Do not use env->halted to decide where halted state should be handled
[qemu-kvm/fedora.git] / vl.c
blob845ed54bee70df9e2c8593a2a552eee84ed4ed78
1 /*
2 * QEMU System Emulator
4 * Copyright (c) 2003-2008 Fabrice Bellard
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
24 #include <unistd.h>
25 #include <fcntl.h>
26 #include <signal.h>
27 #include <time.h>
28 #include <errno.h>
29 #include <sys/time.h>
30 #include <zlib.h>
32 /* Needed early for HOST_BSD etc. */
33 #include "config-host.h"
35 #ifndef _WIN32
36 #include <libgen.h>
37 #include <pwd.h>
38 #include <sys/times.h>
39 #include <sys/wait.h>
40 #include <termios.h>
41 #include <sys/mman.h>
42 #include <sys/ioctl.h>
43 #include <sys/resource.h>
44 #include <sys/socket.h>
45 #include <netinet/in.h>
46 #include <net/if.h>
47 #if defined(__NetBSD__)
48 #include <net/if_tap.h>
49 #endif
50 #ifdef __linux__
51 #include <linux/if_tun.h>
52 #endif
53 #include <arpa/inet.h>
54 #include <dirent.h>
55 #include <netdb.h>
56 #include <sys/select.h>
57 #ifdef HOST_BSD
58 #include <sys/stat.h>
59 #if defined(__FreeBSD__) || defined(__DragonFly__)
60 #include <libutil.h>
61 #else
62 #include <util.h>
63 #endif
64 #elif defined (__GLIBC__) && defined (__FreeBSD_kernel__)
65 #include <freebsd/stdlib.h>
66 #else
67 #ifdef __linux__
68 #include <pty.h>
69 #include <malloc.h>
70 #include <linux/rtc.h>
72 /* For the benefit of older linux systems which don't supply it,
73 we use a local copy of hpet.h. */
74 /* #include <linux/hpet.h> */
75 #include "hpet.h"
77 #include <linux/ppdev.h>
78 #include <linux/parport.h>
79 #endif
80 #ifdef __sun__
81 #include <sys/stat.h>
82 #include <sys/ethernet.h>
83 #include <sys/sockio.h>
84 #include <netinet/arp.h>
85 #include <netinet/in.h>
86 #include <netinet/in_systm.h>
87 #include <netinet/ip.h>
88 #include <netinet/ip_icmp.h> // must come after ip.h
89 #include <netinet/udp.h>
90 #include <netinet/tcp.h>
91 #include <net/if.h>
92 #include <syslog.h>
93 #include <stropts.h>
94 #endif
95 #endif
96 #endif
98 #if defined(__OpenBSD__)
99 #include <util.h>
100 #endif
102 #if defined(CONFIG_VDE)
103 #include <libvdeplug.h>
104 #endif
106 #ifdef _WIN32
107 #include <windows.h>
108 #include <malloc.h>
109 #include <sys/timeb.h>
110 #include <mmsystem.h>
111 #define getopt_long_only getopt_long
112 #define memalign(align, size) malloc(size)
113 #endif
115 #ifdef CONFIG_SDL
116 #ifdef __APPLE__
117 #include <SDL/SDL.h>
118 int qemu_main(int argc, char **argv, char **envp);
119 int main(int argc, char **argv)
121 qemu_main(argc, argv, NULL);
123 #undef main
124 #define main qemu_main
125 #endif
126 #endif /* CONFIG_SDL */
128 #ifdef CONFIG_COCOA
129 #undef main
130 #define main qemu_main
131 #endif /* CONFIG_COCOA */
133 #include "hw/hw.h"
134 #include "hw/boards.h"
135 #include "hw/usb.h"
136 #include "hw/pcmcia.h"
137 #include "hw/pc.h"
138 #include "hw/audiodev.h"
139 #include "hw/isa.h"
140 #include "hw/baum.h"
141 #include "hw/bt.h"
142 #include "hw/watchdog.h"
143 #include "hw/smbios.h"
144 #include "hw/xen.h"
145 #include "bt-host.h"
146 #include "net.h"
147 #include "monitor.h"
148 #include "console.h"
149 #include "sysemu.h"
150 #include "gdbstub.h"
151 #include "qemu-timer.h"
152 #include "qemu-char.h"
153 #include "cache-utils.h"
154 #include "block.h"
155 #include "dma.h"
156 #include "audio/audio.h"
157 #include "migration.h"
158 #include "kvm.h"
159 #include "balloon.h"
160 #include "qemu-option.h"
161 #include "qemu-kvm.h"
162 #include "hw/device-assignment.h"
164 #include "disas.h"
166 #include "exec-all.h"
168 #include "qemu_socket.h"
170 #if defined(CONFIG_SLIRP)
171 #include "libslirp.h"
172 #endif
174 //#define DEBUG_UNUSED_IOPORT
175 //#define DEBUG_IOPORT
176 //#define DEBUG_NET
177 //#define DEBUG_SLIRP
180 #ifdef DEBUG_IOPORT
181 # define LOG_IOPORT(...) qemu_log_mask(CPU_LOG_IOPORT, ## __VA_ARGS__)
182 #else
183 # define LOG_IOPORT(...) do { } while (0)
184 #endif
186 #define DEFAULT_RAM_SIZE 128
188 /* Max number of USB devices that can be specified on the commandline. */
189 #define MAX_USB_CMDLINE 8
191 /* Max number of bluetooth switches on the commandline. */
192 #define MAX_BT_CMDLINE 10
194 /* XXX: use a two level table to limit memory usage */
195 #define MAX_IOPORTS 65536
197 static const char *data_dir;
198 const char *bios_name = NULL;
199 static void *ioport_opaque[MAX_IOPORTS];
200 static IOPortReadFunc *ioport_read_table[3][MAX_IOPORTS];
201 static IOPortWriteFunc *ioport_write_table[3][MAX_IOPORTS];
202 /* Note: drives_table[MAX_DRIVES] is a dummy block driver if none available
203 to store the VM snapshots */
204 DriveInfo drives_table[MAX_DRIVES+1];
205 int nb_drives;
206 int extboot_drive = -1;
207 enum vga_retrace_method vga_retrace_method = VGA_RETRACE_DUMB;
208 static DisplayState *display_state;
209 DisplayType display_type = DT_DEFAULT;
210 const char* keyboard_layout = NULL;
211 int64_t ticks_per_sec;
212 ram_addr_t ram_size;
213 int nb_nics;
214 NICInfo nd_table[MAX_NICS];
215 int vm_running;
216 static int autostart;
217 static int rtc_utc = 1;
218 static int rtc_date_offset = -1; /* -1 means no change */
219 int cirrus_vga_enabled = 1;
220 int std_vga_enabled = 0;
221 int vmsvga_enabled = 0;
222 int xenfb_enabled = 0;
223 #ifdef TARGET_SPARC
224 int graphic_width = 1024;
225 int graphic_height = 768;
226 int graphic_depth = 8;
227 #else
228 int graphic_width = 800;
229 int graphic_height = 600;
230 int graphic_depth = 15;
231 #endif
232 static int full_screen = 0;
233 #ifdef CONFIG_SDL
234 static int no_frame = 0;
235 #endif
236 int no_quit = 0;
237 CharDriverState *serial_hds[MAX_SERIAL_PORTS];
238 CharDriverState *parallel_hds[MAX_PARALLEL_PORTS];
239 CharDriverState *virtcon_hds[MAX_VIRTIO_CONSOLES];
240 #ifdef TARGET_I386
241 int win2k_install_hack = 0;
242 int rtc_td_hack = 0;
243 #endif
244 int usb_enabled = 0;
245 int singlestep = 0;
246 const char *assigned_devices[MAX_DEV_ASSIGN_CMDLINE];
247 int assigned_devices_index;
248 int smp_cpus = 1;
249 const char *vnc_display;
250 int acpi_enabled = 1;
251 int no_hpet = 0;
252 int fd_bootchk = 1;
253 int no_reboot = 0;
254 int no_shutdown = 0;
255 int cursor_hide = 1;
256 int graphic_rotate = 0;
257 #ifndef _WIN32
258 int daemonize = 0;
259 #endif
260 WatchdogTimerModel *watchdog = NULL;
261 int watchdog_action = WDT_RESET;
262 const char *option_rom[MAX_OPTION_ROMS];
263 int nb_option_roms;
264 int semihosting_enabled = 0;
265 int time_drift_fix = 0;
266 unsigned int kvm_shadow_memory = 0;
267 const char *mem_path = NULL;
268 #ifdef MAP_POPULATE
269 int mem_prealloc = 1; /* force preallocation of physical target memory */
270 #endif
271 #ifdef TARGET_ARM
272 int old_param = 0;
273 #endif
274 const char *qemu_name;
275 int alt_grab = 0;
276 #if defined(TARGET_SPARC) || defined(TARGET_PPC)
277 unsigned int nb_prom_envs = 0;
278 const char *prom_envs[MAX_PROM_ENVS];
279 #endif
280 int nb_drives_opt;
281 const char *nvram = NULL;
282 struct drive_opt drives_opt[MAX_DRIVES];
284 int nb_numa_nodes;
285 uint64_t node_mem[MAX_NODES];
286 uint64_t node_cpumask[MAX_NODES];
288 static CPUState *cur_cpu;
289 static CPUState *next_cpu;
290 static int timer_alarm_pending = 1;
291 /* Conversion factor from emulated instructions to virtual clock ticks. */
292 static int icount_time_shift;
293 /* Arbitrarily pick 1MIPS as the minimum allowable speed. */
294 #define MAX_ICOUNT_SHIFT 10
295 /* Compensate for varying guest execution speed. */
296 static int64_t qemu_icount_bias;
297 static QEMUTimer *icount_rt_timer;
298 static QEMUTimer *icount_vm_timer;
299 static QEMUTimer *nographic_timer;
301 uint8_t qemu_uuid[16];
303 static int qemu_select(int max_fd, fd_set *rfds, fd_set *wfds, fd_set *xfds,
304 struct timeval *tv)
306 int ret;
308 /* KVM holds a mutex while QEMU code is running, we need hooks to
309 release the mutex whenever QEMU code sleeps. */
311 kvm_sleep_begin();
313 ret = select(max_fd, rfds, wfds, xfds, tv);
315 kvm_sleep_end();
317 return ret;
321 /***********************************************************/
322 /* x86 ISA bus support */
324 target_phys_addr_t isa_mem_base = 0;
325 PicState2 *isa_pic;
327 static IOPortReadFunc default_ioport_readb, default_ioport_readw, default_ioport_readl;
328 static IOPortWriteFunc default_ioport_writeb, default_ioport_writew, default_ioport_writel;
330 static uint32_t ioport_read(int index, uint32_t address)
332 static IOPortReadFunc *default_func[3] = {
333 default_ioport_readb,
334 default_ioport_readw,
335 default_ioport_readl
337 IOPortReadFunc *func = ioport_read_table[index][address];
338 if (!func)
339 func = default_func[index];
340 return func(ioport_opaque[address], address);
343 static void ioport_write(int index, uint32_t address, uint32_t data)
345 static IOPortWriteFunc *default_func[3] = {
346 default_ioport_writeb,
347 default_ioport_writew,
348 default_ioport_writel
350 IOPortWriteFunc *func = ioport_write_table[index][address];
351 if (!func)
352 func = default_func[index];
353 func(ioport_opaque[address], address, data);
356 static uint32_t default_ioport_readb(void *opaque, uint32_t address)
358 #ifdef DEBUG_UNUSED_IOPORT
359 fprintf(stderr, "unused inb: port=0x%04x\n", address);
360 #endif
361 return 0xff;
364 static void default_ioport_writeb(void *opaque, uint32_t address, uint32_t data)
366 #ifdef DEBUG_UNUSED_IOPORT
367 fprintf(stderr, "unused outb: port=0x%04x data=0x%02x\n", address, data);
368 #endif
371 /* default is to make two byte accesses */
372 static uint32_t default_ioport_readw(void *opaque, uint32_t address)
374 uint32_t data;
375 data = ioport_read(0, address);
376 address = (address + 1) & (MAX_IOPORTS - 1);
377 data |= ioport_read(0, address) << 8;
378 return data;
381 static void default_ioport_writew(void *opaque, uint32_t address, uint32_t data)
383 ioport_write(0, address, data & 0xff);
384 address = (address + 1) & (MAX_IOPORTS - 1);
385 ioport_write(0, address, (data >> 8) & 0xff);
388 static uint32_t default_ioport_readl(void *opaque, uint32_t address)
390 #ifdef DEBUG_UNUSED_IOPORT
391 fprintf(stderr, "unused inl: port=0x%04x\n", address);
392 #endif
393 return 0xffffffff;
396 static void default_ioport_writel(void *opaque, uint32_t address, uint32_t data)
398 #ifdef DEBUG_UNUSED_IOPORT
399 fprintf(stderr, "unused outl: port=0x%04x data=0x%02x\n", address, data);
400 #endif
403 /* size is the word size in byte */
404 int register_ioport_read(int start, int length, int size,
405 IOPortReadFunc *func, void *opaque)
407 int i, bsize;
409 if (size == 1) {
410 bsize = 0;
411 } else if (size == 2) {
412 bsize = 1;
413 } else if (size == 4) {
414 bsize = 2;
415 } else {
416 hw_error("register_ioport_read: invalid size");
417 return -1;
419 for(i = start; i < start + length; i += size) {
420 ioport_read_table[bsize][i] = func;
421 if (ioport_opaque[i] != NULL && ioport_opaque[i] != opaque)
422 hw_error("register_ioport_read: invalid opaque");
423 ioport_opaque[i] = opaque;
425 return 0;
428 /* size is the word size in byte */
429 int register_ioport_write(int start, int length, int size,
430 IOPortWriteFunc *func, void *opaque)
432 int i, bsize;
434 if (size == 1) {
435 bsize = 0;
436 } else if (size == 2) {
437 bsize = 1;
438 } else if (size == 4) {
439 bsize = 2;
440 } else {
441 hw_error("register_ioport_write: invalid size");
442 return -1;
444 for(i = start; i < start + length; i += size) {
445 ioport_write_table[bsize][i] = func;
446 if (ioport_opaque[i] != NULL && ioport_opaque[i] != opaque)
447 hw_error("register_ioport_write: invalid opaque");
448 ioport_opaque[i] = opaque;
450 return 0;
453 void isa_unassign_ioport(int start, int length)
455 int i;
457 for(i = start; i < start + length; i++) {
458 ioport_read_table[0][i] = default_ioport_readb;
459 ioport_read_table[1][i] = default_ioport_readw;
460 ioport_read_table[2][i] = default_ioport_readl;
462 ioport_write_table[0][i] = default_ioport_writeb;
463 ioport_write_table[1][i] = default_ioport_writew;
464 ioport_write_table[2][i] = default_ioport_writel;
466 ioport_opaque[i] = NULL;
470 /***********************************************************/
472 void cpu_outb(CPUState *env, int addr, int val)
474 LOG_IOPORT("outb: %04x %02x\n", addr, val);
475 ioport_write(0, addr, val);
476 #ifdef CONFIG_KQEMU
477 if (env)
478 env->last_io_time = cpu_get_time_fast();
479 #endif
482 void cpu_outw(CPUState *env, int addr, int val)
484 LOG_IOPORT("outw: %04x %04x\n", addr, val);
485 ioport_write(1, addr, val);
486 #ifdef CONFIG_KQEMU
487 if (env)
488 env->last_io_time = cpu_get_time_fast();
489 #endif
492 void cpu_outl(CPUState *env, int addr, int val)
494 LOG_IOPORT("outl: %04x %08x\n", addr, val);
495 ioport_write(2, addr, val);
496 #ifdef CONFIG_KQEMU
497 if (env)
498 env->last_io_time = cpu_get_time_fast();
499 #endif
502 int cpu_inb(CPUState *env, int addr)
504 int val;
505 val = ioport_read(0, addr);
506 LOG_IOPORT("inb : %04x %02x\n", addr, val);
507 #ifdef CONFIG_KQEMU
508 if (env)
509 env->last_io_time = cpu_get_time_fast();
510 #endif
511 return val;
514 int cpu_inw(CPUState *env, int addr)
516 int val;
517 val = ioport_read(1, addr);
518 LOG_IOPORT("inw : %04x %04x\n", addr, val);
519 #ifdef CONFIG_KQEMU
520 if (env)
521 env->last_io_time = cpu_get_time_fast();
522 #endif
523 return val;
526 int cpu_inl(CPUState *env, int addr)
528 int val;
529 val = ioport_read(2, addr);
530 LOG_IOPORT("inl : %04x %08x\n", addr, val);
531 #ifdef CONFIG_KQEMU
532 if (env)
533 env->last_io_time = cpu_get_time_fast();
534 #endif
535 return val;
538 /***********************************************************/
539 void hw_error(const char *fmt, ...)
541 va_list ap;
542 CPUState *env;
544 va_start(ap, fmt);
545 fprintf(stderr, "qemu: hardware error: ");
546 vfprintf(stderr, fmt, ap);
547 fprintf(stderr, "\n");
548 for(env = first_cpu; env != NULL; env = env->next_cpu) {
549 fprintf(stderr, "CPU #%d:\n", env->cpu_index);
550 #ifdef TARGET_I386
551 cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU);
552 #else
553 cpu_dump_state(env, stderr, fprintf, 0);
554 #endif
556 va_end(ap);
557 abort();
560 /***************/
561 /* ballooning */
563 static QEMUBalloonEvent *qemu_balloon_event;
564 void *qemu_balloon_event_opaque;
566 void qemu_add_balloon_handler(QEMUBalloonEvent *func, void *opaque)
568 qemu_balloon_event = func;
569 qemu_balloon_event_opaque = opaque;
572 void qemu_balloon(ram_addr_t target)
574 if (qemu_balloon_event)
575 qemu_balloon_event(qemu_balloon_event_opaque, target);
578 ram_addr_t qemu_balloon_status(void)
580 if (qemu_balloon_event)
581 return qemu_balloon_event(qemu_balloon_event_opaque, 0);
582 return 0;
585 /***********************************************************/
586 /* keyboard/mouse */
588 static QEMUPutKBDEvent *qemu_put_kbd_event;
589 static void *qemu_put_kbd_event_opaque;
590 static QEMUPutMouseEntry *qemu_put_mouse_event_head;
591 static QEMUPutMouseEntry *qemu_put_mouse_event_current;
593 void qemu_add_kbd_event_handler(QEMUPutKBDEvent *func, void *opaque)
595 qemu_put_kbd_event_opaque = opaque;
596 qemu_put_kbd_event = func;
599 QEMUPutMouseEntry *qemu_add_mouse_event_handler(QEMUPutMouseEvent *func,
600 void *opaque, int absolute,
601 const char *name)
603 QEMUPutMouseEntry *s, *cursor;
605 s = qemu_mallocz(sizeof(QEMUPutMouseEntry));
607 s->qemu_put_mouse_event = func;
608 s->qemu_put_mouse_event_opaque = opaque;
609 s->qemu_put_mouse_event_absolute = absolute;
610 s->qemu_put_mouse_event_name = qemu_strdup(name);
611 s->next = NULL;
613 if (!qemu_put_mouse_event_head) {
614 qemu_put_mouse_event_head = qemu_put_mouse_event_current = s;
615 return s;
618 cursor = qemu_put_mouse_event_head;
619 while (cursor->next != NULL)
620 cursor = cursor->next;
622 cursor->next = s;
623 qemu_put_mouse_event_current = s;
625 return s;
628 void qemu_remove_mouse_event_handler(QEMUPutMouseEntry *entry)
630 QEMUPutMouseEntry *prev = NULL, *cursor;
632 if (!qemu_put_mouse_event_head || entry == NULL)
633 return;
635 cursor = qemu_put_mouse_event_head;
636 while (cursor != NULL && cursor != entry) {
637 prev = cursor;
638 cursor = cursor->next;
641 if (cursor == NULL) // does not exist or list empty
642 return;
643 else if (prev == NULL) { // entry is head
644 qemu_put_mouse_event_head = cursor->next;
645 if (qemu_put_mouse_event_current == entry)
646 qemu_put_mouse_event_current = cursor->next;
647 qemu_free(entry->qemu_put_mouse_event_name);
648 qemu_free(entry);
649 return;
652 prev->next = entry->next;
654 if (qemu_put_mouse_event_current == entry)
655 qemu_put_mouse_event_current = prev;
657 qemu_free(entry->qemu_put_mouse_event_name);
658 qemu_free(entry);
661 void kbd_put_keycode(int keycode)
663 if (qemu_put_kbd_event) {
664 qemu_put_kbd_event(qemu_put_kbd_event_opaque, keycode);
668 void kbd_mouse_event(int dx, int dy, int dz, int buttons_state)
670 QEMUPutMouseEvent *mouse_event;
671 void *mouse_event_opaque;
672 int width;
674 if (!qemu_put_mouse_event_current) {
675 return;
678 mouse_event =
679 qemu_put_mouse_event_current->qemu_put_mouse_event;
680 mouse_event_opaque =
681 qemu_put_mouse_event_current->qemu_put_mouse_event_opaque;
683 if (mouse_event) {
684 if (graphic_rotate) {
685 if (qemu_put_mouse_event_current->qemu_put_mouse_event_absolute)
686 width = 0x7fff;
687 else
688 width = graphic_width - 1;
689 mouse_event(mouse_event_opaque,
690 width - dy, dx, dz, buttons_state);
691 } else
692 mouse_event(mouse_event_opaque,
693 dx, dy, dz, buttons_state);
697 int kbd_mouse_is_absolute(void)
699 if (!qemu_put_mouse_event_current)
700 return 0;
702 return qemu_put_mouse_event_current->qemu_put_mouse_event_absolute;
705 void do_info_mice(Monitor *mon)
707 QEMUPutMouseEntry *cursor;
708 int index = 0;
710 if (!qemu_put_mouse_event_head) {
711 monitor_printf(mon, "No mouse devices connected\n");
712 return;
715 monitor_printf(mon, "Mouse devices available:\n");
716 cursor = qemu_put_mouse_event_head;
717 while (cursor != NULL) {
718 monitor_printf(mon, "%c Mouse #%d: %s\n",
719 (cursor == qemu_put_mouse_event_current ? '*' : ' '),
720 index, cursor->qemu_put_mouse_event_name);
721 index++;
722 cursor = cursor->next;
726 void do_mouse_set(Monitor *mon, int index)
728 QEMUPutMouseEntry *cursor;
729 int i = 0;
731 if (!qemu_put_mouse_event_head) {
732 monitor_printf(mon, "No mouse devices connected\n");
733 return;
736 cursor = qemu_put_mouse_event_head;
737 while (cursor != NULL && index != i) {
738 i++;
739 cursor = cursor->next;
742 if (cursor != NULL)
743 qemu_put_mouse_event_current = cursor;
744 else
745 monitor_printf(mon, "Mouse at given index not found\n");
748 /* compute with 96 bit intermediate result: (a*b)/c */
749 uint64_t muldiv64(uint64_t a, uint32_t b, uint32_t c)
751 union {
752 uint64_t ll;
753 struct {
754 #ifdef WORDS_BIGENDIAN
755 uint32_t high, low;
756 #else
757 uint32_t low, high;
758 #endif
759 } l;
760 } u, res;
761 uint64_t rl, rh;
763 u.ll = a;
764 rl = (uint64_t)u.l.low * (uint64_t)b;
765 rh = (uint64_t)u.l.high * (uint64_t)b;
766 rh += (rl >> 32);
767 res.l.high = rh / c;
768 res.l.low = (((rh % c) << 32) + (rl & 0xffffffff)) / c;
769 return res.ll;
772 /***********************************************************/
773 /* real time host monotonic timer */
775 #define QEMU_TIMER_BASE 1000000000LL
777 #ifdef WIN32
779 static int64_t clock_freq;
781 static void init_get_clock(void)
783 LARGE_INTEGER freq;
784 int ret;
785 ret = QueryPerformanceFrequency(&freq);
786 if (ret == 0) {
787 fprintf(stderr, "Could not calibrate ticks\n");
788 exit(1);
790 clock_freq = freq.QuadPart;
793 static int64_t get_clock(void)
795 LARGE_INTEGER ti;
796 QueryPerformanceCounter(&ti);
797 return muldiv64(ti.QuadPart, QEMU_TIMER_BASE, clock_freq);
800 #else
802 static int use_rt_clock;
804 static void init_get_clock(void)
806 use_rt_clock = 0;
807 #if defined(__linux__) || (defined(__FreeBSD__) && __FreeBSD_version >= 500000) \
808 || defined(__DragonFly__)
810 struct timespec ts;
811 if (clock_gettime(CLOCK_MONOTONIC, &ts) == 0) {
812 use_rt_clock = 1;
815 #endif
818 static int64_t get_clock(void)
820 #if defined(__linux__) || (defined(__FreeBSD__) && __FreeBSD_version >= 500000) \
821 || defined(__DragonFly__)
822 if (use_rt_clock) {
823 struct timespec ts;
824 clock_gettime(CLOCK_MONOTONIC, &ts);
825 return ts.tv_sec * 1000000000LL + ts.tv_nsec;
826 } else
827 #endif
829 /* XXX: using gettimeofday leads to problems if the date
830 changes, so it should be avoided. */
831 struct timeval tv;
832 gettimeofday(&tv, NULL);
833 return tv.tv_sec * 1000000000LL + (tv.tv_usec * 1000);
836 #endif
838 /* Return the virtual CPU time, based on the instruction counter. */
839 static int64_t cpu_get_icount(void)
841 int64_t icount;
842 CPUState *env = cpu_single_env;;
843 icount = qemu_icount;
844 if (env) {
845 if (!can_do_io(env))
846 fprintf(stderr, "Bad clock read\n");
847 icount -= (env->icount_decr.u16.low + env->icount_extra);
849 return qemu_icount_bias + (icount << icount_time_shift);
852 /***********************************************************/
853 /* guest cycle counter */
855 static int64_t cpu_ticks_prev;
856 static int64_t cpu_ticks_offset;
857 static int64_t cpu_clock_offset;
858 static int cpu_ticks_enabled;
860 /* return the host CPU cycle counter and handle stop/restart */
861 int64_t cpu_get_ticks(void)
863 if (use_icount) {
864 return cpu_get_icount();
866 if (!cpu_ticks_enabled) {
867 return cpu_ticks_offset;
868 } else {
869 int64_t ticks;
870 ticks = cpu_get_real_ticks();
871 if (cpu_ticks_prev > ticks) {
872 /* Note: non increasing ticks may happen if the host uses
873 software suspend */
874 cpu_ticks_offset += cpu_ticks_prev - ticks;
876 cpu_ticks_prev = ticks;
877 return ticks + cpu_ticks_offset;
881 /* return the host CPU monotonic timer and handle stop/restart */
882 static int64_t cpu_get_clock(void)
884 int64_t ti;
885 if (!cpu_ticks_enabled) {
886 return cpu_clock_offset;
887 } else {
888 ti = get_clock();
889 return ti + cpu_clock_offset;
893 /* enable cpu_get_ticks() */
894 void cpu_enable_ticks(void)
896 if (!cpu_ticks_enabled) {
897 cpu_ticks_offset -= cpu_get_real_ticks();
898 cpu_clock_offset -= get_clock();
899 cpu_ticks_enabled = 1;
903 /* disable cpu_get_ticks() : the clock is stopped. You must not call
904 cpu_get_ticks() after that. */
905 void cpu_disable_ticks(void)
907 if (cpu_ticks_enabled) {
908 cpu_ticks_offset = cpu_get_ticks();
909 cpu_clock_offset = cpu_get_clock();
910 cpu_ticks_enabled = 0;
914 /***********************************************************/
915 /* timers */
917 #define QEMU_TIMER_REALTIME 0
918 #define QEMU_TIMER_VIRTUAL 1
920 struct QEMUClock {
921 int type;
922 /* XXX: add frequency */
925 struct QEMUTimer {
926 QEMUClock *clock;
927 int64_t expire_time;
928 QEMUTimerCB *cb;
929 void *opaque;
930 struct QEMUTimer *next;
933 struct qemu_alarm_timer {
934 char const *name;
935 unsigned int flags;
937 int (*start)(struct qemu_alarm_timer *t);
938 void (*stop)(struct qemu_alarm_timer *t);
939 void (*rearm)(struct qemu_alarm_timer *t);
940 void *priv;
943 #define ALARM_FLAG_DYNTICKS 0x1
944 #define ALARM_FLAG_EXPIRED 0x2
946 static inline int alarm_has_dynticks(struct qemu_alarm_timer *t)
948 return t && (t->flags & ALARM_FLAG_DYNTICKS);
951 static void qemu_rearm_alarm_timer(struct qemu_alarm_timer *t)
953 if (!alarm_has_dynticks(t))
954 return;
956 t->rearm(t);
959 /* TODO: MIN_TIMER_REARM_US should be optimized */
960 #define MIN_TIMER_REARM_US 250
962 static struct qemu_alarm_timer *alarm_timer;
964 #ifdef _WIN32
966 struct qemu_alarm_win32 {
967 MMRESULT timerId;
968 unsigned int period;
969 } alarm_win32_data = {0, -1};
971 static int win32_start_timer(struct qemu_alarm_timer *t);
972 static void win32_stop_timer(struct qemu_alarm_timer *t);
973 static void win32_rearm_timer(struct qemu_alarm_timer *t);
975 #else
977 static int unix_start_timer(struct qemu_alarm_timer *t);
978 static void unix_stop_timer(struct qemu_alarm_timer *t);
980 #ifdef __linux__
982 static int dynticks_start_timer(struct qemu_alarm_timer *t);
983 static void dynticks_stop_timer(struct qemu_alarm_timer *t);
984 static void dynticks_rearm_timer(struct qemu_alarm_timer *t);
986 static int hpet_start_timer(struct qemu_alarm_timer *t);
987 static void hpet_stop_timer(struct qemu_alarm_timer *t);
989 static int rtc_start_timer(struct qemu_alarm_timer *t);
990 static void rtc_stop_timer(struct qemu_alarm_timer *t);
992 #endif /* __linux__ */
994 #endif /* _WIN32 */
996 /* Correlation between real and virtual time is always going to be
997 fairly approximate, so ignore small variation.
998 When the guest is idle real and virtual time will be aligned in
999 the IO wait loop. */
1000 #define ICOUNT_WOBBLE (QEMU_TIMER_BASE / 10)
1002 static void icount_adjust(void)
1004 int64_t cur_time;
1005 int64_t cur_icount;
1006 int64_t delta;
1007 static int64_t last_delta;
1008 /* If the VM is not running, then do nothing. */
1009 if (!vm_running)
1010 return;
1012 cur_time = cpu_get_clock();
1013 cur_icount = qemu_get_clock(vm_clock);
1014 delta = cur_icount - cur_time;
1015 /* FIXME: This is a very crude algorithm, somewhat prone to oscillation. */
1016 if (delta > 0
1017 && last_delta + ICOUNT_WOBBLE < delta * 2
1018 && icount_time_shift > 0) {
1019 /* The guest is getting too far ahead. Slow time down. */
1020 icount_time_shift--;
1022 if (delta < 0
1023 && last_delta - ICOUNT_WOBBLE > delta * 2
1024 && icount_time_shift < MAX_ICOUNT_SHIFT) {
1025 /* The guest is getting too far behind. Speed time up. */
1026 icount_time_shift++;
1028 last_delta = delta;
1029 qemu_icount_bias = cur_icount - (qemu_icount << icount_time_shift);
1032 static void icount_adjust_rt(void * opaque)
1034 qemu_mod_timer(icount_rt_timer,
1035 qemu_get_clock(rt_clock) + 1000);
1036 icount_adjust();
1039 static void icount_adjust_vm(void * opaque)
1041 qemu_mod_timer(icount_vm_timer,
1042 qemu_get_clock(vm_clock) + QEMU_TIMER_BASE / 10);
1043 icount_adjust();
1046 static void init_icount_adjust(void)
1048 /* Have both realtime and virtual time triggers for speed adjustment.
1049 The realtime trigger catches emulated time passing too slowly,
1050 the virtual time trigger catches emulated time passing too fast.
1051 Realtime triggers occur even when idle, so use them less frequently
1052 than VM triggers. */
1053 icount_rt_timer = qemu_new_timer(rt_clock, icount_adjust_rt, NULL);
1054 qemu_mod_timer(icount_rt_timer,
1055 qemu_get_clock(rt_clock) + 1000);
1056 icount_vm_timer = qemu_new_timer(vm_clock, icount_adjust_vm, NULL);
1057 qemu_mod_timer(icount_vm_timer,
1058 qemu_get_clock(vm_clock) + QEMU_TIMER_BASE / 10);
1061 static struct qemu_alarm_timer alarm_timers[] = {
1062 #ifndef _WIN32
1063 #ifdef __linux__
1064 {"dynticks", ALARM_FLAG_DYNTICKS, dynticks_start_timer,
1065 dynticks_stop_timer, dynticks_rearm_timer, NULL},
1066 /* HPET - if available - is preferred */
1067 {"hpet", 0, hpet_start_timer, hpet_stop_timer, NULL, NULL},
1068 /* ...otherwise try RTC */
1069 {"rtc", 0, rtc_start_timer, rtc_stop_timer, NULL, NULL},
1070 #endif
1071 {"unix", 0, unix_start_timer, unix_stop_timer, NULL, NULL},
1072 #else
1073 {"dynticks", ALARM_FLAG_DYNTICKS, win32_start_timer,
1074 win32_stop_timer, win32_rearm_timer, &alarm_win32_data},
1075 {"win32", 0, win32_start_timer,
1076 win32_stop_timer, NULL, &alarm_win32_data},
1077 #endif
1078 {NULL, }
1081 static void show_available_alarms(void)
1083 int i;
1085 printf("Available alarm timers, in order of precedence:\n");
1086 for (i = 0; alarm_timers[i].name; i++)
1087 printf("%s\n", alarm_timers[i].name);
1090 static void configure_alarms(char const *opt)
1092 int i;
1093 int cur = 0;
1094 int count = ARRAY_SIZE(alarm_timers) - 1;
1095 char *arg;
1096 char *name;
1097 struct qemu_alarm_timer tmp;
1099 if (!strcmp(opt, "?")) {
1100 show_available_alarms();
1101 exit(0);
1104 arg = strdup(opt);
1106 /* Reorder the array */
1107 name = strtok(arg, ",");
1108 while (name) {
1109 for (i = 0; i < count && alarm_timers[i].name; i++) {
1110 if (!strcmp(alarm_timers[i].name, name))
1111 break;
1114 if (i == count) {
1115 fprintf(stderr, "Unknown clock %s\n", name);
1116 goto next;
1119 if (i < cur)
1120 /* Ignore */
1121 goto next;
1123 /* Swap */
1124 tmp = alarm_timers[i];
1125 alarm_timers[i] = alarm_timers[cur];
1126 alarm_timers[cur] = tmp;
1128 cur++;
1129 next:
1130 name = strtok(NULL, ",");
1133 free(arg);
1135 if (cur) {
1136 /* Disable remaining timers */
1137 for (i = cur; i < count; i++)
1138 alarm_timers[i].name = NULL;
1139 } else {
1140 show_available_alarms();
1141 exit(1);
1145 QEMUClock *rt_clock;
1146 QEMUClock *vm_clock;
1148 static QEMUTimer *active_timers[2];
1150 static QEMUClock *qemu_new_clock(int type)
1152 QEMUClock *clock;
1153 clock = qemu_mallocz(sizeof(QEMUClock));
1154 clock->type = type;
1155 return clock;
1158 QEMUTimer *qemu_new_timer(QEMUClock *clock, QEMUTimerCB *cb, void *opaque)
1160 QEMUTimer *ts;
1162 ts = qemu_mallocz(sizeof(QEMUTimer));
1163 ts->clock = clock;
1164 ts->cb = cb;
1165 ts->opaque = opaque;
1166 return ts;
1169 void qemu_free_timer(QEMUTimer *ts)
1171 qemu_free(ts);
1174 /* stop a timer, but do not dealloc it */
1175 void qemu_del_timer(QEMUTimer *ts)
1177 QEMUTimer **pt, *t;
1179 /* NOTE: this code must be signal safe because
1180 qemu_timer_expired() can be called from a signal. */
1181 pt = &active_timers[ts->clock->type];
1182 for(;;) {
1183 t = *pt;
1184 if (!t)
1185 break;
1186 if (t == ts) {
1187 *pt = t->next;
1188 break;
1190 pt = &t->next;
1194 /* modify the current timer so that it will be fired when current_time
1195 >= expire_time. The corresponding callback will be called. */
1196 void qemu_mod_timer(QEMUTimer *ts, int64_t expire_time)
1198 QEMUTimer **pt, *t;
1200 qemu_del_timer(ts);
1202 /* add the timer in the sorted list */
1203 /* NOTE: this code must be signal safe because
1204 qemu_timer_expired() can be called from a signal. */
1205 pt = &active_timers[ts->clock->type];
1206 for(;;) {
1207 t = *pt;
1208 if (!t)
1209 break;
1210 if (t->expire_time > expire_time)
1211 break;
1212 pt = &t->next;
1214 ts->expire_time = expire_time;
1215 ts->next = *pt;
1216 *pt = ts;
1218 /* Rearm if necessary */
1219 if (pt == &active_timers[ts->clock->type]) {
1220 if ((alarm_timer->flags & ALARM_FLAG_EXPIRED) == 0) {
1221 qemu_rearm_alarm_timer(alarm_timer);
1223 /* Interrupt execution to force deadline recalculation. */
1224 if (use_icount)
1225 qemu_notify_event();
1229 int qemu_timer_pending(QEMUTimer *ts)
1231 QEMUTimer *t;
1232 for(t = active_timers[ts->clock->type]; t != NULL; t = t->next) {
1233 if (t == ts)
1234 return 1;
1236 return 0;
1239 static inline int qemu_timer_expired(QEMUTimer *timer_head, int64_t current_time)
1241 if (!timer_head)
1242 return 0;
1243 return (timer_head->expire_time <= current_time);
1246 static void qemu_run_timers(QEMUTimer **ptimer_head, int64_t current_time)
1248 QEMUTimer *ts;
1250 for(;;) {
1251 ts = *ptimer_head;
1252 if (!ts || ts->expire_time > current_time)
1253 break;
1254 /* remove timer from the list before calling the callback */
1255 *ptimer_head = ts->next;
1256 ts->next = NULL;
1258 /* run the callback (the timer list can be modified) */
1259 ts->cb(ts->opaque);
1263 int64_t qemu_get_clock(QEMUClock *clock)
1265 switch(clock->type) {
1266 case QEMU_TIMER_REALTIME:
1267 return get_clock() / 1000000;
1268 default:
1269 case QEMU_TIMER_VIRTUAL:
1270 if (use_icount) {
1271 return cpu_get_icount();
1272 } else {
1273 return cpu_get_clock();
1278 static void init_timers(void)
1280 init_get_clock();
1281 ticks_per_sec = QEMU_TIMER_BASE;
1282 rt_clock = qemu_new_clock(QEMU_TIMER_REALTIME);
1283 vm_clock = qemu_new_clock(QEMU_TIMER_VIRTUAL);
1286 /* save a timer */
1287 void qemu_put_timer(QEMUFile *f, QEMUTimer *ts)
1289 uint64_t expire_time;
1291 if (qemu_timer_pending(ts)) {
1292 expire_time = ts->expire_time;
1293 } else {
1294 expire_time = -1;
1296 qemu_put_be64(f, expire_time);
1299 void qemu_get_timer(QEMUFile *f, QEMUTimer *ts)
1301 uint64_t expire_time;
1303 expire_time = qemu_get_be64(f);
1304 if (expire_time != -1) {
1305 qemu_mod_timer(ts, expire_time);
1306 } else {
1307 qemu_del_timer(ts);
1311 static void timer_save(QEMUFile *f, void *opaque)
1313 if (cpu_ticks_enabled) {
1314 hw_error("cannot save state if virtual timers are running");
1316 qemu_put_be64(f, cpu_ticks_offset);
1317 qemu_put_be64(f, ticks_per_sec);
1318 qemu_put_be64(f, cpu_clock_offset);
1321 static int timer_load(QEMUFile *f, void *opaque, int version_id)
1323 if (version_id != 1 && version_id != 2)
1324 return -EINVAL;
1325 if (cpu_ticks_enabled) {
1326 return -EINVAL;
1328 cpu_ticks_offset=qemu_get_be64(f);
1329 ticks_per_sec=qemu_get_be64(f);
1330 if (version_id == 2) {
1331 cpu_clock_offset=qemu_get_be64(f);
1333 return 0;
1336 static void qemu_event_increment(void);
1338 #ifdef _WIN32
1339 static void CALLBACK host_alarm_handler(UINT uTimerID, UINT uMsg,
1340 DWORD_PTR dwUser, DWORD_PTR dw1,
1341 DWORD_PTR dw2)
1342 #else
1343 static void host_alarm_handler(int host_signum)
1344 #endif
1346 #if 0
1347 #define DISP_FREQ 1000
1349 static int64_t delta_min = INT64_MAX;
1350 static int64_t delta_max, delta_cum, last_clock, delta, ti;
1351 static int count;
1352 ti = qemu_get_clock(vm_clock);
1353 if (last_clock != 0) {
1354 delta = ti - last_clock;
1355 if (delta < delta_min)
1356 delta_min = delta;
1357 if (delta > delta_max)
1358 delta_max = delta;
1359 delta_cum += delta;
1360 if (++count == DISP_FREQ) {
1361 printf("timer: min=%" PRId64 " us max=%" PRId64 " us avg=%" PRId64 " us avg_freq=%0.3f Hz\n",
1362 muldiv64(delta_min, 1000000, ticks_per_sec),
1363 muldiv64(delta_max, 1000000, ticks_per_sec),
1364 muldiv64(delta_cum, 1000000 / DISP_FREQ, ticks_per_sec),
1365 (double)ticks_per_sec / ((double)delta_cum / DISP_FREQ));
1366 count = 0;
1367 delta_min = INT64_MAX;
1368 delta_max = 0;
1369 delta_cum = 0;
1372 last_clock = ti;
1374 #endif
1375 if (alarm_has_dynticks(alarm_timer) ||
1376 (!use_icount &&
1377 qemu_timer_expired(active_timers[QEMU_TIMER_VIRTUAL],
1378 qemu_get_clock(vm_clock))) ||
1379 qemu_timer_expired(active_timers[QEMU_TIMER_REALTIME],
1380 qemu_get_clock(rt_clock))) {
1381 qemu_event_increment();
1382 if (alarm_timer) alarm_timer->flags |= ALARM_FLAG_EXPIRED;
1384 #ifndef CONFIG_IOTHREAD
1385 if (next_cpu) {
1386 /* stop the currently executing cpu because a timer occured */
1387 cpu_exit(next_cpu);
1388 #ifdef CONFIG_KQEMU
1389 if (next_cpu->kqemu_enabled) {
1390 kqemu_cpu_interrupt(next_cpu);
1392 #endif
1394 #endif
1395 timer_alarm_pending = 1;
1396 qemu_notify_event();
1400 static int64_t qemu_next_deadline(void)
1402 int64_t delta;
1404 if (active_timers[QEMU_TIMER_VIRTUAL]) {
1405 delta = active_timers[QEMU_TIMER_VIRTUAL]->expire_time -
1406 qemu_get_clock(vm_clock);
1407 } else {
1408 /* To avoid problems with overflow limit this to 2^32. */
1409 delta = INT32_MAX;
1412 if (delta < 0)
1413 delta = 0;
1415 return delta;
1418 #if defined(__linux__) || defined(_WIN32)
1419 static uint64_t qemu_next_deadline_dyntick(void)
1421 int64_t delta;
1422 int64_t rtdelta;
1424 if (use_icount)
1425 delta = INT32_MAX;
1426 else
1427 delta = (qemu_next_deadline() + 999) / 1000;
1429 if (active_timers[QEMU_TIMER_REALTIME]) {
1430 rtdelta = (active_timers[QEMU_TIMER_REALTIME]->expire_time -
1431 qemu_get_clock(rt_clock))*1000;
1432 if (rtdelta < delta)
1433 delta = rtdelta;
1436 if (delta < MIN_TIMER_REARM_US)
1437 delta = MIN_TIMER_REARM_US;
1439 return delta;
1441 #endif
1443 #ifndef _WIN32
1445 /* Sets a specific flag */
1446 static int fcntl_setfl(int fd, int flag)
1448 int flags;
1450 flags = fcntl(fd, F_GETFL);
1451 if (flags == -1)
1452 return -errno;
1454 if (fcntl(fd, F_SETFL, flags | flag) == -1)
1455 return -errno;
1457 return 0;
1460 #if defined(__linux__)
1462 #define RTC_FREQ 1024
1464 static void enable_sigio_timer(int fd)
1466 struct sigaction act;
1468 /* timer signal */
1469 sigfillset(&act.sa_mask);
1470 act.sa_flags = 0;
1471 act.sa_handler = host_alarm_handler;
1473 sigaction(SIGIO, &act, NULL);
1474 fcntl_setfl(fd, O_ASYNC);
1475 fcntl(fd, F_SETOWN, getpid());
1478 static int hpet_start_timer(struct qemu_alarm_timer *t)
1480 struct hpet_info info;
1481 int r, fd;
1483 fd = open("/dev/hpet", O_RDONLY);
1484 if (fd < 0)
1485 return -1;
1487 /* Set frequency */
1488 r = ioctl(fd, HPET_IRQFREQ, RTC_FREQ);
1489 if (r < 0) {
1490 fprintf(stderr, "Could not configure '/dev/hpet' to have a 1024Hz timer. This is not a fatal\n"
1491 "error, but for better emulation accuracy type:\n"
1492 "'echo 1024 > /proc/sys/dev/hpet/max-user-freq' as root.\n");
1493 goto fail;
1496 /* Check capabilities */
1497 r = ioctl(fd, HPET_INFO, &info);
1498 if (r < 0)
1499 goto fail;
1501 /* Enable periodic mode */
1502 r = ioctl(fd, HPET_EPI, 0);
1503 if (info.hi_flags && (r < 0))
1504 goto fail;
1506 /* Enable interrupt */
1507 r = ioctl(fd, HPET_IE_ON, 0);
1508 if (r < 0)
1509 goto fail;
1511 enable_sigio_timer(fd);
1512 t->priv = (void *)(long)fd;
1514 return 0;
1515 fail:
1516 close(fd);
1517 return -1;
1520 static void hpet_stop_timer(struct qemu_alarm_timer *t)
1522 int fd = (long)t->priv;
1524 close(fd);
1527 static int rtc_start_timer(struct qemu_alarm_timer *t)
1529 int rtc_fd;
1530 unsigned long current_rtc_freq = 0;
1532 TFR(rtc_fd = open("/dev/rtc", O_RDONLY));
1533 if (rtc_fd < 0)
1534 return -1;
1535 ioctl(rtc_fd, RTC_IRQP_READ, &current_rtc_freq);
1536 if (current_rtc_freq != RTC_FREQ &&
1537 ioctl(rtc_fd, RTC_IRQP_SET, RTC_FREQ) < 0) {
1538 fprintf(stderr, "Could not configure '/dev/rtc' to have a 1024 Hz timer. This is not a fatal\n"
1539 "error, but for better emulation accuracy either use a 2.6 host Linux kernel or\n"
1540 "type 'echo 1024 > /proc/sys/dev/rtc/max-user-freq' as root.\n");
1541 goto fail;
1543 if (ioctl(rtc_fd, RTC_PIE_ON, 0) < 0) {
1544 fail:
1545 close(rtc_fd);
1546 return -1;
1549 enable_sigio_timer(rtc_fd);
1551 t->priv = (void *)(long)rtc_fd;
1553 return 0;
1556 static void rtc_stop_timer(struct qemu_alarm_timer *t)
1558 int rtc_fd = (long)t->priv;
1560 close(rtc_fd);
1563 static int dynticks_start_timer(struct qemu_alarm_timer *t)
1565 struct sigevent ev;
1566 timer_t host_timer;
1567 struct sigaction act;
1569 sigfillset(&act.sa_mask);
1570 act.sa_flags = 0;
1571 act.sa_handler = host_alarm_handler;
1573 sigaction(SIGALRM, &act, NULL);
1576 * Initialize ev struct to 0 to avoid valgrind complaining
1577 * about uninitialized data in timer_create call
1579 memset(&ev, 0, sizeof(ev));
1580 ev.sigev_value.sival_int = 0;
1581 ev.sigev_notify = SIGEV_SIGNAL;
1582 ev.sigev_signo = SIGALRM;
1584 if (timer_create(CLOCK_REALTIME, &ev, &host_timer)) {
1585 perror("timer_create");
1587 /* disable dynticks */
1588 fprintf(stderr, "Dynamic Ticks disabled\n");
1590 return -1;
1593 t->priv = (void *)(long)host_timer;
1595 return 0;
1598 static void dynticks_stop_timer(struct qemu_alarm_timer *t)
1600 timer_t host_timer = (timer_t)(long)t->priv;
1602 timer_delete(host_timer);
1605 static void dynticks_rearm_timer(struct qemu_alarm_timer *t)
1607 timer_t host_timer = (timer_t)(long)t->priv;
1608 struct itimerspec timeout;
1609 int64_t nearest_delta_us = INT64_MAX;
1610 int64_t current_us;
1612 if (!active_timers[QEMU_TIMER_REALTIME] &&
1613 !active_timers[QEMU_TIMER_VIRTUAL])
1614 return;
1616 nearest_delta_us = qemu_next_deadline_dyntick();
1618 /* check whether a timer is already running */
1619 if (timer_gettime(host_timer, &timeout)) {
1620 perror("gettime");
1621 fprintf(stderr, "Internal timer error: aborting\n");
1622 exit(1);
1624 current_us = timeout.it_value.tv_sec * 1000000 + timeout.it_value.tv_nsec/1000;
1625 if (current_us && current_us <= nearest_delta_us)
1626 return;
1628 timeout.it_interval.tv_sec = 0;
1629 timeout.it_interval.tv_nsec = 0; /* 0 for one-shot timer */
1630 timeout.it_value.tv_sec = nearest_delta_us / 1000000;
1631 timeout.it_value.tv_nsec = (nearest_delta_us % 1000000) * 1000;
1632 if (timer_settime(host_timer, 0 /* RELATIVE */, &timeout, NULL)) {
1633 perror("settime");
1634 fprintf(stderr, "Internal timer error: aborting\n");
1635 exit(1);
1639 #endif /* defined(__linux__) */
1641 static int unix_start_timer(struct qemu_alarm_timer *t)
1643 struct sigaction act;
1644 struct itimerval itv;
1645 int err;
1647 /* timer signal */
1648 sigfillset(&act.sa_mask);
1649 act.sa_flags = 0;
1650 act.sa_handler = host_alarm_handler;
1652 sigaction(SIGALRM, &act, NULL);
1654 itv.it_interval.tv_sec = 0;
1655 /* for i386 kernel 2.6 to get 1 ms */
1656 itv.it_interval.tv_usec = 999;
1657 itv.it_value.tv_sec = 0;
1658 itv.it_value.tv_usec = 10 * 1000;
1660 err = setitimer(ITIMER_REAL, &itv, NULL);
1661 if (err)
1662 return -1;
1664 return 0;
1667 static void unix_stop_timer(struct qemu_alarm_timer *t)
1669 struct itimerval itv;
1671 memset(&itv, 0, sizeof(itv));
1672 setitimer(ITIMER_REAL, &itv, NULL);
1675 #endif /* !defined(_WIN32) */
1678 #ifdef _WIN32
1680 static int win32_start_timer(struct qemu_alarm_timer *t)
1682 TIMECAPS tc;
1683 struct qemu_alarm_win32 *data = t->priv;
1684 UINT flags;
1686 memset(&tc, 0, sizeof(tc));
1687 timeGetDevCaps(&tc, sizeof(tc));
1689 if (data->period < tc.wPeriodMin)
1690 data->period = tc.wPeriodMin;
1692 timeBeginPeriod(data->period);
1694 flags = TIME_CALLBACK_FUNCTION;
1695 if (alarm_has_dynticks(t))
1696 flags |= TIME_ONESHOT;
1697 else
1698 flags |= TIME_PERIODIC;
1700 data->timerId = timeSetEvent(1, // interval (ms)
1701 data->period, // resolution
1702 host_alarm_handler, // function
1703 (DWORD)t, // parameter
1704 flags);
1706 if (!data->timerId) {
1707 perror("Failed to initialize win32 alarm timer");
1708 timeEndPeriod(data->period);
1709 return -1;
1712 return 0;
1715 static void win32_stop_timer(struct qemu_alarm_timer *t)
1717 struct qemu_alarm_win32 *data = t->priv;
1719 timeKillEvent(data->timerId);
1720 timeEndPeriod(data->period);
1723 static void win32_rearm_timer(struct qemu_alarm_timer *t)
1725 struct qemu_alarm_win32 *data = t->priv;
1726 uint64_t nearest_delta_us;
1728 if (!active_timers[QEMU_TIMER_REALTIME] &&
1729 !active_timers[QEMU_TIMER_VIRTUAL])
1730 return;
1732 nearest_delta_us = qemu_next_deadline_dyntick();
1733 nearest_delta_us /= 1000;
1735 timeKillEvent(data->timerId);
1737 data->timerId = timeSetEvent(1,
1738 data->period,
1739 host_alarm_handler,
1740 (DWORD)t,
1741 TIME_ONESHOT | TIME_PERIODIC);
1743 if (!data->timerId) {
1744 perror("Failed to re-arm win32 alarm timer");
1746 timeEndPeriod(data->period);
1747 exit(1);
1751 #endif /* _WIN32 */
1753 static int init_timer_alarm(void)
1755 struct qemu_alarm_timer *t = NULL;
1756 int i, err = -1;
1758 for (i = 0; alarm_timers[i].name; i++) {
1759 t = &alarm_timers[i];
1761 err = t->start(t);
1762 if (!err)
1763 break;
1766 if (err) {
1767 err = -ENOENT;
1768 goto fail;
1771 alarm_timer = t;
1773 return 0;
1775 fail:
1776 return err;
1779 static void quit_timers(void)
1781 alarm_timer->stop(alarm_timer);
1782 alarm_timer = NULL;
1785 /***********************************************************/
1786 /* host time/date access */
1787 void qemu_get_timedate(struct tm *tm, int offset)
1789 time_t ti;
1790 struct tm *ret;
1792 time(&ti);
1793 ti += offset;
1794 if (rtc_date_offset == -1) {
1795 if (rtc_utc)
1796 ret = gmtime(&ti);
1797 else
1798 ret = localtime(&ti);
1799 } else {
1800 ti -= rtc_date_offset;
1801 ret = gmtime(&ti);
1804 memcpy(tm, ret, sizeof(struct tm));
1807 int qemu_timedate_diff(struct tm *tm)
1809 time_t seconds;
1811 if (rtc_date_offset == -1)
1812 if (rtc_utc)
1813 seconds = mktimegm(tm);
1814 else
1815 seconds = mktime(tm);
1816 else
1817 seconds = mktimegm(tm) + rtc_date_offset;
1819 return seconds - time(NULL);
1822 #ifdef _WIN32
1823 static void socket_cleanup(void)
1825 WSACleanup();
1828 static int socket_init(void)
1830 WSADATA Data;
1831 int ret, err;
1833 ret = WSAStartup(MAKEWORD(2,2), &Data);
1834 if (ret != 0) {
1835 err = WSAGetLastError();
1836 fprintf(stderr, "WSAStartup: %d\n", err);
1837 return -1;
1839 atexit(socket_cleanup);
1840 return 0;
1842 #endif
1844 int get_param_value(char *buf, int buf_size,
1845 const char *tag, const char *str)
1847 const char *p;
1848 char option[128];
1850 p = str;
1851 for(;;) {
1852 p = get_opt_name(option, sizeof(option), p, '=');
1853 if (*p != '=')
1854 break;
1855 p++;
1856 if (!strcmp(tag, option)) {
1857 (void)get_opt_value(buf, buf_size, p);
1858 return strlen(buf);
1859 } else {
1860 p = get_opt_value(NULL, 0, p);
1862 if (*p != ',')
1863 break;
1864 p++;
1866 return 0;
1869 int check_params(char *buf, int buf_size,
1870 const char * const *params, const char *str)
1872 const char *p;
1873 int i;
1875 p = str;
1876 while (*p != '\0') {
1877 p = get_opt_name(buf, buf_size, p, '=');
1878 if (*p != '=') {
1879 return -1;
1881 p++;
1882 for (i = 0; params[i] != NULL; i++) {
1883 if (!strcmp(params[i], buf)) {
1884 break;
1887 if (params[i] == NULL) {
1888 return -1;
1890 p = get_opt_value(NULL, 0, p);
1891 if (*p != ',') {
1892 break;
1894 p++;
1896 return 0;
1899 /***********************************************************/
1900 /* Bluetooth support */
1901 static int nb_hcis;
1902 static int cur_hci;
1903 static struct HCIInfo *hci_table[MAX_NICS];
1905 static struct bt_vlan_s {
1906 struct bt_scatternet_s net;
1907 int id;
1908 struct bt_vlan_s *next;
1909 } *first_bt_vlan;
1911 /* find or alloc a new bluetooth "VLAN" */
1912 static struct bt_scatternet_s *qemu_find_bt_vlan(int id)
1914 struct bt_vlan_s **pvlan, *vlan;
1915 for (vlan = first_bt_vlan; vlan != NULL; vlan = vlan->next) {
1916 if (vlan->id == id)
1917 return &vlan->net;
1919 vlan = qemu_mallocz(sizeof(struct bt_vlan_s));
1920 vlan->id = id;
1921 pvlan = &first_bt_vlan;
1922 while (*pvlan != NULL)
1923 pvlan = &(*pvlan)->next;
1924 *pvlan = vlan;
1925 return &vlan->net;
1928 static void null_hci_send(struct HCIInfo *hci, const uint8_t *data, int len)
1932 static int null_hci_addr_set(struct HCIInfo *hci, const uint8_t *bd_addr)
1934 return -ENOTSUP;
1937 static struct HCIInfo null_hci = {
1938 .cmd_send = null_hci_send,
1939 .sco_send = null_hci_send,
1940 .acl_send = null_hci_send,
1941 .bdaddr_set = null_hci_addr_set,
1944 struct HCIInfo *qemu_next_hci(void)
1946 if (cur_hci == nb_hcis)
1947 return &null_hci;
1949 return hci_table[cur_hci++];
1952 static struct HCIInfo *hci_init(const char *str)
1954 char *endp;
1955 struct bt_scatternet_s *vlan = 0;
1957 if (!strcmp(str, "null"))
1958 /* null */
1959 return &null_hci;
1960 else if (!strncmp(str, "host", 4) && (str[4] == '\0' || str[4] == ':'))
1961 /* host[:hciN] */
1962 return bt_host_hci(str[4] ? str + 5 : "hci0");
1963 else if (!strncmp(str, "hci", 3)) {
1964 /* hci[,vlan=n] */
1965 if (str[3]) {
1966 if (!strncmp(str + 3, ",vlan=", 6)) {
1967 vlan = qemu_find_bt_vlan(strtol(str + 9, &endp, 0));
1968 if (*endp)
1969 vlan = 0;
1971 } else
1972 vlan = qemu_find_bt_vlan(0);
1973 if (vlan)
1974 return bt_new_hci(vlan);
1977 fprintf(stderr, "qemu: Unknown bluetooth HCI `%s'.\n", str);
1979 return 0;
1982 static int bt_hci_parse(const char *str)
1984 struct HCIInfo *hci;
1985 bdaddr_t bdaddr;
1987 if (nb_hcis >= MAX_NICS) {
1988 fprintf(stderr, "qemu: Too many bluetooth HCIs (max %i).\n", MAX_NICS);
1989 return -1;
1992 hci = hci_init(str);
1993 if (!hci)
1994 return -1;
1996 bdaddr.b[0] = 0x52;
1997 bdaddr.b[1] = 0x54;
1998 bdaddr.b[2] = 0x00;
1999 bdaddr.b[3] = 0x12;
2000 bdaddr.b[4] = 0x34;
2001 bdaddr.b[5] = 0x56 + nb_hcis;
2002 hci->bdaddr_set(hci, bdaddr.b);
2004 hci_table[nb_hcis++] = hci;
2006 return 0;
2009 static void bt_vhci_add(int vlan_id)
2011 struct bt_scatternet_s *vlan = qemu_find_bt_vlan(vlan_id);
2013 if (!vlan->slave)
2014 fprintf(stderr, "qemu: warning: adding a VHCI to "
2015 "an empty scatternet %i\n", vlan_id);
2017 bt_vhci_init(bt_new_hci(vlan));
2020 static struct bt_device_s *bt_device_add(const char *opt)
2022 struct bt_scatternet_s *vlan;
2023 int vlan_id = 0;
2024 char *endp = strstr(opt, ",vlan=");
2025 int len = (endp ? endp - opt : strlen(opt)) + 1;
2026 char devname[10];
2028 pstrcpy(devname, MIN(sizeof(devname), len), opt);
2030 if (endp) {
2031 vlan_id = strtol(endp + 6, &endp, 0);
2032 if (*endp) {
2033 fprintf(stderr, "qemu: unrecognised bluetooth vlan Id\n");
2034 return 0;
2038 vlan = qemu_find_bt_vlan(vlan_id);
2040 if (!vlan->slave)
2041 fprintf(stderr, "qemu: warning: adding a slave device to "
2042 "an empty scatternet %i\n", vlan_id);
2044 if (!strcmp(devname, "keyboard"))
2045 return bt_keyboard_init(vlan);
2047 fprintf(stderr, "qemu: unsupported bluetooth device `%s'\n", devname);
2048 return 0;
2051 static int bt_parse(const char *opt)
2053 const char *endp, *p;
2054 int vlan;
2056 if (strstart(opt, "hci", &endp)) {
2057 if (!*endp || *endp == ',') {
2058 if (*endp)
2059 if (!strstart(endp, ",vlan=", 0))
2060 opt = endp + 1;
2062 return bt_hci_parse(opt);
2064 } else if (strstart(opt, "vhci", &endp)) {
2065 if (!*endp || *endp == ',') {
2066 if (*endp) {
2067 if (strstart(endp, ",vlan=", &p)) {
2068 vlan = strtol(p, (char **) &endp, 0);
2069 if (*endp) {
2070 fprintf(stderr, "qemu: bad scatternet '%s'\n", p);
2071 return 1;
2073 } else {
2074 fprintf(stderr, "qemu: bad parameter '%s'\n", endp + 1);
2075 return 1;
2077 } else
2078 vlan = 0;
2080 bt_vhci_add(vlan);
2081 return 0;
2083 } else if (strstart(opt, "device:", &endp))
2084 return !bt_device_add(endp);
2086 fprintf(stderr, "qemu: bad bluetooth parameter '%s'\n", opt);
2087 return 1;
2090 /***********************************************************/
2091 /* QEMU Block devices */
2093 #define HD_ALIAS "index=%d,media=disk"
2094 #define CDROM_ALIAS "index=2,media=cdrom"
2095 #define FD_ALIAS "index=%d,if=floppy"
2096 #define PFLASH_ALIAS "if=pflash"
2097 #define MTD_ALIAS "if=mtd"
2098 #define SD_ALIAS "index=0,if=sd"
2100 static int drive_opt_get_free_idx(void)
2102 int index;
2104 for (index = 0; index < MAX_DRIVES; index++)
2105 if (!drives_opt[index].used) {
2106 drives_opt[index].used = 1;
2107 return index;
2110 return -1;
2113 static int drive_get_free_idx(void)
2115 int index;
2117 for (index = 0; index < MAX_DRIVES; index++)
2118 if (!drives_table[index].used) {
2119 drives_table[index].used = 1;
2120 return index;
2123 return -1;
2126 int drive_add(const char *file, const char *fmt, ...)
2128 va_list ap;
2129 int index = drive_opt_get_free_idx();
2131 if (nb_drives_opt >= MAX_DRIVES || index == -1) {
2132 fprintf(stderr, "qemu: too many drives\n");
2133 return -1;
2136 drives_opt[index].file = file;
2137 va_start(ap, fmt);
2138 vsnprintf(drives_opt[index].opt,
2139 sizeof(drives_opt[0].opt), fmt, ap);
2140 va_end(ap);
2142 nb_drives_opt++;
2143 return index;
2146 void drive_remove(int index)
2148 drives_opt[index].used = 0;
2149 nb_drives_opt--;
2152 int drive_get_index(BlockInterfaceType type, int bus, int unit)
2154 int index;
2156 /* seek interface, bus and unit */
2158 for (index = 0; index < MAX_DRIVES; index++)
2159 if (drives_table[index].type == type &&
2160 drives_table[index].bus == bus &&
2161 drives_table[index].unit == unit &&
2162 drives_table[index].used)
2163 return index;
2165 return -1;
2168 int drive_get_max_bus(BlockInterfaceType type)
2170 int max_bus;
2171 int index;
2173 max_bus = -1;
2174 for (index = 0; index < nb_drives; index++) {
2175 if(drives_table[index].type == type &&
2176 drives_table[index].bus > max_bus)
2177 max_bus = drives_table[index].bus;
2179 return max_bus;
2182 const char *drive_get_serial(BlockDriverState *bdrv)
2184 int index;
2186 for (index = 0; index < nb_drives; index++)
2187 if (drives_table[index].bdrv == bdrv)
2188 return drives_table[index].serial;
2190 return "\0";
2193 BlockInterfaceErrorAction drive_get_onerror(BlockDriverState *bdrv)
2195 int index;
2197 for (index = 0; index < nb_drives; index++)
2198 if (drives_table[index].bdrv == bdrv)
2199 return drives_table[index].onerror;
2201 return BLOCK_ERR_STOP_ENOSPC;
2204 static void bdrv_format_print(void *opaque, const char *name)
2206 fprintf(stderr, " %s", name);
2209 void drive_uninit(BlockDriverState *bdrv)
2211 int i;
2213 for (i = 0; i < MAX_DRIVES; i++)
2214 if (drives_table[i].bdrv == bdrv) {
2215 drives_table[i].bdrv = NULL;
2216 drives_table[i].used = 0;
2217 drive_remove(drives_table[i].drive_opt_idx);
2218 nb_drives--;
2219 break;
2223 int drive_init(struct drive_opt *arg, int snapshot, void *opaque)
2225 char buf[128];
2226 char file[1024];
2227 char devname[128];
2228 char serial[21];
2229 const char *mediastr = "";
2230 BlockInterfaceType type;
2231 enum { MEDIA_DISK, MEDIA_CDROM } media;
2232 int bus_id, unit_id;
2233 int cyls, heads, secs, translation;
2234 BlockDriverState *bdrv;
2235 BlockDriver *drv = NULL;
2236 QEMUMachine *machine = opaque;
2237 int max_devs;
2238 int index;
2239 int cache;
2240 int bdrv_flags, onerror;
2241 int drives_table_idx;
2242 char *str = arg->opt;
2243 static const char * const params[] = { "bus", "unit", "if", "index",
2244 "cyls", "heads", "secs", "trans",
2245 "media", "snapshot", "file",
2246 "cache", "format", "serial", "werror",
2247 "boot", NULL };
2249 if (check_params(buf, sizeof(buf), params, str) < 0) {
2250 fprintf(stderr, "qemu: unknown parameter '%s' in '%s'\n",
2251 buf, str);
2252 return -1;
2255 file[0] = 0;
2256 cyls = heads = secs = 0;
2257 bus_id = 0;
2258 unit_id = -1;
2259 translation = BIOS_ATA_TRANSLATION_AUTO;
2260 index = -1;
2261 cache = 3;
2263 if (machine->use_scsi) {
2264 type = IF_SCSI;
2265 max_devs = MAX_SCSI_DEVS;
2266 pstrcpy(devname, sizeof(devname), "scsi");
2267 } else {
2268 type = IF_IDE;
2269 max_devs = MAX_IDE_DEVS;
2270 pstrcpy(devname, sizeof(devname), "ide");
2272 media = MEDIA_DISK;
2274 /* extract parameters */
2276 if (get_param_value(buf, sizeof(buf), "bus", str)) {
2277 bus_id = strtol(buf, NULL, 0);
2278 if (bus_id < 0) {
2279 fprintf(stderr, "qemu: '%s' invalid bus id\n", str);
2280 return -1;
2284 if (get_param_value(buf, sizeof(buf), "unit", str)) {
2285 unit_id = strtol(buf, NULL, 0);
2286 if (unit_id < 0) {
2287 fprintf(stderr, "qemu: '%s' invalid unit id\n", str);
2288 return -1;
2292 if (get_param_value(buf, sizeof(buf), "if", str)) {
2293 pstrcpy(devname, sizeof(devname), buf);
2294 if (!strcmp(buf, "ide")) {
2295 type = IF_IDE;
2296 max_devs = MAX_IDE_DEVS;
2297 } else if (!strcmp(buf, "scsi")) {
2298 type = IF_SCSI;
2299 max_devs = MAX_SCSI_DEVS;
2300 } else if (!strcmp(buf, "floppy")) {
2301 type = IF_FLOPPY;
2302 max_devs = 0;
2303 } else if (!strcmp(buf, "pflash")) {
2304 type = IF_PFLASH;
2305 max_devs = 0;
2306 } else if (!strcmp(buf, "mtd")) {
2307 type = IF_MTD;
2308 max_devs = 0;
2309 } else if (!strcmp(buf, "sd")) {
2310 type = IF_SD;
2311 max_devs = 0;
2312 } else if (!strcmp(buf, "virtio")) {
2313 type = IF_VIRTIO;
2314 max_devs = 0;
2315 } else if (!strcmp(buf, "xen")) {
2316 type = IF_XEN;
2317 max_devs = 0;
2318 } else {
2319 fprintf(stderr, "qemu: '%s' unsupported bus type '%s'\n", str, buf);
2320 return -1;
2324 if (get_param_value(buf, sizeof(buf), "index", str)) {
2325 index = strtol(buf, NULL, 0);
2326 if (index < 0) {
2327 fprintf(stderr, "qemu: '%s' invalid index\n", str);
2328 return -1;
2332 if (get_param_value(buf, sizeof(buf), "cyls", str)) {
2333 cyls = strtol(buf, NULL, 0);
2336 if (get_param_value(buf, sizeof(buf), "heads", str)) {
2337 heads = strtol(buf, NULL, 0);
2340 if (get_param_value(buf, sizeof(buf), "secs", str)) {
2341 secs = strtol(buf, NULL, 0);
2344 if (cyls || heads || secs) {
2345 if (cyls < 1 || cyls > 16383) {
2346 fprintf(stderr, "qemu: '%s' invalid physical cyls number\n", str);
2347 return -1;
2349 if (heads < 1 || heads > 16) {
2350 fprintf(stderr, "qemu: '%s' invalid physical heads number\n", str);
2351 return -1;
2353 if (secs < 1 || secs > 63) {
2354 fprintf(stderr, "qemu: '%s' invalid physical secs number\n", str);
2355 return -1;
2359 if (get_param_value(buf, sizeof(buf), "trans", str)) {
2360 if (!cyls) {
2361 fprintf(stderr,
2362 "qemu: '%s' trans must be used with cyls,heads and secs\n",
2363 str);
2364 return -1;
2366 if (!strcmp(buf, "none"))
2367 translation = BIOS_ATA_TRANSLATION_NONE;
2368 else if (!strcmp(buf, "lba"))
2369 translation = BIOS_ATA_TRANSLATION_LBA;
2370 else if (!strcmp(buf, "auto"))
2371 translation = BIOS_ATA_TRANSLATION_AUTO;
2372 else {
2373 fprintf(stderr, "qemu: '%s' invalid translation type\n", str);
2374 return -1;
2378 if (get_param_value(buf, sizeof(buf), "media", str)) {
2379 if (!strcmp(buf, "disk")) {
2380 media = MEDIA_DISK;
2381 } else if (!strcmp(buf, "cdrom")) {
2382 if (cyls || secs || heads) {
2383 fprintf(stderr,
2384 "qemu: '%s' invalid physical CHS format\n", str);
2385 return -1;
2387 media = MEDIA_CDROM;
2388 } else {
2389 fprintf(stderr, "qemu: '%s' invalid media\n", str);
2390 return -1;
2394 if (get_param_value(buf, sizeof(buf), "snapshot", str)) {
2395 if (!strcmp(buf, "on"))
2396 snapshot = 1;
2397 else if (!strcmp(buf, "off"))
2398 snapshot = 0;
2399 else {
2400 fprintf(stderr, "qemu: '%s' invalid snapshot option\n", str);
2401 return -1;
2405 if (get_param_value(buf, sizeof(buf), "cache", str)) {
2406 if (!strcmp(buf, "off") || !strcmp(buf, "none"))
2407 cache = 0;
2408 else if (!strcmp(buf, "writethrough"))
2409 cache = 1;
2410 else if (!strcmp(buf, "writeback"))
2411 cache = 2;
2412 else {
2413 fprintf(stderr, "qemu: invalid cache option\n");
2414 return -1;
2418 if (get_param_value(buf, sizeof(buf), "format", str)) {
2419 if (strcmp(buf, "?") == 0) {
2420 fprintf(stderr, "qemu: Supported formats:");
2421 bdrv_iterate_format(bdrv_format_print, NULL);
2422 fprintf(stderr, "\n");
2423 return -1;
2425 drv = bdrv_find_format(buf);
2426 if (!drv) {
2427 fprintf(stderr, "qemu: '%s' invalid format\n", buf);
2428 return -1;
2432 if (get_param_value(buf, sizeof(buf), "boot", str)) {
2433 if (!strcmp(buf, "on")) {
2434 if (extboot_drive != -1) {
2435 fprintf(stderr, "qemu: two bootable drives specified\n");
2436 return -1;
2438 extboot_drive = nb_drives;
2439 } else if (strcmp(buf, "off")) {
2440 fprintf(stderr, "qemu: '%s' invalid boot option\n", str);
2441 return -1;
2445 if (arg->file == NULL)
2446 get_param_value(file, sizeof(file), "file", str);
2447 else
2448 pstrcpy(file, sizeof(file), arg->file);
2450 if (!get_param_value(serial, sizeof(serial), "serial", str))
2451 memset(serial, 0, sizeof(serial));
2453 onerror = BLOCK_ERR_STOP_ENOSPC;
2454 if (get_param_value(buf, sizeof(serial), "werror", str)) {
2455 if (type != IF_IDE && type != IF_SCSI && type != IF_VIRTIO) {
2456 fprintf(stderr, "werror is no supported by this format\n");
2457 return -1;
2459 if (!strcmp(buf, "ignore"))
2460 onerror = BLOCK_ERR_IGNORE;
2461 else if (!strcmp(buf, "enospc"))
2462 onerror = BLOCK_ERR_STOP_ENOSPC;
2463 else if (!strcmp(buf, "stop"))
2464 onerror = BLOCK_ERR_STOP_ANY;
2465 else if (!strcmp(buf, "report"))
2466 onerror = BLOCK_ERR_REPORT;
2467 else {
2468 fprintf(stderr, "qemu: '%s' invalid write error action\n", buf);
2469 return -1;
2473 /* compute bus and unit according index */
2475 if (index != -1) {
2476 if (bus_id != 0 || unit_id != -1) {
2477 fprintf(stderr,
2478 "qemu: '%s' index cannot be used with bus and unit\n", str);
2479 return -1;
2481 if (max_devs == 0)
2483 unit_id = index;
2484 bus_id = 0;
2485 } else {
2486 unit_id = index % max_devs;
2487 bus_id = index / max_devs;
2491 /* if user doesn't specify a unit_id,
2492 * try to find the first free
2495 if (unit_id == -1) {
2496 unit_id = 0;
2497 while (drive_get_index(type, bus_id, unit_id) != -1) {
2498 unit_id++;
2499 if (max_devs && unit_id >= max_devs) {
2500 unit_id -= max_devs;
2501 bus_id++;
2506 /* check unit id */
2508 if (max_devs && unit_id >= max_devs) {
2509 fprintf(stderr, "qemu: '%s' unit %d too big (max is %d)\n",
2510 str, unit_id, max_devs - 1);
2511 return -1;
2515 * ignore multiple definitions
2518 if (drive_get_index(type, bus_id, unit_id) != -1)
2519 return -2;
2521 /* init */
2523 if (type == IF_IDE || type == IF_SCSI)
2524 mediastr = (media == MEDIA_CDROM) ? "-cd" : "-hd";
2525 if (max_devs)
2526 snprintf(buf, sizeof(buf), "%s%i%s%i",
2527 devname, bus_id, mediastr, unit_id);
2528 else
2529 snprintf(buf, sizeof(buf), "%s%s%i",
2530 devname, mediastr, unit_id);
2531 bdrv = bdrv_new(buf);
2532 drives_table_idx = drive_get_free_idx();
2533 drives_table[drives_table_idx].bdrv = bdrv;
2534 drives_table[drives_table_idx].type = type;
2535 drives_table[drives_table_idx].bus = bus_id;
2536 drives_table[drives_table_idx].unit = unit_id;
2537 drives_table[drives_table_idx].onerror = onerror;
2538 drives_table[drives_table_idx].drive_opt_idx = arg - drives_opt;
2539 strncpy(drives_table[drives_table_idx].serial, serial, sizeof(serial));
2540 nb_drives++;
2542 switch(type) {
2543 case IF_IDE:
2544 case IF_SCSI:
2545 case IF_XEN:
2546 switch(media) {
2547 case MEDIA_DISK:
2548 if (cyls != 0) {
2549 bdrv_set_geometry_hint(bdrv, cyls, heads, secs);
2550 bdrv_set_translation_hint(bdrv, translation);
2552 break;
2553 case MEDIA_CDROM:
2554 bdrv_set_type_hint(bdrv, BDRV_TYPE_CDROM);
2555 break;
2557 break;
2558 case IF_SD:
2559 /* FIXME: This isn't really a floppy, but it's a reasonable
2560 approximation. */
2561 case IF_FLOPPY:
2562 bdrv_set_type_hint(bdrv, BDRV_TYPE_FLOPPY);
2563 break;
2564 case IF_PFLASH:
2565 case IF_MTD:
2566 case IF_VIRTIO:
2567 break;
2568 case IF_COUNT:
2569 abort();
2571 if (!file[0])
2572 return -2;
2573 bdrv_flags = 0;
2574 if (snapshot) {
2575 bdrv_flags |= BDRV_O_SNAPSHOT;
2576 cache = 2; /* always use write-back with snapshot */
2578 if (cache == 0) /* no caching */
2579 bdrv_flags |= BDRV_O_NOCACHE;
2580 else if (cache == 2) /* write-back */
2581 bdrv_flags |= BDRV_O_CACHE_WB;
2582 else if (cache == 3) /* not specified */
2583 bdrv_flags |= BDRV_O_CACHE_DEF;
2584 if (bdrv_open2(bdrv, file, bdrv_flags, drv) < 0) {
2585 fprintf(stderr, "qemu: could not open disk image %s\n",
2586 file);
2587 return -1;
2589 if (bdrv_key_required(bdrv))
2590 autostart = 0;
2591 return drives_table_idx;
2594 static void numa_add(const char *optarg)
2596 char option[128];
2597 char *endptr;
2598 unsigned long long value, endvalue;
2599 int nodenr;
2601 optarg = get_opt_name(option, 128, optarg, ',') + 1;
2602 if (!strcmp(option, "node")) {
2603 if (get_param_value(option, 128, "nodeid", optarg) == 0) {
2604 nodenr = nb_numa_nodes;
2605 } else {
2606 nodenr = strtoull(option, NULL, 10);
2609 if (get_param_value(option, 128, "mem", optarg) == 0) {
2610 node_mem[nodenr] = 0;
2611 } else {
2612 value = strtoull(option, &endptr, 0);
2613 switch (*endptr) {
2614 case 0: case 'M': case 'm':
2615 value <<= 20;
2616 break;
2617 case 'G': case 'g':
2618 value <<= 30;
2619 break;
2621 node_mem[nodenr] = value;
2623 if (get_param_value(option, 128, "cpus", optarg) == 0) {
2624 node_cpumask[nodenr] = 0;
2625 } else {
2626 value = strtoull(option, &endptr, 10);
2627 if (value >= 64) {
2628 value = 63;
2629 fprintf(stderr, "only 64 CPUs in NUMA mode supported.\n");
2630 } else {
2631 if (*endptr == '-') {
2632 endvalue = strtoull(endptr+1, &endptr, 10);
2633 if (endvalue >= 63) {
2634 endvalue = 62;
2635 fprintf(stderr,
2636 "only 63 CPUs in NUMA mode supported.\n");
2638 value = (1 << (endvalue + 1)) - (1 << value);
2639 } else {
2640 value = 1 << value;
2643 node_cpumask[nodenr] = value;
2645 nb_numa_nodes++;
2647 return;
2650 /***********************************************************/
2651 /* USB devices */
2653 static USBPort *used_usb_ports;
2654 static USBPort *free_usb_ports;
2656 /* ??? Maybe change this to register a hub to keep track of the topology. */
2657 void qemu_register_usb_port(USBPort *port, void *opaque, int index,
2658 usb_attachfn attach)
2660 port->opaque = opaque;
2661 port->index = index;
2662 port->attach = attach;
2663 port->next = free_usb_ports;
2664 free_usb_ports = port;
2667 int usb_device_add_dev(USBDevice *dev)
2669 USBPort *port;
2671 /* Find a USB port to add the device to. */
2672 port = free_usb_ports;
2673 if (!port->next) {
2674 USBDevice *hub;
2676 /* Create a new hub and chain it on. */
2677 free_usb_ports = NULL;
2678 port->next = used_usb_ports;
2679 used_usb_ports = port;
2681 hub = usb_hub_init(VM_USB_HUB_SIZE);
2682 usb_attach(port, hub);
2683 port = free_usb_ports;
2686 free_usb_ports = port->next;
2687 port->next = used_usb_ports;
2688 used_usb_ports = port;
2689 usb_attach(port, dev);
2690 return 0;
2693 static void usb_msd_password_cb(void *opaque, int err)
2695 USBDevice *dev = opaque;
2697 if (!err)
2698 usb_device_add_dev(dev);
2699 else
2700 dev->handle_destroy(dev);
2703 static int usb_device_add(const char *devname, int is_hotplug)
2705 const char *p;
2706 USBDevice *dev;
2708 if (!free_usb_ports)
2709 return -1;
2711 if (strstart(devname, "host:", &p)) {
2712 dev = usb_host_device_open(p);
2713 } else if (!strcmp(devname, "mouse")) {
2714 dev = usb_mouse_init();
2715 } else if (!strcmp(devname, "tablet")) {
2716 dev = usb_tablet_init();
2717 } else if (!strcmp(devname, "keyboard")) {
2718 dev = usb_keyboard_init();
2719 } else if (strstart(devname, "disk:", &p)) {
2720 BlockDriverState *bs;
2722 dev = usb_msd_init(p);
2723 if (!dev)
2724 return -1;
2725 bs = usb_msd_get_bdrv(dev);
2726 if (bdrv_key_required(bs)) {
2727 autostart = 0;
2728 if (is_hotplug) {
2729 monitor_read_bdrv_key_start(cur_mon, bs, usb_msd_password_cb,
2730 dev);
2731 return 0;
2734 } else if (!strcmp(devname, "wacom-tablet")) {
2735 dev = usb_wacom_init();
2736 } else if (strstart(devname, "serial:", &p)) {
2737 dev = usb_serial_init(p);
2738 #ifdef CONFIG_BRLAPI
2739 } else if (!strcmp(devname, "braille")) {
2740 dev = usb_baum_init();
2741 #endif
2742 } else if (strstart(devname, "net:", &p)) {
2743 int nic = nb_nics;
2745 if (net_client_init(NULL, "nic", p) < 0)
2746 return -1;
2747 nd_table[nic].model = "usb";
2748 dev = usb_net_init(&nd_table[nic]);
2749 } else if (!strcmp(devname, "bt") || strstart(devname, "bt:", &p)) {
2750 dev = usb_bt_init(devname[2] ? hci_init(p) :
2751 bt_new_hci(qemu_find_bt_vlan(0)));
2752 } else {
2753 return -1;
2755 if (!dev)
2756 return -1;
2758 return usb_device_add_dev(dev);
2761 int usb_device_del_addr(int bus_num, int addr)
2763 USBPort *port;
2764 USBPort **lastp;
2765 USBDevice *dev;
2767 if (!used_usb_ports)
2768 return -1;
2770 if (bus_num != 0)
2771 return -1;
2773 lastp = &used_usb_ports;
2774 port = used_usb_ports;
2775 while (port && port->dev->addr != addr) {
2776 lastp = &port->next;
2777 port = port->next;
2780 if (!port)
2781 return -1;
2783 dev = port->dev;
2784 *lastp = port->next;
2785 usb_attach(port, NULL);
2786 dev->handle_destroy(dev);
2787 port->next = free_usb_ports;
2788 free_usb_ports = port;
2789 return 0;
2792 static int usb_device_del(const char *devname)
2794 int bus_num, addr;
2795 const char *p;
2797 if (strstart(devname, "host:", &p))
2798 return usb_host_device_close(p);
2800 if (!used_usb_ports)
2801 return -1;
2803 p = strchr(devname, '.');
2804 if (!p)
2805 return -1;
2806 bus_num = strtoul(devname, NULL, 0);
2807 addr = strtoul(p + 1, NULL, 0);
2809 return usb_device_del_addr(bus_num, addr);
2812 void do_usb_add(Monitor *mon, const char *devname)
2814 usb_device_add(devname, 1);
2817 void do_usb_del(Monitor *mon, const char *devname)
2819 usb_device_del(devname);
2822 void usb_info(Monitor *mon)
2824 USBDevice *dev;
2825 USBPort *port;
2826 const char *speed_str;
2828 if (!usb_enabled) {
2829 monitor_printf(mon, "USB support not enabled\n");
2830 return;
2833 for (port = used_usb_ports; port; port = port->next) {
2834 dev = port->dev;
2835 if (!dev)
2836 continue;
2837 switch(dev->speed) {
2838 case USB_SPEED_LOW:
2839 speed_str = "1.5";
2840 break;
2841 case USB_SPEED_FULL:
2842 speed_str = "12";
2843 break;
2844 case USB_SPEED_HIGH:
2845 speed_str = "480";
2846 break;
2847 default:
2848 speed_str = "?";
2849 break;
2851 monitor_printf(mon, " Device %d.%d, Speed %s Mb/s, Product %s\n",
2852 0, dev->addr, speed_str, dev->devname);
2856 /***********************************************************/
2857 /* PCMCIA/Cardbus */
2859 static struct pcmcia_socket_entry_s {
2860 PCMCIASocket *socket;
2861 struct pcmcia_socket_entry_s *next;
2862 } *pcmcia_sockets = 0;
2864 void pcmcia_socket_register(PCMCIASocket *socket)
2866 struct pcmcia_socket_entry_s *entry;
2868 entry = qemu_malloc(sizeof(struct pcmcia_socket_entry_s));
2869 entry->socket = socket;
2870 entry->next = pcmcia_sockets;
2871 pcmcia_sockets = entry;
2874 void pcmcia_socket_unregister(PCMCIASocket *socket)
2876 struct pcmcia_socket_entry_s *entry, **ptr;
2878 ptr = &pcmcia_sockets;
2879 for (entry = *ptr; entry; ptr = &entry->next, entry = *ptr)
2880 if (entry->socket == socket) {
2881 *ptr = entry->next;
2882 qemu_free(entry);
2886 void pcmcia_info(Monitor *mon)
2888 struct pcmcia_socket_entry_s *iter;
2890 if (!pcmcia_sockets)
2891 monitor_printf(mon, "No PCMCIA sockets\n");
2893 for (iter = pcmcia_sockets; iter; iter = iter->next)
2894 monitor_printf(mon, "%s: %s\n", iter->socket->slot_string,
2895 iter->socket->attached ? iter->socket->card_string :
2896 "Empty");
2899 /***********************************************************/
2900 /* register display */
2902 struct DisplayAllocator default_allocator = {
2903 defaultallocator_create_displaysurface,
2904 defaultallocator_resize_displaysurface,
2905 defaultallocator_free_displaysurface
2908 void register_displaystate(DisplayState *ds)
2910 DisplayState **s;
2911 s = &display_state;
2912 while (*s != NULL)
2913 s = &(*s)->next;
2914 ds->next = NULL;
2915 *s = ds;
2918 DisplayState *get_displaystate(void)
2920 return display_state;
2923 DisplayAllocator *register_displayallocator(DisplayState *ds, DisplayAllocator *da)
2925 if(ds->allocator == &default_allocator) ds->allocator = da;
2926 return ds->allocator;
2929 /* dumb display */
2931 static void dumb_display_init(void)
2933 DisplayState *ds = qemu_mallocz(sizeof(DisplayState));
2934 ds->allocator = &default_allocator;
2935 ds->surface = qemu_create_displaysurface(ds, 640, 480);
2936 register_displaystate(ds);
2939 /***********************************************************/
2940 /* I/O handling */
2942 typedef struct IOHandlerRecord {
2943 int fd;
2944 IOCanRWHandler *fd_read_poll;
2945 IOHandler *fd_read;
2946 IOHandler *fd_write;
2947 int deleted;
2948 void *opaque;
2949 /* temporary data */
2950 struct pollfd *ufd;
2951 struct IOHandlerRecord *next;
2952 } IOHandlerRecord;
2954 static IOHandlerRecord *first_io_handler;
2956 /* XXX: fd_read_poll should be suppressed, but an API change is
2957 necessary in the character devices to suppress fd_can_read(). */
2958 int qemu_set_fd_handler2(int fd,
2959 IOCanRWHandler *fd_read_poll,
2960 IOHandler *fd_read,
2961 IOHandler *fd_write,
2962 void *opaque)
2964 IOHandlerRecord **pioh, *ioh;
2966 if (!fd_read && !fd_write) {
2967 pioh = &first_io_handler;
2968 for(;;) {
2969 ioh = *pioh;
2970 if (ioh == NULL)
2971 break;
2972 if (ioh->fd == fd) {
2973 ioh->deleted = 1;
2974 break;
2976 pioh = &ioh->next;
2978 } else {
2979 for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
2980 if (ioh->fd == fd)
2981 goto found;
2983 ioh = qemu_mallocz(sizeof(IOHandlerRecord));
2984 ioh->next = first_io_handler;
2985 first_io_handler = ioh;
2986 found:
2987 ioh->fd = fd;
2988 ioh->fd_read_poll = fd_read_poll;
2989 ioh->fd_read = fd_read;
2990 ioh->fd_write = fd_write;
2991 ioh->opaque = opaque;
2992 ioh->deleted = 0;
2994 qemu_notify_event();
2995 return 0;
2998 int qemu_set_fd_handler(int fd,
2999 IOHandler *fd_read,
3000 IOHandler *fd_write,
3001 void *opaque)
3003 return qemu_set_fd_handler2(fd, NULL, fd_read, fd_write, opaque);
3006 #ifdef _WIN32
3007 /***********************************************************/
3008 /* Polling handling */
3010 typedef struct PollingEntry {
3011 PollingFunc *func;
3012 void *opaque;
3013 struct PollingEntry *next;
3014 } PollingEntry;
3016 static PollingEntry *first_polling_entry;
3018 int qemu_add_polling_cb(PollingFunc *func, void *opaque)
3020 PollingEntry **ppe, *pe;
3021 pe = qemu_mallocz(sizeof(PollingEntry));
3022 pe->func = func;
3023 pe->opaque = opaque;
3024 for(ppe = &first_polling_entry; *ppe != NULL; ppe = &(*ppe)->next);
3025 *ppe = pe;
3026 return 0;
3029 void qemu_del_polling_cb(PollingFunc *func, void *opaque)
3031 PollingEntry **ppe, *pe;
3032 for(ppe = &first_polling_entry; *ppe != NULL; ppe = &(*ppe)->next) {
3033 pe = *ppe;
3034 if (pe->func == func && pe->opaque == opaque) {
3035 *ppe = pe->next;
3036 qemu_free(pe);
3037 break;
3042 /***********************************************************/
3043 /* Wait objects support */
3044 typedef struct WaitObjects {
3045 int num;
3046 HANDLE events[MAXIMUM_WAIT_OBJECTS + 1];
3047 WaitObjectFunc *func[MAXIMUM_WAIT_OBJECTS + 1];
3048 void *opaque[MAXIMUM_WAIT_OBJECTS + 1];
3049 } WaitObjects;
3051 static WaitObjects wait_objects = {0};
3053 int qemu_add_wait_object(HANDLE handle, WaitObjectFunc *func, void *opaque)
3055 WaitObjects *w = &wait_objects;
3057 if (w->num >= MAXIMUM_WAIT_OBJECTS)
3058 return -1;
3059 w->events[w->num] = handle;
3060 w->func[w->num] = func;
3061 w->opaque[w->num] = opaque;
3062 w->num++;
3063 return 0;
3066 void qemu_del_wait_object(HANDLE handle, WaitObjectFunc *func, void *opaque)
3068 int i, found;
3069 WaitObjects *w = &wait_objects;
3071 found = 0;
3072 for (i = 0; i < w->num; i++) {
3073 if (w->events[i] == handle)
3074 found = 1;
3075 if (found) {
3076 w->events[i] = w->events[i + 1];
3077 w->func[i] = w->func[i + 1];
3078 w->opaque[i] = w->opaque[i + 1];
3081 if (found)
3082 w->num--;
3084 #endif
3086 /***********************************************************/
3087 /* ram save/restore */
3089 static int ram_get_page(QEMUFile *f, uint8_t *buf, int len)
3091 int v;
3093 v = qemu_get_byte(f);
3094 switch(v) {
3095 case 0:
3096 if (qemu_get_buffer(f, buf, len) != len)
3097 return -EIO;
3098 break;
3099 case 1:
3100 v = qemu_get_byte(f);
3101 memset(buf, v, len);
3102 break;
3103 default:
3104 return -EINVAL;
3107 if (qemu_file_has_error(f))
3108 return -EIO;
3110 return 0;
3113 static int ram_load_v1(QEMUFile *f, void *opaque)
3115 int ret;
3116 ram_addr_t i;
3118 if (qemu_get_be32(f) != last_ram_offset)
3119 return -EINVAL;
3120 for(i = 0; i < last_ram_offset; i+= TARGET_PAGE_SIZE) {
3121 if (kvm_enabled() && (i>=0xa0000) && (i<0xc0000)) /* do not access video-addresses */
3122 continue;
3123 ret = ram_get_page(f, qemu_get_ram_ptr(i), TARGET_PAGE_SIZE);
3124 if (ret)
3125 return ret;
3127 return 0;
3130 #define BDRV_HASH_BLOCK_SIZE 1024
3131 #define IOBUF_SIZE 4096
3132 #define RAM_CBLOCK_MAGIC 0xfabe
3134 typedef struct RamDecompressState {
3135 z_stream zstream;
3136 QEMUFile *f;
3137 uint8_t buf[IOBUF_SIZE];
3138 } RamDecompressState;
3140 static int ram_decompress_open(RamDecompressState *s, QEMUFile *f)
3142 int ret;
3143 memset(s, 0, sizeof(*s));
3144 s->f = f;
3145 ret = inflateInit(&s->zstream);
3146 if (ret != Z_OK)
3147 return -1;
3148 return 0;
3151 static int ram_decompress_buf(RamDecompressState *s, uint8_t *buf, int len)
3153 int ret, clen;
3155 s->zstream.avail_out = len;
3156 s->zstream.next_out = buf;
3157 while (s->zstream.avail_out > 0) {
3158 if (s->zstream.avail_in == 0) {
3159 if (qemu_get_be16(s->f) != RAM_CBLOCK_MAGIC)
3160 return -1;
3161 clen = qemu_get_be16(s->f);
3162 if (clen > IOBUF_SIZE)
3163 return -1;
3164 qemu_get_buffer(s->f, s->buf, clen);
3165 s->zstream.avail_in = clen;
3166 s->zstream.next_in = s->buf;
3168 ret = inflate(&s->zstream, Z_PARTIAL_FLUSH);
3169 if (ret != Z_OK && ret != Z_STREAM_END) {
3170 return -1;
3173 return 0;
3176 static void ram_decompress_close(RamDecompressState *s)
3178 inflateEnd(&s->zstream);
3181 #define RAM_SAVE_FLAG_FULL 0x01
3182 #define RAM_SAVE_FLAG_COMPRESS 0x02
3183 #define RAM_SAVE_FLAG_MEM_SIZE 0x04
3184 #define RAM_SAVE_FLAG_PAGE 0x08
3185 #define RAM_SAVE_FLAG_EOS 0x10
3187 static int is_dup_page(uint8_t *page, uint8_t ch)
3189 uint32_t val = ch << 24 | ch << 16 | ch << 8 | ch;
3190 uint32_t *array = (uint32_t *)page;
3191 int i;
3193 for (i = 0; i < (TARGET_PAGE_SIZE / 4); i++) {
3194 if (array[i] != val)
3195 return 0;
3198 return 1;
3201 static int ram_save_block(QEMUFile *f)
3203 static ram_addr_t current_addr = 0;
3204 ram_addr_t saved_addr = current_addr;
3205 ram_addr_t addr = 0;
3206 int found = 0;
3208 while (addr < last_ram_offset) {
3209 if (kvm_enabled() && current_addr == 0) {
3210 int r;
3211 r = kvm_update_dirty_pages_log();
3212 if (r) {
3213 fprintf(stderr, "%s: update dirty pages log failed %d\n", __FUNCTION__, r);
3214 qemu_file_set_error(f);
3215 return 0;
3218 if (cpu_physical_memory_get_dirty(current_addr, MIGRATION_DIRTY_FLAG)) {
3219 uint8_t *p;
3221 cpu_physical_memory_reset_dirty(current_addr,
3222 current_addr + TARGET_PAGE_SIZE,
3223 MIGRATION_DIRTY_FLAG);
3225 p = qemu_get_ram_ptr(current_addr);
3227 if (is_dup_page(p, *p)) {
3228 qemu_put_be64(f, current_addr | RAM_SAVE_FLAG_COMPRESS);
3229 qemu_put_byte(f, *p);
3230 } else {
3231 qemu_put_be64(f, current_addr | RAM_SAVE_FLAG_PAGE);
3232 qemu_put_buffer(f, p, TARGET_PAGE_SIZE);
3235 found = 1;
3236 break;
3238 addr += TARGET_PAGE_SIZE;
3239 current_addr = (saved_addr + addr) % last_ram_offset;
3242 return found;
3245 static ram_addr_t ram_save_threshold = 10;
3246 static uint64_t bytes_transferred = 0;
3248 static ram_addr_t ram_save_remaining(void)
3250 ram_addr_t addr;
3251 ram_addr_t count = 0;
3253 for (addr = 0; addr < last_ram_offset; addr += TARGET_PAGE_SIZE) {
3254 if (cpu_physical_memory_get_dirty(addr, MIGRATION_DIRTY_FLAG))
3255 count++;
3258 return count;
3261 uint64_t ram_bytes_remaining(void)
3263 return ram_save_remaining() * TARGET_PAGE_SIZE;
3266 uint64_t ram_bytes_transferred(void)
3268 return bytes_transferred;
3271 uint64_t ram_bytes_total(void)
3273 return last_ram_offset;
3276 static int ram_save_live(QEMUFile *f, int stage, void *opaque)
3278 ram_addr_t addr;
3280 if (cpu_physical_sync_dirty_bitmap(0, TARGET_PHYS_ADDR_MAX) != 0) {
3281 qemu_file_set_error(f);
3282 return 0;
3285 if (stage == 1) {
3286 /* Make sure all dirty bits are set */
3287 for (addr = 0; addr < last_ram_offset; addr += TARGET_PAGE_SIZE) {
3288 if (!cpu_physical_memory_get_dirty(addr, MIGRATION_DIRTY_FLAG))
3289 cpu_physical_memory_set_dirty(addr);
3292 /* Enable dirty memory tracking */
3293 cpu_physical_memory_set_dirty_tracking(1);
3295 qemu_put_be64(f, last_ram_offset | RAM_SAVE_FLAG_MEM_SIZE);
3298 while (!qemu_file_rate_limit(f)) {
3299 int ret;
3301 ret = ram_save_block(f);
3302 bytes_transferred += ret * TARGET_PAGE_SIZE;
3303 if (ret == 0) /* no more blocks */
3304 break;
3307 /* try transferring iterative blocks of memory */
3309 if (stage == 3) {
3311 /* flush all remaining blocks regardless of rate limiting */
3312 while (ram_save_block(f) != 0) {
3313 bytes_transferred += TARGET_PAGE_SIZE;
3315 cpu_physical_memory_set_dirty_tracking(0);
3318 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
3320 return (stage == 2) && (ram_save_remaining() < ram_save_threshold);
3323 static int ram_load_dead(QEMUFile *f, void *opaque)
3325 RamDecompressState s1, *s = &s1;
3326 uint8_t buf[10];
3327 ram_addr_t i;
3329 if (ram_decompress_open(s, f) < 0)
3330 return -EINVAL;
3331 for(i = 0; i < last_ram_offset; i+= BDRV_HASH_BLOCK_SIZE) {
3332 if (kvm_enabled() && (i>=0xa0000) && (i<0xc0000)) /* do not access video-addresses */
3333 continue;
3334 if (ram_decompress_buf(s, buf, 1) < 0) {
3335 fprintf(stderr, "Error while reading ram block header\n");
3336 goto error;
3338 if (buf[0] == 0) {
3339 if (ram_decompress_buf(s, qemu_get_ram_ptr(i),
3340 BDRV_HASH_BLOCK_SIZE) < 0) {
3341 fprintf(stderr, "Error while reading ram block address=0x%08" PRIx64, (uint64_t)i);
3342 goto error;
3344 } else {
3345 error:
3346 printf("Error block header\n");
3347 return -EINVAL;
3350 ram_decompress_close(s);
3352 return 0;
3355 static int ram_load(QEMUFile *f, void *opaque, int version_id)
3357 ram_addr_t addr;
3358 int flags;
3360 if (version_id == 1)
3361 return ram_load_v1(f, opaque);
3363 if (version_id == 2) {
3364 if (qemu_get_be32(f) != last_ram_offset)
3365 return -EINVAL;
3366 return ram_load_dead(f, opaque);
3369 if (version_id != 3)
3370 return -EINVAL;
3372 do {
3373 addr = qemu_get_be64(f);
3375 flags = addr & ~TARGET_PAGE_MASK;
3376 addr &= TARGET_PAGE_MASK;
3378 if (flags & RAM_SAVE_FLAG_MEM_SIZE) {
3379 if (addr != last_ram_offset)
3380 return -EINVAL;
3383 if (flags & RAM_SAVE_FLAG_FULL) {
3384 if (ram_load_dead(f, opaque) < 0)
3385 return -EINVAL;
3388 if (flags & RAM_SAVE_FLAG_COMPRESS) {
3389 uint8_t ch = qemu_get_byte(f);
3390 memset(qemu_get_ram_ptr(addr), ch, TARGET_PAGE_SIZE);
3391 } else if (flags & RAM_SAVE_FLAG_PAGE)
3392 qemu_get_buffer(f, qemu_get_ram_ptr(addr), TARGET_PAGE_SIZE);
3393 } while (!(flags & RAM_SAVE_FLAG_EOS));
3395 return 0;
3398 void qemu_service_io(void)
3400 qemu_notify_event();
3403 /***********************************************************/
3404 /* bottom halves (can be seen as timers which expire ASAP) */
3406 struct QEMUBH {
3407 QEMUBHFunc *cb;
3408 void *opaque;
3409 int scheduled;
3410 int idle;
3411 int deleted;
3412 QEMUBH *next;
3415 static QEMUBH *first_bh = NULL;
3417 QEMUBH *qemu_bh_new(QEMUBHFunc *cb, void *opaque)
3419 QEMUBH *bh;
3420 bh = qemu_mallocz(sizeof(QEMUBH));
3421 bh->cb = cb;
3422 bh->opaque = opaque;
3423 bh->next = first_bh;
3424 first_bh = bh;
3425 return bh;
3428 int qemu_bh_poll(void)
3430 QEMUBH *bh, **bhp;
3431 int ret;
3433 ret = 0;
3434 for (bh = first_bh; bh; bh = bh->next) {
3435 if (!bh->deleted && bh->scheduled) {
3436 bh->scheduled = 0;
3437 if (!bh->idle)
3438 ret = 1;
3439 bh->idle = 0;
3440 bh->cb(bh->opaque);
3444 /* remove deleted bhs */
3445 bhp = &first_bh;
3446 while (*bhp) {
3447 bh = *bhp;
3448 if (bh->deleted) {
3449 *bhp = bh->next;
3450 qemu_free(bh);
3451 } else
3452 bhp = &bh->next;
3455 return ret;
3458 void qemu_bh_schedule_idle(QEMUBH *bh)
3460 if (bh->scheduled)
3461 return;
3462 bh->scheduled = 1;
3463 bh->idle = 1;
3466 void qemu_bh_schedule(QEMUBH *bh)
3468 if (bh->scheduled)
3469 return;
3470 bh->scheduled = 1;
3471 bh->idle = 0;
3472 /* stop the currently executing CPU to execute the BH ASAP */
3473 qemu_notify_event();
3476 void qemu_bh_cancel(QEMUBH *bh)
3478 bh->scheduled = 0;
3481 void qemu_bh_delete(QEMUBH *bh)
3483 bh->scheduled = 0;
3484 bh->deleted = 1;
3487 static void qemu_bh_update_timeout(int *timeout)
3489 QEMUBH *bh;
3491 for (bh = first_bh; bh; bh = bh->next) {
3492 if (!bh->deleted && bh->scheduled) {
3493 if (bh->idle) {
3494 /* idle bottom halves will be polled at least
3495 * every 10ms */
3496 *timeout = MIN(10, *timeout);
3497 } else {
3498 /* non-idle bottom halves will be executed
3499 * immediately */
3500 *timeout = 0;
3501 break;
3507 /***********************************************************/
3508 /* machine registration */
3510 static QEMUMachine *first_machine = NULL;
3511 QEMUMachine *current_machine = NULL;
3513 int qemu_register_machine(QEMUMachine *m)
3515 QEMUMachine **pm;
3516 pm = &first_machine;
3517 while (*pm != NULL)
3518 pm = &(*pm)->next;
3519 m->next = NULL;
3520 *pm = m;
3521 return 0;
3524 static QEMUMachine *find_machine(const char *name)
3526 QEMUMachine *m;
3528 for(m = first_machine; m != NULL; m = m->next) {
3529 if (!strcmp(m->name, name))
3530 return m;
3532 return NULL;
3535 static QEMUMachine *find_default_machine(void)
3537 QEMUMachine *m;
3539 for(m = first_machine; m != NULL; m = m->next) {
3540 if (m->is_default) {
3541 return m;
3544 return NULL;
3547 /***********************************************************/
3548 /* main execution loop */
3550 static void gui_update(void *opaque)
3552 uint64_t interval = GUI_REFRESH_INTERVAL;
3553 DisplayState *ds = opaque;
3554 DisplayChangeListener *dcl = ds->listeners;
3556 dpy_refresh(ds);
3558 while (dcl != NULL) {
3559 if (dcl->gui_timer_interval &&
3560 dcl->gui_timer_interval < interval)
3561 interval = dcl->gui_timer_interval;
3562 dcl = dcl->next;
3564 qemu_mod_timer(ds->gui_timer, interval + qemu_get_clock(rt_clock));
3567 static void nographic_update(void *opaque)
3569 uint64_t interval = GUI_REFRESH_INTERVAL;
3571 qemu_mod_timer(nographic_timer, interval + qemu_get_clock(rt_clock));
3574 struct vm_change_state_entry {
3575 VMChangeStateHandler *cb;
3576 void *opaque;
3577 LIST_ENTRY (vm_change_state_entry) entries;
3580 static LIST_HEAD(vm_change_state_head, vm_change_state_entry) vm_change_state_head;
3582 VMChangeStateEntry *qemu_add_vm_change_state_handler(VMChangeStateHandler *cb,
3583 void *opaque)
3585 VMChangeStateEntry *e;
3587 e = qemu_mallocz(sizeof (*e));
3589 e->cb = cb;
3590 e->opaque = opaque;
3591 LIST_INSERT_HEAD(&vm_change_state_head, e, entries);
3592 return e;
3595 void qemu_del_vm_change_state_handler(VMChangeStateEntry *e)
3597 LIST_REMOVE (e, entries);
3598 qemu_free (e);
3601 static void vm_state_notify(int running, int reason)
3603 VMChangeStateEntry *e;
3605 for (e = vm_change_state_head.lh_first; e; e = e->entries.le_next) {
3606 e->cb(e->opaque, running, reason);
3610 static void resume_all_vcpus(void);
3611 static void pause_all_vcpus(void);
3613 void vm_start(void)
3615 if (!vm_running) {
3616 cpu_enable_ticks();
3617 vm_running = 1;
3618 vm_state_notify(1, 0);
3619 qemu_rearm_alarm_timer(alarm_timer);
3620 resume_all_vcpus();
3624 /* reset/shutdown handler */
3626 typedef struct QEMUResetEntry {
3627 QEMUResetHandler *func;
3628 void *opaque;
3629 int order;
3630 struct QEMUResetEntry *next;
3631 } QEMUResetEntry;
3633 static QEMUResetEntry *first_reset_entry;
3634 static int reset_requested;
3635 static int shutdown_requested;
3636 static int powerdown_requested;
3637 static int debug_requested;
3638 static int vmstop_requested;
3640 int qemu_no_shutdown(void)
3642 int r = no_shutdown;
3643 no_shutdown = 0;
3644 return r;
3647 int qemu_shutdown_requested(void)
3649 int r = shutdown_requested;
3650 shutdown_requested = 0;
3651 return r;
3654 int qemu_reset_requested(void)
3656 int r = reset_requested;
3657 reset_requested = 0;
3658 return r;
3661 int qemu_powerdown_requested(void)
3663 int r = powerdown_requested;
3664 powerdown_requested = 0;
3665 return r;
3668 static int qemu_debug_requested(void)
3670 int r = debug_requested;
3671 debug_requested = 0;
3672 return r;
3675 static int qemu_vmstop_requested(void)
3677 int r = vmstop_requested;
3678 vmstop_requested = 0;
3679 return r;
3682 static void do_vm_stop(int reason)
3684 if (vm_running) {
3685 cpu_disable_ticks();
3686 vm_running = 0;
3687 pause_all_vcpus();
3688 vm_state_notify(0, reason);
3692 void qemu_register_reset(QEMUResetHandler *func, int order, void *opaque)
3694 QEMUResetEntry **pre, *re;
3696 pre = &first_reset_entry;
3697 while (*pre != NULL && (*pre)->order >= order) {
3698 pre = &(*pre)->next;
3700 re = qemu_mallocz(sizeof(QEMUResetEntry));
3701 re->func = func;
3702 re->opaque = opaque;
3703 re->order = order;
3704 re->next = NULL;
3705 *pre = re;
3708 void qemu_system_reset(void)
3710 QEMUResetEntry *re;
3712 /* reset all devices */
3713 for(re = first_reset_entry; re != NULL; re = re->next) {
3714 re->func(re->opaque);
3718 void qemu_system_reset_request(void)
3720 if (no_reboot) {
3721 shutdown_requested = 1;
3722 } else {
3723 reset_requested = 1;
3725 if (cpu_single_env) {
3726 qemu_kvm_cpu_stop(cpu_single_env);
3727 cpu_exit(cpu_single_env);
3729 qemu_notify_event();
3732 void qemu_system_shutdown_request(void)
3734 shutdown_requested = 1;
3735 qemu_notify_event();
3738 void qemu_system_powerdown_request(void)
3740 powerdown_requested = 1;
3741 qemu_notify_event();
3744 #ifdef CONFIG_IOTHREAD
3745 static void qemu_system_vmstop_request(int reason)
3747 vmstop_requested = reason;
3748 qemu_notify_event();
3750 #endif
3752 #ifndef _WIN32
3753 static int io_thread_fd = -1;
3755 static void qemu_event_increment(void)
3757 static const char byte = 0;
3759 if (io_thread_fd == -1)
3760 return;
3762 write(io_thread_fd, &byte, sizeof(byte));
3765 static void qemu_event_read(void *opaque)
3767 int fd = (unsigned long)opaque;
3768 ssize_t len;
3770 /* Drain the notify pipe */
3771 do {
3772 char buffer[512];
3773 len = read(fd, buffer, sizeof(buffer));
3774 } while ((len == -1 && errno == EINTR) || len > 0);
3777 static int qemu_event_init(void)
3779 int err;
3780 int fds[2];
3782 err = pipe(fds);
3783 if (err == -1)
3784 return -errno;
3786 err = fcntl_setfl(fds[0], O_NONBLOCK);
3787 if (err < 0)
3788 goto fail;
3790 err = fcntl_setfl(fds[1], O_NONBLOCK);
3791 if (err < 0)
3792 goto fail;
3794 qemu_set_fd_handler2(fds[0], NULL, qemu_event_read, NULL,
3795 (void *)(unsigned long)fds[0]);
3797 io_thread_fd = fds[1];
3798 return 0;
3800 fail:
3801 close(fds[0]);
3802 close(fds[1]);
3803 return err;
3805 #else
3806 HANDLE qemu_event_handle;
3808 static void dummy_event_handler(void *opaque)
3812 static int qemu_event_init(void)
3814 qemu_event_handle = CreateEvent(NULL, FALSE, FALSE, NULL);
3815 if (!qemu_event_handle) {
3816 perror("Failed CreateEvent");
3817 return -1;
3819 qemu_add_wait_object(qemu_event_handle, dummy_event_handler, NULL);
3820 return 0;
3823 static void qemu_event_increment(void)
3825 SetEvent(qemu_event_handle);
3827 #endif
3829 static int cpu_can_run(CPUState *env)
3831 if (env->stop)
3832 return 0;
3833 if (env->stopped)
3834 return 0;
3835 return 1;
3838 #ifndef CONFIG_IOTHREAD
3839 static int qemu_init_main_loop(void)
3841 return qemu_event_init();
3844 void qemu_init_vcpu(void *_env)
3846 CPUState *env = _env;
3848 if (kvm_enabled())
3849 kvm_init_vcpu(env);
3850 return;
3853 int qemu_cpu_self(void *env)
3855 return 1;
3858 static void resume_all_vcpus(void)
3862 static void pause_all_vcpus(void)
3866 void qemu_cpu_kick(void *env)
3868 return;
3871 void qemu_notify_event(void)
3873 CPUState *env = cpu_single_env;
3875 if (kvm_enabled()) {
3876 qemu_kvm_notify_work();
3877 return;
3879 if (env) {
3880 cpu_exit(env);
3881 #ifdef USE_KQEMU
3882 if (env->kqemu_enabled)
3883 kqemu_cpu_interrupt(env);
3884 #endif
3888 #define qemu_mutex_lock_iothread() do { } while (0)
3889 #define qemu_mutex_unlock_iothread() do { } while (0)
3891 void vm_stop(int reason)
3893 do_vm_stop(reason);
3896 #else /* CONFIG_IOTHREAD */
3898 #include "qemu-thread.h"
3900 QemuMutex qemu_global_mutex;
3901 static QemuMutex qemu_fair_mutex;
3903 static QemuThread io_thread;
3905 static QemuThread *tcg_cpu_thread;
3906 static QemuCond *tcg_halt_cond;
3908 static int qemu_system_ready;
3909 /* cpu creation */
3910 static QemuCond qemu_cpu_cond;
3911 /* system init */
3912 static QemuCond qemu_system_cond;
3913 static QemuCond qemu_pause_cond;
3915 static void block_io_signals(void);
3916 static void unblock_io_signals(void);
3917 static int tcg_has_work(void);
3919 static int qemu_init_main_loop(void)
3921 int ret;
3923 ret = qemu_event_init();
3924 if (ret)
3925 return ret;
3927 qemu_cond_init(&qemu_pause_cond);
3928 qemu_mutex_init(&qemu_fair_mutex);
3929 qemu_mutex_init(&qemu_global_mutex);
3930 qemu_mutex_lock(&qemu_global_mutex);
3932 unblock_io_signals();
3933 qemu_thread_self(&io_thread);
3935 return 0;
3938 static void qemu_wait_io_event(CPUState *env)
3940 while (!tcg_has_work())
3941 qemu_cond_timedwait(env->halt_cond, &qemu_global_mutex, 1000);
3943 qemu_mutex_unlock(&qemu_global_mutex);
3946 * Users of qemu_global_mutex can be starved, having no chance
3947 * to acquire it since this path will get to it first.
3948 * So use another lock to provide fairness.
3950 qemu_mutex_lock(&qemu_fair_mutex);
3951 qemu_mutex_unlock(&qemu_fair_mutex);
3953 qemu_mutex_lock(&qemu_global_mutex);
3954 if (env->stop) {
3955 env->stop = 0;
3956 env->stopped = 1;
3957 qemu_cond_signal(&qemu_pause_cond);
3961 static int qemu_cpu_exec(CPUState *env);
3963 static void *kvm_cpu_thread_fn(void *arg)
3965 CPUState *env = arg;
3967 block_io_signals();
3968 qemu_thread_self(env->thread);
3970 /* signal CPU creation */
3971 qemu_mutex_lock(&qemu_global_mutex);
3972 env->created = 1;
3973 qemu_cond_signal(&qemu_cpu_cond);
3975 /* and wait for machine initialization */
3976 while (!qemu_system_ready)
3977 qemu_cond_timedwait(&qemu_system_cond, &qemu_global_mutex, 100);
3979 while (1) {
3980 if (cpu_can_run(env))
3981 qemu_cpu_exec(env);
3982 qemu_wait_io_event(env);
3985 return NULL;
3988 static void tcg_cpu_exec(void);
3990 static void *tcg_cpu_thread_fn(void *arg)
3992 CPUState *env = arg;
3994 block_io_signals();
3995 qemu_thread_self(env->thread);
3997 /* signal CPU creation */
3998 qemu_mutex_lock(&qemu_global_mutex);
3999 for (env = first_cpu; env != NULL; env = env->next_cpu)
4000 env->created = 1;
4001 qemu_cond_signal(&qemu_cpu_cond);
4003 /* and wait for machine initialization */
4004 while (!qemu_system_ready)
4005 qemu_cond_timedwait(&qemu_system_cond, &qemu_global_mutex, 100);
4007 while (1) {
4008 tcg_cpu_exec();
4009 qemu_wait_io_event(cur_cpu);
4012 return NULL;
4015 void qemu_cpu_kick(void *_env)
4017 CPUState *env = _env;
4018 qemu_cond_broadcast(env->halt_cond);
4019 if (kvm_enabled())
4020 qemu_thread_signal(env->thread, SIGUSR1);
4023 int qemu_cpu_self(void *env)
4025 return (cpu_single_env != NULL);
4028 static void cpu_signal(int sig)
4030 if (cpu_single_env)
4031 cpu_exit(cpu_single_env);
4034 static void block_io_signals(void)
4036 sigset_t set;
4037 struct sigaction sigact;
4039 sigemptyset(&set);
4040 sigaddset(&set, SIGUSR2);
4041 sigaddset(&set, SIGIO);
4042 sigaddset(&set, SIGALRM);
4043 pthread_sigmask(SIG_BLOCK, &set, NULL);
4045 sigemptyset(&set);
4046 sigaddset(&set, SIGUSR1);
4047 pthread_sigmask(SIG_UNBLOCK, &set, NULL);
4049 memset(&sigact, 0, sizeof(sigact));
4050 sigact.sa_handler = cpu_signal;
4051 sigaction(SIGUSR1, &sigact, NULL);
4054 static void unblock_io_signals(void)
4056 sigset_t set;
4058 sigemptyset(&set);
4059 sigaddset(&set, SIGUSR2);
4060 sigaddset(&set, SIGIO);
4061 sigaddset(&set, SIGALRM);
4062 pthread_sigmask(SIG_UNBLOCK, &set, NULL);
4064 sigemptyset(&set);
4065 sigaddset(&set, SIGUSR1);
4066 pthread_sigmask(SIG_BLOCK, &set, NULL);
4069 static void qemu_signal_lock(unsigned int msecs)
4071 qemu_mutex_lock(&qemu_fair_mutex);
4073 while (qemu_mutex_trylock(&qemu_global_mutex)) {
4074 qemu_thread_signal(tcg_cpu_thread, SIGUSR1);
4075 if (!qemu_mutex_timedlock(&qemu_global_mutex, msecs))
4076 break;
4078 qemu_mutex_unlock(&qemu_fair_mutex);
4081 static void qemu_mutex_lock_iothread(void)
4083 if (kvm_enabled()) {
4084 qemu_mutex_lock(&qemu_fair_mutex);
4085 qemu_mutex_lock(&qemu_global_mutex);
4086 qemu_mutex_unlock(&qemu_fair_mutex);
4087 } else
4088 qemu_signal_lock(100);
4091 static void qemu_mutex_unlock_iothread(void)
4093 qemu_mutex_unlock(&qemu_global_mutex);
4096 static int all_vcpus_paused(void)
4098 CPUState *penv = first_cpu;
4100 while (penv) {
4101 if (!penv->stopped)
4102 return 0;
4103 penv = (CPUState *)penv->next_cpu;
4106 return 1;
4109 static void pause_all_vcpus(void)
4111 CPUState *penv = first_cpu;
4113 while (penv) {
4114 penv->stop = 1;
4115 qemu_thread_signal(penv->thread, SIGUSR1);
4116 qemu_cpu_kick(penv);
4117 penv = (CPUState *)penv->next_cpu;
4120 while (!all_vcpus_paused()) {
4121 qemu_cond_timedwait(&qemu_pause_cond, &qemu_global_mutex, 100);
4122 penv = first_cpu;
4123 while (penv) {
4124 qemu_thread_signal(penv->thread, SIGUSR1);
4125 penv = (CPUState *)penv->next_cpu;
4130 static void resume_all_vcpus(void)
4132 CPUState *penv = first_cpu;
4134 while (penv) {
4135 penv->stop = 0;
4136 penv->stopped = 0;
4137 qemu_thread_signal(penv->thread, SIGUSR1);
4138 qemu_cpu_kick(penv);
4139 penv = (CPUState *)penv->next_cpu;
4143 static void tcg_init_vcpu(void *_env)
4145 CPUState *env = _env;
4146 /* share a single thread for all cpus with TCG */
4147 if (!tcg_cpu_thread) {
4148 env->thread = qemu_mallocz(sizeof(QemuThread));
4149 env->halt_cond = qemu_mallocz(sizeof(QemuCond));
4150 qemu_cond_init(env->halt_cond);
4151 qemu_thread_create(env->thread, tcg_cpu_thread_fn, env);
4152 while (env->created == 0)
4153 qemu_cond_timedwait(&qemu_cpu_cond, &qemu_global_mutex, 100);
4154 tcg_cpu_thread = env->thread;
4155 tcg_halt_cond = env->halt_cond;
4156 } else {
4157 env->thread = tcg_cpu_thread;
4158 env->halt_cond = tcg_halt_cond;
4162 static void kvm_start_vcpu(CPUState *env)
4164 kvm_init_vcpu(env);
4165 env->thread = qemu_mallocz(sizeof(QemuThread));
4166 env->halt_cond = qemu_mallocz(sizeof(QemuCond));
4167 qemu_cond_init(env->halt_cond);
4168 qemu_thread_create(env->thread, kvm_cpu_thread_fn, env);
4169 while (env->created == 0)
4170 qemu_cond_timedwait(&qemu_cpu_cond, &qemu_global_mutex, 100);
4173 void qemu_init_vcpu(void *_env)
4175 CPUState *env = _env;
4177 if (kvm_enabled())
4178 kvm_start_vcpu(env);
4179 else
4180 tcg_init_vcpu(env);
4183 void qemu_notify_event(void)
4185 qemu_event_increment();
4188 void vm_stop(int reason)
4190 QemuThread me;
4191 qemu_thread_self(&me);
4193 if (!qemu_thread_equal(&me, &io_thread)) {
4194 qemu_system_vmstop_request(reason);
4196 * FIXME: should not return to device code in case
4197 * vm_stop() has been requested.
4199 if (cpu_single_env) {
4200 cpu_exit(cpu_single_env);
4201 cpu_single_env->stop = 1;
4203 return;
4205 do_vm_stop(reason);
4208 #endif
4211 #ifdef _WIN32
4212 static void host_main_loop_wait(int *timeout)
4214 int ret, ret2, i;
4215 PollingEntry *pe;
4218 /* XXX: need to suppress polling by better using win32 events */
4219 ret = 0;
4220 for(pe = first_polling_entry; pe != NULL; pe = pe->next) {
4221 ret |= pe->func(pe->opaque);
4223 if (ret == 0) {
4224 int err;
4225 WaitObjects *w = &wait_objects;
4227 ret = WaitForMultipleObjects(w->num, w->events, FALSE, *timeout);
4228 if (WAIT_OBJECT_0 + 0 <= ret && ret <= WAIT_OBJECT_0 + w->num - 1) {
4229 if (w->func[ret - WAIT_OBJECT_0])
4230 w->func[ret - WAIT_OBJECT_0](w->opaque[ret - WAIT_OBJECT_0]);
4232 /* Check for additional signaled events */
4233 for(i = (ret - WAIT_OBJECT_0 + 1); i < w->num; i++) {
4235 /* Check if event is signaled */
4236 ret2 = WaitForSingleObject(w->events[i], 0);
4237 if(ret2 == WAIT_OBJECT_0) {
4238 if (w->func[i])
4239 w->func[i](w->opaque[i]);
4240 } else if (ret2 == WAIT_TIMEOUT) {
4241 } else {
4242 err = GetLastError();
4243 fprintf(stderr, "WaitForSingleObject error %d %d\n", i, err);
4246 } else if (ret == WAIT_TIMEOUT) {
4247 } else {
4248 err = GetLastError();
4249 fprintf(stderr, "WaitForMultipleObjects error %d %d\n", ret, err);
4253 *timeout = 0;
4255 #else
4256 static void host_main_loop_wait(int *timeout)
4259 #endif
4261 void main_loop_wait(int timeout)
4263 IOHandlerRecord *ioh;
4264 fd_set rfds, wfds, xfds;
4265 int ret, nfds;
4266 struct timeval tv;
4268 qemu_bh_update_timeout(&timeout);
4270 host_main_loop_wait(&timeout);
4272 /* poll any events */
4273 /* XXX: separate device handlers from system ones */
4274 nfds = -1;
4275 FD_ZERO(&rfds);
4276 FD_ZERO(&wfds);
4277 FD_ZERO(&xfds);
4278 for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
4279 if (ioh->deleted)
4280 continue;
4281 if (ioh->fd_read &&
4282 (!ioh->fd_read_poll ||
4283 ioh->fd_read_poll(ioh->opaque) != 0)) {
4284 FD_SET(ioh->fd, &rfds);
4285 if (ioh->fd > nfds)
4286 nfds = ioh->fd;
4288 if (ioh->fd_write) {
4289 FD_SET(ioh->fd, &wfds);
4290 if (ioh->fd > nfds)
4291 nfds = ioh->fd;
4295 tv.tv_sec = timeout / 1000;
4296 tv.tv_usec = (timeout % 1000) * 1000;
4298 #if defined(CONFIG_SLIRP)
4299 if (slirp_is_inited()) {
4300 slirp_select_fill(&nfds, &rfds, &wfds, &xfds);
4302 #endif
4303 ret = qemu_select(nfds + 1, &rfds, &wfds, &xfds, &tv);
4304 if (ret > 0) {
4305 IOHandlerRecord **pioh;
4307 for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
4308 if (!ioh->deleted && ioh->fd_read && FD_ISSET(ioh->fd, &rfds)) {
4309 ioh->fd_read(ioh->opaque);
4310 if (!(ioh->fd_read_poll && ioh->fd_read_poll(ioh->opaque)))
4311 FD_CLR(ioh->fd, &rfds);
4313 if (!ioh->deleted && ioh->fd_write && FD_ISSET(ioh->fd, &wfds)) {
4314 ioh->fd_write(ioh->opaque);
4318 /* remove deleted IO handlers */
4319 pioh = &first_io_handler;
4320 while (*pioh) {
4321 ioh = *pioh;
4322 if (ioh->deleted) {
4323 *pioh = ioh->next;
4324 qemu_free(ioh);
4325 } else
4326 pioh = &ioh->next;
4329 #if defined(CONFIG_SLIRP)
4330 if (slirp_is_inited()) {
4331 if (ret < 0) {
4332 FD_ZERO(&rfds);
4333 FD_ZERO(&wfds);
4334 FD_ZERO(&xfds);
4336 slirp_select_poll(&rfds, &wfds, &xfds);
4338 #endif
4340 /* rearm timer, if not periodic */
4341 if (alarm_timer->flags & ALARM_FLAG_EXPIRED) {
4342 alarm_timer->flags &= ~ALARM_FLAG_EXPIRED;
4343 qemu_rearm_alarm_timer(alarm_timer);
4346 /* vm time timers */
4347 if (vm_running) {
4348 if (!cur_cpu || likely(!(cur_cpu->singlestep_enabled & SSTEP_NOTIMER)))
4349 qemu_run_timers(&active_timers[QEMU_TIMER_VIRTUAL],
4350 qemu_get_clock(vm_clock));
4353 /* real time timers */
4354 qemu_run_timers(&active_timers[QEMU_TIMER_REALTIME],
4355 qemu_get_clock(rt_clock));
4357 /* Check bottom-halves last in case any of the earlier events triggered
4358 them. */
4359 qemu_bh_poll();
4363 static int qemu_cpu_exec(CPUState *env)
4365 int ret;
4366 #ifdef CONFIG_PROFILER
4367 int64_t ti;
4368 #endif
4370 #ifdef CONFIG_PROFILER
4371 ti = profile_getclock();
4372 #endif
4373 if (use_icount) {
4374 int64_t count;
4375 int decr;
4376 qemu_icount -= (env->icount_decr.u16.low + env->icount_extra);
4377 env->icount_decr.u16.low = 0;
4378 env->icount_extra = 0;
4379 count = qemu_next_deadline();
4380 count = (count + (1 << icount_time_shift) - 1)
4381 >> icount_time_shift;
4382 qemu_icount += count;
4383 decr = (count > 0xffff) ? 0xffff : count;
4384 count -= decr;
4385 env->icount_decr.u16.low = decr;
4386 env->icount_extra = count;
4388 ret = cpu_exec(env);
4389 #ifdef CONFIG_PROFILER
4390 qemu_time += profile_getclock() - ti;
4391 #endif
4392 if (use_icount) {
4393 /* Fold pending instructions back into the
4394 instruction counter, and clear the interrupt flag. */
4395 qemu_icount -= (env->icount_decr.u16.low
4396 + env->icount_extra);
4397 env->icount_decr.u32 = 0;
4398 env->icount_extra = 0;
4400 return ret;
4403 static void tcg_cpu_exec(void)
4405 int ret = 0;
4407 if (next_cpu == NULL)
4408 next_cpu = first_cpu;
4409 for (; next_cpu != NULL; next_cpu = next_cpu->next_cpu) {
4410 CPUState *env = cur_cpu = next_cpu;
4412 if (!vm_running)
4413 break;
4414 if (timer_alarm_pending) {
4415 timer_alarm_pending = 0;
4416 break;
4418 if (cpu_can_run(env))
4419 ret = qemu_cpu_exec(env);
4420 if (ret == EXCP_DEBUG) {
4421 gdb_set_stop_cpu(env);
4422 debug_requested = 1;
4423 break;
4428 static int cpu_has_work(CPUState *env)
4430 if (env->stop)
4431 return 1;
4432 if (env->stopped)
4433 return 0;
4434 if (!env->halted)
4435 return 1;
4436 if (qemu_cpu_has_work(env))
4437 return 1;
4438 return 0;
4441 static int tcg_has_work(void)
4443 CPUState *env;
4445 for (env = first_cpu; env != NULL; env = env->next_cpu)
4446 if (cpu_has_work(env))
4447 return 1;
4448 return 0;
4451 static int qemu_calculate_timeout(void)
4453 #ifndef CONFIG_IOTHREAD
4454 int timeout;
4456 if (!vm_running)
4457 timeout = 5000;
4458 else if (tcg_has_work())
4459 timeout = 0;
4460 else if (!use_icount)
4461 timeout = 5000;
4462 else {
4463 /* XXX: use timeout computed from timers */
4464 int64_t add;
4465 int64_t delta;
4466 /* Advance virtual time to the next event. */
4467 if (use_icount == 1) {
4468 /* When not using an adaptive execution frequency
4469 we tend to get badly out of sync with real time,
4470 so just delay for a reasonable amount of time. */
4471 delta = 0;
4472 } else {
4473 delta = cpu_get_icount() - cpu_get_clock();
4475 if (delta > 0) {
4476 /* If virtual time is ahead of real time then just
4477 wait for IO. */
4478 timeout = (delta / 1000000) + 1;
4479 } else {
4480 /* Wait for either IO to occur or the next
4481 timer event. */
4482 add = qemu_next_deadline();
4483 /* We advance the timer before checking for IO.
4484 Limit the amount we advance so that early IO
4485 activity won't get the guest too far ahead. */
4486 if (add > 10000000)
4487 add = 10000000;
4488 delta += add;
4489 add = (add + (1 << icount_time_shift) - 1)
4490 >> icount_time_shift;
4491 qemu_icount += add;
4492 timeout = delta / 1000000;
4493 if (timeout < 0)
4494 timeout = 0;
4498 return timeout;
4499 #else /* CONFIG_IOTHREAD */
4500 return 1000;
4501 #endif
4504 static int vm_can_run(void)
4506 if (powerdown_requested)
4507 return 0;
4508 if (reset_requested)
4509 return 0;
4510 if (shutdown_requested)
4511 return 0;
4512 if (debug_requested)
4513 return 0;
4514 return 1;
4517 static void main_loop(void)
4519 int r;
4521 if (kvm_enabled()) {
4522 kvm_main_loop();
4523 cpu_disable_ticks();
4524 return;
4527 #ifdef CONFIG_IOTHREAD
4528 qemu_system_ready = 1;
4529 qemu_cond_broadcast(&qemu_system_cond);
4530 #endif
4532 for (;;) {
4533 do {
4534 #ifdef CONFIG_PROFILER
4535 int64_t ti;
4536 #endif
4537 #ifndef CONFIG_IOTHREAD
4538 tcg_cpu_exec();
4539 #endif
4540 #ifdef CONFIG_PROFILER
4541 ti = profile_getclock();
4542 #endif
4543 main_loop_wait(qemu_calculate_timeout());
4544 #ifdef CONFIG_PROFILER
4545 dev_time += profile_getclock() - ti;
4546 #endif
4547 } while (vm_can_run());
4549 if (qemu_debug_requested())
4550 vm_stop(EXCP_DEBUG);
4551 if (qemu_shutdown_requested()) {
4552 if (no_shutdown) {
4553 vm_stop(0);
4554 no_shutdown = 0;
4555 } else
4556 break;
4558 if (qemu_reset_requested()) {
4559 pause_all_vcpus();
4560 qemu_system_reset();
4561 resume_all_vcpus();
4563 if (qemu_powerdown_requested())
4564 qemu_system_powerdown();
4565 if ((r = qemu_vmstop_requested()))
4566 vm_stop(r);
4568 pause_all_vcpus();
4571 static void version(void)
4573 printf("QEMU PC emulator version " QEMU_VERSION QEMU_PKGVERSION ", Copyright (c) 2003-2008 Fabrice Bellard\n");
4576 static void help(int exitcode)
4578 version();
4579 printf("usage: %s [options] [disk_image]\n"
4580 "\n"
4581 "'disk_image' is a raw hard image image for IDE hard disk 0\n"
4582 "\n"
4583 #define DEF(option, opt_arg, opt_enum, opt_help) \
4584 opt_help
4585 #define DEFHEADING(text) stringify(text) "\n"
4586 #include "qemu-options.h"
4587 #undef DEF
4588 #undef DEFHEADING
4589 #undef GEN_DOCS
4590 "\n"
4591 "During emulation, the following keys are useful:\n"
4592 "ctrl-alt-f toggle full screen\n"
4593 "ctrl-alt-n switch to virtual console 'n'\n"
4594 "ctrl-alt toggle mouse and keyboard grab\n"
4595 "\n"
4596 "When using -nographic, press 'ctrl-a h' to get some help.\n"
4598 "qemu",
4599 DEFAULT_RAM_SIZE,
4600 #ifndef _WIN32
4601 DEFAULT_NETWORK_SCRIPT,
4602 DEFAULT_NETWORK_DOWN_SCRIPT,
4603 #endif
4604 DEFAULT_GDBSTUB_PORT,
4605 "/tmp/qemu.log");
4606 exit(exitcode);
4609 #define HAS_ARG 0x0001
4611 enum {
4612 #define DEF(option, opt_arg, opt_enum, opt_help) \
4613 opt_enum,
4614 #define DEFHEADING(text)
4615 #include "qemu-options.h"
4616 #undef DEF
4617 #undef DEFHEADING
4618 #undef GEN_DOCS
4621 typedef struct QEMUOption {
4622 const char *name;
4623 int flags;
4624 int index;
4625 } QEMUOption;
4627 static const QEMUOption qemu_options[] = {
4628 { "h", 0, QEMU_OPTION_h },
4629 #define DEF(option, opt_arg, opt_enum, opt_help) \
4630 { option, opt_arg, opt_enum },
4631 #define DEFHEADING(text)
4632 #include "qemu-options.h"
4633 #undef DEF
4634 #undef DEFHEADING
4635 #undef GEN_DOCS
4636 { NULL },
4639 #ifdef HAS_AUDIO
4640 struct soundhw soundhw[] = {
4641 #ifdef HAS_AUDIO_CHOICE
4642 #if defined(TARGET_I386) || defined(TARGET_MIPS)
4644 "pcspk",
4645 "PC speaker",
4648 { .init_isa = pcspk_audio_init }
4650 #endif
4652 #ifdef CONFIG_SB16
4654 "sb16",
4655 "Creative Sound Blaster 16",
4658 { .init_isa = SB16_init }
4660 #endif
4662 #ifdef CONFIG_CS4231A
4664 "cs4231a",
4665 "CS4231A",
4668 { .init_isa = cs4231a_init }
4670 #endif
4672 #ifdef CONFIG_ADLIB
4674 "adlib",
4675 #ifdef HAS_YMF262
4676 "Yamaha YMF262 (OPL3)",
4677 #else
4678 "Yamaha YM3812 (OPL2)",
4679 #endif
4682 { .init_isa = Adlib_init }
4684 #endif
4686 #ifdef CONFIG_GUS
4688 "gus",
4689 "Gravis Ultrasound GF1",
4692 { .init_isa = GUS_init }
4694 #endif
4696 #ifdef CONFIG_AC97
4698 "ac97",
4699 "Intel 82801AA AC97 Audio",
4702 { .init_pci = ac97_init }
4704 #endif
4706 #ifdef CONFIG_ES1370
4708 "es1370",
4709 "ENSONIQ AudioPCI ES1370",
4712 { .init_pci = es1370_init }
4714 #endif
4716 #endif /* HAS_AUDIO_CHOICE */
4718 { NULL, NULL, 0, 0, { NULL } }
4721 static void select_soundhw (const char *optarg)
4723 struct soundhw *c;
4725 if (*optarg == '?') {
4726 show_valid_cards:
4728 printf ("Valid sound card names (comma separated):\n");
4729 for (c = soundhw; c->name; ++c) {
4730 printf ("%-11s %s\n", c->name, c->descr);
4732 printf ("\n-soundhw all will enable all of the above\n");
4733 exit (*optarg != '?');
4735 else {
4736 size_t l;
4737 const char *p;
4738 char *e;
4739 int bad_card = 0;
4741 if (!strcmp (optarg, "all")) {
4742 for (c = soundhw; c->name; ++c) {
4743 c->enabled = 1;
4745 return;
4748 p = optarg;
4749 while (*p) {
4750 e = strchr (p, ',');
4751 l = !e ? strlen (p) : (size_t) (e - p);
4753 for (c = soundhw; c->name; ++c) {
4754 if (!strncmp (c->name, p, l)) {
4755 c->enabled = 1;
4756 break;
4760 if (!c->name) {
4761 if (l > 80) {
4762 fprintf (stderr,
4763 "Unknown sound card name (too big to show)\n");
4765 else {
4766 fprintf (stderr, "Unknown sound card name `%.*s'\n",
4767 (int) l, p);
4769 bad_card = 1;
4771 p += l + (e != NULL);
4774 if (bad_card)
4775 goto show_valid_cards;
4778 #endif
4780 static void select_vgahw (const char *p)
4782 const char *opts;
4784 cirrus_vga_enabled = 0;
4785 std_vga_enabled = 0;
4786 vmsvga_enabled = 0;
4787 xenfb_enabled = 0;
4788 if (strstart(p, "std", &opts)) {
4789 std_vga_enabled = 1;
4790 } else if (strstart(p, "cirrus", &opts)) {
4791 cirrus_vga_enabled = 1;
4792 } else if (strstart(p, "vmware", &opts)) {
4793 vmsvga_enabled = 1;
4794 } else if (strstart(p, "xenfb", &opts)) {
4795 xenfb_enabled = 1;
4796 } else if (!strstart(p, "none", &opts)) {
4797 invalid_vga:
4798 fprintf(stderr, "Unknown vga type: %s\n", p);
4799 exit(1);
4801 while (*opts) {
4802 const char *nextopt;
4804 if (strstart(opts, ",retrace=", &nextopt)) {
4805 opts = nextopt;
4806 if (strstart(opts, "dumb", &nextopt))
4807 vga_retrace_method = VGA_RETRACE_DUMB;
4808 else if (strstart(opts, "precise", &nextopt))
4809 vga_retrace_method = VGA_RETRACE_PRECISE;
4810 else goto invalid_vga;
4811 } else goto invalid_vga;
4812 opts = nextopt;
4816 #ifdef _WIN32
4817 static BOOL WINAPI qemu_ctrl_handler(DWORD type)
4819 exit(STATUS_CONTROL_C_EXIT);
4820 return TRUE;
4822 #endif
4824 int qemu_uuid_parse(const char *str, uint8_t *uuid)
4826 int ret;
4828 if(strlen(str) != 36)
4829 return -1;
4831 ret = sscanf(str, UUID_FMT, &uuid[0], &uuid[1], &uuid[2], &uuid[3],
4832 &uuid[4], &uuid[5], &uuid[6], &uuid[7], &uuid[8], &uuid[9],
4833 &uuid[10], &uuid[11], &uuid[12], &uuid[13], &uuid[14], &uuid[15]);
4835 if(ret != 16)
4836 return -1;
4838 #ifdef TARGET_I386
4839 smbios_add_field(1, offsetof(struct smbios_type_1, uuid), 16, uuid);
4840 #endif
4842 return 0;
4845 #define MAX_NET_CLIENTS 32
4847 #ifndef _WIN32
4849 static void termsig_handler(int signal)
4851 qemu_system_shutdown_request();
4854 static void sigchld_handler(int signal)
4856 waitpid(-1, NULL, WNOHANG);
4859 static void sighandler_setup(void)
4861 struct sigaction act;
4863 memset(&act, 0, sizeof(act));
4864 act.sa_handler = termsig_handler;
4865 sigaction(SIGINT, &act, NULL);
4866 sigaction(SIGHUP, &act, NULL);
4867 sigaction(SIGTERM, &act, NULL);
4869 act.sa_handler = sigchld_handler;
4870 act.sa_flags = SA_NOCLDSTOP;
4871 sigaction(SIGCHLD, &act, NULL);
4874 #endif
4876 #ifdef _WIN32
4877 /* Look for support files in the same directory as the executable. */
4878 static char *find_datadir(const char *argv0)
4880 char *p;
4881 char buf[MAX_PATH];
4882 DWORD len;
4884 len = GetModuleFileName(NULL, buf, sizeof(buf) - 1);
4885 if (len == 0) {
4886 return NULL;
4889 buf[len] = 0;
4890 p = buf + len - 1;
4891 while (p != buf && *p != '\\')
4892 p--;
4893 *p = 0;
4894 if (access(buf, R_OK) == 0) {
4895 return qemu_strdup(buf);
4897 return NULL;
4899 #else /* !_WIN32 */
4901 /* Find a likely location for support files using the location of the binary.
4902 For installed binaries this will be "$bindir/../share/qemu". When
4903 running from the build tree this will be "$bindir/../pc-bios". */
4904 #define SHARE_SUFFIX "/share/qemu"
4905 #define BUILD_SUFFIX "/pc-bios"
4906 static char *find_datadir(const char *argv0)
4908 char *dir;
4909 char *p = NULL;
4910 char *res;
4911 #ifdef PATH_MAX
4912 char buf[PATH_MAX];
4913 #endif
4914 size_t max_len;
4916 #if defined(__linux__)
4918 int len;
4919 len = readlink("/proc/self/exe", buf, sizeof(buf) - 1);
4920 if (len > 0) {
4921 buf[len] = 0;
4922 p = buf;
4925 #elif defined(__FreeBSD__)
4927 int len;
4928 len = readlink("/proc/curproc/file", buf, sizeof(buf) - 1);
4929 if (len > 0) {
4930 buf[len] = 0;
4931 p = buf;
4934 #endif
4935 /* If we don't have any way of figuring out the actual executable
4936 location then try argv[0]. */
4937 if (!p) {
4938 #ifdef PATH_MAX
4939 p = buf;
4940 #endif
4941 p = realpath(argv0, p);
4942 if (!p) {
4943 return NULL;
4946 dir = dirname(p);
4947 dir = dirname(dir);
4949 max_len = strlen(dir) +
4950 MAX(strlen(SHARE_SUFFIX), strlen(BUILD_SUFFIX)) + 1;
4951 res = qemu_mallocz(max_len);
4952 snprintf(res, max_len, "%s%s", dir, SHARE_SUFFIX);
4953 if (access(res, R_OK)) {
4954 snprintf(res, max_len, "%s%s", dir, BUILD_SUFFIX);
4955 if (access(res, R_OK)) {
4956 qemu_free(res);
4957 res = NULL;
4960 #ifndef PATH_MAX
4961 free(p);
4962 #endif
4963 return res;
4965 #undef SHARE_SUFFIX
4966 #undef BUILD_SUFFIX
4967 #endif
4969 char *qemu_find_file(int type, const char *name)
4971 int len;
4972 const char *subdir;
4973 char *buf;
4975 /* If name contains path separators then try it as a straight path. */
4976 if ((strchr(name, '/') || strchr(name, '\\'))
4977 && access(name, R_OK) == 0) {
4978 return strdup(name);
4980 switch (type) {
4981 case QEMU_FILE_TYPE_BIOS:
4982 subdir = "";
4983 break;
4984 case QEMU_FILE_TYPE_KEYMAP:
4985 subdir = "keymaps/";
4986 break;
4987 default:
4988 abort();
4990 len = strlen(data_dir) + strlen(name) + strlen(subdir) + 2;
4991 buf = qemu_mallocz(len);
4992 snprintf(buf, len, "%s/%s%s", data_dir, subdir, name);
4993 if (access(buf, R_OK)) {
4994 qemu_free(buf);
4995 return NULL;
4997 return buf;
5000 int main(int argc, char **argv, char **envp)
5002 const char *gdbstub_dev = NULL;
5003 uint32_t boot_devices_bitmap = 0;
5004 int i;
5005 int snapshot, linux_boot, net_boot;
5006 const char *initrd_filename;
5007 const char *kernel_filename, *kernel_cmdline;
5008 const char *boot_devices = "";
5009 DisplayState *ds;
5010 DisplayChangeListener *dcl;
5011 int cyls, heads, secs, translation;
5012 const char *net_clients[MAX_NET_CLIENTS];
5013 int nb_net_clients;
5014 const char *bt_opts[MAX_BT_CMDLINE];
5015 int nb_bt_opts;
5016 int hda_index;
5017 int optind;
5018 const char *r, *optarg;
5019 CharDriverState *monitor_hd = NULL;
5020 const char *monitor_device;
5021 const char *serial_devices[MAX_SERIAL_PORTS];
5022 int serial_device_index;
5023 const char *parallel_devices[MAX_PARALLEL_PORTS];
5024 int parallel_device_index;
5025 const char *virtio_consoles[MAX_VIRTIO_CONSOLES];
5026 int virtio_console_index;
5027 const char *loadvm = NULL;
5028 QEMUMachine *machine;
5029 const char *cpu_model;
5030 const char *usb_devices[MAX_USB_CMDLINE];
5031 int usb_devices_index;
5032 #ifndef _WIN32
5033 int fds[2];
5034 #endif
5035 int tb_size;
5036 const char *pid_file = NULL;
5037 const char *incoming = NULL;
5038 #ifndef _WIN32
5039 int fd = 0;
5040 struct passwd *pwd = NULL;
5041 const char *chroot_dir = NULL;
5042 const char *run_as = NULL;
5043 #endif
5044 CPUState *env;
5045 int show_vnc_port = 0;
5047 qemu_cache_utils_init(envp);
5049 LIST_INIT (&vm_change_state_head);
5050 #ifndef _WIN32
5052 struct sigaction act;
5053 sigfillset(&act.sa_mask);
5054 act.sa_flags = 0;
5055 act.sa_handler = SIG_IGN;
5056 sigaction(SIGPIPE, &act, NULL);
5058 #else
5059 SetConsoleCtrlHandler(qemu_ctrl_handler, TRUE);
5060 /* Note: cpu_interrupt() is currently not SMP safe, so we force
5061 QEMU to run on a single CPU */
5063 HANDLE h;
5064 DWORD mask, smask;
5065 int i;
5066 h = GetCurrentProcess();
5067 if (GetProcessAffinityMask(h, &mask, &smask)) {
5068 for(i = 0; i < 32; i++) {
5069 if (mask & (1 << i))
5070 break;
5072 if (i != 32) {
5073 mask = 1 << i;
5074 SetProcessAffinityMask(h, mask);
5078 #endif
5080 module_call_init(MODULE_INIT_MACHINE);
5081 machine = find_default_machine();
5082 cpu_model = NULL;
5083 initrd_filename = NULL;
5084 ram_size = 0;
5085 snapshot = 0;
5086 kernel_filename = NULL;
5087 kernel_cmdline = "";
5088 cyls = heads = secs = 0;
5089 translation = BIOS_ATA_TRANSLATION_AUTO;
5090 monitor_device = "vc:80Cx24C";
5092 serial_devices[0] = "vc:80Cx24C";
5093 for(i = 1; i < MAX_SERIAL_PORTS; i++)
5094 serial_devices[i] = NULL;
5095 serial_device_index = 0;
5097 parallel_devices[0] = "vc:80Cx24C";
5098 for(i = 1; i < MAX_PARALLEL_PORTS; i++)
5099 parallel_devices[i] = NULL;
5100 parallel_device_index = 0;
5102 for(i = 0; i < MAX_VIRTIO_CONSOLES; i++)
5103 virtio_consoles[i] = NULL;
5104 virtio_console_index = 0;
5106 for (i = 0; i < MAX_NODES; i++) {
5107 node_mem[i] = 0;
5108 node_cpumask[i] = 0;
5111 usb_devices_index = 0;
5112 assigned_devices_index = 0;
5114 nb_net_clients = 0;
5115 nb_bt_opts = 0;
5116 nb_drives = 0;
5117 nb_drives_opt = 0;
5118 nb_numa_nodes = 0;
5119 hda_index = -1;
5121 nb_nics = 0;
5123 tb_size = 0;
5124 autostart= 1;
5126 register_watchdogs();
5128 optind = 1;
5129 for(;;) {
5130 if (optind >= argc)
5131 break;
5132 r = argv[optind];
5133 if (r[0] != '-') {
5134 hda_index = drive_add(argv[optind++], HD_ALIAS, 0);
5135 } else {
5136 const QEMUOption *popt;
5138 optind++;
5139 /* Treat --foo the same as -foo. */
5140 if (r[1] == '-')
5141 r++;
5142 popt = qemu_options;
5143 for(;;) {
5144 if (!popt->name) {
5145 fprintf(stderr, "%s: invalid option -- '%s'\n",
5146 argv[0], r);
5147 exit(1);
5149 if (!strcmp(popt->name, r + 1))
5150 break;
5151 popt++;
5153 if (popt->flags & HAS_ARG) {
5154 if (optind >= argc) {
5155 fprintf(stderr, "%s: option '%s' requires an argument\n",
5156 argv[0], r);
5157 exit(1);
5159 optarg = argv[optind++];
5160 } else {
5161 optarg = NULL;
5164 switch(popt->index) {
5165 case QEMU_OPTION_M:
5166 machine = find_machine(optarg);
5167 if (!machine) {
5168 QEMUMachine *m;
5169 printf("Supported machines are:\n");
5170 for(m = first_machine; m != NULL; m = m->next) {
5171 printf("%-10s %s%s\n",
5172 m->name, m->desc,
5173 m->is_default ? " (default)" : "");
5175 exit(*optarg != '?');
5177 break;
5178 case QEMU_OPTION_cpu:
5179 /* hw initialization will check this */
5180 if (*optarg == '?') {
5181 /* XXX: implement xxx_cpu_list for targets that still miss it */
5182 #if defined(cpu_list)
5183 cpu_list(stdout, &fprintf);
5184 #endif
5185 exit(0);
5186 } else {
5187 cpu_model = optarg;
5189 break;
5190 case QEMU_OPTION_initrd:
5191 initrd_filename = optarg;
5192 break;
5193 case QEMU_OPTION_hda:
5194 if (cyls == 0)
5195 hda_index = drive_add(optarg, HD_ALIAS, 0);
5196 else
5197 hda_index = drive_add(optarg, HD_ALIAS
5198 ",cyls=%d,heads=%d,secs=%d%s",
5199 0, cyls, heads, secs,
5200 translation == BIOS_ATA_TRANSLATION_LBA ?
5201 ",trans=lba" :
5202 translation == BIOS_ATA_TRANSLATION_NONE ?
5203 ",trans=none" : "");
5204 break;
5205 case QEMU_OPTION_hdb:
5206 case QEMU_OPTION_hdc:
5207 case QEMU_OPTION_hdd:
5208 drive_add(optarg, HD_ALIAS, popt->index - QEMU_OPTION_hda);
5209 break;
5210 case QEMU_OPTION_drive:
5211 drive_add(NULL, "%s", optarg);
5212 break;
5213 case QEMU_OPTION_mtdblock:
5214 drive_add(optarg, MTD_ALIAS);
5215 break;
5216 case QEMU_OPTION_sd:
5217 drive_add(optarg, SD_ALIAS);
5218 break;
5219 case QEMU_OPTION_pflash:
5220 drive_add(optarg, PFLASH_ALIAS);
5221 break;
5222 case QEMU_OPTION_snapshot:
5223 snapshot = 1;
5224 break;
5225 case QEMU_OPTION_hdachs:
5227 const char *p;
5228 p = optarg;
5229 cyls = strtol(p, (char **)&p, 0);
5230 if (cyls < 1 || cyls > 16383)
5231 goto chs_fail;
5232 if (*p != ',')
5233 goto chs_fail;
5234 p++;
5235 heads = strtol(p, (char **)&p, 0);
5236 if (heads < 1 || heads > 16)
5237 goto chs_fail;
5238 if (*p != ',')
5239 goto chs_fail;
5240 p++;
5241 secs = strtol(p, (char **)&p, 0);
5242 if (secs < 1 || secs > 63)
5243 goto chs_fail;
5244 if (*p == ',') {
5245 p++;
5246 if (!strcmp(p, "none"))
5247 translation = BIOS_ATA_TRANSLATION_NONE;
5248 else if (!strcmp(p, "lba"))
5249 translation = BIOS_ATA_TRANSLATION_LBA;
5250 else if (!strcmp(p, "auto"))
5251 translation = BIOS_ATA_TRANSLATION_AUTO;
5252 else
5253 goto chs_fail;
5254 } else if (*p != '\0') {
5255 chs_fail:
5256 fprintf(stderr, "qemu: invalid physical CHS format\n");
5257 exit(1);
5259 if (hda_index != -1)
5260 snprintf(drives_opt[hda_index].opt,
5261 sizeof(drives_opt[hda_index].opt),
5262 HD_ALIAS ",cyls=%d,heads=%d,secs=%d%s",
5263 0, cyls, heads, secs,
5264 translation == BIOS_ATA_TRANSLATION_LBA ?
5265 ",trans=lba" :
5266 translation == BIOS_ATA_TRANSLATION_NONE ?
5267 ",trans=none" : "");
5269 break;
5270 case QEMU_OPTION_numa:
5271 if (nb_numa_nodes >= MAX_NODES) {
5272 fprintf(stderr, "qemu: too many NUMA nodes\n");
5273 exit(1);
5275 numa_add(optarg);
5276 break;
5277 case QEMU_OPTION_nographic:
5278 display_type = DT_NOGRAPHIC;
5279 break;
5280 #ifdef CONFIG_CURSES
5281 case QEMU_OPTION_curses:
5282 display_type = DT_CURSES;
5283 break;
5284 #endif
5285 case QEMU_OPTION_portrait:
5286 graphic_rotate = 1;
5287 break;
5288 case QEMU_OPTION_kernel:
5289 kernel_filename = optarg;
5290 break;
5291 case QEMU_OPTION_append:
5292 kernel_cmdline = optarg;
5293 break;
5294 case QEMU_OPTION_cdrom:
5295 drive_add(optarg, CDROM_ALIAS);
5296 break;
5297 case QEMU_OPTION_boot:
5298 boot_devices = optarg;
5299 /* We just do some generic consistency checks */
5301 /* Could easily be extended to 64 devices if needed */
5302 const char *p;
5304 boot_devices_bitmap = 0;
5305 for (p = boot_devices; *p != '\0'; p++) {
5306 /* Allowed boot devices are:
5307 * a b : floppy disk drives
5308 * c ... f : IDE disk drives
5309 * g ... m : machine implementation dependant drives
5310 * n ... p : network devices
5311 * It's up to each machine implementation to check
5312 * if the given boot devices match the actual hardware
5313 * implementation and firmware features.
5315 if (*p < 'a' || *p > 'q') {
5316 fprintf(stderr, "Invalid boot device '%c'\n", *p);
5317 exit(1);
5319 if (boot_devices_bitmap & (1 << (*p - 'a'))) {
5320 fprintf(stderr,
5321 "Boot device '%c' was given twice\n",*p);
5322 exit(1);
5324 boot_devices_bitmap |= 1 << (*p - 'a');
5327 break;
5328 case QEMU_OPTION_fda:
5329 case QEMU_OPTION_fdb:
5330 drive_add(optarg, FD_ALIAS, popt->index - QEMU_OPTION_fda);
5331 break;
5332 #ifdef TARGET_I386
5333 case QEMU_OPTION_no_fd_bootchk:
5334 fd_bootchk = 0;
5335 break;
5336 #endif
5337 case QEMU_OPTION_net:
5338 if (nb_net_clients >= MAX_NET_CLIENTS) {
5339 fprintf(stderr, "qemu: too many network clients\n");
5340 exit(1);
5342 net_clients[nb_net_clients] = optarg;
5343 nb_net_clients++;
5344 break;
5345 #ifdef CONFIG_SLIRP
5346 case QEMU_OPTION_tftp:
5347 tftp_prefix = optarg;
5348 break;
5349 case QEMU_OPTION_bootp:
5350 bootp_filename = optarg;
5351 break;
5352 #ifndef _WIN32
5353 case QEMU_OPTION_smb:
5354 net_slirp_smb(optarg);
5355 break;
5356 #endif
5357 case QEMU_OPTION_redir:
5358 net_slirp_redir(NULL, optarg, NULL);
5359 break;
5360 #endif
5361 case QEMU_OPTION_bt:
5362 if (nb_bt_opts >= MAX_BT_CMDLINE) {
5363 fprintf(stderr, "qemu: too many bluetooth options\n");
5364 exit(1);
5366 bt_opts[nb_bt_opts++] = optarg;
5367 break;
5368 #ifdef HAS_AUDIO
5369 case QEMU_OPTION_audio_help:
5370 AUD_help ();
5371 exit (0);
5372 break;
5373 case QEMU_OPTION_soundhw:
5374 select_soundhw (optarg);
5375 break;
5376 #endif
5377 case QEMU_OPTION_h:
5378 help(0);
5379 break;
5380 case QEMU_OPTION_version:
5381 version();
5382 exit(0);
5383 break;
5384 case QEMU_OPTION_m: {
5385 uint64_t value;
5386 char *ptr;
5388 value = strtoul(optarg, &ptr, 10);
5389 switch (*ptr) {
5390 case 0: case 'M': case 'm':
5391 value <<= 20;
5392 break;
5393 case 'G': case 'g':
5394 value <<= 30;
5395 break;
5396 default:
5397 fprintf(stderr, "qemu: invalid ram size: %s\n", optarg);
5398 exit(1);
5401 /* On 32-bit hosts, QEMU is limited by virtual address space */
5402 if (value > (2047 << 20)
5403 #ifndef CONFIG_KQEMU
5404 && HOST_LONG_BITS == 32
5405 #endif
5407 fprintf(stderr, "qemu: at most 2047 MB RAM can be simulated\n");
5408 exit(1);
5410 if (value != (uint64_t)(ram_addr_t)value) {
5411 fprintf(stderr, "qemu: ram size too large\n");
5412 exit(1);
5414 ram_size = value;
5415 break;
5417 case QEMU_OPTION_d:
5419 int mask;
5420 const CPULogItem *item;
5422 mask = cpu_str_to_log_mask(optarg);
5423 if (!mask) {
5424 printf("Log items (comma separated):\n");
5425 for(item = cpu_log_items; item->mask != 0; item++) {
5426 printf("%-10s %s\n", item->name, item->help);
5428 exit(1);
5430 cpu_set_log(mask);
5432 break;
5433 case QEMU_OPTION_s:
5434 gdbstub_dev = "tcp::" DEFAULT_GDBSTUB_PORT;
5435 break;
5436 case QEMU_OPTION_gdb:
5437 gdbstub_dev = optarg;
5438 break;
5439 case QEMU_OPTION_L:
5440 data_dir = optarg;
5441 break;
5442 case QEMU_OPTION_bios:
5443 bios_name = optarg;
5444 break;
5445 case QEMU_OPTION_singlestep:
5446 singlestep = 1;
5447 break;
5448 case QEMU_OPTION_S:
5449 autostart = 0;
5450 break;
5451 #ifndef _WIN32
5452 case QEMU_OPTION_k:
5453 keyboard_layout = optarg;
5454 break;
5455 #endif
5456 case QEMU_OPTION_localtime:
5457 rtc_utc = 0;
5458 break;
5459 case QEMU_OPTION_vga:
5460 select_vgahw (optarg);
5461 break;
5462 #if defined(TARGET_PPC) || defined(TARGET_SPARC)
5463 case QEMU_OPTION_g:
5465 const char *p;
5466 int w, h, depth;
5467 p = optarg;
5468 w = strtol(p, (char **)&p, 10);
5469 if (w <= 0) {
5470 graphic_error:
5471 fprintf(stderr, "qemu: invalid resolution or depth\n");
5472 exit(1);
5474 if (*p != 'x')
5475 goto graphic_error;
5476 p++;
5477 h = strtol(p, (char **)&p, 10);
5478 if (h <= 0)
5479 goto graphic_error;
5480 if (*p == 'x') {
5481 p++;
5482 depth = strtol(p, (char **)&p, 10);
5483 if (depth != 8 && depth != 15 && depth != 16 &&
5484 depth != 24 && depth != 32)
5485 goto graphic_error;
5486 } else if (*p == '\0') {
5487 depth = graphic_depth;
5488 } else {
5489 goto graphic_error;
5492 graphic_width = w;
5493 graphic_height = h;
5494 graphic_depth = depth;
5496 break;
5497 #endif
5498 case QEMU_OPTION_echr:
5500 char *r;
5501 term_escape_char = strtol(optarg, &r, 0);
5502 if (r == optarg)
5503 printf("Bad argument to echr\n");
5504 break;
5506 case QEMU_OPTION_monitor:
5507 monitor_device = optarg;
5508 break;
5509 case QEMU_OPTION_serial:
5510 if (serial_device_index >= MAX_SERIAL_PORTS) {
5511 fprintf(stderr, "qemu: too many serial ports\n");
5512 exit(1);
5514 serial_devices[serial_device_index] = optarg;
5515 serial_device_index++;
5516 break;
5517 case QEMU_OPTION_watchdog:
5518 i = select_watchdog(optarg);
5519 if (i > 0)
5520 exit (i == 1 ? 1 : 0);
5521 break;
5522 case QEMU_OPTION_watchdog_action:
5523 if (select_watchdog_action(optarg) == -1) {
5524 fprintf(stderr, "Unknown -watchdog-action parameter\n");
5525 exit(1);
5527 break;
5528 case QEMU_OPTION_virtiocon:
5529 if (virtio_console_index >= MAX_VIRTIO_CONSOLES) {
5530 fprintf(stderr, "qemu: too many virtio consoles\n");
5531 exit(1);
5533 virtio_consoles[virtio_console_index] = optarg;
5534 virtio_console_index++;
5535 break;
5536 case QEMU_OPTION_parallel:
5537 if (parallel_device_index >= MAX_PARALLEL_PORTS) {
5538 fprintf(stderr, "qemu: too many parallel ports\n");
5539 exit(1);
5541 parallel_devices[parallel_device_index] = optarg;
5542 parallel_device_index++;
5543 break;
5544 case QEMU_OPTION_loadvm:
5545 loadvm = optarg;
5546 break;
5547 case QEMU_OPTION_full_screen:
5548 full_screen = 1;
5549 break;
5550 #ifdef CONFIG_SDL
5551 case QEMU_OPTION_no_frame:
5552 no_frame = 1;
5553 break;
5554 case QEMU_OPTION_alt_grab:
5555 alt_grab = 1;
5556 break;
5557 case QEMU_OPTION_no_quit:
5558 no_quit = 1;
5559 break;
5560 case QEMU_OPTION_sdl:
5561 display_type = DT_SDL;
5562 break;
5563 #endif
5564 case QEMU_OPTION_pidfile:
5565 pid_file = optarg;
5566 break;
5567 #ifdef TARGET_I386
5568 case QEMU_OPTION_win2k_hack:
5569 win2k_install_hack = 1;
5570 break;
5571 case QEMU_OPTION_rtc_td_hack:
5572 rtc_td_hack = 1;
5573 break;
5574 case QEMU_OPTION_acpitable:
5575 if(acpi_table_add(optarg) < 0) {
5576 fprintf(stderr, "Wrong acpi table provided\n");
5577 exit(1);
5579 break;
5580 case QEMU_OPTION_smbios:
5581 if(smbios_entry_add(optarg) < 0) {
5582 fprintf(stderr, "Wrong smbios provided\n");
5583 exit(1);
5585 break;
5586 #endif
5587 #ifdef CONFIG_KQEMU
5588 case QEMU_OPTION_no_kqemu:
5589 kqemu_allowed = 0;
5590 break;
5591 case QEMU_OPTION_kernel_kqemu:
5592 kqemu_allowed = 2;
5593 break;
5594 #endif
5595 #ifdef CONFIG_KVM
5596 case QEMU_OPTION_enable_kvm:
5597 kvm_allowed = 1;
5598 #ifdef CONFIG_KQEMU
5599 kqemu_allowed = 0;
5600 #endif
5601 break;
5602 #endif
5603 #ifdef USE_KVM
5604 case QEMU_OPTION_no_kvm:
5605 kvm_allowed = 0;
5606 break;
5607 case QEMU_OPTION_no_kvm_irqchip: {
5608 kvm_irqchip = 0;
5609 kvm_pit = 0;
5610 break;
5612 case QEMU_OPTION_no_kvm_pit: {
5613 kvm_pit = 0;
5614 break;
5616 case QEMU_OPTION_no_kvm_pit_reinjection: {
5617 kvm_pit_reinject = 0;
5618 break;
5620 case QEMU_OPTION_enable_nesting: {
5621 kvm_nested = 1;
5622 break;
5624 #if defined(TARGET_I386) || defined(TARGET_X86_64) || defined(TARGET_IA64) || defined(__linux__)
5625 case QEMU_OPTION_pcidevice:
5626 if (assigned_devices_index >= MAX_DEV_ASSIGN_CMDLINE) {
5627 fprintf(stderr, "Too many assigned devices\n");
5628 exit(1);
5630 assigned_devices[assigned_devices_index] = optarg;
5631 assigned_devices_index++;
5632 break;
5633 #endif
5634 #endif
5635 case QEMU_OPTION_usb:
5636 usb_enabled = 1;
5637 break;
5638 case QEMU_OPTION_usbdevice:
5639 usb_enabled = 1;
5640 if (usb_devices_index >= MAX_USB_CMDLINE) {
5641 fprintf(stderr, "Too many USB devices\n");
5642 exit(1);
5644 usb_devices[usb_devices_index] = optarg;
5645 usb_devices_index++;
5646 break;
5647 case QEMU_OPTION_smp:
5648 smp_cpus = atoi(optarg);
5649 if (smp_cpus < 1) {
5650 fprintf(stderr, "Invalid number of CPUs\n");
5651 exit(1);
5653 break;
5654 case QEMU_OPTION_vnc:
5655 display_type = DT_VNC;
5656 vnc_display = optarg;
5657 break;
5658 #ifdef TARGET_I386
5659 case QEMU_OPTION_no_acpi:
5660 acpi_enabled = 0;
5661 break;
5662 case QEMU_OPTION_no_hpet:
5663 no_hpet = 1;
5664 break;
5665 #endif
5666 case QEMU_OPTION_no_reboot:
5667 no_reboot = 1;
5668 break;
5669 case QEMU_OPTION_no_shutdown:
5670 no_shutdown = 1;
5671 break;
5672 case QEMU_OPTION_show_cursor:
5673 cursor_hide = 0;
5674 break;
5675 case QEMU_OPTION_uuid:
5676 if(qemu_uuid_parse(optarg, qemu_uuid) < 0) {
5677 fprintf(stderr, "Fail to parse UUID string."
5678 " Wrong format.\n");
5679 exit(1);
5681 break;
5682 #ifndef _WIN32
5683 case QEMU_OPTION_daemonize:
5684 daemonize = 1;
5685 break;
5686 #endif
5687 case QEMU_OPTION_option_rom:
5688 if (nb_option_roms >= MAX_OPTION_ROMS) {
5689 fprintf(stderr, "Too many option ROMs\n");
5690 exit(1);
5692 option_rom[nb_option_roms] = optarg;
5693 nb_option_roms++;
5694 break;
5695 #if defined(TARGET_ARM) || defined(TARGET_M68K)
5696 case QEMU_OPTION_semihosting:
5697 semihosting_enabled = 1;
5698 break;
5699 #endif
5700 case QEMU_OPTION_tdf:
5701 time_drift_fix = 1;
5702 break;
5703 case QEMU_OPTION_kvm_shadow_memory:
5704 kvm_shadow_memory = (int64_t)atoi(optarg) * 1024 * 1024 / 4096;
5705 break;
5706 case QEMU_OPTION_mempath:
5707 mem_path = optarg;
5708 break;
5709 #ifdef MAP_POPULATE
5710 case QEMU_OPTION_mem_prealloc:
5711 mem_prealloc = !mem_prealloc;
5712 break;
5713 #endif
5714 case QEMU_OPTION_name:
5715 qemu_name = optarg;
5716 break;
5717 #if defined(TARGET_SPARC) || defined(TARGET_PPC)
5718 case QEMU_OPTION_prom_env:
5719 if (nb_prom_envs >= MAX_PROM_ENVS) {
5720 fprintf(stderr, "Too many prom variables\n");
5721 exit(1);
5723 prom_envs[nb_prom_envs] = optarg;
5724 nb_prom_envs++;
5725 break;
5726 #endif
5727 #ifdef TARGET_ARM
5728 case QEMU_OPTION_old_param:
5729 old_param = 1;
5730 break;
5731 #endif
5732 case QEMU_OPTION_clock:
5733 configure_alarms(optarg);
5734 break;
5735 case QEMU_OPTION_startdate:
5737 struct tm tm;
5738 time_t rtc_start_date;
5739 if (!strcmp(optarg, "now")) {
5740 rtc_date_offset = -1;
5741 } else {
5742 if (sscanf(optarg, "%d-%d-%dT%d:%d:%d",
5743 &tm.tm_year,
5744 &tm.tm_mon,
5745 &tm.tm_mday,
5746 &tm.tm_hour,
5747 &tm.tm_min,
5748 &tm.tm_sec) == 6) {
5749 /* OK */
5750 } else if (sscanf(optarg, "%d-%d-%d",
5751 &tm.tm_year,
5752 &tm.tm_mon,
5753 &tm.tm_mday) == 3) {
5754 tm.tm_hour = 0;
5755 tm.tm_min = 0;
5756 tm.tm_sec = 0;
5757 } else {
5758 goto date_fail;
5760 tm.tm_year -= 1900;
5761 tm.tm_mon--;
5762 rtc_start_date = mktimegm(&tm);
5763 if (rtc_start_date == -1) {
5764 date_fail:
5765 fprintf(stderr, "Invalid date format. Valid format are:\n"
5766 "'now' or '2006-06-17T16:01:21' or '2006-06-17'\n");
5767 exit(1);
5769 rtc_date_offset = time(NULL) - rtc_start_date;
5772 break;
5773 case QEMU_OPTION_tb_size:
5774 tb_size = strtol(optarg, NULL, 0);
5775 if (tb_size < 0)
5776 tb_size = 0;
5777 break;
5778 case QEMU_OPTION_icount:
5779 use_icount = 1;
5780 if (strcmp(optarg, "auto") == 0) {
5781 icount_time_shift = -1;
5782 } else {
5783 icount_time_shift = strtol(optarg, NULL, 0);
5785 break;
5786 case QEMU_OPTION_incoming:
5787 incoming = optarg;
5788 break;
5789 #ifndef _WIN32
5790 case QEMU_OPTION_chroot:
5791 chroot_dir = optarg;
5792 break;
5793 case QEMU_OPTION_runas:
5794 run_as = optarg;
5795 break;
5796 case QEMU_OPTION_nvram:
5797 nvram = optarg;
5798 break;
5799 #endif
5800 #ifdef CONFIG_XEN
5801 case QEMU_OPTION_xen_domid:
5802 xen_domid = atoi(optarg);
5803 break;
5804 case QEMU_OPTION_xen_create:
5805 xen_mode = XEN_CREATE;
5806 break;
5807 case QEMU_OPTION_xen_attach:
5808 xen_mode = XEN_ATTACH;
5809 break;
5810 #endif
5815 /* If no data_dir is specified then try to find it relative to the
5816 executable path. */
5817 if (!data_dir) {
5818 data_dir = find_datadir(argv[0]);
5820 /* If all else fails use the install patch specified when building. */
5821 if (!data_dir) {
5822 data_dir = CONFIG_QEMU_SHAREDIR;
5825 #if defined(CONFIG_KVM) && defined(CONFIG_KQEMU)
5826 if (kvm_allowed && kqemu_allowed) {
5827 fprintf(stderr,
5828 "You can not enable both KVM and kqemu at the same time\n");
5829 exit(1);
5831 #endif
5833 machine->max_cpus = machine->max_cpus ?: 1; /* Default to UP */
5834 if (smp_cpus > machine->max_cpus) {
5835 fprintf(stderr, "Number of SMP cpus requested (%d), exceeds max cpus "
5836 "supported by machine `%s' (%d)\n", smp_cpus, machine->name,
5837 machine->max_cpus);
5838 exit(1);
5841 if (display_type == DT_NOGRAPHIC) {
5842 if (serial_device_index == 0)
5843 serial_devices[0] = "stdio";
5844 if (parallel_device_index == 0)
5845 parallel_devices[0] = "null";
5846 if (strncmp(monitor_device, "vc", 2) == 0)
5847 monitor_device = "stdio";
5850 #ifndef _WIN32
5851 if (daemonize) {
5852 pid_t pid;
5854 if (pipe(fds) == -1)
5855 exit(1);
5857 pid = fork();
5858 if (pid > 0) {
5859 uint8_t status;
5860 ssize_t len;
5862 close(fds[1]);
5864 again:
5865 len = read(fds[0], &status, 1);
5866 if (len == -1 && (errno == EINTR))
5867 goto again;
5869 if (len != 1)
5870 exit(1);
5871 else if (status == 1) {
5872 fprintf(stderr, "Could not acquire pidfile\n");
5873 exit(1);
5874 } else
5875 exit(0);
5876 } else if (pid < 0)
5877 exit(1);
5879 setsid();
5881 pid = fork();
5882 if (pid > 0)
5883 exit(0);
5884 else if (pid < 0)
5885 exit(1);
5887 umask(027);
5889 signal(SIGTSTP, SIG_IGN);
5890 signal(SIGTTOU, SIG_IGN);
5891 signal(SIGTTIN, SIG_IGN);
5894 #ifdef USE_KVM
5895 if (kvm_enabled()) {
5896 if (kvm_qemu_init() < 0) {
5897 fprintf(stderr, "Could not initialize KVM, will disable KVM support\n");
5898 #ifdef NO_CPU_EMULATION
5899 fprintf(stderr, "Compiled with --disable-cpu-emulation, exiting.\n");
5900 exit(1);
5901 #endif
5902 kvm_allowed = 0;
5905 #endif
5907 if (pid_file && qemu_create_pidfile(pid_file) != 0) {
5908 if (daemonize) {
5909 uint8_t status = 1;
5910 write(fds[1], &status, 1);
5911 } else
5912 fprintf(stderr, "Could not acquire pid file\n");
5913 exit(1);
5915 #endif
5917 #ifdef CONFIG_KQEMU
5918 if (smp_cpus > 1)
5919 kqemu_allowed = 0;
5920 #endif
5921 if (qemu_init_main_loop()) {
5922 fprintf(stderr, "qemu_init_main_loop failed\n");
5923 exit(1);
5925 linux_boot = (kernel_filename != NULL);
5926 net_boot = (boot_devices_bitmap >> ('n' - 'a')) & 0xF;
5928 if (!linux_boot && *kernel_cmdline != '\0') {
5929 fprintf(stderr, "-append only allowed with -kernel option\n");
5930 exit(1);
5933 if (!linux_boot && initrd_filename != NULL) {
5934 fprintf(stderr, "-initrd only allowed with -kernel option\n");
5935 exit(1);
5938 /* boot to floppy or the default cd if no hard disk defined yet */
5939 if (!boot_devices[0]) {
5940 boot_devices = "cad";
5942 setvbuf(stdout, NULL, _IOLBF, 0);
5944 init_timers();
5945 if (init_timer_alarm() < 0) {
5946 fprintf(stderr, "could not initialize alarm timer\n");
5947 exit(1);
5949 if (use_icount && icount_time_shift < 0) {
5950 use_icount = 2;
5951 /* 125MIPS seems a reasonable initial guess at the guest speed.
5952 It will be corrected fairly quickly anyway. */
5953 icount_time_shift = 3;
5954 init_icount_adjust();
5957 #ifdef _WIN32
5958 socket_init();
5959 #endif
5961 /* init network clients */
5962 if (nb_net_clients == 0) {
5963 /* if no clients, we use a default config */
5964 net_clients[nb_net_clients++] = "nic";
5965 #ifdef CONFIG_SLIRP
5966 net_clients[nb_net_clients++] = "user";
5967 #endif
5970 for(i = 0;i < nb_net_clients; i++) {
5971 if (net_client_parse(net_clients[i]) < 0)
5972 exit(1);
5974 net_client_check();
5976 #ifdef TARGET_I386
5977 /* XXX: this should be moved in the PC machine instantiation code */
5978 if (net_boot != 0) {
5979 int netroms = 0;
5980 for (i = 0; i < nb_nics && i < 4; i++) {
5981 const char *model = nd_table[i].model;
5982 char buf[1024];
5983 char *filename;
5984 if (net_boot & (1 << i)) {
5985 if (model == NULL)
5986 model = "rtl8139";
5987 snprintf(buf, sizeof(buf), "pxe-%s.bin", model);
5988 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, buf);
5989 if (filename && get_image_size(filename) > 0) {
5990 if (nb_option_roms >= MAX_OPTION_ROMS) {
5991 fprintf(stderr, "Too many option ROMs\n");
5992 exit(1);
5994 option_rom[nb_option_roms] = qemu_strdup(buf);
5995 nb_option_roms++;
5996 netroms++;
5998 if (filename) {
5999 qemu_free(filename);
6003 if (netroms == 0) {
6004 fprintf(stderr, "No valid PXE rom found for network device\n");
6005 exit(1);
6008 #endif
6010 /* init the bluetooth world */
6011 for (i = 0; i < nb_bt_opts; i++)
6012 if (bt_parse(bt_opts[i]))
6013 exit(1);
6015 /* init the memory */
6016 if (ram_size == 0)
6017 ram_size = DEFAULT_RAM_SIZE * 1024 * 1024;
6019 if (kvm_enabled()) {
6020 if (kvm_qemu_create_context() < 0) {
6021 fprintf(stderr, "Could not create KVM context\n");
6022 exit(1);
6026 #ifdef CONFIG_KQEMU
6027 /* FIXME: This is a nasty hack because kqemu can't cope with dynamic
6028 guest ram allocation. It needs to go away. */
6029 if (kqemu_allowed) {
6030 kqemu_phys_ram_size = ram_size + 8 * 1024 * 1024 + 4 * 1024 * 1024;
6031 kqemu_phys_ram_base = qemu_vmalloc(kqemu_phys_ram_size);
6032 if (!kqemu_phys_ram_base) {
6033 fprintf(stderr, "Could not allocate physical memory\n");
6034 exit(1);
6037 #endif
6039 /* init the dynamic translator */
6040 cpu_exec_init_all(tb_size * 1024 * 1024);
6042 bdrv_init();
6044 /* we always create the cdrom drive, even if no disk is there */
6046 if (nb_drives_opt < MAX_DRIVES)
6047 drive_add(NULL, CDROM_ALIAS);
6049 /* we always create at least one floppy */
6051 if (nb_drives_opt < MAX_DRIVES)
6052 drive_add(NULL, FD_ALIAS, 0);
6054 /* we always create one sd slot, even if no card is in it */
6056 if (nb_drives_opt < MAX_DRIVES)
6057 drive_add(NULL, SD_ALIAS);
6059 /* open the virtual block devices
6060 * note that migration with device
6061 * hot add/remove is broken.
6063 for(i = 0; i < nb_drives_opt; i++)
6064 if (drive_init(&drives_opt[i], snapshot, machine) == -1)
6065 exit(1);
6067 register_savevm("timer", 0, 2, timer_save, timer_load, NULL);
6068 register_savevm_live("ram", 0, 3, ram_save_live, NULL, ram_load, NULL);
6070 #ifndef _WIN32
6071 /* must be after terminal init, SDL library changes signal handlers */
6072 sighandler_setup();
6073 #endif
6075 /* Maintain compatibility with multiple stdio monitors */
6076 if (!strcmp(monitor_device,"stdio")) {
6077 for (i = 0; i < MAX_SERIAL_PORTS; i++) {
6078 const char *devname = serial_devices[i];
6079 if (devname && !strcmp(devname,"mon:stdio")) {
6080 monitor_device = NULL;
6081 break;
6082 } else if (devname && !strcmp(devname,"stdio")) {
6083 monitor_device = NULL;
6084 serial_devices[i] = "mon:stdio";
6085 break;
6090 if (nb_numa_nodes > 0) {
6091 int i;
6093 if (nb_numa_nodes > smp_cpus) {
6094 nb_numa_nodes = smp_cpus;
6097 /* If no memory size if given for any node, assume the default case
6098 * and distribute the available memory equally across all nodes
6100 for (i = 0; i < nb_numa_nodes; i++) {
6101 if (node_mem[i] != 0)
6102 break;
6104 if (i == nb_numa_nodes) {
6105 uint64_t usedmem = 0;
6107 /* On Linux, the each node's border has to be 8MB aligned,
6108 * the final node gets the rest.
6110 for (i = 0; i < nb_numa_nodes - 1; i++) {
6111 node_mem[i] = (ram_size / nb_numa_nodes) & ~((1 << 23UL) - 1);
6112 usedmem += node_mem[i];
6114 node_mem[i] = ram_size - usedmem;
6117 for (i = 0; i < nb_numa_nodes; i++) {
6118 if (node_cpumask[i] != 0)
6119 break;
6121 /* assigning the VCPUs round-robin is easier to implement, guest OSes
6122 * must cope with this anyway, because there are BIOSes out there in
6123 * real machines which also use this scheme.
6125 if (i == nb_numa_nodes) {
6126 for (i = 0; i < smp_cpus; i++) {
6127 node_cpumask[i % nb_numa_nodes] |= 1 << i;
6132 #ifdef KVM_UPSTREAM
6133 if (kvm_enabled()) {
6134 int ret;
6136 ret = kvm_init(smp_cpus);
6137 if (ret < 0) {
6138 fprintf(stderr, "failed to initialize KVM\n");
6139 exit(1);
6142 #endif
6144 if (monitor_device) {
6145 monitor_hd = qemu_chr_open("monitor", monitor_device, NULL);
6146 if (!monitor_hd) {
6147 fprintf(stderr, "qemu: could not open monitor device '%s'\n", monitor_device);
6148 exit(1);
6152 for(i = 0; i < MAX_SERIAL_PORTS; i++) {
6153 const char *devname = serial_devices[i];
6154 if (devname && strcmp(devname, "none")) {
6155 char label[32];
6156 snprintf(label, sizeof(label), "serial%d", i);
6157 serial_hds[i] = qemu_chr_open(label, devname, NULL);
6158 if (!serial_hds[i]) {
6159 fprintf(stderr, "qemu: could not open serial device '%s'\n",
6160 devname);
6161 exit(1);
6166 for(i = 0; i < MAX_PARALLEL_PORTS; i++) {
6167 const char *devname = parallel_devices[i];
6168 if (devname && strcmp(devname, "none")) {
6169 char label[32];
6170 snprintf(label, sizeof(label), "parallel%d", i);
6171 parallel_hds[i] = qemu_chr_open(label, devname, NULL);
6172 if (!parallel_hds[i]) {
6173 fprintf(stderr, "qemu: could not open parallel device '%s'\n",
6174 devname);
6175 exit(1);
6180 for(i = 0; i < MAX_VIRTIO_CONSOLES; i++) {
6181 const char *devname = virtio_consoles[i];
6182 if (devname && strcmp(devname, "none")) {
6183 char label[32];
6184 snprintf(label, sizeof(label), "virtcon%d", i);
6185 virtcon_hds[i] = qemu_chr_open(label, devname, NULL);
6186 if (!virtcon_hds[i]) {
6187 fprintf(stderr, "qemu: could not open virtio console '%s'\n",
6188 devname);
6189 exit(1);
6194 module_call_init(MODULE_INIT_DEVICE);
6196 if (kvm_enabled())
6197 kvm_init_ap();
6199 machine->init(ram_size, boot_devices,
6200 kernel_filename, kernel_cmdline, initrd_filename, cpu_model);
6203 for (env = first_cpu; env != NULL; env = env->next_cpu) {
6204 for (i = 0; i < nb_numa_nodes; i++) {
6205 if (node_cpumask[i] & (1 << env->cpu_index)) {
6206 env->numa_node = i;
6211 current_machine = machine;
6213 /* Set KVM's vcpu state to qemu's initial CPUState. */
6214 if (kvm_enabled()) {
6215 int ret;
6217 ret = kvm_sync_vcpus();
6218 if (ret < 0) {
6219 fprintf(stderr, "failed to initialize vcpus\n");
6220 exit(1);
6224 /* init USB devices */
6225 if (usb_enabled) {
6226 for(i = 0; i < usb_devices_index; i++) {
6227 if (usb_device_add(usb_devices[i], 0) < 0) {
6228 fprintf(stderr, "Warning: could not add USB device %s\n",
6229 usb_devices[i]);
6234 if (!display_state)
6235 dumb_display_init();
6236 /* just use the first displaystate for the moment */
6237 ds = display_state;
6239 if (display_type == DT_DEFAULT) {
6240 #if defined(CONFIG_SDL) || defined(CONFIG_COCOA)
6241 display_type = DT_SDL;
6242 #else
6243 display_type = DT_VNC;
6244 vnc_display = "localhost:0,to=99";
6245 show_vnc_port = 1;
6246 #endif
6250 switch (display_type) {
6251 case DT_NOGRAPHIC:
6252 break;
6253 #if defined(CONFIG_CURSES)
6254 case DT_CURSES:
6255 curses_display_init(ds, full_screen);
6256 break;
6257 #endif
6258 #if defined(CONFIG_SDL)
6259 case DT_SDL:
6260 sdl_display_init(ds, full_screen, no_frame);
6261 break;
6262 #elif defined(CONFIG_COCOA)
6263 case DT_SDL:
6264 cocoa_display_init(ds, full_screen);
6265 break;
6266 #endif
6267 case DT_VNC:
6268 vnc_display_init(ds);
6269 if (vnc_display_open(ds, vnc_display) < 0)
6270 exit(1);
6272 if (show_vnc_port) {
6273 printf("VNC server running on `%s'\n", vnc_display_local_addr(ds));
6275 break;
6276 default:
6277 break;
6279 dpy_resize(ds);
6281 dcl = ds->listeners;
6282 while (dcl != NULL) {
6283 if (dcl->dpy_refresh != NULL) {
6284 ds->gui_timer = qemu_new_timer(rt_clock, gui_update, ds);
6285 qemu_mod_timer(ds->gui_timer, qemu_get_clock(rt_clock));
6287 dcl = dcl->next;
6290 if (display_type == DT_NOGRAPHIC || display_type == DT_VNC) {
6291 nographic_timer = qemu_new_timer(rt_clock, nographic_update, NULL);
6292 qemu_mod_timer(nographic_timer, qemu_get_clock(rt_clock));
6295 text_consoles_set_display(display_state);
6296 qemu_chr_initial_reset();
6298 if (monitor_device && monitor_hd)
6299 monitor_init(monitor_hd, MONITOR_USE_READLINE | MONITOR_IS_DEFAULT);
6301 for(i = 0; i < MAX_SERIAL_PORTS; i++) {
6302 const char *devname = serial_devices[i];
6303 if (devname && strcmp(devname, "none")) {
6304 char label[32];
6305 snprintf(label, sizeof(label), "serial%d", i);
6306 if (strstart(devname, "vc", 0))
6307 qemu_chr_printf(serial_hds[i], "serial%d console\r\n", i);
6311 for(i = 0; i < MAX_PARALLEL_PORTS; i++) {
6312 const char *devname = parallel_devices[i];
6313 if (devname && strcmp(devname, "none")) {
6314 char label[32];
6315 snprintf(label, sizeof(label), "parallel%d", i);
6316 if (strstart(devname, "vc", 0))
6317 qemu_chr_printf(parallel_hds[i], "parallel%d console\r\n", i);
6321 for(i = 0; i < MAX_VIRTIO_CONSOLES; i++) {
6322 const char *devname = virtio_consoles[i];
6323 if (virtcon_hds[i] && devname) {
6324 char label[32];
6325 snprintf(label, sizeof(label), "virtcon%d", i);
6326 if (strstart(devname, "vc", 0))
6327 qemu_chr_printf(virtcon_hds[i], "virtio console%d\r\n", i);
6331 if (gdbstub_dev && gdbserver_start(gdbstub_dev) < 0) {
6332 fprintf(stderr, "qemu: could not open gdbserver on device '%s'\n",
6333 gdbstub_dev);
6334 exit(1);
6337 if (loadvm)
6338 do_loadvm(cur_mon, loadvm);
6340 if (incoming) {
6341 autostart = 0; /* fixme how to deal with -daemonize */
6342 qemu_start_incoming_migration(incoming);
6345 if (autostart)
6346 vm_start();
6348 #ifndef _WIN32
6349 if (daemonize) {
6350 uint8_t status = 0;
6351 ssize_t len;
6353 again1:
6354 len = write(fds[1], &status, 1);
6355 if (len == -1 && (errno == EINTR))
6356 goto again1;
6358 if (len != 1)
6359 exit(1);
6361 chdir("/");
6362 TFR(fd = open("/dev/null", O_RDWR));
6363 if (fd == -1)
6364 exit(1);
6367 if (run_as) {
6368 pwd = getpwnam(run_as);
6369 if (!pwd) {
6370 fprintf(stderr, "User \"%s\" doesn't exist\n", run_as);
6371 exit(1);
6375 if (chroot_dir) {
6376 if (chroot(chroot_dir) < 0) {
6377 fprintf(stderr, "chroot failed\n");
6378 exit(1);
6380 chdir("/");
6383 if (run_as) {
6384 if (setgid(pwd->pw_gid) < 0) {
6385 fprintf(stderr, "Failed to setgid(%d)\n", pwd->pw_gid);
6386 exit(1);
6388 if (setuid(pwd->pw_uid) < 0) {
6389 fprintf(stderr, "Failed to setuid(%d)\n", pwd->pw_uid);
6390 exit(1);
6392 if (setuid(0) != -1) {
6393 fprintf(stderr, "Dropping privileges failed\n");
6394 exit(1);
6398 if (daemonize) {
6399 dup2(fd, 0);
6400 dup2(fd, 1);
6401 dup2(fd, 2);
6403 close(fd);
6405 #endif
6407 main_loop();
6408 quit_timers();
6409 net_cleanup();
6411 return 0;