul(FSTH0, FSTH2, &env->fpu->fp_status);
1111 FST2 = float32_sub(FST2, FLOAT_ONE32, &env->fpu->fp_status);
1112 FSTH2 = float32_sub(FSTH2, FLOAT_ONE32, &env->fpu->fp_status);
1113 FST2 = float32_div(FST2, FLOAT_TWO32, &env->fpu->fp_status) ^ FLOAT_SIGN32;
1114 FSTH2 = float32_div(FSTH2, FLOAT_TWO32, &env->fpu->fp_status) ^ FLOAT_SIGN32;
1115 update_fcr31();
1118 FLOAT_OP(addr, ps)
1120 set_float_exception_flags(0, &env->fpu->fp_status);
1121 FST2 = float32_add (FST0, FSTH0, &env->fpu->fp_status);
1122 FSTH2 = float32_add (FST1, FSTH1, &env->fpu->fp_status);
1123 update_fcr31();
1126 FLOAT_OP(mulr, ps)
1128 set_float_exception_flags(0, &env->fpu->fp_status);
1129 FST2 = float32_mul (FST0, FSTH0, &env->fpu->fp_status);
1130 FSTH2 = float32_mul (FST1, FSTH1, &env->fpu->fp_status);
1131 update_fcr31();
1134 /* compare operations */
1135 #define FOP_COND_D(op, cond) \
1136 void do_cmp_d_ ## op (long cc) \
1138 int c = cond; \
1139 update_fcr31(); \
1140 if (c) \
1141 SET_FP_COND(cc, env->fpu); \
1142 else \
1143 CLEAR_FP_COND(cc, env->fpu); \
1145 void do_cmpabs_d_ ## op (long cc) \
1147 int c; \
1148 FDT0 &= ~FLOAT_SIGN64; \
1149 FDT1 &= ~FLOAT_SIGN64; \
1150 c = cond; \
1151 update_fcr31(); \
1152 if (c) \
1153 SET_FP_COND(cc, env->fpu); \
1154 else \
1155 CLEAR_FP_COND(cc, env->fpu); \
1158 int float64_is_unordered(int sig, float64 a, float64 b STATUS_PARAM)
1160 if (float64_is_signaling_nan(a) ||
1161 float64_is_signaling_nan(b) ||
1162 (sig && (float64_is_nan(a) || float64_is_nan(b)))) {
1163 float_raise(float_flag_invalid, status);
1164 return 1;
1165 } else if (float64_is_nan(a) || float64_is_nan(b)) {
1166 return 1;
1167 } else {
1168 return 0;
1172 /* NOTE: the comma operator will make "cond" to eval to false,
1173 * but float*_is_unordered() is still called. */
1174 FOP_COND_D(f, (float64_is_unordered(0, FDT1, FDT0, &env->fpu->fp_status), 0))
1175 FOP_COND_D(un, float64_is_unordered(0, FDT1, FDT0, &env->fpu->fp_status))
1176 FOP_COND_D(eq, !float64_is_unordered(0, FDT1, FDT0, &env->fpu->fp_status) && float64_eq(FDT0, FDT1, &env->fpu->fp_status))
1177 FOP_COND_D(ueq, float64_is_unordered(0, FDT1, FDT0, &env->fpu->fp_status) || float64_eq(FDT0, FDT1, &env->fpu->fp_status))
1178 FOP_COND_D(olt, !float64_is_unordered(0, FDT1, FDT0, &env->fpu->fp_status) && float64_lt(FDT0, FDT1, &env->fpu->fp_status))
1179 FOP_COND_D(ult, float64_is_unordered(0, FDT1, FDT0, &env->fpu->fp_status) || float64_lt(FDT0, FDT1, &env->fpu->fp_status))
1180 FOP_COND_D(ole, !float64_is_unordered(0, FDT1, FDT0, &env->fpu->fp_status) && float64_le(FDT0, FDT1, &env->fpu->fp_status))
1181 FOP_COND_D(ule, float64_is_unordered(0, FDT1, FDT0, &env->fpu->fp_status) || float64_le(FDT0, FDT1, &env->fpu->fp_status))
1182 /* NOTE: the comma operator will make "cond" to eval to false,
1183 * but float*_is_unordered() is still called. */
1184 FOP_COND_D(sf, (float64_is_unordered(1, FDT1, FDT0, &env->fpu->fp_status), 0))
1185 FOP_COND_D(ngle,float64_is_unordered(1, FDT1, FDT0, &env->fpu->fp_status))
1186 FOP_COND_D(seq, !float64_is_unordered(1, FDT1, FDT0, &env->fpu->fp_status) && float64_eq(FDT0, FDT1, &env->fpu->fp_status))
1187 FOP_COND_D(ngl, float64_is_unordered(1, FDT1, FDT0, &env->fpu->fp_status) || float64_eq(FDT0, FDT1, &env->fpu->fp_status))
1188 FOP_COND_D(lt, !float64_is_unordered(1, FDT1, FDT0, &env->fpu->fp_status) && float64_lt(FDT0, FDT1, &env->fpu->fp_status))
1189 FOP_COND_D(nge, float64_is_unordered(1, FDT1, FDT0, &env->fpu->fp_status) || float64_lt(FDT0, FDT1, &env->fpu->fp_status))
1190 FOP_COND_D(le, !float64_is_unordered(1, FDT1, FDT0, &env->fpu->fp_status) && float64_le(FDT0, FDT1, &env->fpu->fp_status))
1191 FOP_COND_D(ngt, float64_is_unordered(1, FDT1, FDT0, &env->fpu->fp_status) || float64_le(FDT0, FDT1, &env->fpu->fp_status))
1193 #define FOP_COND_S(op, cond) \
1194 void do_cmp_s_ ## op (long cc) \
1196 int c = cond; \
1197 update_fcr31(); \
1198 if (c) \
1199 SET_FP_COND(cc, env->fpu); \
1200 else \
1201 CLEAR_FP_COND(cc, env->fpu); \
1203 void do_cmpabs_s_ ## op (long cc) \
1205 int c; \
1206 FST0 &= ~FLOAT_SIGN32; \
1207 FST1 &= ~FLOAT_SIGN32; \
1208 c = cond; \
1209 update_fcr31(); \
1210 if (c) \
1211 SET_FP_COND(cc, env->fpu); \
1212 else \
1213 CLEAR_FP_COND(cc, env->fpu); \
1216 flag float32_is_unordered(int sig, float32 a, float32 b STATUS_PARAM)
1218 if (float32_is_signaling_nan(a) ||
1219 float32_is_signaling_nan(b) ||
1220 (sig && (float32_is_nan(a) || float32_is_nan(b)))) {
1221 float_raise(float_flag_invalid, status);
1222 return 1;
1223 } else if (float32_is_nan(a) || float32_is_nan(b)) {
1224 return 1;
1225 } else {
1226 return 0;
1230 /* NOTE: the comma operator will make "cond" to eval to false,
1231 * but float*_is_unordered() is still called. */
1232 FOP_COND_S(f, (float32_is_unordered(0, FST1, FST0, &env->fpu->fp_status), 0))
1233 FOP_COND_S(un, float32_is_unordered(0, FST1, FST0, &env->fpu->fp_status))
1234 FOP_COND_S(eq, !float32_is_unordered(0, FST1, FST0, &env->fpu->fp_status) && float32_eq(FST0, FST1, &env->fpu->fp_status))
1235 FOP_COND_S(ueq, float32_is_unordered(0, FST1, FST0, &env->fpu->fp_status) || float32_eq(FST0, FST1, &env->fpu->fp_status))
1236 FOP_COND_S(olt, !float32_is_unordered(0, FST1, FST0, &env->fpu->fp_status) && float32_lt(FST0, FST1, &env->fpu->fp_status))
1237 FOP_COND_S(ult, float32_is_unordered(0, FST1, FST0, &env->fpu->fp_status) || float32_lt(FST0, FST1, &env->fpu->fp_status))
1238 FOP_COND_S(ole, !float32_is_unordered(0, FST1, FST0, &env->fpu->fp_status) && float32_le(FST0, FST1, &env->fpu->fp_status))
1239 FOP_COND_S(ule, float32_is_unordered(0, FST1, FST0, &env->fpu->fp_status) || float32_le(FST0, FST1, &env->fpu->fp_status))
1240 /* NOTE: the comma operator will make "cond" to eval to false,
1241 * but float*_is_unordered() is still called. */
1242 FOP_COND_S(sf, (float32_is_unordered(1, FST1, FST0, &env->fpu->fp_status), 0))
1243 FOP_COND_S(ngle,float32_is_unordered(1, FST1, FST0, &env->fpu->fp_status))
1244 FOP_COND_S(seq, !float32_is_unordered(1, FST1, FST0, &env->fpu->fp_status) && float32_eq(FST0, FST1, &env->fpu->fp_status))
1245 FOP_COND_S(ngl, float32_is_unordered(1, FST1, FST0, &env->fpu->fp_status) || float32_eq(FST0, FST1, &env->fpu->fp_status))
1246 FOP_COND_S(lt, !float32_is_unordered(1, FST1, FST0, &env->fpu->fp_status) && float32_lt(FST0, FST1, &env->fpu->fp_status))
1247 FOP_COND_S(nge, float32_is_unordered(1, FST1, FST0, &env->fpu->fp_status) || float32_lt(FST0, FST1, &env->fpu->fp_status))
1248 FOP_COND_S(le, !float32_is_unordered(1, FST1, FST0, &env->fpu->fp_status) && float32_le(FST0, FST1, &env->fpu->fp_status))
1249 FOP_COND_S(ngt, float32_is_unordered(1, FST1, FST0, &env->fpu->fp_status) || float32_le(FST0, FST1, &env->fpu->fp_status))
1251 #define FOP_COND_PS(op, condl, condh) \
1252 void do_cmp_ps_ ## op (long cc) \
1254 int cl = condl; \
1255 int ch = condh; \
1256 update_fcr31(); \
1257 if (cl) \
1258 SET_FP_COND(cc, env->fpu); \
1259 else \
1260 CLEAR_FP_COND(cc, env->fpu); \
1261 if (ch) \
1262 SET_FP_COND(cc + 1, env->fpu); \
1263 else \
1264 CLEAR_FP_COND(cc + 1, env->fpu); \
1266 void do_cmpabs_ps_ ## op (long cc) \
1268 int cl, ch; \
1269 FST0 &= ~FLOAT_SIGN32; \
1270 FSTH0 &= ~FLOAT_SIGN32; \
1271 FST1 &= ~FLOAT_SIGN32; \
1272 FSTH1 &= ~FLOAT_SIGN32; \
1273 cl = condl; \
1274 ch = condh; \
1275 update_fcr31(); \
1276 if (cl) \
1277 SET_FP_COND(cc, env->fpu); \
1278 else \
1279 CLEAR_FP_COND(cc, env->fpu); \
1280 if (ch) \
1281 SET_FP_COND(cc + 1, env->fpu); \
1282 else \
1283 CLEAR_FP_COND(cc + 1, env->fpu); \
1286 /* NOTE: the comma operator will make "cond" to eval to false,
1287 * but float*_is_unordered() is still called. */
1288 FOP_COND_PS(f, (float32_is_unordered(0, FST1, FST0, &env->fpu->fp_status), 0),
1289 (float32_is_unordered(0, FSTH1, FSTH0, &env->fpu->fp_status), 0))
1290 FOP_COND_PS(un, float32_is_unordered(0, FST1, FST0, &env->fpu->fp_status),
1291 float32_is_unordered(0, FSTH1, FSTH0, &env->fpu->fp_status))
1292 FOP_COND_PS(eq, !float32_is_unordered(0, FST1, FST0, &env->fpu->fp_status) && float32_eq(FST0, FST1, &env->fpu->fp_status),
1293 !float32_is_unordered(0, FSTH1, FSTH0, &env->fpu->fp_status) && float32_eq(FSTH0, FSTH1, &env->fpu->fp_status))
1294 FOP_COND_PS(ueq, float32_is_unordered(0, FST1, FST0, &env->fpu->fp_status) || float32_eq(FST0, FST1, &env->fpu->fp_status),
1295 float32_is_unordered(0, FSTH1, FSTH0, &env->fpu->fp_status) || float32_eq(FSTH0, FSTH1, &env->fpu->fp_status))
1296 FOP_COND_PS(olt, !float32_is_unordered(0, FST1, FST0, &env->fpu->fp_status) && float32_lt(FST0, FST1, &env->fpu->fp_status),
1297 !float32_is_unordered(0, FSTH1, FSTH0, &env->fpu->fp_status) && float32_lt(FSTH0, FSTH1, &env->fpu->fp_status))
1298 FOP_COND_PS(ult, float32_is_unordered(0, FST1, FST0, &env->fpu->fp_status) || float32_lt(FST0, FST1, &env->fpu->fp_status),
1299 float32_is_unordered(0, FSTH1, FSTH0, &env->fpu->fp_status) || float32_lt(FSTH0, FSTH1, &env->fpu->fp_status))
1300 FOP_COND_PS(ole, !float32_is_unordered(0, FST1, FST0, &env->fpu->fp_status) && float32_le(FST0, FST1, &env->fpu->fp_status),
1301 !float32_is_unordered(0, FSTH1, FSTH0, &env->fpu->fp_status) && float32_le(FSTH0, FSTH1, &env->fpu->fp_status))
1302 FOP_COND_PS(ule, float32_is_unordered(0, FST1, FST0, &env->fpu->fp_status) || float32_le(FST0, FST1, &env->fpu->fp_status),
1303 float32_is_unordered(0, FSTH1, FSTH0, &env->fpu->fp_status) || float32_le(FSTH0, FSTH1, &env->fpu->fp_status))
1304 /* NOTE: the comma operator will make "cond" to eval to false,
1305 * but float*_is_unordered() is still called. */
1306 FOP_COND_PS(sf, (float32_is_unordered(1, FST1, FST0, &env->fpu->fp_status), 0),
1307 (float32_is_unordered(1, FSTH1, FSTH0, &env->fpu->fp_status), 0))
1308 FOP_COND_PS(ngle,float32_is_unordered(1, FST1, FST0, &env->fpu->fp_status),
1309 float32_is_unordered(1, FSTH1, FSTH0, &env->fpu->fp_status))
1310 FOP_COND_PS(seq, !float32_is_unordered(1, FST1, FST0, &env->fpu->fp_status) && float32_eq(FST0, FST1, &env->fpu->fp_status),
1311 !float32_is_unordered(1, FSTH1, FSTH0, &env->fpu->fp_status) && float32_eq(FSTH0, FSTH1, &env->fpu->fp_status))
1312 FOP_COND_PS(ngl, float32_is_unordered(1, FST1, FST0, &env->fpu->fp_status) || float32_eq(FST0, FST1, &env->fpu->fp_status),
1313 float32_is_unordered(1, FSTH1, FSTH0, &env->fpu->fp_status) || float32_eq(FSTH0, FSTH1, &env->fpu->fp_status))
1314 FOP_COND_PS(lt, !float32_is_unordered(1, FST1, FST0, &env->fpu->fp_status) && float32_lt(FST0, FST1, &env->fpu->fp_status),
1315 !float32_is_unordered(1, FSTH1, FSTH0, &env->fpu->fp_status) && float32_lt(FSTH0, FSTH1, &env->fpu->fp_status))
1316 FOP_COND_PS(nge, float32_is_unordered(1, FST1, FST0, &env->fpu->fp_status) || float32_lt(FST0, FST1, &env->fpu->fp_status),
1317 float32_is_unordered(1, FSTH1, FSTH0, &env->fpu->fp_status) || float32_lt(FSTH0, FSTH1, &env->fpu->fp_status))
1318 FOP_COND_PS(le, !float32_is_unordered(1, FST1, FST0, &env->fpu->fp_status) && float32_le(FST0, FST1, &env->fpu->fp_status),
1319 !float32_is_unordered(1, FSTH1, FSTH0, &env->fpu->fp_status) && float32_le(FSTH0, FSTH1, &env->fpu->fp_status))
1320 FOP_COND_PS(ngt, float32_is_unordered(1, FST1, FST0, &env->fpu->fp_status) || float32_le(FST0, FST1, &env->fpu->fp_status),
1321 float32_is_unordered(1, FSTH1, FSTH0, &env->fpu->fp_status) || float32_le(FSTH0, FSTH1, &env->fpu->fp_status))