2 * virtual page mapping and translated block handling
4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, write to the Free Software
18 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston MA 02110-1301 USA
24 #include <sys/types.h>
37 #include "qemu-common.h"
39 #if !defined(TARGET_IA64)
47 #if defined(CONFIG_USER_ONLY)
51 //#define DEBUG_TB_INVALIDATE
54 //#define DEBUG_UNASSIGNED
56 /* make various TB consistency checks */
57 //#define DEBUG_TB_CHECK
58 //#define DEBUG_TLB_CHECK
60 //#define DEBUG_IOPORT
61 //#define DEBUG_SUBPAGE
63 #if !defined(CONFIG_USER_ONLY)
64 /* TB consistency checks only implemented for usermode emulation. */
68 #define SMC_BITMAP_USE_THRESHOLD 10
70 #if defined(TARGET_SPARC64)
71 #define TARGET_PHYS_ADDR_SPACE_BITS 41
72 #elif defined(TARGET_SPARC)
73 #define TARGET_PHYS_ADDR_SPACE_BITS 36
74 #elif defined(TARGET_ALPHA)
75 #define TARGET_PHYS_ADDR_SPACE_BITS 42
76 #define TARGET_VIRT_ADDR_SPACE_BITS 42
77 #elif defined(TARGET_PPC64)
78 #define TARGET_PHYS_ADDR_SPACE_BITS 42
79 #elif defined(TARGET_X86_64) && !defined(CONFIG_KQEMU)
80 #define TARGET_PHYS_ADDR_SPACE_BITS 42
81 #elif defined(TARGET_I386) && !defined(CONFIG_KQEMU)
82 #define TARGET_PHYS_ADDR_SPACE_BITS 36
83 #elif defined(TARGET_IA64)
84 #define TARGET_PHYS_ADDR_SPACE_BITS 36
86 /* Note: for compatibility with kqemu, we use 32 bits for x86_64 */
87 #define TARGET_PHYS_ADDR_SPACE_BITS 32
90 static TranslationBlock
*tbs
;
91 int code_gen_max_blocks
;
92 TranslationBlock
*tb_phys_hash
[CODE_GEN_PHYS_HASH_SIZE
];
94 /* any access to the tbs or the page table must use this lock */
95 spinlock_t tb_lock
= SPIN_LOCK_UNLOCKED
;
97 #if defined(__arm__) || defined(__sparc_v9__)
98 /* The prologue must be reachable with a direct jump. ARM and Sparc64
99 have limited branch ranges (possibly also PPC) so place it in a
100 section close to code segment. */
101 #define code_gen_section \
102 __attribute__((__section__(".gen_code"))) \
103 __attribute__((aligned (32)))
105 #define code_gen_section \
106 __attribute__((aligned (32)))
109 uint8_t code_gen_prologue
[1024] code_gen_section
;
110 static uint8_t *code_gen_buffer
;
111 static unsigned long code_gen_buffer_size
;
112 /* threshold to flush the translated code buffer */
113 static unsigned long code_gen_buffer_max_size
;
114 uint8_t *code_gen_ptr
;
116 #if !defined(CONFIG_USER_ONLY)
118 uint8_t *phys_ram_dirty
;
120 static int in_migration
;
122 typedef struct RAMBlock
{
126 struct RAMBlock
*next
;
129 static RAMBlock
*ram_blocks
;
130 /* TODO: When we implement (and use) ram deallocation (e.g. for hotplug)
131 then we can no longet assume contiguous ram offsets, and external uses
132 of this variable will break. */
133 ram_addr_t last_ram_offset
;
137 /* current CPU in the current thread. It is only valid inside
139 CPUState
*cpu_single_env
;
140 /* 0 = Do not count executed instructions.
141 1 = Precise instruction counting.
142 2 = Adaptive rate instruction counting. */
144 /* Current instruction counter. While executing translated code this may
145 include some instructions that have not yet been executed. */
148 typedef struct PageDesc
{
149 /* list of TBs intersecting this ram page */
150 TranslationBlock
*first_tb
;
151 /* in order to optimize self modifying code, we count the number
152 of lookups we do to a given page to use a bitmap */
153 unsigned int code_write_count
;
154 uint8_t *code_bitmap
;
155 #if defined(CONFIG_USER_ONLY)
160 typedef struct PhysPageDesc
{
161 /* offset in host memory of the page + io_index in the low bits */
162 ram_addr_t phys_offset
;
163 ram_addr_t region_offset
;
167 #if defined(CONFIG_USER_ONLY) && defined(TARGET_VIRT_ADDR_SPACE_BITS)
168 /* XXX: this is a temporary hack for alpha target.
169 * In the future, this is to be replaced by a multi-level table
170 * to actually be able to handle the complete 64 bits address space.
172 #define L1_BITS (TARGET_VIRT_ADDR_SPACE_BITS - L2_BITS - TARGET_PAGE_BITS)
174 #define L1_BITS (32 - L2_BITS - TARGET_PAGE_BITS)
177 #define L1_SIZE (1 << L1_BITS)
178 #define L2_SIZE (1 << L2_BITS)
180 unsigned long qemu_real_host_page_size
;
181 unsigned long qemu_host_page_bits
;
182 unsigned long qemu_host_page_size
;
183 unsigned long qemu_host_page_mask
;
185 /* XXX: for system emulation, it could just be an array */
186 static PageDesc
*l1_map
[L1_SIZE
];
187 static PhysPageDesc
**l1_phys_map
;
189 #if !defined(CONFIG_USER_ONLY)
190 static void io_mem_init(void);
192 /* io memory support */
193 CPUWriteMemoryFunc
*io_mem_write
[IO_MEM_NB_ENTRIES
][4];
194 CPUReadMemoryFunc
*io_mem_read
[IO_MEM_NB_ENTRIES
][4];
195 void *io_mem_opaque
[IO_MEM_NB_ENTRIES
];
196 static char io_mem_used
[IO_MEM_NB_ENTRIES
];
197 static int io_mem_watch
;
201 static const char *logfilename
= "/tmp/qemu.log";
204 static int log_append
= 0;
207 static int tlb_flush_count
;
208 static int tb_flush_count
;
209 static int tb_phys_invalidate_count
;
211 #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
212 typedef struct subpage_t
{
213 target_phys_addr_t base
;
214 CPUReadMemoryFunc
**mem_read
[TARGET_PAGE_SIZE
][4];
215 CPUWriteMemoryFunc
**mem_write
[TARGET_PAGE_SIZE
][4];
216 void *opaque
[TARGET_PAGE_SIZE
][2][4];
217 ram_addr_t region_offset
[TARGET_PAGE_SIZE
][2][4];
221 static void map_exec(void *addr
, long size
)
224 VirtualProtect(addr
, size
,
225 PAGE_EXECUTE_READWRITE
, &old_protect
);
229 static void map_exec(void *addr
, long size
)
231 unsigned long start
, end
, page_size
;
233 page_size
= getpagesize();
234 start
= (unsigned long)addr
;
235 start
&= ~(page_size
- 1);
237 end
= (unsigned long)addr
+ size
;
238 end
+= page_size
- 1;
239 end
&= ~(page_size
- 1);
241 mprotect((void *)start
, end
- start
,
242 PROT_READ
| PROT_WRITE
| PROT_EXEC
);
246 static void page_init(void)
248 /* NOTE: we can always suppose that qemu_host_page_size >=
252 SYSTEM_INFO system_info
;
254 GetSystemInfo(&system_info
);
255 qemu_real_host_page_size
= system_info
.dwPageSize
;
258 qemu_real_host_page_size
= getpagesize();
260 if (qemu_host_page_size
== 0)
261 qemu_host_page_size
= qemu_real_host_page_size
;
262 if (qemu_host_page_size
< TARGET_PAGE_SIZE
)
263 qemu_host_page_size
= TARGET_PAGE_SIZE
;
264 qemu_host_page_bits
= 0;
265 while ((1 << qemu_host_page_bits
) < qemu_host_page_size
)
266 qemu_host_page_bits
++;
267 qemu_host_page_mask
= ~(qemu_host_page_size
- 1);
268 l1_phys_map
= qemu_vmalloc(L1_SIZE
* sizeof(void *));
269 memset(l1_phys_map
, 0, L1_SIZE
* sizeof(void *));
271 #if !defined(_WIN32) && defined(CONFIG_USER_ONLY)
273 long long startaddr
, endaddr
;
278 last_brk
= (unsigned long)sbrk(0);
279 f
= fopen("/proc/self/maps", "r");
282 n
= fscanf (f
, "%llx-%llx %*[^\n]\n", &startaddr
, &endaddr
);
284 startaddr
= MIN(startaddr
,
285 (1ULL << TARGET_PHYS_ADDR_SPACE_BITS
) - 1);
286 endaddr
= MIN(endaddr
,
287 (1ULL << TARGET_PHYS_ADDR_SPACE_BITS
) - 1);
288 page_set_flags(startaddr
& TARGET_PAGE_MASK
,
289 TARGET_PAGE_ALIGN(endaddr
),
300 static inline PageDesc
**page_l1_map(target_ulong index
)
302 #if TARGET_LONG_BITS > 32
303 /* Host memory outside guest VM. For 32-bit targets we have already
304 excluded high addresses. */
305 if (index
> ((target_ulong
)L2_SIZE
* L1_SIZE
))
308 return &l1_map
[index
>> L2_BITS
];
311 static inline PageDesc
*page_find_alloc(target_ulong index
)
314 lp
= page_l1_map(index
);
320 /* allocate if not found */
321 #if defined(CONFIG_USER_ONLY)
322 size_t len
= sizeof(PageDesc
) * L2_SIZE
;
323 /* Don't use qemu_malloc because it may recurse. */
324 p
= mmap(0, len
, PROT_READ
| PROT_WRITE
,
325 MAP_PRIVATE
| MAP_ANONYMOUS
, -1, 0);
328 unsigned long addr
= h2g(p
);
329 page_set_flags(addr
& TARGET_PAGE_MASK
,
330 TARGET_PAGE_ALIGN(addr
+ len
),
334 p
= qemu_mallocz(sizeof(PageDesc
) * L2_SIZE
);
338 return p
+ (index
& (L2_SIZE
- 1));
341 static inline PageDesc
*page_find(target_ulong index
)
344 lp
= page_l1_map(index
);
351 return p
+ (index
& (L2_SIZE
- 1));
354 static PhysPageDesc
*phys_page_find_alloc(target_phys_addr_t index
, int alloc
)
359 p
= (void **)l1_phys_map
;
360 #if TARGET_PHYS_ADDR_SPACE_BITS > 32
362 #if TARGET_PHYS_ADDR_SPACE_BITS > (32 + L1_BITS)
363 #error unsupported TARGET_PHYS_ADDR_SPACE_BITS
365 lp
= p
+ ((index
>> (L1_BITS
+ L2_BITS
)) & (L1_SIZE
- 1));
368 /* allocate if not found */
371 p
= qemu_vmalloc(sizeof(void *) * L1_SIZE
);
372 memset(p
, 0, sizeof(void *) * L1_SIZE
);
376 lp
= p
+ ((index
>> L2_BITS
) & (L1_SIZE
- 1));
380 /* allocate if not found */
383 pd
= qemu_vmalloc(sizeof(PhysPageDesc
) * L2_SIZE
);
385 for (i
= 0; i
< L2_SIZE
; i
++) {
386 pd
[i
].phys_offset
= IO_MEM_UNASSIGNED
;
387 pd
[i
].region_offset
= (index
+ i
) << TARGET_PAGE_BITS
;
390 return ((PhysPageDesc
*)pd
) + (index
& (L2_SIZE
- 1));
393 static inline PhysPageDesc
*phys_page_find(target_phys_addr_t index
)
395 return phys_page_find_alloc(index
, 0);
398 #if !defined(CONFIG_USER_ONLY)
399 static void tlb_protect_code(ram_addr_t ram_addr
);
400 static void tlb_unprotect_code_phys(CPUState
*env
, ram_addr_t ram_addr
,
402 #define mmap_lock() do { } while(0)
403 #define mmap_unlock() do { } while(0)
406 #define DEFAULT_CODE_GEN_BUFFER_SIZE (32 * 1024 * 1024)
408 #if defined(CONFIG_USER_ONLY)
409 /* Currently it is not recommanded to allocate big chunks of data in
410 user mode. It will change when a dedicated libc will be used */
411 #define USE_STATIC_CODE_GEN_BUFFER
414 #ifdef USE_STATIC_CODE_GEN_BUFFER
415 static uint8_t static_code_gen_buffer
[DEFAULT_CODE_GEN_BUFFER_SIZE
];
418 static void code_gen_alloc(unsigned long tb_size
)
423 #ifdef USE_STATIC_CODE_GEN_BUFFER
424 code_gen_buffer
= static_code_gen_buffer
;
425 code_gen_buffer_size
= DEFAULT_CODE_GEN_BUFFER_SIZE
;
426 map_exec(code_gen_buffer
, code_gen_buffer_size
);
428 code_gen_buffer_size
= tb_size
;
429 if (code_gen_buffer_size
== 0) {
430 #if defined(CONFIG_USER_ONLY)
431 /* in user mode, phys_ram_size is not meaningful */
432 code_gen_buffer_size
= DEFAULT_CODE_GEN_BUFFER_SIZE
;
434 /* XXX: needs ajustments */
435 code_gen_buffer_size
= (unsigned long)(ram_size
/ 4);
438 if (code_gen_buffer_size
< MIN_CODE_GEN_BUFFER_SIZE
)
439 code_gen_buffer_size
= MIN_CODE_GEN_BUFFER_SIZE
;
440 /* The code gen buffer location may have constraints depending on
441 the host cpu and OS */
442 #if defined(__linux__)
447 flags
= MAP_PRIVATE
| MAP_ANONYMOUS
;
448 #if defined(__x86_64__)
450 /* Cannot map more than that */
451 if (code_gen_buffer_size
> (800 * 1024 * 1024))
452 code_gen_buffer_size
= (800 * 1024 * 1024);
453 #elif defined(__sparc_v9__)
454 // Map the buffer below 2G, so we can use direct calls and branches
456 start
= (void *) 0x60000000UL
;
457 if (code_gen_buffer_size
> (512 * 1024 * 1024))
458 code_gen_buffer_size
= (512 * 1024 * 1024);
459 #elif defined(__arm__)
460 /* Map the buffer below 32M, so we can use direct calls and branches */
462 start
= (void *) 0x01000000UL
;
463 if (code_gen_buffer_size
> 16 * 1024 * 1024)
464 code_gen_buffer_size
= 16 * 1024 * 1024;
466 code_gen_buffer
= mmap(start
, code_gen_buffer_size
,
467 PROT_WRITE
| PROT_READ
| PROT_EXEC
,
469 if (code_gen_buffer
== MAP_FAILED
) {
470 fprintf(stderr
, "Could not allocate dynamic translator buffer\n");
474 #elif defined(__FreeBSD__) || defined(__DragonFly__)
478 flags
= MAP_PRIVATE
| MAP_ANONYMOUS
;
479 #if defined(__x86_64__)
480 /* FreeBSD doesn't have MAP_32BIT, use MAP_FIXED and assume
481 * 0x40000000 is free */
483 addr
= (void *)0x40000000;
484 /* Cannot map more than that */
485 if (code_gen_buffer_size
> (800 * 1024 * 1024))
486 code_gen_buffer_size
= (800 * 1024 * 1024);
488 code_gen_buffer
= mmap(addr
, code_gen_buffer_size
,
489 PROT_WRITE
| PROT_READ
| PROT_EXEC
,
491 if (code_gen_buffer
== MAP_FAILED
) {
492 fprintf(stderr
, "Could not allocate dynamic translator buffer\n");
497 code_gen_buffer
= qemu_malloc(code_gen_buffer_size
);
498 map_exec(code_gen_buffer
, code_gen_buffer_size
);
500 #endif /* !USE_STATIC_CODE_GEN_BUFFER */
501 map_exec(code_gen_prologue
, sizeof(code_gen_prologue
));
502 code_gen_buffer_max_size
= code_gen_buffer_size
-
503 code_gen_max_block_size();
504 code_gen_max_blocks
= code_gen_buffer_size
/ CODE_GEN_AVG_BLOCK_SIZE
;
505 tbs
= qemu_malloc(code_gen_max_blocks
* sizeof(TranslationBlock
));
508 /* Must be called before using the QEMU cpus. 'tb_size' is the size
509 (in bytes) allocated to the translation buffer. Zero means default
511 void cpu_exec_init_all(unsigned long tb_size
)
514 code_gen_alloc(tb_size
);
515 code_gen_ptr
= code_gen_buffer
;
517 #if !defined(CONFIG_USER_ONLY)
522 #if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
524 #define CPU_COMMON_SAVE_VERSION 1
526 static void cpu_common_save(QEMUFile
*f
, void *opaque
)
528 CPUState
*env
= opaque
;
530 qemu_put_be32s(f
, &env
->halted
);
531 qemu_put_be32s(f
, &env
->interrupt_request
);
534 static int cpu_common_load(QEMUFile
*f
, void *opaque
, int version_id
)
536 CPUState
*env
= opaque
;
538 if (version_id
!= CPU_COMMON_SAVE_VERSION
)
541 qemu_get_be32s(f
, &env
->halted
);
542 qemu_get_be32s(f
, &env
->interrupt_request
);
543 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
544 version_id is increased. */
545 env
->interrupt_request
&= ~0x01;
552 void cpu_exec_init(CPUState
*env
)
557 #if defined(CONFIG_USER_ONLY)
560 env
->next_cpu
= NULL
;
563 while (*penv
!= NULL
) {
564 penv
= (CPUState
**)&(*penv
)->next_cpu
;
567 env
->cpu_index
= cpu_index
;
569 TAILQ_INIT(&env
->breakpoints
);
570 TAILQ_INIT(&env
->watchpoints
);
572 env
->thread_id
= GetCurrentProcessId();
574 env
->thread_id
= getpid();
577 #if defined(CONFIG_USER_ONLY)
580 #if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
581 register_savevm("cpu_common", cpu_index
, CPU_COMMON_SAVE_VERSION
,
582 cpu_common_save
, cpu_common_load
, env
);
583 register_savevm("cpu", cpu_index
, CPU_SAVE_VERSION
,
584 cpu_save
, cpu_load
, env
);
588 static inline void invalidate_page_bitmap(PageDesc
*p
)
590 if (p
->code_bitmap
) {
591 qemu_free(p
->code_bitmap
);
592 p
->code_bitmap
= NULL
;
594 p
->code_write_count
= 0;
597 /* set to NULL all the 'first_tb' fields in all PageDescs */
598 static void page_flush_tb(void)
603 for(i
= 0; i
< L1_SIZE
; i
++) {
606 for(j
= 0; j
< L2_SIZE
; j
++) {
608 invalidate_page_bitmap(p
);
615 /* flush all the translation blocks */
616 /* XXX: tb_flush is currently not thread safe */
617 void tb_flush(CPUState
*env1
)
620 #if defined(DEBUG_FLUSH)
621 printf("qemu: flush code_size=%ld nb_tbs=%d avg_tb_size=%ld\n",
622 (unsigned long)(code_gen_ptr
- code_gen_buffer
),
624 ((unsigned long)(code_gen_ptr
- code_gen_buffer
)) / nb_tbs
: 0);
626 if ((unsigned long)(code_gen_ptr
- code_gen_buffer
) > code_gen_buffer_size
)
627 cpu_abort(env1
, "Internal error: code buffer overflow\n");
631 for(env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
632 memset (env
->tb_jmp_cache
, 0, TB_JMP_CACHE_SIZE
* sizeof (void *));
635 memset (tb_phys_hash
, 0, CODE_GEN_PHYS_HASH_SIZE
* sizeof (void *));
638 code_gen_ptr
= code_gen_buffer
;
639 /* XXX: flush processor icache at this point if cache flush is
644 #ifdef DEBUG_TB_CHECK
646 static void tb_invalidate_check(target_ulong address
)
648 TranslationBlock
*tb
;
650 address
&= TARGET_PAGE_MASK
;
651 for(i
= 0;i
< CODE_GEN_PHYS_HASH_SIZE
; i
++) {
652 for(tb
= tb_phys_hash
[i
]; tb
!= NULL
; tb
= tb
->phys_hash_next
) {
653 if (!(address
+ TARGET_PAGE_SIZE
<= tb
->pc
||
654 address
>= tb
->pc
+ tb
->size
)) {
655 printf("ERROR invalidate: address=%08lx PC=%08lx size=%04x\n",
656 address
, (long)tb
->pc
, tb
->size
);
662 /* verify that all the pages have correct rights for code */
663 static void tb_page_check(void)
665 TranslationBlock
*tb
;
666 int i
, flags1
, flags2
;
668 for(i
= 0;i
< CODE_GEN_PHYS_HASH_SIZE
; i
++) {
669 for(tb
= tb_phys_hash
[i
]; tb
!= NULL
; tb
= tb
->phys_hash_next
) {
670 flags1
= page_get_flags(tb
->pc
);
671 flags2
= page_get_flags(tb
->pc
+ tb
->size
- 1);
672 if ((flags1
& PAGE_WRITE
) || (flags2
& PAGE_WRITE
)) {
673 printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n",
674 (long)tb
->pc
, tb
->size
, flags1
, flags2
);
680 static void tb_jmp_check(TranslationBlock
*tb
)
682 TranslationBlock
*tb1
;
685 /* suppress any remaining jumps to this TB */
689 tb1
= (TranslationBlock
*)((long)tb1
& ~3);
692 tb1
= tb1
->jmp_next
[n1
];
694 /* check end of list */
696 printf("ERROR: jmp_list from 0x%08lx\n", (long)tb
);
702 /* invalidate one TB */
703 static inline void tb_remove(TranslationBlock
**ptb
, TranslationBlock
*tb
,
706 TranslationBlock
*tb1
;
710 *ptb
= *(TranslationBlock
**)((char *)tb1
+ next_offset
);
713 ptb
= (TranslationBlock
**)((char *)tb1
+ next_offset
);
717 static inline void tb_page_remove(TranslationBlock
**ptb
, TranslationBlock
*tb
)
719 TranslationBlock
*tb1
;
725 tb1
= (TranslationBlock
*)((long)tb1
& ~3);
727 *ptb
= tb1
->page_next
[n1
];
730 ptb
= &tb1
->page_next
[n1
];
734 static inline void tb_jmp_remove(TranslationBlock
*tb
, int n
)
736 TranslationBlock
*tb1
, **ptb
;
739 ptb
= &tb
->jmp_next
[n
];
742 /* find tb(n) in circular list */
746 tb1
= (TranslationBlock
*)((long)tb1
& ~3);
747 if (n1
== n
&& tb1
== tb
)
750 ptb
= &tb1
->jmp_first
;
752 ptb
= &tb1
->jmp_next
[n1
];
755 /* now we can suppress tb(n) from the list */
756 *ptb
= tb
->jmp_next
[n
];
758 tb
->jmp_next
[n
] = NULL
;
762 /* reset the jump entry 'n' of a TB so that it is not chained to
764 static inline void tb_reset_jump(TranslationBlock
*tb
, int n
)
766 tb_set_jmp_target(tb
, n
, (unsigned long)(tb
->tc_ptr
+ tb
->tb_next_offset
[n
]));
769 void tb_phys_invalidate(TranslationBlock
*tb
, target_ulong page_addr
)
774 target_phys_addr_t phys_pc
;
775 TranslationBlock
*tb1
, *tb2
;
777 /* remove the TB from the hash list */
778 phys_pc
= tb
->page_addr
[0] + (tb
->pc
& ~TARGET_PAGE_MASK
);
779 h
= tb_phys_hash_func(phys_pc
);
780 tb_remove(&tb_phys_hash
[h
], tb
,
781 offsetof(TranslationBlock
, phys_hash_next
));
783 /* remove the TB from the page list */
784 if (tb
->page_addr
[0] != page_addr
) {
785 p
= page_find(tb
->page_addr
[0] >> TARGET_PAGE_BITS
);
786 tb_page_remove(&p
->first_tb
, tb
);
787 invalidate_page_bitmap(p
);
789 if (tb
->page_addr
[1] != -1 && tb
->page_addr
[1] != page_addr
) {
790 p
= page_find(tb
->page_addr
[1] >> TARGET_PAGE_BITS
);
791 tb_page_remove(&p
->first_tb
, tb
);
792 invalidate_page_bitmap(p
);
795 tb_invalidated_flag
= 1;
797 /* remove the TB from the hash list */
798 h
= tb_jmp_cache_hash_func(tb
->pc
);
799 for(env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
800 if (env
->tb_jmp_cache
[h
] == tb
)
801 env
->tb_jmp_cache
[h
] = NULL
;
804 /* suppress this TB from the two jump lists */
805 tb_jmp_remove(tb
, 0);
806 tb_jmp_remove(tb
, 1);
808 /* suppress any remaining jumps to this TB */
814 tb1
= (TranslationBlock
*)((long)tb1
& ~3);
815 tb2
= tb1
->jmp_next
[n1
];
816 tb_reset_jump(tb1
, n1
);
817 tb1
->jmp_next
[n1
] = NULL
;
820 tb
->jmp_first
= (TranslationBlock
*)((long)tb
| 2); /* fail safe */
822 tb_phys_invalidate_count
++;
825 static inline void set_bits(uint8_t *tab
, int start
, int len
)
831 mask
= 0xff << (start
& 7);
832 if ((start
& ~7) == (end
& ~7)) {
834 mask
&= ~(0xff << (end
& 7));
839 start
= (start
+ 8) & ~7;
841 while (start
< end1
) {
846 mask
= ~(0xff << (end
& 7));
852 static void build_page_bitmap(PageDesc
*p
)
854 int n
, tb_start
, tb_end
;
855 TranslationBlock
*tb
;
857 p
->code_bitmap
= qemu_mallocz(TARGET_PAGE_SIZE
/ 8);
862 tb
= (TranslationBlock
*)((long)tb
& ~3);
863 /* NOTE: this is subtle as a TB may span two physical pages */
865 /* NOTE: tb_end may be after the end of the page, but
866 it is not a problem */
867 tb_start
= tb
->pc
& ~TARGET_PAGE_MASK
;
868 tb_end
= tb_start
+ tb
->size
;
869 if (tb_end
> TARGET_PAGE_SIZE
)
870 tb_end
= TARGET_PAGE_SIZE
;
873 tb_end
= ((tb
->pc
+ tb
->size
) & ~TARGET_PAGE_MASK
);
875 set_bits(p
->code_bitmap
, tb_start
, tb_end
- tb_start
);
876 tb
= tb
->page_next
[n
];
880 TranslationBlock
*tb_gen_code(CPUState
*env
,
881 target_ulong pc
, target_ulong cs_base
,
882 int flags
, int cflags
)
884 TranslationBlock
*tb
;
886 target_ulong phys_pc
, phys_page2
, virt_page2
;
889 phys_pc
= get_phys_addr_code(env
, pc
);
892 /* flush must be done */
894 /* cannot fail at this point */
896 /* Don't forget to invalidate previous TB info. */
897 tb_invalidated_flag
= 1;
899 tc_ptr
= code_gen_ptr
;
901 tb
->cs_base
= cs_base
;
904 cpu_gen_code(env
, tb
, &code_gen_size
);
905 code_gen_ptr
= (void *)(((unsigned long)code_gen_ptr
+ code_gen_size
+ CODE_GEN_ALIGN
- 1) & ~(CODE_GEN_ALIGN
- 1));
907 /* check next page if needed */
908 virt_page2
= (pc
+ tb
->size
- 1) & TARGET_PAGE_MASK
;
910 if ((pc
& TARGET_PAGE_MASK
) != virt_page2
) {
911 phys_page2
= get_phys_addr_code(env
, virt_page2
);
913 tb_link_phys(tb
, phys_pc
, phys_page2
);
917 /* invalidate all TBs which intersect with the target physical page
918 starting in range [start;end[. NOTE: start and end must refer to
919 the same physical page. 'is_cpu_write_access' should be true if called
920 from a real cpu write access: the virtual CPU will exit the current
921 TB if code is modified inside this TB. */
922 void tb_invalidate_phys_page_range(target_phys_addr_t start
, target_phys_addr_t end
,
923 int is_cpu_write_access
)
925 TranslationBlock
*tb
, *tb_next
, *saved_tb
;
926 CPUState
*env
= cpu_single_env
;
927 target_ulong tb_start
, tb_end
;
930 #ifdef TARGET_HAS_PRECISE_SMC
931 int current_tb_not_found
= is_cpu_write_access
;
932 TranslationBlock
*current_tb
= NULL
;
933 int current_tb_modified
= 0;
934 target_ulong current_pc
= 0;
935 target_ulong current_cs_base
= 0;
936 int current_flags
= 0;
937 #endif /* TARGET_HAS_PRECISE_SMC */
939 p
= page_find(start
>> TARGET_PAGE_BITS
);
942 if (!p
->code_bitmap
&&
943 ++p
->code_write_count
>= SMC_BITMAP_USE_THRESHOLD
&&
944 is_cpu_write_access
) {
945 /* build code bitmap */
946 build_page_bitmap(p
);
949 /* we remove all the TBs in the range [start, end[ */
950 /* XXX: see if in some cases it could be faster to invalidate all the code */
954 tb
= (TranslationBlock
*)((long)tb
& ~3);
955 tb_next
= tb
->page_next
[n
];
956 /* NOTE: this is subtle as a TB may span two physical pages */
958 /* NOTE: tb_end may be after the end of the page, but
959 it is not a problem */
960 tb_start
= tb
->page_addr
[0] + (tb
->pc
& ~TARGET_PAGE_MASK
);
961 tb_end
= tb_start
+ tb
->size
;
963 tb_start
= tb
->page_addr
[1];
964 tb_end
= tb_start
+ ((tb
->pc
+ tb
->size
) & ~TARGET_PAGE_MASK
);
966 if (!(tb_end
<= start
|| tb_start
>= end
)) {
967 #ifdef TARGET_HAS_PRECISE_SMC
968 if (current_tb_not_found
) {
969 current_tb_not_found
= 0;
971 if (env
->mem_io_pc
) {
972 /* now we have a real cpu fault */
973 current_tb
= tb_find_pc(env
->mem_io_pc
);
976 if (current_tb
== tb
&&
977 (current_tb
->cflags
& CF_COUNT_MASK
) != 1) {
978 /* If we are modifying the current TB, we must stop
979 its execution. We could be more precise by checking
980 that the modification is after the current PC, but it
981 would require a specialized function to partially
982 restore the CPU state */
984 current_tb_modified
= 1;
985 cpu_restore_state(current_tb
, env
,
986 env
->mem_io_pc
, NULL
);
987 cpu_get_tb_cpu_state(env
, ¤t_pc
, ¤t_cs_base
,
990 #endif /* TARGET_HAS_PRECISE_SMC */
991 /* we need to do that to handle the case where a signal
992 occurs while doing tb_phys_invalidate() */
995 saved_tb
= env
->current_tb
;
996 env
->current_tb
= NULL
;
998 tb_phys_invalidate(tb
, -1);
1000 env
->current_tb
= saved_tb
;
1001 if (env
->interrupt_request
&& env
->current_tb
)
1002 cpu_interrupt(env
, env
->interrupt_request
);
1007 #if !defined(CONFIG_USER_ONLY)
1008 /* if no code remaining, no need to continue to use slow writes */
1010 invalidate_page_bitmap(p
);
1011 if (is_cpu_write_access
) {
1012 tlb_unprotect_code_phys(env
, start
, env
->mem_io_vaddr
);
1016 #ifdef TARGET_HAS_PRECISE_SMC
1017 if (current_tb_modified
) {
1018 /* we generate a block containing just the instruction
1019 modifying the memory. It will ensure that it cannot modify
1021 env
->current_tb
= NULL
;
1022 tb_gen_code(env
, current_pc
, current_cs_base
, current_flags
, 1);
1023 cpu_resume_from_signal(env
, NULL
);
1028 /* len must be <= 8 and start must be a multiple of len */
1029 static inline void tb_invalidate_phys_page_fast(target_phys_addr_t start
, int len
)
1035 qemu_log("modifying code at 0x%x size=%d EIP=%x PC=%08x\n",
1036 cpu_single_env
->mem_io_vaddr
, len
,
1037 cpu_single_env
->eip
,
1038 cpu_single_env
->eip
+ (long)cpu_single_env
->segs
[R_CS
].base
);
1041 p
= page_find(start
>> TARGET_PAGE_BITS
);
1044 if (p
->code_bitmap
) {
1045 offset
= start
& ~TARGET_PAGE_MASK
;
1046 b
= p
->code_bitmap
[offset
>> 3] >> (offset
& 7);
1047 if (b
& ((1 << len
) - 1))
1051 tb_invalidate_phys_page_range(start
, start
+ len
, 1);
1055 #if !defined(CONFIG_SOFTMMU)
1056 static void tb_invalidate_phys_page(target_phys_addr_t addr
,
1057 unsigned long pc
, void *puc
)
1059 TranslationBlock
*tb
;
1062 #ifdef TARGET_HAS_PRECISE_SMC
1063 TranslationBlock
*current_tb
= NULL
;
1064 CPUState
*env
= cpu_single_env
;
1065 int current_tb_modified
= 0;
1066 target_ulong current_pc
= 0;
1067 target_ulong current_cs_base
= 0;
1068 int current_flags
= 0;
1071 addr
&= TARGET_PAGE_MASK
;
1072 p
= page_find(addr
>> TARGET_PAGE_BITS
);
1076 #ifdef TARGET_HAS_PRECISE_SMC
1077 if (tb
&& pc
!= 0) {
1078 current_tb
= tb_find_pc(pc
);
1081 while (tb
!= NULL
) {
1083 tb
= (TranslationBlock
*)((long)tb
& ~3);
1084 #ifdef TARGET_HAS_PRECISE_SMC
1085 if (current_tb
== tb
&&
1086 (current_tb
->cflags
& CF_COUNT_MASK
) != 1) {
1087 /* If we are modifying the current TB, we must stop
1088 its execution. We could be more precise by checking
1089 that the modification is after the current PC, but it
1090 would require a specialized function to partially
1091 restore the CPU state */
1093 current_tb_modified
= 1;
1094 cpu_restore_state(current_tb
, env
, pc
, puc
);
1095 cpu_get_tb_cpu_state(env
, ¤t_pc
, ¤t_cs_base
,
1098 #endif /* TARGET_HAS_PRECISE_SMC */
1099 tb_phys_invalidate(tb
, addr
);
1100 tb
= tb
->page_next
[n
];
1103 #ifdef TARGET_HAS_PRECISE_SMC
1104 if (current_tb_modified
) {
1105 /* we generate a block containing just the instruction
1106 modifying the memory. It will ensure that it cannot modify
1108 env
->current_tb
= NULL
;
1109 tb_gen_code(env
, current_pc
, current_cs_base
, current_flags
, 1);
1110 cpu_resume_from_signal(env
, puc
);
1116 /* add the tb in the target page and protect it if necessary */
1117 static inline void tb_alloc_page(TranslationBlock
*tb
,
1118 unsigned int n
, target_ulong page_addr
)
1121 TranslationBlock
*last_first_tb
;
1123 tb
->page_addr
[n
] = page_addr
;
1124 p
= page_find_alloc(page_addr
>> TARGET_PAGE_BITS
);
1125 tb
->page_next
[n
] = p
->first_tb
;
1126 last_first_tb
= p
->first_tb
;
1127 p
->first_tb
= (TranslationBlock
*)((long)tb
| n
);
1128 invalidate_page_bitmap(p
);
1130 #if defined(TARGET_HAS_SMC) || 1
1132 #if defined(CONFIG_USER_ONLY)
1133 if (p
->flags
& PAGE_WRITE
) {
1138 /* force the host page as non writable (writes will have a
1139 page fault + mprotect overhead) */
1140 page_addr
&= qemu_host_page_mask
;
1142 for(addr
= page_addr
; addr
< page_addr
+ qemu_host_page_size
;
1143 addr
+= TARGET_PAGE_SIZE
) {
1145 p2
= page_find (addr
>> TARGET_PAGE_BITS
);
1149 p2
->flags
&= ~PAGE_WRITE
;
1150 page_get_flags(addr
);
1152 mprotect(g2h(page_addr
), qemu_host_page_size
,
1153 (prot
& PAGE_BITS
) & ~PAGE_WRITE
);
1154 #ifdef DEBUG_TB_INVALIDATE
1155 printf("protecting code page: 0x" TARGET_FMT_lx
"\n",
1160 /* if some code is already present, then the pages are already
1161 protected. So we handle the case where only the first TB is
1162 allocated in a physical page */
1163 if (!last_first_tb
) {
1164 tlb_protect_code(page_addr
);
1168 #endif /* TARGET_HAS_SMC */
1171 /* Allocate a new translation block. Flush the translation buffer if
1172 too many translation blocks or too much generated code. */
1173 TranslationBlock
*tb_alloc(target_ulong pc
)
1175 TranslationBlock
*tb
;
1177 if (nb_tbs
>= code_gen_max_blocks
||
1178 (code_gen_ptr
- code_gen_buffer
) >= code_gen_buffer_max_size
)
1180 tb
= &tbs
[nb_tbs
++];
1186 void tb_free(TranslationBlock
*tb
)
1188 /* In practice this is mostly used for single use temporary TB
1189 Ignore the hard cases and just back up if this TB happens to
1190 be the last one generated. */
1191 if (nb_tbs
> 0 && tb
== &tbs
[nb_tbs
- 1]) {
1192 code_gen_ptr
= tb
->tc_ptr
;
1197 /* add a new TB and link it to the physical page tables. phys_page2 is
1198 (-1) to indicate that only one page contains the TB. */
1199 void tb_link_phys(TranslationBlock
*tb
,
1200 target_ulong phys_pc
, target_ulong phys_page2
)
1203 TranslationBlock
**ptb
;
1205 /* Grab the mmap lock to stop another thread invalidating this TB
1206 before we are done. */
1208 /* add in the physical hash table */
1209 h
= tb_phys_hash_func(phys_pc
);
1210 ptb
= &tb_phys_hash
[h
];
1211 tb
->phys_hash_next
= *ptb
;
1214 /* add in the page list */
1215 tb_alloc_page(tb
, 0, phys_pc
& TARGET_PAGE_MASK
);
1216 if (phys_page2
!= -1)
1217 tb_alloc_page(tb
, 1, phys_page2
);
1219 tb
->page_addr
[1] = -1;
1221 tb
->jmp_first
= (TranslationBlock
*)((long)tb
| 2);
1222 tb
->jmp_next
[0] = NULL
;
1223 tb
->jmp_next
[1] = NULL
;
1225 /* init original jump addresses */
1226 if (tb
->tb_next_offset
[0] != 0xffff)
1227 tb_reset_jump(tb
, 0);
1228 if (tb
->tb_next_offset
[1] != 0xffff)
1229 tb_reset_jump(tb
, 1);
1231 #ifdef DEBUG_TB_CHECK
1237 /* find the TB 'tb' such that tb[0].tc_ptr <= tc_ptr <
1238 tb[1].tc_ptr. Return NULL if not found */
1239 TranslationBlock
*tb_find_pc(unsigned long tc_ptr
)
1241 int m_min
, m_max
, m
;
1243 TranslationBlock
*tb
;
1247 if (tc_ptr
< (unsigned long)code_gen_buffer
||
1248 tc_ptr
>= (unsigned long)code_gen_ptr
)
1250 /* binary search (cf Knuth) */
1253 while (m_min
<= m_max
) {
1254 m
= (m_min
+ m_max
) >> 1;
1256 v
= (unsigned long)tb
->tc_ptr
;
1259 else if (tc_ptr
< v
) {
1268 static void tb_reset_jump_recursive(TranslationBlock
*tb
);
1270 static inline void tb_reset_jump_recursive2(TranslationBlock
*tb
, int n
)
1272 TranslationBlock
*tb1
, *tb_next
, **ptb
;
1275 tb1
= tb
->jmp_next
[n
];
1277 /* find head of list */
1280 tb1
= (TranslationBlock
*)((long)tb1
& ~3);
1283 tb1
= tb1
->jmp_next
[n1
];
1285 /* we are now sure now that tb jumps to tb1 */
1288 /* remove tb from the jmp_first list */
1289 ptb
= &tb_next
->jmp_first
;
1293 tb1
= (TranslationBlock
*)((long)tb1
& ~3);
1294 if (n1
== n
&& tb1
== tb
)
1296 ptb
= &tb1
->jmp_next
[n1
];
1298 *ptb
= tb
->jmp_next
[n
];
1299 tb
->jmp_next
[n
] = NULL
;
1301 /* suppress the jump to next tb in generated code */
1302 tb_reset_jump(tb
, n
);
1304 /* suppress jumps in the tb on which we could have jumped */
1305 tb_reset_jump_recursive(tb_next
);
1309 static void tb_reset_jump_recursive(TranslationBlock
*tb
)
1311 tb_reset_jump_recursive2(tb
, 0);
1312 tb_reset_jump_recursive2(tb
, 1);
1315 #if defined(TARGET_HAS_ICE)
1316 static void breakpoint_invalidate(CPUState
*env
, target_ulong pc
)
1318 target_phys_addr_t addr
;
1320 ram_addr_t ram_addr
;
1323 addr
= cpu_get_phys_page_debug(env
, pc
);
1324 p
= phys_page_find(addr
>> TARGET_PAGE_BITS
);
1326 pd
= IO_MEM_UNASSIGNED
;
1328 pd
= p
->phys_offset
;
1330 ram_addr
= (pd
& TARGET_PAGE_MASK
) | (pc
& ~TARGET_PAGE_MASK
);
1331 tb_invalidate_phys_page_range(ram_addr
, ram_addr
+ 1, 0);
1335 /* Add a watchpoint. */
1336 int cpu_watchpoint_insert(CPUState
*env
, target_ulong addr
, target_ulong len
,
1337 int flags
, CPUWatchpoint
**watchpoint
)
1339 target_ulong len_mask
= ~(len
- 1);
1342 /* sanity checks: allow power-of-2 lengths, deny unaligned watchpoints */
1343 if ((len
!= 1 && len
!= 2 && len
!= 4 && len
!= 8) || (addr
& ~len_mask
)) {
1344 fprintf(stderr
, "qemu: tried to set invalid watchpoint at "
1345 TARGET_FMT_lx
", len=" TARGET_FMT_lu
"\n", addr
, len
);
1348 wp
= qemu_malloc(sizeof(*wp
));
1351 wp
->len_mask
= len_mask
;
1354 /* keep all GDB-injected watchpoints in front */
1356 TAILQ_INSERT_HEAD(&env
->watchpoints
, wp
, entry
);
1358 TAILQ_INSERT_TAIL(&env
->watchpoints
, wp
, entry
);
1360 tlb_flush_page(env
, addr
);
1367 /* Remove a specific watchpoint. */
1368 int cpu_watchpoint_remove(CPUState
*env
, target_ulong addr
, target_ulong len
,
1371 target_ulong len_mask
= ~(len
- 1);
1374 TAILQ_FOREACH(wp
, &env
->watchpoints
, entry
) {
1375 if (addr
== wp
->vaddr
&& len_mask
== wp
->len_mask
1376 && flags
== (wp
->flags
& ~BP_WATCHPOINT_HIT
)) {
1377 cpu_watchpoint_remove_by_ref(env
, wp
);
1384 /* Remove a specific watchpoint by reference. */
1385 void cpu_watchpoint_remove_by_ref(CPUState
*env
, CPUWatchpoint
*watchpoint
)
1387 TAILQ_REMOVE(&env
->watchpoints
, watchpoint
, entry
);
1389 tlb_flush_page(env
, watchpoint
->vaddr
);
1391 qemu_free(watchpoint
);
1394 /* Remove all matching watchpoints. */
1395 void cpu_watchpoint_remove_all(CPUState
*env
, int mask
)
1397 CPUWatchpoint
*wp
, *next
;
1399 TAILQ_FOREACH_SAFE(wp
, &env
->watchpoints
, entry
, next
) {
1400 if (wp
->flags
& mask
)
1401 cpu_watchpoint_remove_by_ref(env
, wp
);
1405 /* Add a breakpoint. */
1406 int cpu_breakpoint_insert(CPUState
*env
, target_ulong pc
, int flags
,
1407 CPUBreakpoint
**breakpoint
)
1409 #if defined(TARGET_HAS_ICE)
1412 bp
= qemu_malloc(sizeof(*bp
));
1417 /* keep all GDB-injected breakpoints in front */
1419 TAILQ_INSERT_HEAD(&env
->breakpoints
, bp
, entry
);
1421 TAILQ_INSERT_TAIL(&env
->breakpoints
, bp
, entry
);
1423 breakpoint_invalidate(env
, pc
);
1433 /* Remove a specific breakpoint. */
1434 int cpu_breakpoint_remove(CPUState
*env
, target_ulong pc
, int flags
)
1436 #if defined(TARGET_HAS_ICE)
1439 TAILQ_FOREACH(bp
, &env
->breakpoints
, entry
) {
1440 if (bp
->pc
== pc
&& bp
->flags
== flags
) {
1441 cpu_breakpoint_remove_by_ref(env
, bp
);
1451 /* Remove a specific breakpoint by reference. */
1452 void cpu_breakpoint_remove_by_ref(CPUState
*env
, CPUBreakpoint
*breakpoint
)
1454 #if defined(TARGET_HAS_ICE)
1455 TAILQ_REMOVE(&env
->breakpoints
, breakpoint
, entry
);
1457 breakpoint_invalidate(env
, breakpoint
->pc
);
1459 qemu_free(breakpoint
);
1463 /* Remove all matching breakpoints. */
1464 void cpu_breakpoint_remove_all(CPUState
*env
, int mask
)
1466 #if defined(TARGET_HAS_ICE)
1467 CPUBreakpoint
*bp
, *next
;
1469 TAILQ_FOREACH_SAFE(bp
, &env
->breakpoints
, entry
, next
) {
1470 if (bp
->flags
& mask
)
1471 cpu_breakpoint_remove_by_ref(env
, bp
);
1476 /* enable or disable single step mode. EXCP_DEBUG is returned by the
1477 CPU loop after each instruction */
1478 void cpu_single_step(CPUState
*env
, int enabled
)
1480 #if defined(TARGET_HAS_ICE)
1481 if (env
->singlestep_enabled
!= enabled
) {
1482 env
->singlestep_enabled
= enabled
;
1484 kvm_update_guest_debug(env
, 0);
1486 /* must flush all the translated code to avoid inconsistancies */
1487 /* XXX: only flush what is necessary */
1494 /* enable or disable low levels log */
1495 void cpu_set_log(int log_flags
)
1497 loglevel
= log_flags
;
1498 if (loglevel
&& !logfile
) {
1499 logfile
= fopen(logfilename
, log_append
? "a" : "w");
1501 perror(logfilename
);
1504 #if !defined(CONFIG_SOFTMMU)
1505 /* must avoid mmap() usage of glibc by setting a buffer "by hand" */
1507 static char logfile_buf
[4096];
1508 setvbuf(logfile
, logfile_buf
, _IOLBF
, sizeof(logfile_buf
));
1511 setvbuf(logfile
, NULL
, _IOLBF
, 0);
1515 if (!loglevel
&& logfile
) {
1521 void cpu_set_log_filename(const char *filename
)
1523 logfilename
= strdup(filename
);
1528 cpu_set_log(loglevel
);
1531 static void cpu_unlink_tb(CPUState
*env
)
1533 #if defined(USE_NPTL)
1534 /* FIXME: TB unchaining isn't SMP safe. For now just ignore the
1535 problem and hope the cpu will stop of its own accord. For userspace
1536 emulation this often isn't actually as bad as it sounds. Often
1537 signals are used primarily to interrupt blocking syscalls. */
1539 TranslationBlock
*tb
;
1540 static spinlock_t interrupt_lock
= SPIN_LOCK_UNLOCKED
;
1542 tb
= env
->current_tb
;
1543 /* if the cpu is currently executing code, we must unlink it and
1544 all the potentially executing TB */
1545 if (tb
&& !testandset(&interrupt_lock
)) {
1546 env
->current_tb
= NULL
;
1547 tb_reset_jump_recursive(tb
);
1548 resetlock(&interrupt_lock
);
1553 /* mask must never be zero, except for A20 change call */
1554 void cpu_interrupt(CPUState
*env
, int mask
)
1558 old_mask
= env
->interrupt_request
;
1559 env
->interrupt_request
|= mask
;
1560 if (kvm_enabled() && !qemu_kvm_irqchip_in_kernel())
1561 kvm_update_interrupt_request(env
);
1564 env
->icount_decr
.u16
.high
= 0xffff;
1565 #ifndef CONFIG_USER_ONLY
1567 && (mask
& ~old_mask
) != 0) {
1568 cpu_abort(env
, "Raised interrupt while not in I/O function");
1576 void cpu_reset_interrupt(CPUState
*env
, int mask
)
1578 env
->interrupt_request
&= ~mask
;
1581 void cpu_exit(CPUState
*env
)
1583 env
->exit_request
= 1;
1587 const CPULogItem cpu_log_items
[] = {
1588 { CPU_LOG_TB_OUT_ASM
, "out_asm",
1589 "show generated host assembly code for each compiled TB" },
1590 { CPU_LOG_TB_IN_ASM
, "in_asm",
1591 "show target assembly code for each compiled TB" },
1592 { CPU_LOG_TB_OP
, "op",
1593 "show micro ops for each compiled TB" },
1594 { CPU_LOG_TB_OP_OPT
, "op_opt",
1597 "before eflags optimization and "
1599 "after liveness analysis" },
1600 { CPU_LOG_INT
, "int",
1601 "show interrupts/exceptions in short format" },
1602 { CPU_LOG_EXEC
, "exec",
1603 "show trace before each executed TB (lots of logs)" },
1604 { CPU_LOG_TB_CPU
, "cpu",
1605 "show CPU state before block translation" },
1607 { CPU_LOG_PCALL
, "pcall",
1608 "show protected mode far calls/returns/exceptions" },
1609 { CPU_LOG_RESET
, "cpu_reset",
1610 "show CPU state before CPU resets" },
1613 { CPU_LOG_IOPORT
, "ioport",
1614 "show all i/o ports accesses" },
1619 static int cmp1(const char *s1
, int n
, const char *s2
)
1621 if (strlen(s2
) != n
)
1623 return memcmp(s1
, s2
, n
) == 0;
1626 /* takes a comma separated list of log masks. Return 0 if error. */
1627 int cpu_str_to_log_mask(const char *str
)
1629 const CPULogItem
*item
;
1636 p1
= strchr(p
, ',');
1639 if(cmp1(p
,p1
-p
,"all")) {
1640 for(item
= cpu_log_items
; item
->mask
!= 0; item
++) {
1644 for(item
= cpu_log_items
; item
->mask
!= 0; item
++) {
1645 if (cmp1(p
, p1
- p
, item
->name
))
1659 void cpu_abort(CPUState
*env
, const char *fmt
, ...)
1666 fprintf(stderr
, "qemu: fatal: ");
1667 vfprintf(stderr
, fmt
, ap
);
1668 fprintf(stderr
, "\n");
1670 cpu_dump_state(env
, stderr
, fprintf
, X86_DUMP_FPU
| X86_DUMP_CCOP
);
1672 cpu_dump_state(env
, stderr
, fprintf
, 0);
1674 if (qemu_log_enabled()) {
1675 qemu_log("qemu: fatal: ");
1676 qemu_log_vprintf(fmt
, ap2
);
1679 log_cpu_state(env
, X86_DUMP_FPU
| X86_DUMP_CCOP
);
1681 log_cpu_state(env
, 0);
1691 CPUState
*cpu_copy(CPUState
*env
)
1693 CPUState
*new_env
= cpu_init(env
->cpu_model_str
);
1694 CPUState
*next_cpu
= new_env
->next_cpu
;
1695 int cpu_index
= new_env
->cpu_index
;
1696 #if defined(TARGET_HAS_ICE)
1701 memcpy(new_env
, env
, sizeof(CPUState
));
1703 /* Preserve chaining and index. */
1704 new_env
->next_cpu
= next_cpu
;
1705 new_env
->cpu_index
= cpu_index
;
1707 /* Clone all break/watchpoints.
1708 Note: Once we support ptrace with hw-debug register access, make sure
1709 BP_CPU break/watchpoints are handled correctly on clone. */
1710 TAILQ_INIT(&env
->breakpoints
);
1711 TAILQ_INIT(&env
->watchpoints
);
1712 #if defined(TARGET_HAS_ICE)
1713 TAILQ_FOREACH(bp
, &env
->breakpoints
, entry
) {
1714 cpu_breakpoint_insert(new_env
, bp
->pc
, bp
->flags
, NULL
);
1716 TAILQ_FOREACH(wp
, &env
->watchpoints
, entry
) {
1717 cpu_watchpoint_insert(new_env
, wp
->vaddr
, (~wp
->len_mask
) + 1,
1725 #if !defined(CONFIG_USER_ONLY)
1727 static inline void tlb_flush_jmp_cache(CPUState
*env
, target_ulong addr
)
1731 /* Discard jump cache entries for any tb which might potentially
1732 overlap the flushed page. */
1733 i
= tb_jmp_cache_hash_page(addr
- TARGET_PAGE_SIZE
);
1734 memset (&env
->tb_jmp_cache
[i
], 0,
1735 TB_JMP_PAGE_SIZE
* sizeof(TranslationBlock
*));
1737 i
= tb_jmp_cache_hash_page(addr
);
1738 memset (&env
->tb_jmp_cache
[i
], 0,
1739 TB_JMP_PAGE_SIZE
* sizeof(TranslationBlock
*));
1742 /* NOTE: if flush_global is true, also flush global entries (not
1744 void tlb_flush(CPUState
*env
, int flush_global
)
1748 #if defined(DEBUG_TLB)
1749 printf("tlb_flush:\n");
1751 /* must reset current TB so that interrupts cannot modify the
1752 links while we are modifying them */
1753 env
->current_tb
= NULL
;
1755 for(i
= 0; i
< CPU_TLB_SIZE
; i
++) {
1756 env
->tlb_table
[0][i
].addr_read
= -1;
1757 env
->tlb_table
[0][i
].addr_write
= -1;
1758 env
->tlb_table
[0][i
].addr_code
= -1;
1759 env
->tlb_table
[1][i
].addr_read
= -1;
1760 env
->tlb_table
[1][i
].addr_write
= -1;
1761 env
->tlb_table
[1][i
].addr_code
= -1;
1762 #if (NB_MMU_MODES >= 3)
1763 env
->tlb_table
[2][i
].addr_read
= -1;
1764 env
->tlb_table
[2][i
].addr_write
= -1;
1765 env
->tlb_table
[2][i
].addr_code
= -1;
1767 #if (NB_MMU_MODES >= 4)
1768 env
->tlb_table
[3][i
].addr_read
= -1;
1769 env
->tlb_table
[3][i
].addr_write
= -1;
1770 env
->tlb_table
[3][i
].addr_code
= -1;
1772 #if (NB_MMU_MODES >= 5)
1773 env
->tlb_table
[4][i
].addr_read
= -1;
1774 env
->tlb_table
[4][i
].addr_write
= -1;
1775 env
->tlb_table
[4][i
].addr_code
= -1;
1780 memset (env
->tb_jmp_cache
, 0, TB_JMP_CACHE_SIZE
* sizeof (void *));
1783 if (env
->kqemu_enabled
) {
1784 kqemu_flush(env
, flush_global
);
1790 static inline void tlb_flush_entry(CPUTLBEntry
*tlb_entry
, target_ulong addr
)
1792 if (addr
== (tlb_entry
->addr_read
&
1793 (TARGET_PAGE_MASK
| TLB_INVALID_MASK
)) ||
1794 addr
== (tlb_entry
->addr_write
&
1795 (TARGET_PAGE_MASK
| TLB_INVALID_MASK
)) ||
1796 addr
== (tlb_entry
->addr_code
&
1797 (TARGET_PAGE_MASK
| TLB_INVALID_MASK
))) {
1798 tlb_entry
->addr_read
= -1;
1799 tlb_entry
->addr_write
= -1;
1800 tlb_entry
->addr_code
= -1;
1804 void tlb_flush_page(CPUState
*env
, target_ulong addr
)
1808 #if defined(DEBUG_TLB)
1809 printf("tlb_flush_page: " TARGET_FMT_lx
"\n", addr
);
1811 /* must reset current TB so that interrupts cannot modify the
1812 links while we are modifying them */
1813 env
->current_tb
= NULL
;
1815 addr
&= TARGET_PAGE_MASK
;
1816 i
= (addr
>> TARGET_PAGE_BITS
) & (CPU_TLB_SIZE
- 1);
1817 tlb_flush_entry(&env
->tlb_table
[0][i
], addr
);
1818 tlb_flush_entry(&env
->tlb_table
[1][i
], addr
);
1819 #if (NB_MMU_MODES >= 3)
1820 tlb_flush_entry(&env
->tlb_table
[2][i
], addr
);
1822 #if (NB_MMU_MODES >= 4)
1823 tlb_flush_entry(&env
->tlb_table
[3][i
], addr
);
1825 #if (NB_MMU_MODES >= 5)
1826 tlb_flush_entry(&env
->tlb_table
[4][i
], addr
);
1829 tlb_flush_jmp_cache(env
, addr
);
1832 if (env
->kqemu_enabled
) {
1833 kqemu_flush_page(env
, addr
);
1838 /* update the TLBs so that writes to code in the virtual page 'addr'
1840 static void tlb_protect_code(ram_addr_t ram_addr
)
1842 cpu_physical_memory_reset_dirty(ram_addr
,
1843 ram_addr
+ TARGET_PAGE_SIZE
,
1847 /* update the TLB so that writes in physical page 'phys_addr' are no longer
1848 tested for self modifying code */
1849 static void tlb_unprotect_code_phys(CPUState
*env
, ram_addr_t ram_addr
,
1852 phys_ram_dirty
[ram_addr
>> TARGET_PAGE_BITS
] |= CODE_DIRTY_FLAG
;
1855 static inline void tlb_reset_dirty_range(CPUTLBEntry
*tlb_entry
,
1856 unsigned long start
, unsigned long length
)
1859 if ((tlb_entry
->addr_write
& ~TARGET_PAGE_MASK
) == IO_MEM_RAM
) {
1860 addr
= (tlb_entry
->addr_write
& TARGET_PAGE_MASK
) + tlb_entry
->addend
;
1861 if ((addr
- start
) < length
) {
1862 tlb_entry
->addr_write
= (tlb_entry
->addr_write
& TARGET_PAGE_MASK
) | TLB_NOTDIRTY
;
1867 /* Note: start and end must be within the same ram block. */
1868 void cpu_physical_memory_reset_dirty(ram_addr_t start
, ram_addr_t end
,
1872 unsigned long length
, start1
;
1876 start
&= TARGET_PAGE_MASK
;
1877 end
= TARGET_PAGE_ALIGN(end
);
1879 length
= end
- start
;
1882 len
= length
>> TARGET_PAGE_BITS
;
1884 /* XXX: should not depend on cpu context */
1886 if (env
->kqemu_enabled
) {
1889 for(i
= 0; i
< len
; i
++) {
1890 kqemu_set_notdirty(env
, addr
);
1891 addr
+= TARGET_PAGE_SIZE
;
1895 mask
= ~dirty_flags
;
1896 p
= phys_ram_dirty
+ (start
>> TARGET_PAGE_BITS
);
1897 for(i
= 0; i
< len
; i
++)
1900 /* we modify the TLB cache so that the dirty bit will be set again
1901 when accessing the range */
1902 start1
= (unsigned long)qemu_get_ram_ptr(start
);
1903 /* Chek that we don't span multiple blocks - this breaks the
1904 address comparisons below. */
1905 if ((unsigned long)qemu_get_ram_ptr(end
- 1) - start1
1906 != (end
- 1) - start
) {
1910 for(env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
1911 for(i
= 0; i
< CPU_TLB_SIZE
; i
++)
1912 tlb_reset_dirty_range(&env
->tlb_table
[0][i
], start1
, length
);
1913 for(i
= 0; i
< CPU_TLB_SIZE
; i
++)
1914 tlb_reset_dirty_range(&env
->tlb_table
[1][i
], start1
, length
);
1915 #if (NB_MMU_MODES >= 3)
1916 for(i
= 0; i
< CPU_TLB_SIZE
; i
++)
1917 tlb_reset_dirty_range(&env
->tlb_table
[2][i
], start1
, length
);
1919 #if (NB_MMU_MODES >= 4)
1920 for(i
= 0; i
< CPU_TLB_SIZE
; i
++)
1921 tlb_reset_dirty_range(&env
->tlb_table
[3][i
], start1
, length
);
1923 #if (NB_MMU_MODES >= 5)
1924 for(i
= 0; i
< CPU_TLB_SIZE
; i
++)
1925 tlb_reset_dirty_range(&env
->tlb_table
[4][i
], start1
, length
);
1930 int cpu_physical_memory_set_dirty_tracking(int enable
)
1935 r
= kvm_physical_memory_set_dirty_tracking(enable
);
1936 in_migration
= enable
;
1940 int cpu_physical_memory_get_dirty_tracking(void)
1942 return in_migration
;
1945 void cpu_physical_sync_dirty_bitmap(target_phys_addr_t start_addr
, target_phys_addr_t end_addr
)
1948 kvm_physical_sync_dirty_bitmap(start_addr
, end_addr
);
1951 static inline void tlb_update_dirty(CPUTLBEntry
*tlb_entry
)
1953 ram_addr_t ram_addr
;
1956 if ((tlb_entry
->addr_write
& ~TARGET_PAGE_MASK
) == IO_MEM_RAM
) {
1957 p
= (void *)(unsigned long)((tlb_entry
->addr_write
& TARGET_PAGE_MASK
)
1958 + tlb_entry
->addend
);
1959 ram_addr
= qemu_ram_addr_from_host(p
);
1960 if (!cpu_physical_memory_is_dirty(ram_addr
)) {
1961 tlb_entry
->addr_write
|= TLB_NOTDIRTY
;
1966 /* update the TLB according to the current state of the dirty bits */
1967 void cpu_tlb_update_dirty(CPUState
*env
)
1970 for(i
= 0; i
< CPU_TLB_SIZE
; i
++)
1971 tlb_update_dirty(&env
->tlb_table
[0][i
]);
1972 for(i
= 0; i
< CPU_TLB_SIZE
; i
++)
1973 tlb_update_dirty(&env
->tlb_table
[1][i
]);
1974 #if (NB_MMU_MODES >= 3)
1975 for(i
= 0; i
< CPU_TLB_SIZE
; i
++)
1976 tlb_update_dirty(&env
->tlb_table
[2][i
]);
1978 #if (NB_MMU_MODES >= 4)
1979 for(i
= 0; i
< CPU_TLB_SIZE
; i
++)
1980 tlb_update_dirty(&env
->tlb_table
[3][i
]);
1982 #if (NB_MMU_MODES >= 5)
1983 for(i
= 0; i
< CPU_TLB_SIZE
; i
++)
1984 tlb_update_dirty(&env
->tlb_table
[4][i
]);
1988 static inline void tlb_set_dirty1(CPUTLBEntry
*tlb_entry
, target_ulong vaddr
)
1990 if (tlb_entry
->addr_write
== (vaddr
| TLB_NOTDIRTY
))
1991 tlb_entry
->addr_write
= vaddr
;
1994 /* update the TLB corresponding to virtual page vaddr
1995 so that it is no longer dirty */
1996 static inline void tlb_set_dirty(CPUState
*env
, target_ulong vaddr
)
2000 vaddr
&= TARGET_PAGE_MASK
;
2001 i
= (vaddr
>> TARGET_PAGE_BITS
) & (CPU_TLB_SIZE
- 1);
2002 tlb_set_dirty1(&env
->tlb_table
[0][i
], vaddr
);
2003 tlb_set_dirty1(&env
->tlb_table
[1][i
], vaddr
);
2004 #if (NB_MMU_MODES >= 3)
2005 tlb_set_dirty1(&env
->tlb_table
[2][i
], vaddr
);
2007 #if (NB_MMU_MODES >= 4)
2008 tlb_set_dirty1(&env
->tlb_table
[3][i
], vaddr
);
2010 #if (NB_MMU_MODES >= 5)
2011 tlb_set_dirty1(&env
->tlb_table
[4][i
], vaddr
);
2015 /* add a new TLB entry. At most one entry for a given virtual address
2016 is permitted. Return 0 if OK or 2 if the page could not be mapped
2017 (can only happen in non SOFTMMU mode for I/O pages or pages
2018 conflicting with the host address space). */
2019 int tlb_set_page_exec(CPUState
*env
, target_ulong vaddr
,
2020 target_phys_addr_t paddr
, int prot
,
2021 int mmu_idx
, int is_softmmu
)
2026 target_ulong address
;
2027 target_ulong code_address
;
2028 target_phys_addr_t addend
;
2032 target_phys_addr_t iotlb
;
2034 p
= phys_page_find(paddr
>> TARGET_PAGE_BITS
);
2036 pd
= IO_MEM_UNASSIGNED
;
2038 pd
= p
->phys_offset
;
2040 #if defined(DEBUG_TLB)
2041 printf("tlb_set_page: vaddr=" TARGET_FMT_lx
" paddr=0x%08x prot=%x idx=%d smmu=%d pd=0x%08lx\n",
2042 vaddr
, (int)paddr
, prot
, mmu_idx
, is_softmmu
, pd
);
2047 if ((pd
& ~TARGET_PAGE_MASK
) > IO_MEM_ROM
&& !(pd
& IO_MEM_ROMD
)) {
2048 /* IO memory case (romd handled later) */
2049 address
|= TLB_MMIO
;
2051 addend
= (unsigned long)qemu_get_ram_ptr(pd
& TARGET_PAGE_MASK
);
2052 if ((pd
& ~TARGET_PAGE_MASK
) <= IO_MEM_ROM
) {
2054 iotlb
= pd
& TARGET_PAGE_MASK
;
2055 if ((pd
& ~TARGET_PAGE_MASK
) == IO_MEM_RAM
)
2056 iotlb
|= IO_MEM_NOTDIRTY
;
2058 iotlb
|= IO_MEM_ROM
;
2060 /* IO handlers are currently passed a phsical address.
2061 It would be nice to pass an offset from the base address
2062 of that region. This would avoid having to special case RAM,
2063 and avoid full address decoding in every device.
2064 We can't use the high bits of pd for this because
2065 IO_MEM_ROMD uses these as a ram address. */
2066 iotlb
= (pd
& ~TARGET_PAGE_MASK
);
2068 iotlb
+= p
->region_offset
;
2074 code_address
= address
;
2075 /* Make accesses to pages with watchpoints go via the
2076 watchpoint trap routines. */
2077 TAILQ_FOREACH(wp
, &env
->watchpoints
, entry
) {
2078 if (vaddr
== (wp
->vaddr
& TARGET_PAGE_MASK
)) {
2079 iotlb
= io_mem_watch
+ paddr
;
2080 /* TODO: The memory case can be optimized by not trapping
2081 reads of pages with a write breakpoint. */
2082 address
|= TLB_MMIO
;
2086 index
= (vaddr
>> TARGET_PAGE_BITS
) & (CPU_TLB_SIZE
- 1);
2087 env
->iotlb
[mmu_idx
][index
] = iotlb
- vaddr
;
2088 te
= &env
->tlb_table
[mmu_idx
][index
];
2089 te
->addend
= addend
- vaddr
;
2090 if (prot
& PAGE_READ
) {
2091 te
->addr_read
= address
;
2096 if (prot
& PAGE_EXEC
) {
2097 te
->addr_code
= code_address
;
2101 if (prot
& PAGE_WRITE
) {
2102 if ((pd
& ~TARGET_PAGE_MASK
) == IO_MEM_ROM
||
2103 (pd
& IO_MEM_ROMD
)) {
2104 /* Write access calls the I/O callback. */
2105 te
->addr_write
= address
| TLB_MMIO
;
2106 } else if ((pd
& ~TARGET_PAGE_MASK
) == IO_MEM_RAM
&&
2107 !cpu_physical_memory_is_dirty(pd
)) {
2108 te
->addr_write
= address
| TLB_NOTDIRTY
;
2110 te
->addr_write
= address
;
2113 te
->addr_write
= -1;
2120 void tlb_flush(CPUState
*env
, int flush_global
)
2124 void tlb_flush_page(CPUState
*env
, target_ulong addr
)
2128 int tlb_set_page_exec(CPUState
*env
, target_ulong vaddr
,
2129 target_phys_addr_t paddr
, int prot
,
2130 int mmu_idx
, int is_softmmu
)
2135 /* dump memory mappings */
2136 void page_dump(FILE *f
)
2138 unsigned long start
, end
;
2139 int i
, j
, prot
, prot1
;
2142 fprintf(f
, "%-8s %-8s %-8s %s\n",
2143 "start", "end", "size", "prot");
2147 for(i
= 0; i
<= L1_SIZE
; i
++) {
2152 for(j
= 0;j
< L2_SIZE
; j
++) {
2157 if (prot1
!= prot
) {
2158 end
= (i
<< (32 - L1_BITS
)) | (j
<< TARGET_PAGE_BITS
);
2160 fprintf(f
, "%08lx-%08lx %08lx %c%c%c\n",
2161 start
, end
, end
- start
,
2162 prot
& PAGE_READ
? 'r' : '-',
2163 prot
& PAGE_WRITE
? 'w' : '-',
2164 prot
& PAGE_EXEC
? 'x' : '-');
2178 int page_get_flags(target_ulong address
)
2182 p
= page_find(address
>> TARGET_PAGE_BITS
);
2188 /* modify the flags of a page and invalidate the code if
2189 necessary. The flag PAGE_WRITE_ORG is positionned automatically
2190 depending on PAGE_WRITE */
2191 void page_set_flags(target_ulong start
, target_ulong end
, int flags
)
2196 /* mmap_lock should already be held. */
2197 start
= start
& TARGET_PAGE_MASK
;
2198 end
= TARGET_PAGE_ALIGN(end
);
2199 if (flags
& PAGE_WRITE
)
2200 flags
|= PAGE_WRITE_ORG
;
2201 for(addr
= start
; addr
< end
; addr
+= TARGET_PAGE_SIZE
) {
2202 p
= page_find_alloc(addr
>> TARGET_PAGE_BITS
);
2203 /* We may be called for host regions that are outside guest
2207 /* if the write protection is set, then we invalidate the code
2209 if (!(p
->flags
& PAGE_WRITE
) &&
2210 (flags
& PAGE_WRITE
) &&
2212 tb_invalidate_phys_page(addr
, 0, NULL
);
2218 int page_check_range(target_ulong start
, target_ulong len
, int flags
)
2224 if (start
+ len
< start
)
2225 /* we've wrapped around */
2228 end
= TARGET_PAGE_ALIGN(start
+len
); /* must do before we loose bits in the next step */
2229 start
= start
& TARGET_PAGE_MASK
;
2231 for(addr
= start
; addr
< end
; addr
+= TARGET_PAGE_SIZE
) {
2232 p
= page_find(addr
>> TARGET_PAGE_BITS
);
2235 if( !(p
->flags
& PAGE_VALID
) )
2238 if ((flags
& PAGE_READ
) && !(p
->flags
& PAGE_READ
))
2240 if (flags
& PAGE_WRITE
) {
2241 if (!(p
->flags
& PAGE_WRITE_ORG
))
2243 /* unprotect the page if it was put read-only because it
2244 contains translated code */
2245 if (!(p
->flags
& PAGE_WRITE
)) {
2246 if (!page_unprotect(addr
, 0, NULL
))
2255 /* called from signal handler: invalidate the code and unprotect the
2256 page. Return TRUE if the fault was succesfully handled. */
2257 int page_unprotect(target_ulong address
, unsigned long pc
, void *puc
)
2259 unsigned int page_index
, prot
, pindex
;
2261 target_ulong host_start
, host_end
, addr
;
2263 /* Technically this isn't safe inside a signal handler. However we
2264 know this only ever happens in a synchronous SEGV handler, so in
2265 practice it seems to be ok. */
2268 host_start
= address
& qemu_host_page_mask
;
2269 page_index
= host_start
>> TARGET_PAGE_BITS
;
2270 p1
= page_find(page_index
);
2275 host_end
= host_start
+ qemu_host_page_size
;
2278 for(addr
= host_start
;addr
< host_end
; addr
+= TARGET_PAGE_SIZE
) {
2282 /* if the page was really writable, then we change its
2283 protection back to writable */
2284 if (prot
& PAGE_WRITE_ORG
) {
2285 pindex
= (address
- host_start
) >> TARGET_PAGE_BITS
;
2286 if (!(p1
[pindex
].flags
& PAGE_WRITE
)) {
2287 mprotect((void *)g2h(host_start
), qemu_host_page_size
,
2288 (prot
& PAGE_BITS
) | PAGE_WRITE
);
2289 p1
[pindex
].flags
|= PAGE_WRITE
;
2290 /* and since the content will be modified, we must invalidate
2291 the corresponding translated code. */
2292 tb_invalidate_phys_page(address
, pc
, puc
);
2293 #ifdef DEBUG_TB_CHECK
2294 tb_invalidate_check(address
);
2304 static inline void tlb_set_dirty(CPUState
*env
,
2305 unsigned long addr
, target_ulong vaddr
)
2308 #endif /* defined(CONFIG_USER_ONLY) */
2310 #if !defined(CONFIG_USER_ONLY)
2312 static int subpage_register (subpage_t
*mmio
, uint32_t start
, uint32_t end
,
2313 ram_addr_t memory
, ram_addr_t region_offset
);
2314 static void *subpage_init (target_phys_addr_t base
, ram_addr_t
*phys
,
2315 ram_addr_t orig_memory
, ram_addr_t region_offset
);
2316 #define CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2, \
2319 if (addr > start_addr) \
2322 start_addr2 = start_addr & ~TARGET_PAGE_MASK; \
2323 if (start_addr2 > 0) \
2327 if ((start_addr + orig_size) - addr >= TARGET_PAGE_SIZE) \
2328 end_addr2 = TARGET_PAGE_SIZE - 1; \
2330 end_addr2 = (start_addr + orig_size - 1) & ~TARGET_PAGE_MASK; \
2331 if (end_addr2 < TARGET_PAGE_SIZE - 1) \
2336 /* register physical memory. 'size' must be a multiple of the target
2337 page size. If (phys_offset & ~TARGET_PAGE_MASK) != 0, then it is an
2338 io memory page. The address used when calling the IO function is
2339 the offset from the start of the region, plus region_offset. Both
2340 start_region and regon_offset are rounded down to a page boundary
2341 before calculating this offset. This should not be a problem unless
2342 the low bits of start_addr and region_offset differ. */
2343 void cpu_register_physical_memory_offset(target_phys_addr_t start_addr
,
2345 ram_addr_t phys_offset
,
2346 ram_addr_t region_offset
)
2348 target_phys_addr_t addr
, end_addr
;
2351 ram_addr_t orig_size
= size
;
2355 /* XXX: should not depend on cpu context */
2357 if (env
->kqemu_enabled
) {
2358 kqemu_set_phys_mem(start_addr
, size
, phys_offset
);
2362 kvm_set_phys_mem(start_addr
, size
, phys_offset
);
2364 if (phys_offset
== IO_MEM_UNASSIGNED
) {
2365 region_offset
= start_addr
;
2367 region_offset
&= TARGET_PAGE_MASK
;
2368 size
= (size
+ TARGET_PAGE_SIZE
- 1) & TARGET_PAGE_MASK
;
2369 end_addr
= start_addr
+ (target_phys_addr_t
)size
;
2370 for(addr
= start_addr
; addr
!= end_addr
; addr
+= TARGET_PAGE_SIZE
) {
2371 p
= phys_page_find(addr
>> TARGET_PAGE_BITS
);
2372 if (p
&& p
->phys_offset
!= IO_MEM_UNASSIGNED
) {
2373 ram_addr_t orig_memory
= p
->phys_offset
;
2374 target_phys_addr_t start_addr2
, end_addr2
;
2375 int need_subpage
= 0;
2377 CHECK_SUBPAGE(addr
, start_addr
, start_addr2
, end_addr
, end_addr2
,
2379 if (need_subpage
|| phys_offset
& IO_MEM_SUBWIDTH
) {
2380 if (!(orig_memory
& IO_MEM_SUBPAGE
)) {
2381 subpage
= subpage_init((addr
& TARGET_PAGE_MASK
),
2382 &p
->phys_offset
, orig_memory
,
2385 subpage
= io_mem_opaque
[(orig_memory
& ~TARGET_PAGE_MASK
)
2388 subpage_register(subpage
, start_addr2
, end_addr2
, phys_offset
,
2390 p
->region_offset
= 0;
2392 p
->phys_offset
= phys_offset
;
2393 if ((phys_offset
& ~TARGET_PAGE_MASK
) <= IO_MEM_ROM
||
2394 (phys_offset
& IO_MEM_ROMD
))
2395 phys_offset
+= TARGET_PAGE_SIZE
;
2398 p
= phys_page_find_alloc(addr
>> TARGET_PAGE_BITS
, 1);
2399 p
->phys_offset
= phys_offset
;
2400 p
->region_offset
= region_offset
;
2401 if ((phys_offset
& ~TARGET_PAGE_MASK
) <= IO_MEM_ROM
||
2402 (phys_offset
& IO_MEM_ROMD
)) {
2403 phys_offset
+= TARGET_PAGE_SIZE
;
2405 target_phys_addr_t start_addr2
, end_addr2
;
2406 int need_subpage
= 0;
2408 CHECK_SUBPAGE(addr
, start_addr
, start_addr2
, end_addr
,
2409 end_addr2
, need_subpage
);
2411 if (need_subpage
|| phys_offset
& IO_MEM_SUBWIDTH
) {
2412 subpage
= subpage_init((addr
& TARGET_PAGE_MASK
),
2413 &p
->phys_offset
, IO_MEM_UNASSIGNED
,
2414 addr
& TARGET_PAGE_MASK
);
2415 subpage_register(subpage
, start_addr2
, end_addr2
,
2416 phys_offset
, region_offset
);
2417 p
->region_offset
= 0;
2421 region_offset
+= TARGET_PAGE_SIZE
;
2424 /* since each CPU stores ram addresses in its TLB cache, we must
2425 reset the modified entries */
2427 for(env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
2432 /* XXX: temporary until new memory mapping API */
2433 ram_addr_t
cpu_get_physical_page_desc(target_phys_addr_t addr
)
2437 p
= phys_page_find(addr
>> TARGET_PAGE_BITS
);
2439 return IO_MEM_UNASSIGNED
;
2440 return p
->phys_offset
;
2443 void qemu_register_coalesced_mmio(target_phys_addr_t addr
, ram_addr_t size
)
2446 kvm_coalesce_mmio_region(addr
, size
);
2449 void qemu_unregister_coalesced_mmio(target_phys_addr_t addr
, ram_addr_t size
)
2452 kvm_uncoalesce_mmio_region(addr
, size
);
2456 /* XXX: better than nothing */
2457 static ram_addr_t
kqemu_ram_alloc(ram_addr_t size
)
2460 if ((last_ram_offset
+ size
) > kqemu_phys_ram_size
) {
2461 fprintf(stderr
, "Not enough memory (requested_size = %" PRIu64
", max memory = %" PRIu64
")\n",
2462 (uint64_t)size
, (uint64_t)kqemu_phys_ram_size
);
2465 addr
= last_ram_offset
;
2466 last_ram_offset
= TARGET_PAGE_ALIGN(last_ram_offset
+ size
);
2471 ram_addr_t
qemu_ram_alloc(ram_addr_t size
)
2473 RAMBlock
*new_block
;
2476 if (kqemu_phys_ram_base
) {
2477 return kqemu_ram_alloc(size
);
2481 size
= TARGET_PAGE_ALIGN(size
);
2482 new_block
= qemu_malloc(sizeof(*new_block
));
2484 new_block
->host
= qemu_vmalloc(size
);
2485 new_block
->offset
= last_ram_offset
;
2486 new_block
->length
= size
;
2488 new_block
->next
= ram_blocks
;
2489 ram_blocks
= new_block
;
2491 phys_ram_dirty
= qemu_realloc(phys_ram_dirty
,
2492 (last_ram_offset
+ size
) >> TARGET_PAGE_BITS
);
2493 memset(phys_ram_dirty
+ (last_ram_offset
>> TARGET_PAGE_BITS
),
2494 0xff, size
>> TARGET_PAGE_BITS
);
2496 last_ram_offset
+= size
;
2498 return new_block
->offset
;
2501 void qemu_ram_free(ram_addr_t addr
)
2503 /* TODO: implement this. */
2506 /* Return a host pointer to ram allocated with qemu_ram_alloc.
2507 With the exception of the softmmu code in this file, this should
2508 only be used for local memory (e.g. video ram) that the device owns,
2509 and knows it isn't going to access beyond the end of the block.
2511 It should not be used for general purpose DMA.
2512 Use cpu_physical_memory_map/cpu_physical_memory_rw instead.
2514 void *qemu_get_ram_ptr(ram_addr_t addr
)
2521 if (kqemu_phys_ram_base
) {
2522 return kqemu_phys_ram_base
+ addr
;
2527 prevp
= &ram_blocks
;
2529 while (block
&& (block
->offset
> addr
2530 || block
->offset
+ block
->length
<= addr
)) {
2532 prevp
= &prev
->next
;
2534 block
= block
->next
;
2537 fprintf(stderr
, "Bad ram offset %" PRIx64
"\n", (uint64_t)addr
);
2540 /* Move this entry to to start of the list. */
2542 prev
->next
= block
->next
;
2543 block
->next
= *prevp
;
2546 return block
->host
+ (addr
- block
->offset
);
2549 /* Some of the softmmu routines need to translate from a host pointer
2550 (typically a TLB entry) back to a ram offset. */
2551 ram_addr_t
qemu_ram_addr_from_host(void *ptr
)
2556 uint8_t *host
= ptr
;
2559 if (kqemu_phys_ram_base
) {
2560 return host
- kqemu_phys_ram_base
;
2565 prevp
= &ram_blocks
;
2567 while (block
&& (block
->host
> host
2568 || block
->host
+ block
->length
<= host
)) {
2570 prevp
= &prev
->next
;
2572 block
= block
->next
;
2575 fprintf(stderr
, "Bad ram pointer %p\n", ptr
);
2578 return block
->offset
+ (host
- block
->host
);
2581 static uint32_t unassigned_mem_readb(void *opaque
, target_phys_addr_t addr
)
2583 #ifdef DEBUG_UNASSIGNED
2584 printf("Unassigned mem read " TARGET_FMT_plx
"\n", addr
);
2586 #if defined(TARGET_SPARC)
2587 do_unassigned_access(addr
, 0, 0, 0, 1);
2592 static uint32_t unassigned_mem_readw(void *opaque
, target_phys_addr_t addr
)
2594 #ifdef DEBUG_UNASSIGNED
2595 printf("Unassigned mem read " TARGET_FMT_plx
"\n", addr
);
2597 #if defined(TARGET_SPARC)
2598 do_unassigned_access(addr
, 0, 0, 0, 2);
2603 static uint32_t unassigned_mem_readl(void *opaque
, target_phys_addr_t addr
)
2605 #ifdef DEBUG_UNASSIGNED
2606 printf("Unassigned mem read " TARGET_FMT_plx
"\n", addr
);
2608 #if defined(TARGET_SPARC)
2609 do_unassigned_access(addr
, 0, 0, 0, 4);
2614 static void unassigned_mem_writeb(void *opaque
, target_phys_addr_t addr
, uint32_t val
)
2616 #ifdef DEBUG_UNASSIGNED
2617 printf("Unassigned mem write " TARGET_FMT_plx
" = 0x%x\n", addr
, val
);
2619 #if defined(TARGET_SPARC)
2620 do_unassigned_access(addr
, 1, 0, 0, 1);
2624 static void unassigned_mem_writew(void *opaque
, target_phys_addr_t addr
, uint32_t val
)
2626 #ifdef DEBUG_UNASSIGNED
2627 printf("Unassigned mem write " TARGET_FMT_plx
" = 0x%x\n", addr
, val
);
2629 #if defined(TARGET_SPARC)
2630 do_unassigned_access(addr
, 1, 0, 0, 2);
2634 static void unassigned_mem_writel(void *opaque
, target_phys_addr_t addr
, uint32_t val
)
2636 #ifdef DEBUG_UNASSIGNED
2637 printf("Unassigned mem write " TARGET_FMT_plx
" = 0x%x\n", addr
, val
);
2639 #if defined(TARGET_SPARC)
2640 do_unassigned_access(addr
, 1, 0, 0, 4);
2644 static CPUReadMemoryFunc
*unassigned_mem_read
[3] = {
2645 unassigned_mem_readb
,
2646 unassigned_mem_readw
,
2647 unassigned_mem_readl
,
2650 static CPUWriteMemoryFunc
*unassigned_mem_write
[3] = {
2651 unassigned_mem_writeb
,
2652 unassigned_mem_writew
,
2653 unassigned_mem_writel
,
2656 static void notdirty_mem_writeb(void *opaque
, target_phys_addr_t ram_addr
,
2660 dirty_flags
= phys_ram_dirty
[ram_addr
>> TARGET_PAGE_BITS
];
2661 if (!(dirty_flags
& CODE_DIRTY_FLAG
)) {
2662 #if !defined(CONFIG_USER_ONLY)
2663 tb_invalidate_phys_page_fast(ram_addr
, 1);
2664 dirty_flags
= phys_ram_dirty
[ram_addr
>> TARGET_PAGE_BITS
];
2667 stb_p(qemu_get_ram_ptr(ram_addr
), val
);
2669 if (cpu_single_env
->kqemu_enabled
&&
2670 (dirty_flags
& KQEMU_MODIFY_PAGE_MASK
) != KQEMU_MODIFY_PAGE_MASK
)
2671 kqemu_modify_page(cpu_single_env
, ram_addr
);
2673 dirty_flags
|= (0xff & ~CODE_DIRTY_FLAG
);
2674 phys_ram_dirty
[ram_addr
>> TARGET_PAGE_BITS
] = dirty_flags
;
2675 /* we remove the notdirty callback only if the code has been
2677 if (dirty_flags
== 0xff)
2678 tlb_set_dirty(cpu_single_env
, cpu_single_env
->mem_io_vaddr
);
2681 static void notdirty_mem_writew(void *opaque
, target_phys_addr_t ram_addr
,
2685 dirty_flags
= phys_ram_dirty
[ram_addr
>> TARGET_PAGE_BITS
];
2686 if (!(dirty_flags
& CODE_DIRTY_FLAG
)) {
2687 #if !defined(CONFIG_USER_ONLY)
2688 tb_invalidate_phys_page_fast(ram_addr
, 2);
2689 dirty_flags
= phys_ram_dirty
[ram_addr
>> TARGET_PAGE_BITS
];
2692 stw_p(qemu_get_ram_ptr(ram_addr
), val
);
2694 if (cpu_single_env
->kqemu_enabled
&&
2695 (dirty_flags
& KQEMU_MODIFY_PAGE_MASK
) != KQEMU_MODIFY_PAGE_MASK
)
2696 kqemu_modify_page(cpu_single_env
, ram_addr
);
2698 dirty_flags
|= (0xff & ~CODE_DIRTY_FLAG
);
2699 phys_ram_dirty
[ram_addr
>> TARGET_PAGE_BITS
] = dirty_flags
;
2700 /* we remove the notdirty callback only if the code has been
2702 if (dirty_flags
== 0xff)
2703 tlb_set_dirty(cpu_single_env
, cpu_single_env
->mem_io_vaddr
);
2706 static void notdirty_mem_writel(void *opaque
, target_phys_addr_t ram_addr
,
2710 dirty_flags
= phys_ram_dirty
[ram_addr
>> TARGET_PAGE_BITS
];
2711 if (!(dirty_flags
& CODE_DIRTY_FLAG
)) {
2712 #if !defined(CONFIG_USER_ONLY)
2713 tb_invalidate_phys_page_fast(ram_addr
, 4);
2714 dirty_flags
= phys_ram_dirty
[ram_addr
>> TARGET_PAGE_BITS
];
2717 stl_p(qemu_get_ram_ptr(ram_addr
), val
);
2719 if (cpu_single_env
->kqemu_enabled
&&
2720 (dirty_flags
& KQEMU_MODIFY_PAGE_MASK
) != KQEMU_MODIFY_PAGE_MASK
)
2721 kqemu_modify_page(cpu_single_env
, ram_addr
);
2723 dirty_flags
|= (0xff & ~CODE_DIRTY_FLAG
);
2724 phys_ram_dirty
[ram_addr
>> TARGET_PAGE_BITS
] = dirty_flags
;
2725 /* we remove the notdirty callback only if the code has been
2727 if (dirty_flags
== 0xff)
2728 tlb_set_dirty(cpu_single_env
, cpu_single_env
->mem_io_vaddr
);
2731 static CPUReadMemoryFunc
*error_mem_read
[3] = {
2732 NULL
, /* never used */
2733 NULL
, /* never used */
2734 NULL
, /* never used */
2737 static CPUWriteMemoryFunc
*notdirty_mem_write
[3] = {
2738 notdirty_mem_writeb
,
2739 notdirty_mem_writew
,
2740 notdirty_mem_writel
,
2743 /* Generate a debug exception if a watchpoint has been hit. */
2744 static void check_watchpoint(int offset
, int len_mask
, int flags
)
2746 CPUState
*env
= cpu_single_env
;
2747 target_ulong pc
, cs_base
;
2748 TranslationBlock
*tb
;
2753 if (env
->watchpoint_hit
) {
2754 /* We re-entered the check after replacing the TB. Now raise
2755 * the debug interrupt so that is will trigger after the
2756 * current instruction. */
2757 cpu_interrupt(env
, CPU_INTERRUPT_DEBUG
);
2760 vaddr
= (env
->mem_io_vaddr
& TARGET_PAGE_MASK
) + offset
;
2761 TAILQ_FOREACH(wp
, &env
->watchpoints
, entry
) {
2762 if ((vaddr
== (wp
->vaddr
& len_mask
) ||
2763 (vaddr
& wp
->len_mask
) == wp
->vaddr
) && (wp
->flags
& flags
)) {
2764 wp
->flags
|= BP_WATCHPOINT_HIT
;
2765 if (!env
->watchpoint_hit
) {
2766 env
->watchpoint_hit
= wp
;
2767 tb
= tb_find_pc(env
->mem_io_pc
);
2769 cpu_abort(env
, "check_watchpoint: could not find TB for "
2770 "pc=%p", (void *)env
->mem_io_pc
);
2772 cpu_restore_state(tb
, env
, env
->mem_io_pc
, NULL
);
2773 tb_phys_invalidate(tb
, -1);
2774 if (wp
->flags
& BP_STOP_BEFORE_ACCESS
) {
2775 env
->exception_index
= EXCP_DEBUG
;
2777 cpu_get_tb_cpu_state(env
, &pc
, &cs_base
, &cpu_flags
);
2778 tb_gen_code(env
, pc
, cs_base
, cpu_flags
, 1);
2780 cpu_resume_from_signal(env
, NULL
);
2783 wp
->flags
&= ~BP_WATCHPOINT_HIT
;
2788 /* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
2789 so these check for a hit then pass through to the normal out-of-line
2791 static uint32_t watch_mem_readb(void *opaque
, target_phys_addr_t addr
)
2793 check_watchpoint(addr
& ~TARGET_PAGE_MASK
, ~0x0, BP_MEM_READ
);
2794 return ldub_phys(addr
);
2797 static uint32_t watch_mem_readw(void *opaque
, target_phys_addr_t addr
)
2799 check_watchpoint(addr
& ~TARGET_PAGE_MASK
, ~0x1, BP_MEM_READ
);
2800 return lduw_phys(addr
);
2803 static uint32_t watch_mem_readl(void *opaque
, target_phys_addr_t addr
)
2805 check_watchpoint(addr
& ~TARGET_PAGE_MASK
, ~0x3, BP_MEM_READ
);
2806 return ldl_phys(addr
);
2809 static void watch_mem_writeb(void *opaque
, target_phys_addr_t addr
,
2812 check_watchpoint(addr
& ~TARGET_PAGE_MASK
, ~0x0, BP_MEM_WRITE
);
2813 stb_phys(addr
, val
);
2816 static void watch_mem_writew(void *opaque
, target_phys_addr_t addr
,
2819 check_watchpoint(addr
& ~TARGET_PAGE_MASK
, ~0x1, BP_MEM_WRITE
);
2820 stw_phys(addr
, val
);
2823 static void watch_mem_writel(void *opaque
, target_phys_addr_t addr
,
2826 check_watchpoint(addr
& ~TARGET_PAGE_MASK
, ~0x3, BP_MEM_WRITE
);
2827 stl_phys(addr
, val
);
2830 static CPUReadMemoryFunc
*watch_mem_read
[3] = {
2836 static CPUWriteMemoryFunc
*watch_mem_write
[3] = {
2842 static inline uint32_t subpage_readlen (subpage_t
*mmio
, target_phys_addr_t addr
,
2848 idx
= SUBPAGE_IDX(addr
);
2849 #if defined(DEBUG_SUBPAGE)
2850 printf("%s: subpage %p len %d addr " TARGET_FMT_plx
" idx %d\n", __func__
,
2851 mmio
, len
, addr
, idx
);
2853 ret
= (**mmio
->mem_read
[idx
][len
])(mmio
->opaque
[idx
][0][len
],
2854 addr
+ mmio
->region_offset
[idx
][0][len
]);
2859 static inline void subpage_writelen (subpage_t
*mmio
, target_phys_addr_t addr
,
2860 uint32_t value
, unsigned int len
)
2864 idx
= SUBPAGE_IDX(addr
);
2865 #if defined(DEBUG_SUBPAGE)
2866 printf("%s: subpage %p len %d addr " TARGET_FMT_plx
" idx %d value %08x\n", __func__
,
2867 mmio
, len
, addr
, idx
, value
);
2869 (**mmio
->mem_write
[idx
][len
])(mmio
->opaque
[idx
][1][len
],
2870 addr
+ mmio
->region_offset
[idx
][1][len
],
2874 static uint32_t subpage_readb (void *opaque
, target_phys_addr_t addr
)
2876 #if defined(DEBUG_SUBPAGE)
2877 printf("%s: addr " TARGET_FMT_plx
"\n", __func__
, addr
);
2880 return subpage_readlen(opaque
, addr
, 0);
2883 static void subpage_writeb (void *opaque
, target_phys_addr_t addr
,
2886 #if defined(DEBUG_SUBPAGE)
2887 printf("%s: addr " TARGET_FMT_plx
" val %08x\n", __func__
, addr
, value
);
2889 subpage_writelen(opaque
, addr
, value
, 0);
2892 static uint32_t subpage_readw (void *opaque
, target_phys_addr_t addr
)
2894 #if defined(DEBUG_SUBPAGE)
2895 printf("%s: addr " TARGET_FMT_plx
"\n", __func__
, addr
);
2898 return subpage_readlen(opaque
, addr
, 1);
2901 static void subpage_writew (void *opaque
, target_phys_addr_t addr
,
2904 #if defined(DEBUG_SUBPAGE)
2905 printf("%s: addr " TARGET_FMT_plx
" val %08x\n", __func__
, addr
, value
);
2907 subpage_writelen(opaque
, addr
, value
, 1);
2910 static uint32_t subpage_readl (void *opaque
, target_phys_addr_t addr
)
2912 #if defined(DEBUG_SUBPAGE)
2913 printf("%s: addr " TARGET_FMT_plx
"\n", __func__
, addr
);
2916 return subpage_readlen(opaque
, addr
, 2);
2919 static void subpage_writel (void *opaque
,
2920 target_phys_addr_t addr
, uint32_t value
)
2922 #if defined(DEBUG_SUBPAGE)
2923 printf("%s: addr " TARGET_FMT_plx
" val %08x\n", __func__
, addr
, value
);
2925 subpage_writelen(opaque
, addr
, value
, 2);
2928 static CPUReadMemoryFunc
*subpage_read
[] = {
2934 static CPUWriteMemoryFunc
*subpage_write
[] = {
2940 static int subpage_register (subpage_t
*mmio
, uint32_t start
, uint32_t end
,
2941 ram_addr_t memory
, ram_addr_t region_offset
)
2946 if (start
>= TARGET_PAGE_SIZE
|| end
>= TARGET_PAGE_SIZE
)
2948 idx
= SUBPAGE_IDX(start
);
2949 eidx
= SUBPAGE_IDX(end
);
2950 #if defined(DEBUG_SUBPAGE)
2951 printf("%s: %p start %08x end %08x idx %08x eidx %08x mem %d\n", __func__
,
2952 mmio
, start
, end
, idx
, eidx
, memory
);
2954 memory
>>= IO_MEM_SHIFT
;
2955 for (; idx
<= eidx
; idx
++) {
2956 for (i
= 0; i
< 4; i
++) {
2957 if (io_mem_read
[memory
][i
]) {
2958 mmio
->mem_read
[idx
][i
] = &io_mem_read
[memory
][i
];
2959 mmio
->opaque
[idx
][0][i
] = io_mem_opaque
[memory
];
2960 mmio
->region_offset
[idx
][0][i
] = region_offset
;
2962 if (io_mem_write
[memory
][i
]) {
2963 mmio
->mem_write
[idx
][i
] = &io_mem_write
[memory
][i
];
2964 mmio
->opaque
[idx
][1][i
] = io_mem_opaque
[memory
];
2965 mmio
->region_offset
[idx
][1][i
] = region_offset
;
2973 static void *subpage_init (target_phys_addr_t base
, ram_addr_t
*phys
,
2974 ram_addr_t orig_memory
, ram_addr_t region_offset
)
2979 mmio
= qemu_mallocz(sizeof(subpage_t
));
2982 subpage_memory
= cpu_register_io_memory(0, subpage_read
, subpage_write
, mmio
);
2983 #if defined(DEBUG_SUBPAGE)
2984 printf("%s: %p base " TARGET_FMT_plx
" len %08x %d\n", __func__
,
2985 mmio
, base
, TARGET_PAGE_SIZE
, subpage_memory
);
2987 *phys
= subpage_memory
| IO_MEM_SUBPAGE
;
2988 subpage_register(mmio
, 0, TARGET_PAGE_SIZE
- 1, orig_memory
,
2994 static int get_free_io_mem_idx(void)
2998 for (i
= 0; i
<IO_MEM_NB_ENTRIES
; i
++)
2999 if (!io_mem_used
[i
]) {
3007 static void io_mem_init(void)
3011 cpu_register_io_memory(IO_MEM_ROM
>> IO_MEM_SHIFT
, error_mem_read
, unassigned_mem_write
, NULL
);
3012 cpu_register_io_memory(IO_MEM_UNASSIGNED
>> IO_MEM_SHIFT
, unassigned_mem_read
, unassigned_mem_write
, NULL
);
3013 cpu_register_io_memory(IO_MEM_NOTDIRTY
>> IO_MEM_SHIFT
, error_mem_read
, notdirty_mem_write
, NULL
);
3017 io_mem_watch
= cpu_register_io_memory(0, watch_mem_read
,
3018 watch_mem_write
, NULL
);
3020 if (kqemu_phys_ram_base
) {
3021 /* alloc dirty bits array */
3022 phys_ram_dirty
= qemu_vmalloc(kqemu_phys_ram_size
>> TARGET_PAGE_BITS
);
3023 memset(phys_ram_dirty
, 0xff, kqemu_phys_ram_size
>> TARGET_PAGE_BITS
);
3028 /* mem_read and mem_write are arrays of functions containing the
3029 function to access byte (index 0), word (index 1) and dword (index
3030 2). Functions can be omitted with a NULL function pointer. The
3031 registered functions may be modified dynamically later.
3032 If io_index is non zero, the corresponding io zone is
3033 modified. If it is zero, a new io zone is allocated. The return
3034 value can be used with cpu_register_physical_memory(). (-1) is
3035 returned if error. */
3036 int cpu_register_io_memory(int io_index
,
3037 CPUReadMemoryFunc
**mem_read
,
3038 CPUWriteMemoryFunc
**mem_write
,
3041 int i
, subwidth
= 0;
3043 if (io_index
<= 0) {
3044 io_index
= get_free_io_mem_idx();
3048 if (io_index
>= IO_MEM_NB_ENTRIES
)
3052 for(i
= 0;i
< 3; i
++) {
3053 if (!mem_read
[i
] || !mem_write
[i
])
3054 subwidth
= IO_MEM_SUBWIDTH
;
3055 io_mem_read
[io_index
][i
] = mem_read
[i
];
3056 io_mem_write
[io_index
][i
] = mem_write
[i
];
3058 io_mem_opaque
[io_index
] = opaque
;
3059 return (io_index
<< IO_MEM_SHIFT
) | subwidth
;
3062 void cpu_unregister_io_memory(int io_table_address
)
3065 int io_index
= io_table_address
>> IO_MEM_SHIFT
;
3067 for (i
=0;i
< 3; i
++) {
3068 io_mem_read
[io_index
][i
] = unassigned_mem_read
[i
];
3069 io_mem_write
[io_index
][i
] = unassigned_mem_write
[i
];
3071 io_mem_opaque
[io_index
] = NULL
;
3072 io_mem_used
[io_index
] = 0;
3075 CPUWriteMemoryFunc
**cpu_get_io_memory_write(int io_index
)
3077 return io_mem_write
[io_index
>> IO_MEM_SHIFT
];
3080 CPUReadMemoryFunc
**cpu_get_io_memory_read(int io_index
)
3082 return io_mem_read
[io_index
>> IO_MEM_SHIFT
];
3085 #endif /* !defined(CONFIG_USER_ONLY) */
3087 /* physical memory access (slow version, mainly for debug) */
3088 #if defined(CONFIG_USER_ONLY)
3089 void cpu_physical_memory_rw(target_phys_addr_t addr
, uint8_t *buf
,
3090 int len
, int is_write
)
3097 page
= addr
& TARGET_PAGE_MASK
;
3098 l
= (page
+ TARGET_PAGE_SIZE
) - addr
;
3101 flags
= page_get_flags(page
);
3102 if (!(flags
& PAGE_VALID
))
3105 if (!(flags
& PAGE_WRITE
))
3107 /* XXX: this code should not depend on lock_user */
3108 if (!(p
= lock_user(VERIFY_WRITE
, addr
, l
, 0)))
3109 /* FIXME - should this return an error rather than just fail? */
3112 unlock_user(p
, addr
, l
);
3114 if (!(flags
& PAGE_READ
))
3116 /* XXX: this code should not depend on lock_user */
3117 if (!(p
= lock_user(VERIFY_READ
, addr
, l
, 1)))
3118 /* FIXME - should this return an error rather than just fail? */
3121 unlock_user(p
, addr
, 0);
3130 void cpu_physical_memory_rw(target_phys_addr_t addr
, uint8_t *buf
,
3131 int len
, int is_write
)
3136 target_phys_addr_t page
;
3141 page
= addr
& TARGET_PAGE_MASK
;
3142 l
= (page
+ TARGET_PAGE_SIZE
) - addr
;
3145 p
= phys_page_find(page
>> TARGET_PAGE_BITS
);
3147 pd
= IO_MEM_UNASSIGNED
;
3149 pd
= p
->phys_offset
;
3153 if ((pd
& ~TARGET_PAGE_MASK
) != IO_MEM_RAM
) {
3154 target_phys_addr_t addr1
= addr
;
3155 io_index
= (pd
>> IO_MEM_SHIFT
) & (IO_MEM_NB_ENTRIES
- 1);
3157 addr1
= (addr
& ~TARGET_PAGE_MASK
) + p
->region_offset
;
3158 /* XXX: could force cpu_single_env to NULL to avoid
3160 if (l
>= 4 && ((addr1
& 3) == 0)) {
3161 /* 32 bit write access */
3163 io_mem_write
[io_index
][2](io_mem_opaque
[io_index
], addr1
, val
);
3165 } else if (l
>= 2 && ((addr1
& 1) == 0)) {
3166 /* 16 bit write access */
3168 io_mem_write
[io_index
][1](io_mem_opaque
[io_index
], addr1
, val
);
3171 /* 8 bit write access */
3173 io_mem_write
[io_index
][0](io_mem_opaque
[io_index
], addr1
, val
);
3177 unsigned long addr1
;
3178 addr1
= (pd
& TARGET_PAGE_MASK
) + (addr
& ~TARGET_PAGE_MASK
);
3180 ptr
= qemu_get_ram_ptr(addr1
);
3181 memcpy(ptr
, buf
, l
);
3182 if (!cpu_physical_memory_is_dirty(addr1
)) {
3183 /* invalidate code */
3184 tb_invalidate_phys_page_range(addr1
, addr1
+ l
, 0);
3186 phys_ram_dirty
[addr1
>> TARGET_PAGE_BITS
] |=
3187 (0xff & ~CODE_DIRTY_FLAG
);
3189 /* qemu doesn't execute guest code directly, but kvm does
3190 therefore fluch instruction caches */
3192 flush_icache_range((unsigned long)ptr
,
3193 ((unsigned long)ptr
)+l
);
3196 if ((pd
& ~TARGET_PAGE_MASK
) > IO_MEM_ROM
&&
3197 !(pd
& IO_MEM_ROMD
)) {
3198 target_phys_addr_t addr1
= addr
;
3200 io_index
= (pd
>> IO_MEM_SHIFT
) & (IO_MEM_NB_ENTRIES
- 1);
3202 addr1
= (addr
& ~TARGET_PAGE_MASK
) + p
->region_offset
;
3203 if (l
>= 4 && ((addr1
& 3) == 0)) {
3204 /* 32 bit read access */
3205 val
= io_mem_read
[io_index
][2](io_mem_opaque
[io_index
], addr1
);
3208 } else if (l
>= 2 && ((addr1
& 1) == 0)) {
3209 /* 16 bit read access */
3210 val
= io_mem_read
[io_index
][1](io_mem_opaque
[io_index
], addr1
);
3214 /* 8 bit read access */
3215 val
= io_mem_read
[io_index
][0](io_mem_opaque
[io_index
], addr1
);
3221 ptr
= qemu_get_ram_ptr(pd
& TARGET_PAGE_MASK
) +
3222 (addr
& ~TARGET_PAGE_MASK
);
3223 memcpy(buf
, ptr
, l
);
3232 /* used for ROM loading : can write in RAM and ROM */
3233 void cpu_physical_memory_write_rom(target_phys_addr_t addr
,
3234 const uint8_t *buf
, int len
)
3238 target_phys_addr_t page
;
3243 page
= addr
& TARGET_PAGE_MASK
;
3244 l
= (page
+ TARGET_PAGE_SIZE
) - addr
;
3247 p
= phys_page_find(page
>> TARGET_PAGE_BITS
);
3249 pd
= IO_MEM_UNASSIGNED
;
3251 pd
= p
->phys_offset
;
3254 if ((pd
& ~TARGET_PAGE_MASK
) != IO_MEM_RAM
&&
3255 (pd
& ~TARGET_PAGE_MASK
) != IO_MEM_ROM
&&
3256 !(pd
& IO_MEM_ROMD
)) {
3259 unsigned long addr1
;
3260 addr1
= (pd
& TARGET_PAGE_MASK
) + (addr
& ~TARGET_PAGE_MASK
);
3262 ptr
= qemu_get_ram_ptr(addr1
);
3263 memcpy(ptr
, buf
, l
);
3273 target_phys_addr_t addr
;
3274 target_phys_addr_t len
;
3277 static BounceBuffer bounce
;
3279 typedef struct MapClient
{
3281 void (*callback
)(void *opaque
);
3282 LIST_ENTRY(MapClient
) link
;
3285 static LIST_HEAD(map_client_list
, MapClient
) map_client_list
3286 = LIST_HEAD_INITIALIZER(map_client_list
);
3288 void *cpu_register_map_client(void *opaque
, void (*callback
)(void *opaque
))
3290 MapClient
*client
= qemu_malloc(sizeof(*client
));
3292 client
->opaque
= opaque
;
3293 client
->callback
= callback
;
3294 LIST_INSERT_HEAD(&map_client_list
, client
, link
);
3298 void cpu_unregister_map_client(void *_client
)
3300 MapClient
*client
= (MapClient
*)_client
;
3302 LIST_REMOVE(client
, link
);
3305 static void cpu_notify_map_clients(void)
3309 while (!LIST_EMPTY(&map_client_list
)) {
3310 client
= LIST_FIRST(&map_client_list
);
3311 client
->callback(client
->opaque
);
3312 LIST_REMOVE(client
, link
);
3316 /* Map a physical memory region into a host virtual address.
3317 * May map a subset of the requested range, given by and returned in *plen.
3318 * May return NULL if resources needed to perform the mapping are exhausted.
3319 * Use only for reads OR writes - not for read-modify-write operations.
3320 * Use cpu_register_map_client() to know when retrying the map operation is
3321 * likely to succeed.
3323 void *cpu_physical_memory_map(target_phys_addr_t addr
,
3324 target_phys_addr_t
*plen
,
3327 target_phys_addr_t len
= *plen
;
3328 target_phys_addr_t done
= 0;
3330 uint8_t *ret
= NULL
;
3332 target_phys_addr_t page
;
3335 unsigned long addr1
;
3338 page
= addr
& TARGET_PAGE_MASK
;
3339 l
= (page
+ TARGET_PAGE_SIZE
) - addr
;
3342 p
= phys_page_find(page
>> TARGET_PAGE_BITS
);
3344 pd
= IO_MEM_UNASSIGNED
;
3346 pd
= p
->phys_offset
;
3349 if ((pd
& ~TARGET_PAGE_MASK
) != IO_MEM_RAM
) {
3350 if (done
|| bounce
.buffer
) {
3353 bounce
.buffer
= qemu_memalign(TARGET_PAGE_SIZE
, TARGET_PAGE_SIZE
);
3357 cpu_physical_memory_rw(addr
, bounce
.buffer
, l
, 0);
3359 ptr
= bounce
.buffer
;
3361 addr1
= (pd
& TARGET_PAGE_MASK
) + (addr
& ~TARGET_PAGE_MASK
);
3362 ptr
= qemu_get_ram_ptr(addr1
);
3366 } else if (ret
+ done
!= ptr
) {
3378 /* Unmaps a memory region previously mapped by cpu_physical_memory_map().
3379 * Will also mark the memory as dirty if is_write == 1. access_len gives
3380 * the amount of memory that was actually read or written by the caller.
3382 void cpu_physical_memory_unmap(void *buffer
, target_phys_addr_t len
,
3383 int is_write
, target_phys_addr_t access_len
)
3385 if (buffer
!= bounce
.buffer
) {
3387 ram_addr_t addr1
= qemu_ram_addr_from_host(buffer
);
3388 while (access_len
) {
3390 l
= TARGET_PAGE_SIZE
;
3393 if (!cpu_physical_memory_is_dirty(addr1
)) {
3394 /* invalidate code */
3395 tb_invalidate_phys_page_range(addr1
, addr1
+ l
, 0);
3397 phys_ram_dirty
[addr1
>> TARGET_PAGE_BITS
] |=
3398 (0xff & ~CODE_DIRTY_FLAG
);
3404 flush_icache_range((unsigned long)buffer
,
3405 (unsigned long)buffer
+ access_len
);
3410 cpu_physical_memory_write(bounce
.addr
, bounce
.buffer
, access_len
);
3412 qemu_free(bounce
.buffer
);
3413 bounce
.buffer
= NULL
;
3414 cpu_notify_map_clients();
3417 /* warning: addr must be aligned */
3418 uint32_t ldl_phys(target_phys_addr_t addr
)
3426 p
= phys_page_find(addr
>> TARGET_PAGE_BITS
);
3428 pd
= IO_MEM_UNASSIGNED
;
3430 pd
= p
->phys_offset
;
3433 if ((pd
& ~TARGET_PAGE_MASK
) > IO_MEM_ROM
&&
3434 !(pd
& IO_MEM_ROMD
)) {
3436 io_index
= (pd
>> IO_MEM_SHIFT
) & (IO_MEM_NB_ENTRIES
- 1);
3438 addr
= (addr
& ~TARGET_PAGE_MASK
) + p
->region_offset
;
3439 val
= io_mem_read
[io_index
][2](io_mem_opaque
[io_index
], addr
);
3442 ptr
= qemu_get_ram_ptr(pd
& TARGET_PAGE_MASK
) +
3443 (addr
& ~TARGET_PAGE_MASK
);
3449 /* warning: addr must be aligned */
3450 uint64_t ldq_phys(target_phys_addr_t addr
)
3458 p
= phys_page_find(addr
>> TARGET_PAGE_BITS
);
3460 pd
= IO_MEM_UNASSIGNED
;
3462 pd
= p
->phys_offset
;
3465 if ((pd
& ~TARGET_PAGE_MASK
) > IO_MEM_ROM
&&
3466 !(pd
& IO_MEM_ROMD
)) {
3468 io_index
= (pd
>> IO_MEM_SHIFT
) & (IO_MEM_NB_ENTRIES
- 1);
3470 addr
= (addr
& ~TARGET_PAGE_MASK
) + p
->region_offset
;
3471 #ifdef TARGET_WORDS_BIGENDIAN
3472 val
= (uint64_t)io_mem_read
[io_index
][2](io_mem_opaque
[io_index
], addr
) << 32;
3473 val
|= io_mem_read
[io_index
][2](io_mem_opaque
[io_index
], addr
+ 4);
3475 val
= io_mem_read
[io_index
][2](io_mem_opaque
[io_index
], addr
);
3476 val
|= (uint64_t)io_mem_read
[io_index
][2](io_mem_opaque
[io_index
], addr
+ 4) << 32;
3480 ptr
= qemu_get_ram_ptr(pd
& TARGET_PAGE_MASK
) +
3481 (addr
& ~TARGET_PAGE_MASK
);
3488 uint32_t ldub_phys(target_phys_addr_t addr
)
3491 cpu_physical_memory_read(addr
, &val
, 1);
3496 uint32_t lduw_phys(target_phys_addr_t addr
)
3499 cpu_physical_memory_read(addr
, (uint8_t *)&val
, 2);
3500 return tswap16(val
);
3504 #define likely(x) __builtin_expect(!!(x), 1)
3505 #define unlikely(x) __builtin_expect(!!(x), 0)
3508 #define unlikely(x) x
3511 /* warning: addr must be aligned. The ram page is not masked as dirty
3512 and the code inside is not invalidated. It is useful if the dirty
3513 bits are used to track modified PTEs */
3514 void stl_phys_notdirty(target_phys_addr_t addr
, uint32_t val
)
3521 p
= phys_page_find(addr
>> TARGET_PAGE_BITS
);
3523 pd
= IO_MEM_UNASSIGNED
;
3525 pd
= p
->phys_offset
;
3528 if ((pd
& ~TARGET_PAGE_MASK
) != IO_MEM_RAM
) {
3529 io_index
= (pd
>> IO_MEM_SHIFT
) & (IO_MEM_NB_ENTRIES
- 1);
3531 addr
= (addr
& ~TARGET_PAGE_MASK
) + p
->region_offset
;
3532 io_mem_write
[io_index
][2](io_mem_opaque
[io_index
], addr
, val
);
3534 unsigned long addr1
= (pd
& TARGET_PAGE_MASK
) + (addr
& ~TARGET_PAGE_MASK
);
3535 ptr
= qemu_get_ram_ptr(addr1
);
3538 if (unlikely(in_migration
)) {
3539 if (!cpu_physical_memory_is_dirty(addr1
)) {
3540 /* invalidate code */
3541 tb_invalidate_phys_page_range(addr1
, addr1
+ 4, 0);
3543 phys_ram_dirty
[addr1
>> TARGET_PAGE_BITS
] |=
3544 (0xff & ~CODE_DIRTY_FLAG
);
3550 void stq_phys_notdirty(target_phys_addr_t addr
, uint64_t val
)
3557 p
= phys_page_find(addr
>> TARGET_PAGE_BITS
);
3559 pd
= IO_MEM_UNASSIGNED
;
3561 pd
= p
->phys_offset
;
3564 if ((pd
& ~TARGET_PAGE_MASK
) != IO_MEM_RAM
) {
3565 io_index
= (pd
>> IO_MEM_SHIFT
) & (IO_MEM_NB_ENTRIES
- 1);
3567 addr
= (addr
& ~TARGET_PAGE_MASK
) + p
->region_offset
;
3568 #ifdef TARGET_WORDS_BIGENDIAN
3569 io_mem_write
[io_index
][2](io_mem_opaque
[io_index
], addr
, val
>> 32);
3570 io_mem_write
[io_index
][2](io_mem_opaque
[io_index
], addr
+ 4, val
);
3572 io_mem_write
[io_index
][2](io_mem_opaque
[io_index
], addr
, val
);
3573 io_mem_write
[io_index
][2](io_mem_opaque
[io_index
], addr
+ 4, val
>> 32);
3576 ptr
= qemu_get_ram_ptr(pd
& TARGET_PAGE_MASK
) +
3577 (addr
& ~TARGET_PAGE_MASK
);
3582 /* warning: addr must be aligned */
3583 void stl_phys(target_phys_addr_t addr
, uint32_t val
)
3590 p
= phys_page_find(addr
>> TARGET_PAGE_BITS
);
3592 pd
= IO_MEM_UNASSIGNED
;
3594 pd
= p
->phys_offset
;
3597 if ((pd
& ~TARGET_PAGE_MASK
) != IO_MEM_RAM
) {
3598 io_index
= (pd
>> IO_MEM_SHIFT
) & (IO_MEM_NB_ENTRIES
- 1);
3600 addr
= (addr
& ~TARGET_PAGE_MASK
) + p
->region_offset
;
3601 io_mem_write
[io_index
][2](io_mem_opaque
[io_index
], addr
, val
);
3603 unsigned long addr1
;
3604 addr1
= (pd
& TARGET_PAGE_MASK
) + (addr
& ~TARGET_PAGE_MASK
);
3606 ptr
= qemu_get_ram_ptr(addr1
);
3608 if (!cpu_physical_memory_is_dirty(addr1
)) {
3609 /* invalidate code */
3610 tb_invalidate_phys_page_range(addr1
, addr1
+ 4, 0);
3612 phys_ram_dirty
[addr1
>> TARGET_PAGE_BITS
] |=
3613 (0xff & ~CODE_DIRTY_FLAG
);
3619 void stb_phys(target_phys_addr_t addr
, uint32_t val
)
3622 cpu_physical_memory_write(addr
, &v
, 1);
3626 void stw_phys(target_phys_addr_t addr
, uint32_t val
)
3628 uint16_t v
= tswap16(val
);
3629 cpu_physical_memory_write(addr
, (const uint8_t *)&v
, 2);
3633 void stq_phys(target_phys_addr_t addr
, uint64_t val
)
3636 cpu_physical_memory_write(addr
, (const uint8_t *)&val
, 8);
3641 /* virtual memory access for debug (includes writing to ROM) */
3642 int cpu_memory_rw_debug(CPUState
*env
, target_ulong addr
,
3643 uint8_t *buf
, int len
, int is_write
)
3646 target_phys_addr_t phys_addr
;
3650 page
= addr
& TARGET_PAGE_MASK
;
3651 phys_addr
= cpu_get_phys_page_debug(env
, page
);
3652 /* if no physical page mapped, return an error */
3653 if (phys_addr
== -1)
3655 l
= (page
+ TARGET_PAGE_SIZE
) - addr
;
3658 phys_addr
+= (addr
& ~TARGET_PAGE_MASK
);
3659 #if !defined(CONFIG_USER_ONLY)
3661 cpu_physical_memory_write_rom(phys_addr
, buf
, l
);
3664 cpu_physical_memory_rw(phys_addr
, buf
, l
, is_write
);
3672 /* in deterministic execution mode, instructions doing device I/Os
3673 must be at the end of the TB */
3674 void cpu_io_recompile(CPUState
*env
, void *retaddr
)
3676 TranslationBlock
*tb
;
3678 target_ulong pc
, cs_base
;
3681 tb
= tb_find_pc((unsigned long)retaddr
);
3683 cpu_abort(env
, "cpu_io_recompile: could not find TB for pc=%p",
3686 n
= env
->icount_decr
.u16
.low
+ tb
->icount
;
3687 cpu_restore_state(tb
, env
, (unsigned long)retaddr
, NULL
);
3688 /* Calculate how many instructions had been executed before the fault
3690 n
= n
- env
->icount_decr
.u16
.low
;
3691 /* Generate a new TB ending on the I/O insn. */
3693 /* On MIPS and SH, delay slot instructions can only be restarted if
3694 they were already the first instruction in the TB. If this is not
3695 the first instruction in a TB then re-execute the preceding
3697 #if defined(TARGET_MIPS)
3698 if ((env
->hflags
& MIPS_HFLAG_BMASK
) != 0 && n
> 1) {
3699 env
->active_tc
.PC
-= 4;
3700 env
->icount_decr
.u16
.low
++;
3701 env
->hflags
&= ~MIPS_HFLAG_BMASK
;
3703 #elif defined(TARGET_SH4)
3704 if ((env
->flags
& ((DELAY_SLOT
| DELAY_SLOT_CONDITIONAL
))) != 0
3707 env
->icount_decr
.u16
.low
++;
3708 env
->flags
&= ~(DELAY_SLOT
| DELAY_SLOT_CONDITIONAL
);
3711 /* This should never happen. */
3712 if (n
> CF_COUNT_MASK
)
3713 cpu_abort(env
, "TB too big during recompile");
3715 cflags
= n
| CF_LAST_IO
;
3717 cs_base
= tb
->cs_base
;
3719 tb_phys_invalidate(tb
, -1);
3720 /* FIXME: In theory this could raise an exception. In practice
3721 we have already translated the block once so it's probably ok. */
3722 tb_gen_code(env
, pc
, cs_base
, flags
, cflags
);
3723 /* TODO: If env->pc != tb->pc (i.e. the faulting instruction was not
3724 the first in the TB) then we end up generating a whole new TB and
3725 repeating the fault, which is horribly inefficient.
3726 Better would be to execute just this insn uncached, or generate a
3728 cpu_resume_from_signal(env
, NULL
);
3731 void dump_exec_info(FILE *f
,
3732 int (*cpu_fprintf
)(FILE *f
, const char *fmt
, ...))
3734 int i
, target_code_size
, max_target_code_size
;
3735 int direct_jmp_count
, direct_jmp2_count
, cross_page
;
3736 TranslationBlock
*tb
;
3738 target_code_size
= 0;
3739 max_target_code_size
= 0;
3741 direct_jmp_count
= 0;
3742 direct_jmp2_count
= 0;
3743 for(i
= 0; i
< nb_tbs
; i
++) {
3745 target_code_size
+= tb
->size
;
3746 if (tb
->size
> max_target_code_size
)
3747 max_target_code_size
= tb
->size
;
3748 if (tb
->page_addr
[1] != -1)
3750 if (tb
->tb_next_offset
[0] != 0xffff) {
3752 if (tb
->tb_next_offset
[1] != 0xffff) {
3753 direct_jmp2_count
++;
3757 /* XXX: avoid using doubles ? */
3758 cpu_fprintf(f
, "Translation buffer state:\n");
3759 cpu_fprintf(f
, "gen code size %ld/%ld\n",
3760 code_gen_ptr
- code_gen_buffer
, code_gen_buffer_max_size
);
3761 cpu_fprintf(f
, "TB count %d/%d\n",
3762 nb_tbs
, code_gen_max_blocks
);
3763 cpu_fprintf(f
, "TB avg target size %d max=%d bytes\n",
3764 nb_tbs
? target_code_size
/ nb_tbs
: 0,
3765 max_target_code_size
);
3766 cpu_fprintf(f
, "TB avg host size %d bytes (expansion ratio: %0.1f)\n",
3767 nb_tbs
? (code_gen_ptr
- code_gen_buffer
) / nb_tbs
: 0,
3768 target_code_size
? (double) (code_gen_ptr
- code_gen_buffer
) / target_code_size
: 0);
3769 cpu_fprintf(f
, "cross page TB count %d (%d%%)\n",
3771 nb_tbs
? (cross_page
* 100) / nb_tbs
: 0);
3772 cpu_fprintf(f
, "direct jump count %d (%d%%) (2 jumps=%d %d%%)\n",
3774 nb_tbs
? (direct_jmp_count
* 100) / nb_tbs
: 0,
3776 nb_tbs
? (direct_jmp2_count
* 100) / nb_tbs
: 0);
3777 cpu_fprintf(f
, "\nStatistics:\n");
3778 cpu_fprintf(f
, "TB flush count %d\n", tb_flush_count
);
3779 cpu_fprintf(f
, "TB invalidate count %d\n", tb_phys_invalidate_count
);
3780 cpu_fprintf(f
, "TLB flush count %d\n", tlb_flush_count
);
3781 tcg_dump_info(f
, cpu_fprintf
);
3784 #if !defined(CONFIG_USER_ONLY)
3786 #define MMUSUFFIX _cmmu
3787 #define GETPC() NULL
3788 #define env cpu_single_env
3789 #define SOFTMMU_CODE_ACCESS
3792 #include "softmmu_template.h"
3795 #include "softmmu_template.h"
3798 #include "softmmu_template.h"
3801 #include "softmmu_template.h"