4 * Copyright (c) 2003-2005 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, write to the Free Software
18 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston MA 02110-1301 USA
21 #include "qemu-common.h"
22 #ifdef CONFIG_USER_ONLY
34 #include "qemu-char.h"
39 #define MAX_PACKET_LENGTH 4096
41 #include "qemu_socket.h"
49 GDB_SIGNAL_UNKNOWN
= 143
52 #ifdef CONFIG_USER_ONLY
54 /* Map target signal numbers to GDB protocol signal numbers and vice
55 * versa. For user emulation's currently supported systems, we can
56 * assume most signals are defined.
59 static int gdb_signal_table
[] = {
219 /* In system mode we only need SIGINT and SIGTRAP; other signals
220 are not yet supported. */
227 static int gdb_signal_table
[] = {
237 #ifdef CONFIG_USER_ONLY
238 static int target_signal_to_gdb (int sig
)
241 for (i
= 0; i
< ARRAY_SIZE (gdb_signal_table
); i
++)
242 if (gdb_signal_table
[i
] == sig
)
244 return GDB_SIGNAL_UNKNOWN
;
248 static int gdb_signal_to_target (int sig
)
250 if (sig
< ARRAY_SIZE (gdb_signal_table
))
251 return gdb_signal_table
[sig
];
258 typedef struct GDBRegisterState
{
264 struct GDBRegisterState
*next
;
274 typedef struct GDBState
{
275 CPUState
*c_cpu
; /* current CPU for step/continue ops */
276 CPUState
*g_cpu
; /* current CPU for other ops */
277 CPUState
*query_cpu
; /* for q{f|s}ThreadInfo */
278 enum RSState state
; /* parsing state */
279 char line_buf
[MAX_PACKET_LENGTH
];
282 uint8_t last_packet
[MAX_PACKET_LENGTH
+ 4];
285 #ifdef CONFIG_USER_ONLY
289 CharDriverState
*chr
;
290 CharDriverState
*mon_chr
;
294 /* By default use no IRQs and no timers while single stepping so as to
295 * make single stepping like an ICE HW step.
297 static int sstep_flags
= SSTEP_ENABLE
|SSTEP_NOIRQ
|SSTEP_NOTIMER
;
299 static GDBState
*gdbserver_state
;
301 /* This is an ugly hack to cope with both new and old gdb.
302 If gdb sends qXfer:features:read then assume we're talking to a newish
303 gdb that understands target descriptions. */
304 static int gdb_has_xml
;
306 #ifdef CONFIG_USER_ONLY
307 /* XXX: This is not thread safe. Do we care? */
308 static int gdbserver_fd
= -1;
310 static int get_char(GDBState
*s
)
316 ret
= recv(s
->fd
, &ch
, 1, 0);
318 if (errno
== ECONNRESET
)
320 if (errno
!= EINTR
&& errno
!= EAGAIN
)
322 } else if (ret
== 0) {
334 static gdb_syscall_complete_cb gdb_current_syscall_cb
;
342 /* If gdb is connected when the first semihosting syscall occurs then use
343 remote gdb syscalls. Otherwise use native file IO. */
344 int use_gdb_syscalls(void)
346 if (gdb_syscall_mode
== GDB_SYS_UNKNOWN
) {
347 gdb_syscall_mode
= (gdbserver_state
? GDB_SYS_ENABLED
350 return gdb_syscall_mode
== GDB_SYS_ENABLED
;
353 /* Resume execution. */
354 static inline void gdb_continue(GDBState
*s
)
356 #ifdef CONFIG_USER_ONLY
357 s
->running_state
= 1;
363 static void put_buffer(GDBState
*s
, const uint8_t *buf
, int len
)
365 #ifdef CONFIG_USER_ONLY
369 ret
= send(s
->fd
, buf
, len
, 0);
371 if (errno
!= EINTR
&& errno
!= EAGAIN
)
379 qemu_chr_write(s
->chr
, buf
, len
);
383 static inline int fromhex(int v
)
385 if (v
>= '0' && v
<= '9')
387 else if (v
>= 'A' && v
<= 'F')
389 else if (v
>= 'a' && v
<= 'f')
395 static inline int tohex(int v
)
403 static void memtohex(char *buf
, const uint8_t *mem
, int len
)
408 for(i
= 0; i
< len
; i
++) {
410 *q
++ = tohex(c
>> 4);
411 *q
++ = tohex(c
& 0xf);
416 static void hextomem(uint8_t *mem
, const char *buf
, int len
)
420 for(i
= 0; i
< len
; i
++) {
421 mem
[i
] = (fromhex(buf
[0]) << 4) | fromhex(buf
[1]);
426 /* return -1 if error, 0 if OK */
427 static int put_packet_binary(GDBState
*s
, const char *buf
, int len
)
438 for(i
= 0; i
< len
; i
++) {
442 *(p
++) = tohex((csum
>> 4) & 0xf);
443 *(p
++) = tohex((csum
) & 0xf);
445 s
->last_packet_len
= p
- s
->last_packet
;
446 put_buffer(s
, (uint8_t *)s
->last_packet
, s
->last_packet_len
);
448 #ifdef CONFIG_USER_ONLY
461 /* return -1 if error, 0 if OK */
462 static int put_packet(GDBState
*s
, const char *buf
)
465 printf("reply='%s'\n", buf
);
468 return put_packet_binary(s
, buf
, strlen(buf
));
471 /* The GDB remote protocol transfers values in target byte order. This means
472 we can use the raw memory access routines to access the value buffer.
473 Conveniently, these also handle the case where the buffer is mis-aligned.
475 #define GET_REG8(val) do { \
476 stb_p(mem_buf, val); \
479 #define GET_REG16(val) do { \
480 stw_p(mem_buf, val); \
483 #define GET_REG32(val) do { \
484 stl_p(mem_buf, val); \
487 #define GET_REG64(val) do { \
488 stq_p(mem_buf, val); \
492 #if TARGET_LONG_BITS == 64
493 #define GET_REGL(val) GET_REG64(val)
494 #define ldtul_p(addr) ldq_p(addr)
496 #define GET_REGL(val) GET_REG32(val)
497 #define ldtul_p(addr) ldl_p(addr)
500 #if defined(TARGET_I386)
503 static const int gpr_map
[16] = {
504 R_EAX
, R_EBX
, R_ECX
, R_EDX
, R_ESI
, R_EDI
, R_EBP
, R_ESP
,
505 8, 9, 10, 11, 12, 13, 14, 15
508 static const int gpr_map
[8] = {0, 1, 2, 3, 4, 5, 6, 7};
511 #define NUM_CORE_REGS (CPU_NB_REGS * 2 + 25)
513 static int cpu_gdb_read_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
515 if (n
< CPU_NB_REGS
) {
516 GET_REGL(env
->regs
[gpr_map
[n
]]);
517 } else if (n
>= CPU_NB_REGS
+ 8 && n
< CPU_NB_REGS
+ 16) {
518 /* FIXME: byteswap float values. */
519 #ifdef USE_X86LDOUBLE
520 memcpy(mem_buf
, &env
->fpregs
[n
- (CPU_NB_REGS
+ 8)], 10);
522 memset(mem_buf
, 0, 10);
525 } else if (n
>= CPU_NB_REGS
+ 24) {
526 n
-= CPU_NB_REGS
+ 24;
527 if (n
< CPU_NB_REGS
) {
528 stq_p(mem_buf
, env
->xmm_regs
[n
].XMM_Q(0));
529 stq_p(mem_buf
+ 8, env
->xmm_regs
[n
].XMM_Q(1));
531 } else if (n
== CPU_NB_REGS
) {
532 GET_REG32(env
->mxcsr
);
537 case 0: GET_REGL(env
->eip
);
538 case 1: GET_REG32(env
->eflags
);
539 case 2: GET_REG32(env
->segs
[R_CS
].selector
);
540 case 3: GET_REG32(env
->segs
[R_SS
].selector
);
541 case 4: GET_REG32(env
->segs
[R_DS
].selector
);
542 case 5: GET_REG32(env
->segs
[R_ES
].selector
);
543 case 6: GET_REG32(env
->segs
[R_FS
].selector
);
544 case 7: GET_REG32(env
->segs
[R_GS
].selector
);
545 /* 8...15 x87 regs. */
546 case 16: GET_REG32(env
->fpuc
);
547 case 17: GET_REG32((env
->fpus
& ~0x3800) | (env
->fpstt
& 0x7) << 11);
548 case 18: GET_REG32(0); /* ftag */
549 case 19: GET_REG32(0); /* fiseg */
550 case 20: GET_REG32(0); /* fioff */
551 case 21: GET_REG32(0); /* foseg */
552 case 22: GET_REG32(0); /* fooff */
553 case 23: GET_REG32(0); /* fop */
560 static int cpu_gdb_write_register(CPUState
*env
, uint8_t *mem_buf
, int i
)
564 if (i
< CPU_NB_REGS
) {
565 env
->regs
[gpr_map
[i
]] = ldtul_p(mem_buf
);
566 return sizeof(target_ulong
);
567 } else if (i
>= CPU_NB_REGS
+ 8 && i
< CPU_NB_REGS
+ 16) {
568 i
-= CPU_NB_REGS
+ 8;
569 #ifdef USE_X86LDOUBLE
570 memcpy(&env
->fpregs
[i
], mem_buf
, 10);
573 } else if (i
>= CPU_NB_REGS
+ 24) {
574 i
-= CPU_NB_REGS
+ 24;
575 if (i
< CPU_NB_REGS
) {
576 env
->xmm_regs
[i
].XMM_Q(0) = ldq_p(mem_buf
);
577 env
->xmm_regs
[i
].XMM_Q(1) = ldq_p(mem_buf
+ 8);
579 } else if (i
== CPU_NB_REGS
) {
580 env
->mxcsr
= ldl_p(mem_buf
);
586 case 0: env
->eip
= ldtul_p(mem_buf
); return sizeof(target_ulong
);
587 case 1: env
->eflags
= ldl_p(mem_buf
); return 4;
588 #if defined(CONFIG_USER_ONLY)
589 #define LOAD_SEG(index, sreg)\
590 tmp = ldl_p(mem_buf);\
591 if (tmp != env->segs[sreg].selector)\
592 cpu_x86_load_seg(env, sreg, tmp);
594 /* FIXME: Honor segment registers. Needs to avoid raising an exception
595 when the selector is invalid. */
596 #define LOAD_SEG(index, sreg) do {} while(0)
598 case 2: LOAD_SEG(10, R_CS
); return 4;
599 case 3: LOAD_SEG(11, R_SS
); return 4;
600 case 4: LOAD_SEG(12, R_DS
); return 4;
601 case 5: LOAD_SEG(13, R_ES
); return 4;
602 case 6: LOAD_SEG(14, R_FS
); return 4;
603 case 7: LOAD_SEG(15, R_GS
); return 4;
604 /* 8...15 x87 regs. */
605 case 16: env
->fpuc
= ldl_p(mem_buf
); return 4;
607 tmp
= ldl_p(mem_buf
);
608 env
->fpstt
= (tmp
>> 11) & 7;
609 env
->fpus
= tmp
& ~0x3800;
611 case 18: /* ftag */ return 4;
612 case 19: /* fiseg */ return 4;
613 case 20: /* fioff */ return 4;
614 case 21: /* foseg */ return 4;
615 case 22: /* fooff */ return 4;
616 case 23: /* fop */ return 4;
620 /* Unrecognised register. */
624 #elif defined (TARGET_PPC)
626 /* Old gdb always expects FP registers. Newer (xml-aware) gdb only
627 expects whatever the target description contains. Due to a
628 historical mishap the FP registers appear in between core integer
629 regs and PC, MSR, CR, and so forth. We hack round this by giving the
630 FP regs zero size when talking to a newer gdb. */
631 #define NUM_CORE_REGS 71
632 #if defined (TARGET_PPC64)
633 #define GDB_CORE_XML "power64-core.xml"
635 #define GDB_CORE_XML "power-core.xml"
638 static int cpu_gdb_read_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
642 GET_REGL(env
->gpr
[n
]);
647 stfq_p(mem_buf
, env
->fpr
[n
-32]);
651 case 64: GET_REGL(env
->nip
);
652 case 65: GET_REGL(env
->msr
);
657 for (i
= 0; i
< 8; i
++)
658 cr
|= env
->crf
[i
] << (32 - ((i
+ 1) * 4));
661 case 67: GET_REGL(env
->lr
);
662 case 68: GET_REGL(env
->ctr
);
663 case 69: GET_REGL(env
->xer
);
668 GET_REG32(0); /* fpscr */
675 static int cpu_gdb_write_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
679 env
->gpr
[n
] = ldtul_p(mem_buf
);
680 return sizeof(target_ulong
);
685 env
->fpr
[n
-32] = ldfq_p(mem_buf
);
690 env
->nip
= ldtul_p(mem_buf
);
691 return sizeof(target_ulong
);
693 ppc_store_msr(env
, ldtul_p(mem_buf
));
694 return sizeof(target_ulong
);
697 uint32_t cr
= ldl_p(mem_buf
);
699 for (i
= 0; i
< 8; i
++)
700 env
->crf
[i
] = (cr
>> (32 - ((i
+ 1) * 4))) & 0xF;
704 env
->lr
= ldtul_p(mem_buf
);
705 return sizeof(target_ulong
);
707 env
->ctr
= ldtul_p(mem_buf
);
708 return sizeof(target_ulong
);
710 env
->xer
= ldtul_p(mem_buf
);
711 return sizeof(target_ulong
);
722 #elif defined (TARGET_SPARC)
724 #if defined(TARGET_SPARC64) && !defined(TARGET_ABI32)
725 #define NUM_CORE_REGS 86
727 #define NUM_CORE_REGS 72
731 #define GET_REGA(val) GET_REG32(val)
733 #define GET_REGA(val) GET_REGL(val)
736 static int cpu_gdb_read_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
740 GET_REGA(env
->gregs
[n
]);
743 /* register window */
744 GET_REGA(env
->regwptr
[n
- 8]);
746 #if defined(TARGET_ABI32) || !defined(TARGET_SPARC64)
749 GET_REG32(*((uint32_t *)&env
->fpr
[n
- 32]));
751 /* Y, PSR, WIM, TBR, PC, NPC, FPSR, CPSR */
753 case 64: GET_REGA(env
->y
);
754 case 65: GET_REGA(GET_PSR(env
));
755 case 66: GET_REGA(env
->wim
);
756 case 67: GET_REGA(env
->tbr
);
757 case 68: GET_REGA(env
->pc
);
758 case 69: GET_REGA(env
->npc
);
759 case 70: GET_REGA(env
->fsr
);
760 case 71: GET_REGA(0); /* csr */
761 default: GET_REGA(0);
766 GET_REG32(*((uint32_t *)&env
->fpr
[n
- 32]));
769 /* f32-f62 (double width, even numbers only) */
772 val
= (uint64_t)*((uint32_t *)&env
->fpr
[(n
- 64) * 2 + 32]) << 32;
773 val
|= *((uint32_t *)&env
->fpr
[(n
- 64) * 2 + 33]);
777 case 80: GET_REGL(env
->pc
);
778 case 81: GET_REGL(env
->npc
);
779 case 82: GET_REGL(((uint64_t)GET_CCR(env
) << 32) |
780 ((env
->asi
& 0xff) << 24) |
781 ((env
->pstate
& 0xfff) << 8) |
783 case 83: GET_REGL(env
->fsr
);
784 case 84: GET_REGL(env
->fprs
);
785 case 85: GET_REGL(env
->y
);
791 static int cpu_gdb_write_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
793 #if defined(TARGET_ABI32)
796 tmp
= ldl_p(mem_buf
);
800 tmp
= ldtul_p(mem_buf
);
807 /* register window */
808 env
->regwptr
[n
- 8] = tmp
;
810 #if defined(TARGET_ABI32) || !defined(TARGET_SPARC64)
813 *((uint32_t *)&env
->fpr
[n
- 32]) = tmp
;
815 /* Y, PSR, WIM, TBR, PC, NPC, FPSR, CPSR */
817 case 64: env
->y
= tmp
; break;
818 case 65: PUT_PSR(env
, tmp
); break;
819 case 66: env
->wim
= tmp
; break;
820 case 67: env
->tbr
= tmp
; break;
821 case 68: env
->pc
= tmp
; break;
822 case 69: env
->npc
= tmp
; break;
823 case 70: env
->fsr
= tmp
; break;
831 env
->fpr
[n
] = ldfl_p(mem_buf
);
834 /* f32-f62 (double width, even numbers only) */
835 *((uint32_t *)&env
->fpr
[(n
- 64) * 2 + 32]) = tmp
>> 32;
836 *((uint32_t *)&env
->fpr
[(n
- 64) * 2 + 33]) = tmp
;
839 case 80: env
->pc
= tmp
; break;
840 case 81: env
->npc
= tmp
; break;
842 PUT_CCR(env
, tmp
>> 32);
843 env
->asi
= (tmp
>> 24) & 0xff;
844 env
->pstate
= (tmp
>> 8) & 0xfff;
845 PUT_CWP64(env
, tmp
& 0xff);
847 case 83: env
->fsr
= tmp
; break;
848 case 84: env
->fprs
= tmp
; break;
849 case 85: env
->y
= tmp
; break;
856 #elif defined (TARGET_ARM)
858 /* Old gdb always expect FPA registers. Newer (xml-aware) gdb only expect
859 whatever the target description contains. Due to a historical mishap
860 the FPA registers appear in between core integer regs and the CPSR.
861 We hack round this by giving the FPA regs zero size when talking to a
863 #define NUM_CORE_REGS 26
864 #define GDB_CORE_XML "arm-core.xml"
866 static int cpu_gdb_read_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
869 /* Core integer register. */
870 GET_REG32(env
->regs
[n
]);
876 memset(mem_buf
, 0, 12);
881 /* FPA status register. */
887 GET_REG32(cpsr_read(env
));
889 /* Unknown register. */
893 static int cpu_gdb_write_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
897 tmp
= ldl_p(mem_buf
);
899 /* Mask out low bit of PC to workaround gdb bugs. This will probably
900 cause problems if we ever implement the Jazelle DBX extensions. */
905 /* Core integer register. */
909 if (n
< 24) { /* 16-23 */
910 /* FPA registers (ignored). */
917 /* FPA status register (ignored). */
923 cpsr_write (env
, tmp
, 0xffffffff);
926 /* Unknown register. */
930 #elif defined (TARGET_M68K)
932 #define NUM_CORE_REGS 18
934 #define GDB_CORE_XML "cf-core.xml"
936 static int cpu_gdb_read_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
940 GET_REG32(env
->dregs
[n
]);
943 GET_REG32(env
->aregs
[n
- 8]);
946 case 16: GET_REG32(env
->sr
);
947 case 17: GET_REG32(env
->pc
);
950 /* FP registers not included here because they vary between
951 ColdFire and m68k. Use XML bits for these. */
955 static int cpu_gdb_write_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
959 tmp
= ldl_p(mem_buf
);
966 env
->aregs
[n
- 8] = tmp
;
969 case 16: env
->sr
= tmp
; break;
970 case 17: env
->pc
= tmp
; break;
976 #elif defined (TARGET_MIPS)
978 #define NUM_CORE_REGS 73
980 static int cpu_gdb_read_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
983 GET_REGL(env
->active_tc
.gpr
[n
]);
985 if (env
->CP0_Config1
& (1 << CP0C1_FP
)) {
986 if (n
>= 38 && n
< 70) {
987 if (env
->CP0_Status
& (1 << CP0St_FR
))
988 GET_REGL(env
->active_fpu
.fpr
[n
- 38].d
);
990 GET_REGL(env
->active_fpu
.fpr
[n
- 38].w
[FP_ENDIAN_IDX
]);
993 case 70: GET_REGL((int32_t)env
->active_fpu
.fcr31
);
994 case 71: GET_REGL((int32_t)env
->active_fpu
.fcr0
);
998 case 32: GET_REGL((int32_t)env
->CP0_Status
);
999 case 33: GET_REGL(env
->active_tc
.LO
[0]);
1000 case 34: GET_REGL(env
->active_tc
.HI
[0]);
1001 case 35: GET_REGL(env
->CP0_BadVAddr
);
1002 case 36: GET_REGL((int32_t)env
->CP0_Cause
);
1003 case 37: GET_REGL(env
->active_tc
.PC
);
1004 case 72: GET_REGL(0); /* fp */
1005 case 89: GET_REGL((int32_t)env
->CP0_PRid
);
1007 if (n
>= 73 && n
<= 88) {
1008 /* 16 embedded regs. */
1015 /* convert MIPS rounding mode in FCR31 to IEEE library */
1016 static unsigned int ieee_rm
[] =
1018 float_round_nearest_even
,
1019 float_round_to_zero
,
1023 #define RESTORE_ROUNDING_MODE \
1024 set_float_rounding_mode(ieee_rm[env->active_fpu.fcr31 & 3], &env->active_fpu.fp_status)
1026 static int cpu_gdb_write_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
1030 tmp
= ldtul_p(mem_buf
);
1033 env
->active_tc
.gpr
[n
] = tmp
;
1034 return sizeof(target_ulong
);
1036 if (env
->CP0_Config1
& (1 << CP0C1_FP
)
1037 && n
>= 38 && n
< 73) {
1039 if (env
->CP0_Status
& (1 << CP0St_FR
))
1040 env
->active_fpu
.fpr
[n
- 38].d
= tmp
;
1042 env
->active_fpu
.fpr
[n
- 38].w
[FP_ENDIAN_IDX
] = tmp
;
1046 env
->active_fpu
.fcr31
= tmp
& 0xFF83FFFF;
1047 /* set rounding mode */
1048 RESTORE_ROUNDING_MODE
;
1049 #ifndef CONFIG_SOFTFLOAT
1050 /* no floating point exception for native float */
1051 SET_FP_ENABLE(env
->active_fpu
.fcr31
, 0);
1054 case 71: env
->active_fpu
.fcr0
= tmp
; break;
1056 return sizeof(target_ulong
);
1059 case 32: env
->CP0_Status
= tmp
; break;
1060 case 33: env
->active_tc
.LO
[0] = tmp
; break;
1061 case 34: env
->active_tc
.HI
[0] = tmp
; break;
1062 case 35: env
->CP0_BadVAddr
= tmp
; break;
1063 case 36: env
->CP0_Cause
= tmp
; break;
1064 case 37: env
->active_tc
.PC
= tmp
; break;
1065 case 72: /* fp, ignored */ break;
1069 /* Other registers are readonly. Ignore writes. */
1073 return sizeof(target_ulong
);
1075 #elif defined (TARGET_SH4)
1077 /* Hint: Use "set architecture sh4" in GDB to see fpu registers */
1078 /* FIXME: We should use XML for this. */
1080 #define NUM_CORE_REGS 59
1082 static int cpu_gdb_read_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
1085 if ((env
->sr
& (SR_MD
| SR_RB
)) == (SR_MD
| SR_RB
)) {
1086 GET_REGL(env
->gregs
[n
+ 16]);
1088 GET_REGL(env
->gregs
[n
]);
1090 } else if (n
< 16) {
1091 GET_REGL(env
->gregs
[n
- 8]);
1092 } else if (n
>= 25 && n
< 41) {
1093 GET_REGL(env
->fregs
[(n
- 25) + ((env
->fpscr
& FPSCR_FR
) ? 16 : 0)]);
1094 } else if (n
>= 43 && n
< 51) {
1095 GET_REGL(env
->gregs
[n
- 43]);
1096 } else if (n
>= 51 && n
< 59) {
1097 GET_REGL(env
->gregs
[n
- (51 - 16)]);
1100 case 16: GET_REGL(env
->pc
);
1101 case 17: GET_REGL(env
->pr
);
1102 case 18: GET_REGL(env
->gbr
);
1103 case 19: GET_REGL(env
->vbr
);
1104 case 20: GET_REGL(env
->mach
);
1105 case 21: GET_REGL(env
->macl
);
1106 case 22: GET_REGL(env
->sr
);
1107 case 23: GET_REGL(env
->fpul
);
1108 case 24: GET_REGL(env
->fpscr
);
1109 case 41: GET_REGL(env
->ssr
);
1110 case 42: GET_REGL(env
->spc
);
1116 static int cpu_gdb_write_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
1120 tmp
= ldl_p(mem_buf
);
1123 if ((env
->sr
& (SR_MD
| SR_RB
)) == (SR_MD
| SR_RB
)) {
1124 env
->gregs
[n
+ 16] = tmp
;
1126 env
->gregs
[n
] = tmp
;
1129 } else if (n
< 16) {
1130 env
->gregs
[n
- 8] = tmp
;
1132 } else if (n
>= 25 && n
< 41) {
1133 env
->fregs
[(n
- 25) + ((env
->fpscr
& FPSCR_FR
) ? 16 : 0)] = tmp
;
1134 } else if (n
>= 43 && n
< 51) {
1135 env
->gregs
[n
- 43] = tmp
;
1137 } else if (n
>= 51 && n
< 59) {
1138 env
->gregs
[n
- (51 - 16)] = tmp
;
1142 case 16: env
->pc
= tmp
;
1143 case 17: env
->pr
= tmp
;
1144 case 18: env
->gbr
= tmp
;
1145 case 19: env
->vbr
= tmp
;
1146 case 20: env
->mach
= tmp
;
1147 case 21: env
->macl
= tmp
;
1148 case 22: env
->sr
= tmp
;
1149 case 23: env
->fpul
= tmp
;
1150 case 24: env
->fpscr
= tmp
;
1151 case 41: env
->ssr
= tmp
;
1152 case 42: env
->spc
= tmp
;
1158 #elif defined (TARGET_CRIS)
1160 #define NUM_CORE_REGS 49
1162 static int cpu_gdb_read_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
1166 srs
= env
->pregs
[PR_SRS
];
1168 GET_REG32(env
->regs
[n
]);
1171 if (n
>= 21 && n
< 32) {
1172 GET_REG32(env
->pregs
[n
- 16]);
1174 if (n
>= 33 && n
< 49) {
1175 GET_REG32(env
->sregs
[srs
][n
- 33]);
1178 case 16: GET_REG8(env
->pregs
[0]);
1179 case 17: GET_REG8(env
->pregs
[1]);
1180 case 18: GET_REG32(env
->pregs
[2]);
1181 case 19: GET_REG8(srs
);
1182 case 20: GET_REG16(env
->pregs
[4]);
1183 case 32: GET_REG32(env
->pc
);
1189 static int cpu_gdb_write_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
1196 tmp
= ldl_p(mem_buf
);
1202 if (n
>= 21 && n
< 32) {
1203 env
->pregs
[n
- 16] = tmp
;
1206 /* FIXME: Should support function regs be writable? */
1210 case 18: env
->pregs
[PR_PID
] = tmp
; break;
1213 case 32: env
->pc
= tmp
; break;
1218 #elif defined (TARGET_ALPHA)
1220 #define NUM_CORE_REGS 65
1222 static int cpu_gdb_read_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
1225 GET_REGL(env
->ir
[n
]);
1233 val
=*((uint64_t *)&env
->fir
[n
-32]);
1237 GET_REGL(env
->fpcr
);
1249 static int cpu_gdb_write_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
1252 tmp
= ldtul_p(mem_buf
);
1258 if (n
> 31 && n
< 63) {
1259 env
->fir
[n
- 32] = ldfl_p(mem_buf
);
1270 #define NUM_CORE_REGS 0
1272 static int cpu_gdb_read_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
1277 static int cpu_gdb_write_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
1284 static int num_g_regs
= NUM_CORE_REGS
;
1287 /* Encode data using the encoding for 'x' packets. */
1288 static int memtox(char *buf
, const char *mem
, int len
)
1296 case '#': case '$': case '*': case '}':
1308 static const char *get_feature_xml(const char *p
, const char **newp
)
1310 extern const char *const xml_builtin
[][2];
1314 static char target_xml
[1024];
1317 while (p
[len
] && p
[len
] != ':')
1322 if (strncmp(p
, "target.xml", len
) == 0) {
1323 /* Generate the XML description for this CPU. */
1324 if (!target_xml
[0]) {
1325 GDBRegisterState
*r
;
1327 snprintf(target_xml
, sizeof(target_xml
),
1328 "<?xml version=\"1.0\"?>"
1329 "<!DOCTYPE target SYSTEM \"gdb-target.dtd\">"
1331 "<xi:include href=\"%s\"/>",
1334 for (r
= first_cpu
->gdb_regs
; r
; r
= r
->next
) {
1335 strcat(target_xml
, "<xi:include href=\"");
1336 strcat(target_xml
, r
->xml
);
1337 strcat(target_xml
, "\"/>");
1339 strcat(target_xml
, "</target>");
1343 for (i
= 0; ; i
++) {
1344 name
= xml_builtin
[i
][0];
1345 if (!name
|| (strncmp(name
, p
, len
) == 0 && strlen(name
) == len
))
1348 return name
? xml_builtin
[i
][1] : NULL
;
1352 static int gdb_read_register(CPUState
*env
, uint8_t *mem_buf
, int reg
)
1354 GDBRegisterState
*r
;
1356 if (reg
< NUM_CORE_REGS
)
1357 return cpu_gdb_read_register(env
, mem_buf
, reg
);
1359 for (r
= env
->gdb_regs
; r
; r
= r
->next
) {
1360 if (r
->base_reg
<= reg
&& reg
< r
->base_reg
+ r
->num_regs
) {
1361 return r
->get_reg(env
, mem_buf
, reg
- r
->base_reg
);
1367 static int gdb_write_register(CPUState
*env
, uint8_t *mem_buf
, int reg
)
1369 GDBRegisterState
*r
;
1371 if (reg
< NUM_CORE_REGS
)
1372 return cpu_gdb_write_register(env
, mem_buf
, reg
);
1374 for (r
= env
->gdb_regs
; r
; r
= r
->next
) {
1375 if (r
->base_reg
<= reg
&& reg
< r
->base_reg
+ r
->num_regs
) {
1376 return r
->set_reg(env
, mem_buf
, reg
- r
->base_reg
);
1382 /* Register a supplemental set of CPU registers. If g_pos is nonzero it
1383 specifies the first register number and these registers are included in
1384 a standard "g" packet. Direction is relative to gdb, i.e. get_reg is
1385 gdb reading a CPU register, and set_reg is gdb modifying a CPU register.
1388 void gdb_register_coprocessor(CPUState
* env
,
1389 gdb_reg_cb get_reg
, gdb_reg_cb set_reg
,
1390 int num_regs
, const char *xml
, int g_pos
)
1392 GDBRegisterState
*s
;
1393 GDBRegisterState
**p
;
1394 static int last_reg
= NUM_CORE_REGS
;
1396 s
= (GDBRegisterState
*)qemu_mallocz(sizeof(GDBRegisterState
));
1397 s
->base_reg
= last_reg
;
1398 s
->num_regs
= num_regs
;
1399 s
->get_reg
= get_reg
;
1400 s
->set_reg
= set_reg
;
1404 /* Check for duplicates. */
1405 if (strcmp((*p
)->xml
, xml
) == 0)
1409 /* Add to end of list. */
1410 last_reg
+= num_regs
;
1413 if (g_pos
!= s
->base_reg
) {
1414 fprintf(stderr
, "Error: Bad gdb register numbering for '%s'\n"
1415 "Expected %d got %d\n", xml
, g_pos
, s
->base_reg
);
1417 num_g_regs
= last_reg
;
1422 #ifndef CONFIG_USER_ONLY
1423 static const int xlat_gdb_type
[] = {
1424 [GDB_WATCHPOINT_WRITE
] = BP_GDB
| BP_MEM_WRITE
,
1425 [GDB_WATCHPOINT_READ
] = BP_GDB
| BP_MEM_READ
,
1426 [GDB_WATCHPOINT_ACCESS
] = BP_GDB
| BP_MEM_ACCESS
,
1430 static int gdb_breakpoint_insert(target_ulong addr
, target_ulong len
, int type
)
1436 return kvm_insert_breakpoint(gdbserver_state
->c_cpu
, addr
, len
, type
);
1439 case GDB_BREAKPOINT_SW
:
1440 case GDB_BREAKPOINT_HW
:
1441 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
1442 err
= cpu_breakpoint_insert(env
, addr
, BP_GDB
, NULL
);
1447 #ifndef CONFIG_USER_ONLY
1448 case GDB_WATCHPOINT_WRITE
:
1449 case GDB_WATCHPOINT_READ
:
1450 case GDB_WATCHPOINT_ACCESS
:
1451 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
1452 err
= cpu_watchpoint_insert(env
, addr
, len
, xlat_gdb_type
[type
],
1464 static int gdb_breakpoint_remove(target_ulong addr
, target_ulong len
, int type
)
1470 return kvm_remove_breakpoint(gdbserver_state
->c_cpu
, addr
, len
, type
);
1473 case GDB_BREAKPOINT_SW
:
1474 case GDB_BREAKPOINT_HW
:
1475 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
1476 err
= cpu_breakpoint_remove(env
, addr
, BP_GDB
);
1481 #ifndef CONFIG_USER_ONLY
1482 case GDB_WATCHPOINT_WRITE
:
1483 case GDB_WATCHPOINT_READ
:
1484 case GDB_WATCHPOINT_ACCESS
:
1485 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
1486 err
= cpu_watchpoint_remove(env
, addr
, len
, xlat_gdb_type
[type
]);
1497 static void gdb_breakpoint_remove_all(void)
1501 if (kvm_enabled()) {
1502 kvm_remove_all_breakpoints(gdbserver_state
->c_cpu
);
1506 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
1507 cpu_breakpoint_remove_all(env
, BP_GDB
);
1508 #ifndef CONFIG_USER_ONLY
1509 cpu_watchpoint_remove_all(env
, BP_GDB
);
1514 static int gdb_handle_packet(GDBState
*s
, const char *line_buf
)
1518 int ch
, reg_size
, type
, res
, thread
;
1519 char buf
[MAX_PACKET_LENGTH
];
1520 uint8_t mem_buf
[MAX_PACKET_LENGTH
];
1522 target_ulong addr
, len
;
1525 printf("command='%s'\n", line_buf
);
1531 /* TODO: Make this return the correct value for user-mode. */
1532 snprintf(buf
, sizeof(buf
), "T%02xthread:%02x;", GDB_SIGNAL_TRAP
,
1533 s
->c_cpu
->cpu_index
+1);
1535 /* Remove all the breakpoints when this query is issued,
1536 * because gdb is doing and initial connect and the state
1537 * should be cleaned up.
1539 gdb_breakpoint_remove_all();
1543 addr
= strtoull(p
, (char **)&p
, 16);
1544 #if defined(TARGET_I386)
1545 s
->c_cpu
->eip
= addr
;
1546 cpu_synchronize_state(s
->c_cpu
, 1);
1547 #elif defined (TARGET_PPC)
1548 s
->c_cpu
->nip
= addr
;
1549 #elif defined (TARGET_SPARC)
1550 s
->c_cpu
->pc
= addr
;
1551 s
->c_cpu
->npc
= addr
+ 4;
1552 #elif defined (TARGET_ARM)
1553 s
->c_cpu
->regs
[15] = addr
;
1554 #elif defined (TARGET_SH4)
1555 s
->c_cpu
->pc
= addr
;
1556 #elif defined (TARGET_MIPS)
1557 s
->c_cpu
->active_tc
.PC
= addr
;
1558 #elif defined (TARGET_CRIS)
1559 s
->c_cpu
->pc
= addr
;
1560 #elif defined (TARGET_ALPHA)
1561 s
->c_cpu
->pc
= addr
;
1568 s
->signal
= gdb_signal_to_target (strtoul(p
, (char **)&p
, 16));
1569 if (s
->signal
== -1)
1574 /* Kill the target */
1575 fprintf(stderr
, "\nQEMU: Terminated via GDBstub\n");
1579 gdb_breakpoint_remove_all();
1581 put_packet(s
, "OK");
1585 addr
= strtoull(p
, (char **)&p
, 16);
1586 #if defined(TARGET_I386)
1587 s
->c_cpu
->eip
= addr
;
1588 cpu_synchronize_state(s
->c_cpu
, 1);
1589 #elif defined (TARGET_PPC)
1590 s
->c_cpu
->nip
= addr
;
1591 #elif defined (TARGET_SPARC)
1592 s
->c_cpu
->pc
= addr
;
1593 s
->c_cpu
->npc
= addr
+ 4;
1594 #elif defined (TARGET_ARM)
1595 s
->c_cpu
->regs
[15] = addr
;
1596 #elif defined (TARGET_SH4)
1597 s
->c_cpu
->pc
= addr
;
1598 #elif defined (TARGET_MIPS)
1599 s
->c_cpu
->active_tc
.PC
= addr
;
1600 #elif defined (TARGET_CRIS)
1601 s
->c_cpu
->pc
= addr
;
1602 #elif defined (TARGET_ALPHA)
1603 s
->c_cpu
->pc
= addr
;
1606 cpu_single_step(s
->c_cpu
, sstep_flags
);
1614 ret
= strtoull(p
, (char **)&p
, 16);
1617 err
= strtoull(p
, (char **)&p
, 16);
1624 if (gdb_current_syscall_cb
)
1625 gdb_current_syscall_cb(s
->c_cpu
, ret
, err
);
1627 put_packet(s
, "T02");
1634 cpu_synchronize_state(s
->g_cpu
, 0);
1636 for (addr
= 0; addr
< num_g_regs
; addr
++) {
1637 reg_size
= gdb_read_register(s
->g_cpu
, mem_buf
+ len
, addr
);
1640 memtohex(buf
, mem_buf
, len
);
1644 registers
= mem_buf
;
1645 len
= strlen(p
) / 2;
1646 hextomem((uint8_t *)registers
, p
, len
);
1647 for (addr
= 0; addr
< num_g_regs
&& len
> 0; addr
++) {
1648 reg_size
= gdb_write_register(s
->g_cpu
, registers
, addr
);
1650 registers
+= reg_size
;
1652 cpu_synchronize_state(s
->g_cpu
, 1);
1653 put_packet(s
, "OK");
1656 addr
= strtoull(p
, (char **)&p
, 16);
1659 len
= strtoull(p
, NULL
, 16);
1660 if (cpu_memory_rw_debug(s
->g_cpu
, addr
, mem_buf
, len
, 0) != 0) {
1661 put_packet (s
, "E14");
1663 memtohex(buf
, mem_buf
, len
);
1668 addr
= strtoull(p
, (char **)&p
, 16);
1671 len
= strtoull(p
, (char **)&p
, 16);
1674 hextomem(mem_buf
, p
, len
);
1675 if (cpu_memory_rw_debug(s
->g_cpu
, addr
, mem_buf
, len
, 1) != 0)
1676 put_packet(s
, "E14");
1678 put_packet(s
, "OK");
1681 /* Older gdb are really dumb, and don't use 'g' if 'p' is avaialable.
1682 This works, but can be very slow. Anything new enough to
1683 understand XML also knows how to use this properly. */
1685 goto unknown_command
;
1686 addr
= strtoull(p
, (char **)&p
, 16);
1687 reg_size
= gdb_read_register(s
->g_cpu
, mem_buf
, addr
);
1689 memtohex(buf
, mem_buf
, reg_size
);
1692 put_packet(s
, "E14");
1697 goto unknown_command
;
1698 addr
= strtoull(p
, (char **)&p
, 16);
1701 reg_size
= strlen(p
) / 2;
1702 hextomem(mem_buf
, p
, reg_size
);
1703 gdb_write_register(s
->g_cpu
, mem_buf
, addr
);
1704 put_packet(s
, "OK");
1708 type
= strtoul(p
, (char **)&p
, 16);
1711 addr
= strtoull(p
, (char **)&p
, 16);
1714 len
= strtoull(p
, (char **)&p
, 16);
1716 res
= gdb_breakpoint_insert(addr
, len
, type
);
1718 res
= gdb_breakpoint_remove(addr
, len
, type
);
1720 put_packet(s
, "OK");
1721 else if (res
== -ENOSYS
)
1724 put_packet(s
, "E22");
1728 thread
= strtoull(p
, (char **)&p
, 16);
1729 if (thread
== -1 || thread
== 0) {
1730 put_packet(s
, "OK");
1733 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
)
1734 if (env
->cpu_index
+ 1 == thread
)
1737 put_packet(s
, "E22");
1743 put_packet(s
, "OK");
1747 put_packet(s
, "OK");
1750 put_packet(s
, "E22");
1755 thread
= strtoull(p
, (char **)&p
, 16);
1756 #ifndef CONFIG_USER_ONLY
1757 if (thread
> 0 && thread
< smp_cpus
+ 1)
1761 put_packet(s
, "OK");
1763 put_packet(s
, "E22");
1767 /* parse any 'q' packets here */
1768 if (!strcmp(p
,"qemu.sstepbits")) {
1769 /* Query Breakpoint bit definitions */
1770 snprintf(buf
, sizeof(buf
), "ENABLE=%x,NOIRQ=%x,NOTIMER=%x",
1776 } else if (strncmp(p
,"qemu.sstep",10) == 0) {
1777 /* Display or change the sstep_flags */
1780 /* Display current setting */
1781 snprintf(buf
, sizeof(buf
), "0x%x", sstep_flags
);
1786 type
= strtoul(p
, (char **)&p
, 16);
1788 put_packet(s
, "OK");
1790 } else if (strcmp(p
,"C") == 0) {
1791 /* "Current thread" remains vague in the spec, so always return
1792 * the first CPU (gdb returns the first thread). */
1793 put_packet(s
, "QC1");
1795 } else if (strcmp(p
,"fThreadInfo") == 0) {
1796 s
->query_cpu
= first_cpu
;
1797 goto report_cpuinfo
;
1798 } else if (strcmp(p
,"sThreadInfo") == 0) {
1801 snprintf(buf
, sizeof(buf
), "m%x", s
->query_cpu
->cpu_index
+1);
1803 s
->query_cpu
= s
->query_cpu
->next_cpu
;
1807 } else if (strncmp(p
,"ThreadExtraInfo,", 16) == 0) {
1808 thread
= strtoull(p
+16, (char **)&p
, 16);
1809 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
)
1810 if (env
->cpu_index
+ 1 == thread
) {
1811 cpu_synchronize_state(env
, 0);
1812 len
= snprintf((char *)mem_buf
, sizeof(mem_buf
),
1813 "CPU#%d [%s]", env
->cpu_index
,
1814 env
->halted
? "halted " : "running");
1815 memtohex(buf
, mem_buf
, len
);
1821 #ifdef CONFIG_USER_ONLY
1822 else if (strncmp(p
, "Offsets", 7) == 0) {
1823 TaskState
*ts
= s
->c_cpu
->opaque
;
1825 snprintf(buf
, sizeof(buf
),
1826 "Text=" TARGET_ABI_FMT_lx
";Data=" TARGET_ABI_FMT_lx
1827 ";Bss=" TARGET_ABI_FMT_lx
,
1828 ts
->info
->code_offset
,
1829 ts
->info
->data_offset
,
1830 ts
->info
->data_offset
);
1834 #else /* !CONFIG_USER_ONLY */
1835 else if (strncmp(p
, "Rcmd,", 5) == 0) {
1836 int len
= strlen(p
+ 5);
1838 if ((len
% 2) != 0) {
1839 put_packet(s
, "E01");
1842 hextomem(mem_buf
, p
+ 5, len
);
1845 qemu_chr_read(s
->mon_chr
, mem_buf
, len
);
1846 put_packet(s
, "OK");
1849 #endif /* !CONFIG_USER_ONLY */
1850 if (strncmp(p
, "Supported", 9) == 0) {
1851 snprintf(buf
, sizeof(buf
), "PacketSize=%x", MAX_PACKET_LENGTH
);
1853 strcat(buf
, ";qXfer:features:read+");
1859 if (strncmp(p
, "Xfer:features:read:", 19) == 0) {
1861 target_ulong total_len
;
1865 xml
= get_feature_xml(p
, &p
);
1867 snprintf(buf
, sizeof(buf
), "E00");
1874 addr
= strtoul(p
, (char **)&p
, 16);
1877 len
= strtoul(p
, (char **)&p
, 16);
1879 total_len
= strlen(xml
);
1880 if (addr
> total_len
) {
1881 snprintf(buf
, sizeof(buf
), "E00");
1885 if (len
> (MAX_PACKET_LENGTH
- 5) / 2)
1886 len
= (MAX_PACKET_LENGTH
- 5) / 2;
1887 if (len
< total_len
- addr
) {
1889 len
= memtox(buf
+ 1, xml
+ addr
, len
);
1892 len
= memtox(buf
+ 1, xml
+ addr
, total_len
- addr
);
1894 put_packet_binary(s
, buf
, len
+ 1);
1898 /* Unrecognised 'q' command. */
1899 goto unknown_command
;
1903 /* put empty packet */
1911 void gdb_set_stop_cpu(CPUState
*env
)
1913 gdbserver_state
->c_cpu
= env
;
1914 gdbserver_state
->g_cpu
= env
;
1917 #ifndef CONFIG_USER_ONLY
1918 static void gdb_vm_state_change(void *opaque
, int running
, int reason
)
1920 GDBState
*s
= gdbserver_state
;
1921 CPUState
*env
= s
->c_cpu
;
1926 if (running
|| (reason
!= EXCP_DEBUG
&& reason
!= EXCP_INTERRUPT
) ||
1927 s
->state
== RS_SYSCALL
)
1930 /* disable single step if it was enable */
1931 cpu_single_step(env
, 0);
1933 if (reason
== EXCP_DEBUG
) {
1934 if (env
->watchpoint_hit
) {
1935 switch (env
->watchpoint_hit
->flags
& BP_MEM_ACCESS
) {
1946 snprintf(buf
, sizeof(buf
),
1947 "T%02xthread:%02x;%swatch:" TARGET_FMT_lx
";",
1948 GDB_SIGNAL_TRAP
, env
->cpu_index
+1, type
,
1949 env
->watchpoint_hit
->vaddr
);
1951 env
->watchpoint_hit
= NULL
;
1955 ret
= GDB_SIGNAL_TRAP
;
1957 ret
= GDB_SIGNAL_INT
;
1959 snprintf(buf
, sizeof(buf
), "T%02xthread:%02x;", ret
, env
->cpu_index
+1);
1964 /* Send a gdb syscall request.
1965 This accepts limited printf-style format specifiers, specifically:
1966 %x - target_ulong argument printed in hex.
1967 %lx - 64-bit argument printed in hex.
1968 %s - string pointer (target_ulong) and length (int) pair. */
1969 void gdb_do_syscall(gdb_syscall_complete_cb cb
, const char *fmt
, ...)
1978 s
= gdbserver_state
;
1981 gdb_current_syscall_cb
= cb
;
1982 s
->state
= RS_SYSCALL
;
1983 #ifndef CONFIG_USER_ONLY
1984 vm_stop(EXCP_DEBUG
);
1995 addr
= va_arg(va
, target_ulong
);
1996 p
+= snprintf(p
, &buf
[sizeof(buf
)] - p
, TARGET_FMT_lx
, addr
);
1999 if (*(fmt
++) != 'x')
2001 i64
= va_arg(va
, uint64_t);
2002 p
+= snprintf(p
, &buf
[sizeof(buf
)] - p
, "%" PRIx64
, i64
);
2005 addr
= va_arg(va
, target_ulong
);
2006 p
+= snprintf(p
, &buf
[sizeof(buf
)] - p
, TARGET_FMT_lx
"/%x",
2007 addr
, va_arg(va
, int));
2011 fprintf(stderr
, "gdbstub: Bad syscall format string '%s'\n",
2022 #ifdef CONFIG_USER_ONLY
2023 gdb_handlesig(s
->c_cpu
, 0);
2029 static void gdb_read_byte(GDBState
*s
, int ch
)
2034 #ifndef CONFIG_USER_ONLY
2035 if (s
->last_packet_len
) {
2036 /* Waiting for a response to the last packet. If we see the start
2037 of a new command then abandon the previous response. */
2040 printf("Got NACK, retransmitting\n");
2042 put_buffer(s
, (uint8_t *)s
->last_packet
, s
->last_packet_len
);
2046 printf("Got ACK\n");
2048 printf("Got '%c' when expecting ACK/NACK\n", ch
);
2050 if (ch
== '+' || ch
== '$')
2051 s
->last_packet_len
= 0;
2056 /* when the CPU is running, we cannot do anything except stop
2057 it when receiving a char */
2058 vm_stop(EXCP_INTERRUPT
);
2065 s
->line_buf_index
= 0;
2066 s
->state
= RS_GETLINE
;
2071 s
->state
= RS_CHKSUM1
;
2072 } else if (s
->line_buf_index
>= sizeof(s
->line_buf
) - 1) {
2075 s
->line_buf
[s
->line_buf_index
++] = ch
;
2079 s
->line_buf
[s
->line_buf_index
] = '\0';
2080 s
->line_csum
= fromhex(ch
) << 4;
2081 s
->state
= RS_CHKSUM2
;
2084 s
->line_csum
|= fromhex(ch
);
2086 for(i
= 0; i
< s
->line_buf_index
; i
++) {
2087 csum
+= s
->line_buf
[i
];
2089 if (s
->line_csum
!= (csum
& 0xff)) {
2091 put_buffer(s
, &reply
, 1);
2095 put_buffer(s
, &reply
, 1);
2096 s
->state
= gdb_handle_packet(s
, s
->line_buf
);
2105 #ifdef CONFIG_USER_ONLY
2111 s
= gdbserver_state
;
2113 if (gdbserver_fd
< 0 || s
->fd
< 0)
2120 gdb_handlesig (CPUState
*env
, int sig
)
2126 s
= gdbserver_state
;
2127 if (gdbserver_fd
< 0 || s
->fd
< 0)
2130 /* disable single step if it was enabled */
2131 cpu_single_step(env
, 0);
2136 snprintf(buf
, sizeof(buf
), "S%02x", target_signal_to_gdb (sig
));
2139 /* put_packet() might have detected that the peer terminated the
2146 s
->running_state
= 0;
2147 while (s
->running_state
== 0) {
2148 n
= read (s
->fd
, buf
, 256);
2153 for (i
= 0; i
< n
; i
++)
2154 gdb_read_byte (s
, buf
[i
]);
2156 else if (n
== 0 || errno
!= EAGAIN
)
2158 /* XXX: Connection closed. Should probably wait for annother
2159 connection before continuing. */
2168 /* Tell the remote gdb that the process has exited. */
2169 void gdb_exit(CPUState
*env
, int code
)
2174 s
= gdbserver_state
;
2175 if (gdbserver_fd
< 0 || s
->fd
< 0)
2178 snprintf(buf
, sizeof(buf
), "W%02x", code
);
2182 /* Tell the remote gdb that the process has exited due to SIG. */
2183 void gdb_signalled(CPUState
*env
, int sig
)
2188 s
= gdbserver_state
;
2189 if (gdbserver_fd
< 0 || s
->fd
< 0)
2192 snprintf(buf
, sizeof(buf
), "X%02x", target_signal_to_gdb (sig
));
2196 static void gdb_accept(void)
2199 struct sockaddr_in sockaddr
;
2204 len
= sizeof(sockaddr
);
2205 fd
= accept(gdbserver_fd
, (struct sockaddr
*)&sockaddr
, &len
);
2206 if (fd
< 0 && errno
!= EINTR
) {
2209 } else if (fd
>= 0) {
2214 /* set short latency */
2216 setsockopt(fd
, IPPROTO_TCP
, TCP_NODELAY
, (char *)&val
, sizeof(val
));
2218 s
= qemu_mallocz(sizeof(GDBState
));
2219 s
->c_cpu
= first_cpu
;
2220 s
->g_cpu
= first_cpu
;
2224 gdbserver_state
= s
;
2226 fcntl(fd
, F_SETFL
, O_NONBLOCK
);
2229 static int gdbserver_open(int port
)
2231 struct sockaddr_in sockaddr
;
2234 fd
= socket(PF_INET
, SOCK_STREAM
, 0);
2240 /* allow fast reuse */
2242 setsockopt(fd
, SOL_SOCKET
, SO_REUSEADDR
, (char *)&val
, sizeof(val
));
2244 sockaddr
.sin_family
= AF_INET
;
2245 sockaddr
.sin_port
= htons(port
);
2246 sockaddr
.sin_addr
.s_addr
= 0;
2247 ret
= bind(fd
, (struct sockaddr
*)&sockaddr
, sizeof(sockaddr
));
2252 ret
= listen(fd
, 0);
2260 int gdbserver_start(int port
)
2262 gdbserver_fd
= gdbserver_open(port
);
2263 if (gdbserver_fd
< 0)
2265 /* accept connections */
2270 /* Disable gdb stub for child processes. */
2271 void gdbserver_fork(CPUState
*env
)
2273 GDBState
*s
= gdbserver_state
;
2274 if (gdbserver_fd
< 0 || s
->fd
< 0)
2278 cpu_breakpoint_remove_all(env
, BP_GDB
);
2279 cpu_watchpoint_remove_all(env
, BP_GDB
);
2282 static int gdb_chr_can_receive(void *opaque
)
2284 /* We can handle an arbitrarily large amount of data.
2285 Pick the maximum packet size, which is as good as anything. */
2286 return MAX_PACKET_LENGTH
;
2289 static void gdb_chr_receive(void *opaque
, const uint8_t *buf
, int size
)
2293 for (i
= 0; i
< size
; i
++) {
2294 gdb_read_byte(gdbserver_state
, buf
[i
]);
2298 static void gdb_chr_event(void *opaque
, int event
)
2301 case CHR_EVENT_RESET
:
2302 vm_stop(EXCP_INTERRUPT
);
2310 static void gdb_monitor_output(GDBState
*s
, const char *msg
, int len
)
2312 char buf
[MAX_PACKET_LENGTH
];
2315 if (len
> (MAX_PACKET_LENGTH
/2) - 1)
2316 len
= (MAX_PACKET_LENGTH
/2) - 1;
2317 memtohex(buf
+ 1, (uint8_t *)msg
, len
);
2321 static int gdb_monitor_write(CharDriverState
*chr
, const uint8_t *buf
, int len
)
2323 const char *p
= (const char *)buf
;
2326 max_sz
= (sizeof(gdbserver_state
->last_packet
) - 2) / 2;
2328 if (len
<= max_sz
) {
2329 gdb_monitor_output(gdbserver_state
, p
, len
);
2332 gdb_monitor_output(gdbserver_state
, p
, max_sz
);
2339 int gdbserver_start(const char *port
)
2342 char gdbstub_port_name
[128];
2345 CharDriverState
*chr
;
2347 if (!port
|| !*port
)
2350 port_num
= strtol(port
, &p
, 10);
2352 /* A numeric value is interpreted as a port number. */
2353 snprintf(gdbstub_port_name
, sizeof(gdbstub_port_name
),
2354 "tcp::%d,nowait,nodelay,server", port_num
);
2355 port
= gdbstub_port_name
;
2358 chr
= qemu_chr_open("gdb", port
, NULL
);
2362 s
= qemu_mallocz(sizeof(GDBState
));
2363 s
->c_cpu
= first_cpu
;
2364 s
->g_cpu
= first_cpu
;
2366 gdbserver_state
= s
;
2367 qemu_chr_add_handlers(chr
, gdb_chr_can_receive
, gdb_chr_receive
,
2368 gdb_chr_event
, NULL
);
2369 qemu_add_vm_change_state_handler(gdb_vm_state_change
, NULL
);
2371 /* Initialize a monitor terminal for gdb */
2372 s
->mon_chr
= qemu_mallocz(sizeof(*s
->mon_chr
));
2373 s
->mon_chr
->chr_write
= gdb_monitor_write
;
2374 monitor_init(s
->mon_chr
, 0);