Reset HPET config register on hpet_reset
[qemu-kvm/fedora.git] / hw / musicpal.c
blob10be69be826ba9e1615f1b8c8e3a32123f066e35
1 /*
2 * Marvell MV88W8618 / Freecom MusicPal emulation.
4 * Copyright (c) 2008 Jan Kiszka
6 * This code is licenced under the GNU GPL v2.
7 */
9 #include "sysbus.h"
10 #include "arm-misc.h"
11 #include "devices.h"
12 #include "net.h"
13 #include "sysemu.h"
14 #include "boards.h"
15 #include "pc.h"
16 #include "qemu-timer.h"
17 #include "block.h"
18 #include "flash.h"
19 #include "console.h"
20 #include "audio/audio.h"
21 #include "i2c.h"
23 #define MP_MISC_BASE 0x80002000
24 #define MP_MISC_SIZE 0x00001000
26 #define MP_ETH_BASE 0x80008000
27 #define MP_ETH_SIZE 0x00001000
29 #define MP_WLAN_BASE 0x8000C000
30 #define MP_WLAN_SIZE 0x00000800
32 #define MP_UART1_BASE 0x8000C840
33 #define MP_UART2_BASE 0x8000C940
35 #define MP_GPIO_BASE 0x8000D000
36 #define MP_GPIO_SIZE 0x00001000
38 #define MP_FLASHCFG_BASE 0x90006000
39 #define MP_FLASHCFG_SIZE 0x00001000
41 #define MP_AUDIO_BASE 0x90007000
42 #define MP_AUDIO_SIZE 0x00001000
44 #define MP_PIC_BASE 0x90008000
45 #define MP_PIC_SIZE 0x00001000
47 #define MP_PIT_BASE 0x90009000
48 #define MP_PIT_SIZE 0x00001000
50 #define MP_LCD_BASE 0x9000c000
51 #define MP_LCD_SIZE 0x00001000
53 #define MP_SRAM_BASE 0xC0000000
54 #define MP_SRAM_SIZE 0x00020000
56 #define MP_RAM_DEFAULT_SIZE 32*1024*1024
57 #define MP_FLASH_SIZE_MAX 32*1024*1024
59 #define MP_TIMER1_IRQ 4
60 #define MP_TIMER2_IRQ 5
61 #define MP_TIMER3_IRQ 6
62 #define MP_TIMER4_IRQ 7
63 #define MP_EHCI_IRQ 8
64 #define MP_ETH_IRQ 9
65 #define MP_UART1_IRQ 11
66 #define MP_UART2_IRQ 11
67 #define MP_GPIO_IRQ 12
68 #define MP_RTC_IRQ 28
69 #define MP_AUDIO_IRQ 30
71 static uint32_t gpio_in_state = 0xffffffff;
72 static uint32_t gpio_isr;
73 static uint32_t gpio_out_state;
74 static ram_addr_t sram_off;
76 typedef enum i2c_state {
77 STOPPED = 0,
78 INITIALIZING,
79 SENDING_BIT7,
80 SENDING_BIT6,
81 SENDING_BIT5,
82 SENDING_BIT4,
83 SENDING_BIT3,
84 SENDING_BIT2,
85 SENDING_BIT1,
86 SENDING_BIT0,
87 WAITING_FOR_ACK,
88 RECEIVING_BIT7,
89 RECEIVING_BIT6,
90 RECEIVING_BIT5,
91 RECEIVING_BIT4,
92 RECEIVING_BIT3,
93 RECEIVING_BIT2,
94 RECEIVING_BIT1,
95 RECEIVING_BIT0,
96 SENDING_ACK
97 } i2c_state;
99 typedef struct i2c_interface {
100 i2c_bus *bus;
101 i2c_state state;
102 int last_data;
103 int last_clock;
104 uint8_t buffer;
105 int current_addr;
106 } i2c_interface;
108 static void i2c_enter_stop(i2c_interface *i2c)
110 if (i2c->current_addr >= 0)
111 i2c_end_transfer(i2c->bus);
112 i2c->current_addr = -1;
113 i2c->state = STOPPED;
116 static void i2c_state_update(i2c_interface *i2c, int data, int clock)
118 if (!i2c)
119 return;
121 switch (i2c->state) {
122 case STOPPED:
123 if (data == 0 && i2c->last_data == 1 && clock == 1)
124 i2c->state = INITIALIZING;
125 break;
127 case INITIALIZING:
128 if (clock == 0 && i2c->last_clock == 1 && data == 0)
129 i2c->state = SENDING_BIT7;
130 else
131 i2c_enter_stop(i2c);
132 break;
134 case SENDING_BIT7 ... SENDING_BIT0:
135 if (clock == 0 && i2c->last_clock == 1) {
136 i2c->buffer = (i2c->buffer << 1) | data;
137 i2c->state++; /* will end up in WAITING_FOR_ACK */
138 } else if (data == 1 && i2c->last_data == 0 && clock == 1)
139 i2c_enter_stop(i2c);
140 break;
142 case WAITING_FOR_ACK:
143 if (clock == 0 && i2c->last_clock == 1) {
144 if (i2c->current_addr < 0) {
145 i2c->current_addr = i2c->buffer;
146 i2c_start_transfer(i2c->bus, i2c->current_addr & 0xfe,
147 i2c->buffer & 1);
148 } else
149 i2c_send(i2c->bus, i2c->buffer);
150 if (i2c->current_addr & 1) {
151 i2c->state = RECEIVING_BIT7;
152 i2c->buffer = i2c_recv(i2c->bus);
153 } else
154 i2c->state = SENDING_BIT7;
155 } else if (data == 1 && i2c->last_data == 0 && clock == 1)
156 i2c_enter_stop(i2c);
157 break;
159 case RECEIVING_BIT7 ... RECEIVING_BIT0:
160 if (clock == 0 && i2c->last_clock == 1) {
161 i2c->state++; /* will end up in SENDING_ACK */
162 i2c->buffer <<= 1;
163 } else if (data == 1 && i2c->last_data == 0 && clock == 1)
164 i2c_enter_stop(i2c);
165 break;
167 case SENDING_ACK:
168 if (clock == 0 && i2c->last_clock == 1) {
169 i2c->state = RECEIVING_BIT7;
170 if (data == 0)
171 i2c->buffer = i2c_recv(i2c->bus);
172 else
173 i2c_nack(i2c->bus);
174 } else if (data == 1 && i2c->last_data == 0 && clock == 1)
175 i2c_enter_stop(i2c);
176 break;
179 i2c->last_data = data;
180 i2c->last_clock = clock;
183 static int i2c_get_data(i2c_interface *i2c)
185 if (!i2c)
186 return 0;
188 switch (i2c->state) {
189 case RECEIVING_BIT7 ... RECEIVING_BIT0:
190 return (i2c->buffer >> 7);
192 case WAITING_FOR_ACK:
193 default:
194 return 0;
198 static i2c_interface *mixer_i2c;
200 #ifdef HAS_AUDIO
202 /* Audio register offsets */
203 #define MP_AUDIO_PLAYBACK_MODE 0x00
204 #define MP_AUDIO_CLOCK_DIV 0x18
205 #define MP_AUDIO_IRQ_STATUS 0x20
206 #define MP_AUDIO_IRQ_ENABLE 0x24
207 #define MP_AUDIO_TX_START_LO 0x28
208 #define MP_AUDIO_TX_THRESHOLD 0x2C
209 #define MP_AUDIO_TX_STATUS 0x38
210 #define MP_AUDIO_TX_START_HI 0x40
212 /* Status register and IRQ enable bits */
213 #define MP_AUDIO_TX_HALF (1 << 6)
214 #define MP_AUDIO_TX_FULL (1 << 7)
216 /* Playback mode bits */
217 #define MP_AUDIO_16BIT_SAMPLE (1 << 0)
218 #define MP_AUDIO_PLAYBACK_EN (1 << 7)
219 #define MP_AUDIO_CLOCK_24MHZ (1 << 9)
220 #define MP_AUDIO_MONO (1 << 14)
222 /* Wolfson 8750 I2C address */
223 #define MP_WM_ADDR 0x34
225 static const char audio_name[] = "mv88w8618";
227 typedef struct musicpal_audio_state {
228 qemu_irq irq;
229 uint32_t playback_mode;
230 uint32_t status;
231 uint32_t irq_enable;
232 unsigned long phys_buf;
233 uint32_t target_buffer;
234 unsigned int threshold;
235 unsigned int play_pos;
236 unsigned int last_free;
237 uint32_t clock_div;
238 DeviceState *wm;
239 } musicpal_audio_state;
241 static void audio_callback(void *opaque, int free_out, int free_in)
243 musicpal_audio_state *s = opaque;
244 int16_t *codec_buffer;
245 int8_t buf[4096];
246 int8_t *mem_buffer;
247 int pos, block_size;
249 if (!(s->playback_mode & MP_AUDIO_PLAYBACK_EN))
250 return;
252 if (s->playback_mode & MP_AUDIO_16BIT_SAMPLE)
253 free_out <<= 1;
255 if (!(s->playback_mode & MP_AUDIO_MONO))
256 free_out <<= 1;
258 block_size = s->threshold/2;
259 if (free_out - s->last_free < block_size)
260 return;
262 if (block_size > 4096)
263 return;
265 cpu_physical_memory_read(s->target_buffer + s->play_pos, (void *)buf,
266 block_size);
267 mem_buffer = buf;
268 if (s->playback_mode & MP_AUDIO_16BIT_SAMPLE) {
269 if (s->playback_mode & MP_AUDIO_MONO) {
270 codec_buffer = wm8750_dac_buffer(s->wm, block_size >> 1);
271 for (pos = 0; pos < block_size; pos += 2) {
272 *codec_buffer++ = *(int16_t *)mem_buffer;
273 *codec_buffer++ = *(int16_t *)mem_buffer;
274 mem_buffer += 2;
276 } else
277 memcpy(wm8750_dac_buffer(s->wm, block_size >> 2),
278 (uint32_t *)mem_buffer, block_size);
279 } else {
280 if (s->playback_mode & MP_AUDIO_MONO) {
281 codec_buffer = wm8750_dac_buffer(s->wm, block_size);
282 for (pos = 0; pos < block_size; pos++) {
283 *codec_buffer++ = cpu_to_le16(256 * *mem_buffer);
284 *codec_buffer++ = cpu_to_le16(256 * *mem_buffer++);
286 } else {
287 codec_buffer = wm8750_dac_buffer(s->wm, block_size >> 1);
288 for (pos = 0; pos < block_size; pos += 2) {
289 *codec_buffer++ = cpu_to_le16(256 * *mem_buffer++);
290 *codec_buffer++ = cpu_to_le16(256 * *mem_buffer++);
294 wm8750_dac_commit(s->wm);
296 s->last_free = free_out - block_size;
298 if (s->play_pos == 0) {
299 s->status |= MP_AUDIO_TX_HALF;
300 s->play_pos = block_size;
301 } else {
302 s->status |= MP_AUDIO_TX_FULL;
303 s->play_pos = 0;
306 if (s->status & s->irq_enable)
307 qemu_irq_raise(s->irq);
310 static void musicpal_audio_clock_update(musicpal_audio_state *s)
312 int rate;
314 if (s->playback_mode & MP_AUDIO_CLOCK_24MHZ)
315 rate = 24576000 / 64; /* 24.576MHz */
316 else
317 rate = 11289600 / 64; /* 11.2896MHz */
319 rate /= ((s->clock_div >> 8) & 0xff) + 1;
321 wm8750_set_bclk_in(s->wm, rate);
324 static uint32_t musicpal_audio_read(void *opaque, target_phys_addr_t offset)
326 musicpal_audio_state *s = opaque;
328 switch (offset) {
329 case MP_AUDIO_PLAYBACK_MODE:
330 return s->playback_mode;
332 case MP_AUDIO_CLOCK_DIV:
333 return s->clock_div;
335 case MP_AUDIO_IRQ_STATUS:
336 return s->status;
338 case MP_AUDIO_IRQ_ENABLE:
339 return s->irq_enable;
341 case MP_AUDIO_TX_STATUS:
342 return s->play_pos >> 2;
344 default:
345 return 0;
349 static void musicpal_audio_write(void *opaque, target_phys_addr_t offset,
350 uint32_t value)
352 musicpal_audio_state *s = opaque;
354 switch (offset) {
355 case MP_AUDIO_PLAYBACK_MODE:
356 if (value & MP_AUDIO_PLAYBACK_EN &&
357 !(s->playback_mode & MP_AUDIO_PLAYBACK_EN)) {
358 s->status = 0;
359 s->last_free = 0;
360 s->play_pos = 0;
362 s->playback_mode = value;
363 musicpal_audio_clock_update(s);
364 break;
366 case MP_AUDIO_CLOCK_DIV:
367 s->clock_div = value;
368 s->last_free = 0;
369 s->play_pos = 0;
370 musicpal_audio_clock_update(s);
371 break;
373 case MP_AUDIO_IRQ_STATUS:
374 s->status &= ~value;
375 break;
377 case MP_AUDIO_IRQ_ENABLE:
378 s->irq_enable = value;
379 if (s->status & s->irq_enable)
380 qemu_irq_raise(s->irq);
381 break;
383 case MP_AUDIO_TX_START_LO:
384 s->phys_buf = (s->phys_buf & 0xFFFF0000) | (value & 0xFFFF);
385 s->target_buffer = s->phys_buf;
386 s->play_pos = 0;
387 s->last_free = 0;
388 break;
390 case MP_AUDIO_TX_THRESHOLD:
391 s->threshold = (value + 1) * 4;
392 break;
394 case MP_AUDIO_TX_START_HI:
395 s->phys_buf = (s->phys_buf & 0xFFFF) | (value << 16);
396 s->target_buffer = s->phys_buf;
397 s->play_pos = 0;
398 s->last_free = 0;
399 break;
403 static void musicpal_audio_reset(void *opaque)
405 musicpal_audio_state *s = opaque;
407 s->playback_mode = 0;
408 s->status = 0;
409 s->irq_enable = 0;
412 static CPUReadMemoryFunc *musicpal_audio_readfn[] = {
413 musicpal_audio_read,
414 musicpal_audio_read,
415 musicpal_audio_read
418 static CPUWriteMemoryFunc *musicpal_audio_writefn[] = {
419 musicpal_audio_write,
420 musicpal_audio_write,
421 musicpal_audio_write
424 static i2c_interface *musicpal_audio_init(qemu_irq irq)
426 musicpal_audio_state *s;
427 i2c_interface *i2c;
428 int iomemtype;
430 s = qemu_mallocz(sizeof(musicpal_audio_state));
431 s->irq = irq;
433 i2c = qemu_mallocz(sizeof(i2c_interface));
434 i2c->bus = i2c_init_bus(NULL, "i2c");
435 i2c->current_addr = -1;
437 s->wm = i2c_create_slave(i2c->bus, "wm8750", MP_WM_ADDR);
438 wm8750_data_req_set(s->wm, audio_callback, s);
440 iomemtype = cpu_register_io_memory(musicpal_audio_readfn,
441 musicpal_audio_writefn, s);
442 cpu_register_physical_memory(MP_AUDIO_BASE, MP_AUDIO_SIZE, iomemtype);
444 qemu_register_reset(musicpal_audio_reset, s);
446 return i2c;
448 #else /* !HAS_AUDIO */
449 static i2c_interface *musicpal_audio_init(qemu_irq irq)
451 return NULL;
453 #endif /* !HAS_AUDIO */
455 /* Ethernet register offsets */
456 #define MP_ETH_SMIR 0x010
457 #define MP_ETH_PCXR 0x408
458 #define MP_ETH_SDCMR 0x448
459 #define MP_ETH_ICR 0x450
460 #define MP_ETH_IMR 0x458
461 #define MP_ETH_FRDP0 0x480
462 #define MP_ETH_FRDP1 0x484
463 #define MP_ETH_FRDP2 0x488
464 #define MP_ETH_FRDP3 0x48C
465 #define MP_ETH_CRDP0 0x4A0
466 #define MP_ETH_CRDP1 0x4A4
467 #define MP_ETH_CRDP2 0x4A8
468 #define MP_ETH_CRDP3 0x4AC
469 #define MP_ETH_CTDP0 0x4E0
470 #define MP_ETH_CTDP1 0x4E4
471 #define MP_ETH_CTDP2 0x4E8
472 #define MP_ETH_CTDP3 0x4EC
474 /* MII PHY access */
475 #define MP_ETH_SMIR_DATA 0x0000FFFF
476 #define MP_ETH_SMIR_ADDR 0x03FF0000
477 #define MP_ETH_SMIR_OPCODE (1 << 26) /* Read value */
478 #define MP_ETH_SMIR_RDVALID (1 << 27)
480 /* PHY registers */
481 #define MP_ETH_PHY1_BMSR 0x00210000
482 #define MP_ETH_PHY1_PHYSID1 0x00410000
483 #define MP_ETH_PHY1_PHYSID2 0x00610000
485 #define MP_PHY_BMSR_LINK 0x0004
486 #define MP_PHY_BMSR_AUTONEG 0x0008
488 #define MP_PHY_88E3015 0x01410E20
490 /* TX descriptor status */
491 #define MP_ETH_TX_OWN (1 << 31)
493 /* RX descriptor status */
494 #define MP_ETH_RX_OWN (1 << 31)
496 /* Interrupt cause/mask bits */
497 #define MP_ETH_IRQ_RX_BIT 0
498 #define MP_ETH_IRQ_RX (1 << MP_ETH_IRQ_RX_BIT)
499 #define MP_ETH_IRQ_TXHI_BIT 2
500 #define MP_ETH_IRQ_TXLO_BIT 3
502 /* Port config bits */
503 #define MP_ETH_PCXR_2BSM_BIT 28 /* 2-byte incoming suffix */
505 /* SDMA command bits */
506 #define MP_ETH_CMD_TXHI (1 << 23)
507 #define MP_ETH_CMD_TXLO (1 << 22)
509 typedef struct mv88w8618_tx_desc {
510 uint32_t cmdstat;
511 uint16_t res;
512 uint16_t bytes;
513 uint32_t buffer;
514 uint32_t next;
515 } mv88w8618_tx_desc;
517 typedef struct mv88w8618_rx_desc {
518 uint32_t cmdstat;
519 uint16_t bytes;
520 uint16_t buffer_size;
521 uint32_t buffer;
522 uint32_t next;
523 } mv88w8618_rx_desc;
525 typedef struct mv88w8618_eth_state {
526 SysBusDevice busdev;
527 qemu_irq irq;
528 uint32_t smir;
529 uint32_t icr;
530 uint32_t imr;
531 int mmio_index;
532 int vlan_header;
533 uint32_t tx_queue[2];
534 uint32_t rx_queue[4];
535 uint32_t frx_queue[4];
536 uint32_t cur_rx[4];
537 VLANClientState *vc;
538 } mv88w8618_eth_state;
540 static void eth_rx_desc_put(uint32_t addr, mv88w8618_rx_desc *desc)
542 cpu_to_le32s(&desc->cmdstat);
543 cpu_to_le16s(&desc->bytes);
544 cpu_to_le16s(&desc->buffer_size);
545 cpu_to_le32s(&desc->buffer);
546 cpu_to_le32s(&desc->next);
547 cpu_physical_memory_write(addr, (void *)desc, sizeof(*desc));
550 static void eth_rx_desc_get(uint32_t addr, mv88w8618_rx_desc *desc)
552 cpu_physical_memory_read(addr, (void *)desc, sizeof(*desc));
553 le32_to_cpus(&desc->cmdstat);
554 le16_to_cpus(&desc->bytes);
555 le16_to_cpus(&desc->buffer_size);
556 le32_to_cpus(&desc->buffer);
557 le32_to_cpus(&desc->next);
560 static int eth_can_receive(VLANClientState *vc)
562 return 1;
565 static ssize_t eth_receive(VLANClientState *vc, const uint8_t *buf, size_t size)
567 mv88w8618_eth_state *s = vc->opaque;
568 uint32_t desc_addr;
569 mv88w8618_rx_desc desc;
570 int i;
572 for (i = 0; i < 4; i++) {
573 desc_addr = s->cur_rx[i];
574 if (!desc_addr)
575 continue;
576 do {
577 eth_rx_desc_get(desc_addr, &desc);
578 if ((desc.cmdstat & MP_ETH_RX_OWN) && desc.buffer_size >= size) {
579 cpu_physical_memory_write(desc.buffer + s->vlan_header,
580 buf, size);
581 desc.bytes = size + s->vlan_header;
582 desc.cmdstat &= ~MP_ETH_RX_OWN;
583 s->cur_rx[i] = desc.next;
585 s->icr |= MP_ETH_IRQ_RX;
586 if (s->icr & s->imr)
587 qemu_irq_raise(s->irq);
588 eth_rx_desc_put(desc_addr, &desc);
589 return size;
591 desc_addr = desc.next;
592 } while (desc_addr != s->rx_queue[i]);
594 return size;
597 static void eth_tx_desc_put(uint32_t addr, mv88w8618_tx_desc *desc)
599 cpu_to_le32s(&desc->cmdstat);
600 cpu_to_le16s(&desc->res);
601 cpu_to_le16s(&desc->bytes);
602 cpu_to_le32s(&desc->buffer);
603 cpu_to_le32s(&desc->next);
604 cpu_physical_memory_write(addr, (void *)desc, sizeof(*desc));
607 static void eth_tx_desc_get(uint32_t addr, mv88w8618_tx_desc *desc)
609 cpu_physical_memory_read(addr, (void *)desc, sizeof(*desc));
610 le32_to_cpus(&desc->cmdstat);
611 le16_to_cpus(&desc->res);
612 le16_to_cpus(&desc->bytes);
613 le32_to_cpus(&desc->buffer);
614 le32_to_cpus(&desc->next);
617 static void eth_send(mv88w8618_eth_state *s, int queue_index)
619 uint32_t desc_addr = s->tx_queue[queue_index];
620 mv88w8618_tx_desc desc;
621 uint8_t buf[2048];
622 int len;
625 do {
626 eth_tx_desc_get(desc_addr, &desc);
627 if (desc.cmdstat & MP_ETH_TX_OWN) {
628 len = desc.bytes;
629 if (len < 2048) {
630 cpu_physical_memory_read(desc.buffer, buf, len);
631 qemu_send_packet(s->vc, buf, len);
633 desc.cmdstat &= ~MP_ETH_TX_OWN;
634 s->icr |= 1 << (MP_ETH_IRQ_TXLO_BIT - queue_index);
635 eth_tx_desc_put(desc_addr, &desc);
637 desc_addr = desc.next;
638 } while (desc_addr != s->tx_queue[queue_index]);
641 static uint32_t mv88w8618_eth_read(void *opaque, target_phys_addr_t offset)
643 mv88w8618_eth_state *s = opaque;
645 switch (offset) {
646 case MP_ETH_SMIR:
647 if (s->smir & MP_ETH_SMIR_OPCODE) {
648 switch (s->smir & MP_ETH_SMIR_ADDR) {
649 case MP_ETH_PHY1_BMSR:
650 return MP_PHY_BMSR_LINK | MP_PHY_BMSR_AUTONEG |
651 MP_ETH_SMIR_RDVALID;
652 case MP_ETH_PHY1_PHYSID1:
653 return (MP_PHY_88E3015 >> 16) | MP_ETH_SMIR_RDVALID;
654 case MP_ETH_PHY1_PHYSID2:
655 return (MP_PHY_88E3015 & 0xFFFF) | MP_ETH_SMIR_RDVALID;
656 default:
657 return MP_ETH_SMIR_RDVALID;
660 return 0;
662 case MP_ETH_ICR:
663 return s->icr;
665 case MP_ETH_IMR:
666 return s->imr;
668 case MP_ETH_FRDP0 ... MP_ETH_FRDP3:
669 return s->frx_queue[(offset - MP_ETH_FRDP0)/4];
671 case MP_ETH_CRDP0 ... MP_ETH_CRDP3:
672 return s->rx_queue[(offset - MP_ETH_CRDP0)/4];
674 case MP_ETH_CTDP0 ... MP_ETH_CTDP3:
675 return s->tx_queue[(offset - MP_ETH_CTDP0)/4];
677 default:
678 return 0;
682 static void mv88w8618_eth_write(void *opaque, target_phys_addr_t offset,
683 uint32_t value)
685 mv88w8618_eth_state *s = opaque;
687 switch (offset) {
688 case MP_ETH_SMIR:
689 s->smir = value;
690 break;
692 case MP_ETH_PCXR:
693 s->vlan_header = ((value >> MP_ETH_PCXR_2BSM_BIT) & 1) * 2;
694 break;
696 case MP_ETH_SDCMR:
697 if (value & MP_ETH_CMD_TXHI)
698 eth_send(s, 1);
699 if (value & MP_ETH_CMD_TXLO)
700 eth_send(s, 0);
701 if (value & (MP_ETH_CMD_TXHI | MP_ETH_CMD_TXLO) && s->icr & s->imr)
702 qemu_irq_raise(s->irq);
703 break;
705 case MP_ETH_ICR:
706 s->icr &= value;
707 break;
709 case MP_ETH_IMR:
710 s->imr = value;
711 if (s->icr & s->imr)
712 qemu_irq_raise(s->irq);
713 break;
715 case MP_ETH_FRDP0 ... MP_ETH_FRDP3:
716 s->frx_queue[(offset - MP_ETH_FRDP0)/4] = value;
717 break;
719 case MP_ETH_CRDP0 ... MP_ETH_CRDP3:
720 s->rx_queue[(offset - MP_ETH_CRDP0)/4] =
721 s->cur_rx[(offset - MP_ETH_CRDP0)/4] = value;
722 break;
724 case MP_ETH_CTDP0 ... MP_ETH_CTDP3:
725 s->tx_queue[(offset - MP_ETH_CTDP0)/4] = value;
726 break;
730 static CPUReadMemoryFunc *mv88w8618_eth_readfn[] = {
731 mv88w8618_eth_read,
732 mv88w8618_eth_read,
733 mv88w8618_eth_read
736 static CPUWriteMemoryFunc *mv88w8618_eth_writefn[] = {
737 mv88w8618_eth_write,
738 mv88w8618_eth_write,
739 mv88w8618_eth_write
742 static void eth_cleanup(VLANClientState *vc)
744 mv88w8618_eth_state *s = vc->opaque;
746 cpu_unregister_io_memory(s->mmio_index);
748 qemu_free(s);
751 static void mv88w8618_eth_init(SysBusDevice *dev)
753 mv88w8618_eth_state *s = FROM_SYSBUS(mv88w8618_eth_state, dev);
755 sysbus_init_irq(dev, &s->irq);
756 s->vc = qdev_get_vlan_client(&dev->qdev,
757 eth_can_receive, eth_receive, NULL,
758 eth_cleanup, s);
759 s->mmio_index = cpu_register_io_memory(mv88w8618_eth_readfn,
760 mv88w8618_eth_writefn, s);
761 sysbus_init_mmio(dev, MP_ETH_SIZE, s->mmio_index);
764 /* LCD register offsets */
765 #define MP_LCD_IRQCTRL 0x180
766 #define MP_LCD_IRQSTAT 0x184
767 #define MP_LCD_SPICTRL 0x1ac
768 #define MP_LCD_INST 0x1bc
769 #define MP_LCD_DATA 0x1c0
771 /* Mode magics */
772 #define MP_LCD_SPI_DATA 0x00100011
773 #define MP_LCD_SPI_CMD 0x00104011
774 #define MP_LCD_SPI_INVALID 0x00000000
776 /* Commmands */
777 #define MP_LCD_INST_SETPAGE0 0xB0
778 /* ... */
779 #define MP_LCD_INST_SETPAGE7 0xB7
781 #define MP_LCD_TEXTCOLOR 0xe0e0ff /* RRGGBB */
783 typedef struct musicpal_lcd_state {
784 SysBusDevice busdev;
785 uint32_t mode;
786 uint32_t irqctrl;
787 int page;
788 int page_off;
789 DisplayState *ds;
790 uint8_t video_ram[128*64/8];
791 } musicpal_lcd_state;
793 static uint32_t lcd_brightness;
795 static uint8_t scale_lcd_color(uint8_t col)
797 int tmp = col;
799 switch (lcd_brightness) {
800 case 0x00000007: /* 0 */
801 return 0;
803 case 0x00020000: /* 1 */
804 return (tmp * 1) / 7;
806 case 0x00020001: /* 2 */
807 return (tmp * 2) / 7;
809 case 0x00040000: /* 3 */
810 return (tmp * 3) / 7;
812 case 0x00010006: /* 4 */
813 return (tmp * 4) / 7;
815 case 0x00020005: /* 5 */
816 return (tmp * 5) / 7;
818 case 0x00040003: /* 6 */
819 return (tmp * 6) / 7;
821 case 0x00030004: /* 7 */
822 default:
823 return col;
827 #define SET_LCD_PIXEL(depth, type) \
828 static inline void glue(set_lcd_pixel, depth) \
829 (musicpal_lcd_state *s, int x, int y, type col) \
831 int dx, dy; \
832 type *pixel = &((type *) ds_get_data(s->ds))[(y * 128 * 3 + x) * 3]; \
834 for (dy = 0; dy < 3; dy++, pixel += 127 * 3) \
835 for (dx = 0; dx < 3; dx++, pixel++) \
836 *pixel = col; \
838 SET_LCD_PIXEL(8, uint8_t)
839 SET_LCD_PIXEL(16, uint16_t)
840 SET_LCD_PIXEL(32, uint32_t)
842 #include "pixel_ops.h"
844 static void lcd_refresh(void *opaque)
846 musicpal_lcd_state *s = opaque;
847 int x, y, col;
849 switch (ds_get_bits_per_pixel(s->ds)) {
850 case 0:
851 return;
852 #define LCD_REFRESH(depth, func) \
853 case depth: \
854 col = func(scale_lcd_color((MP_LCD_TEXTCOLOR >> 16) & 0xff), \
855 scale_lcd_color((MP_LCD_TEXTCOLOR >> 8) & 0xff), \
856 scale_lcd_color(MP_LCD_TEXTCOLOR & 0xff)); \
857 for (x = 0; x < 128; x++) \
858 for (y = 0; y < 64; y++) \
859 if (s->video_ram[x + (y/8)*128] & (1 << (y % 8))) \
860 glue(set_lcd_pixel, depth)(s, x, y, col); \
861 else \
862 glue(set_lcd_pixel, depth)(s, x, y, 0); \
863 break;
864 LCD_REFRESH(8, rgb_to_pixel8)
865 LCD_REFRESH(16, rgb_to_pixel16)
866 LCD_REFRESH(32, (is_surface_bgr(s->ds->surface) ?
867 rgb_to_pixel32bgr : rgb_to_pixel32))
868 default:
869 hw_error("unsupported colour depth %i\n",
870 ds_get_bits_per_pixel(s->ds));
873 dpy_update(s->ds, 0, 0, 128*3, 64*3);
876 static void lcd_invalidate(void *opaque)
880 static uint32_t musicpal_lcd_read(void *opaque, target_phys_addr_t offset)
882 musicpal_lcd_state *s = opaque;
884 switch (offset) {
885 case MP_LCD_IRQCTRL:
886 return s->irqctrl;
888 default:
889 return 0;
893 static void musicpal_lcd_write(void *opaque, target_phys_addr_t offset,
894 uint32_t value)
896 musicpal_lcd_state *s = opaque;
898 switch (offset) {
899 case MP_LCD_IRQCTRL:
900 s->irqctrl = value;
901 break;
903 case MP_LCD_SPICTRL:
904 if (value == MP_LCD_SPI_DATA || value == MP_LCD_SPI_CMD)
905 s->mode = value;
906 else
907 s->mode = MP_LCD_SPI_INVALID;
908 break;
910 case MP_LCD_INST:
911 if (value >= MP_LCD_INST_SETPAGE0 && value <= MP_LCD_INST_SETPAGE7) {
912 s->page = value - MP_LCD_INST_SETPAGE0;
913 s->page_off = 0;
915 break;
917 case MP_LCD_DATA:
918 if (s->mode == MP_LCD_SPI_CMD) {
919 if (value >= MP_LCD_INST_SETPAGE0 &&
920 value <= MP_LCD_INST_SETPAGE7) {
921 s->page = value - MP_LCD_INST_SETPAGE0;
922 s->page_off = 0;
924 } else if (s->mode == MP_LCD_SPI_DATA) {
925 s->video_ram[s->page*128 + s->page_off] = value;
926 s->page_off = (s->page_off + 1) & 127;
928 break;
932 static CPUReadMemoryFunc *musicpal_lcd_readfn[] = {
933 musicpal_lcd_read,
934 musicpal_lcd_read,
935 musicpal_lcd_read
938 static CPUWriteMemoryFunc *musicpal_lcd_writefn[] = {
939 musicpal_lcd_write,
940 musicpal_lcd_write,
941 musicpal_lcd_write
944 static void musicpal_lcd_init(SysBusDevice *dev)
946 musicpal_lcd_state *s = FROM_SYSBUS(musicpal_lcd_state, dev);
947 int iomemtype;
949 iomemtype = cpu_register_io_memory(musicpal_lcd_readfn,
950 musicpal_lcd_writefn, s);
951 sysbus_init_mmio(dev, MP_LCD_SIZE, iomemtype);
952 cpu_register_physical_memory(MP_LCD_BASE, MP_LCD_SIZE, iomemtype);
954 s->ds = graphic_console_init(lcd_refresh, lcd_invalidate,
955 NULL, NULL, s);
956 qemu_console_resize(s->ds, 128*3, 64*3);
959 /* PIC register offsets */
960 #define MP_PIC_STATUS 0x00
961 #define MP_PIC_ENABLE_SET 0x08
962 #define MP_PIC_ENABLE_CLR 0x0C
964 typedef struct mv88w8618_pic_state
966 SysBusDevice busdev;
967 uint32_t level;
968 uint32_t enabled;
969 qemu_irq parent_irq;
970 } mv88w8618_pic_state;
972 static void mv88w8618_pic_update(mv88w8618_pic_state *s)
974 qemu_set_irq(s->parent_irq, (s->level & s->enabled));
977 static void mv88w8618_pic_set_irq(void *opaque, int irq, int level)
979 mv88w8618_pic_state *s = opaque;
981 if (level)
982 s->level |= 1 << irq;
983 else
984 s->level &= ~(1 << irq);
985 mv88w8618_pic_update(s);
988 static uint32_t mv88w8618_pic_read(void *opaque, target_phys_addr_t offset)
990 mv88w8618_pic_state *s = opaque;
992 switch (offset) {
993 case MP_PIC_STATUS:
994 return s->level & s->enabled;
996 default:
997 return 0;
1001 static void mv88w8618_pic_write(void *opaque, target_phys_addr_t offset,
1002 uint32_t value)
1004 mv88w8618_pic_state *s = opaque;
1006 switch (offset) {
1007 case MP_PIC_ENABLE_SET:
1008 s->enabled |= value;
1009 break;
1011 case MP_PIC_ENABLE_CLR:
1012 s->enabled &= ~value;
1013 s->level &= ~value;
1014 break;
1016 mv88w8618_pic_update(s);
1019 static void mv88w8618_pic_reset(void *opaque)
1021 mv88w8618_pic_state *s = opaque;
1023 s->level = 0;
1024 s->enabled = 0;
1027 static CPUReadMemoryFunc *mv88w8618_pic_readfn[] = {
1028 mv88w8618_pic_read,
1029 mv88w8618_pic_read,
1030 mv88w8618_pic_read
1033 static CPUWriteMemoryFunc *mv88w8618_pic_writefn[] = {
1034 mv88w8618_pic_write,
1035 mv88w8618_pic_write,
1036 mv88w8618_pic_write
1039 static void mv88w8618_pic_init(SysBusDevice *dev)
1041 mv88w8618_pic_state *s = FROM_SYSBUS(mv88w8618_pic_state, dev);
1042 int iomemtype;
1044 qdev_init_gpio_in(&dev->qdev, mv88w8618_pic_set_irq, 32);
1045 sysbus_init_irq(dev, &s->parent_irq);
1046 iomemtype = cpu_register_io_memory(mv88w8618_pic_readfn,
1047 mv88w8618_pic_writefn, s);
1048 sysbus_init_mmio(dev, MP_PIC_SIZE, iomemtype);
1050 qemu_register_reset(mv88w8618_pic_reset, s);
1053 /* PIT register offsets */
1054 #define MP_PIT_TIMER1_LENGTH 0x00
1055 /* ... */
1056 #define MP_PIT_TIMER4_LENGTH 0x0C
1057 #define MP_PIT_CONTROL 0x10
1058 #define MP_PIT_TIMER1_VALUE 0x14
1059 /* ... */
1060 #define MP_PIT_TIMER4_VALUE 0x20
1061 #define MP_BOARD_RESET 0x34
1063 /* Magic board reset value (probably some watchdog behind it) */
1064 #define MP_BOARD_RESET_MAGIC 0x10000
1066 typedef struct mv88w8618_timer_state {
1067 ptimer_state *ptimer;
1068 uint32_t limit;
1069 int freq;
1070 qemu_irq irq;
1071 } mv88w8618_timer_state;
1073 typedef struct mv88w8618_pit_state {
1074 SysBusDevice busdev;
1075 mv88w8618_timer_state timer[4];
1076 uint32_t control;
1077 } mv88w8618_pit_state;
1079 static void mv88w8618_timer_tick(void *opaque)
1081 mv88w8618_timer_state *s = opaque;
1083 qemu_irq_raise(s->irq);
1086 static void mv88w8618_timer_init(SysBusDevice *dev, mv88w8618_timer_state *s,
1087 uint32_t freq)
1089 QEMUBH *bh;
1091 sysbus_init_irq(dev, &s->irq);
1092 s->freq = freq;
1094 bh = qemu_bh_new(mv88w8618_timer_tick, s);
1095 s->ptimer = ptimer_init(bh);
1098 static uint32_t mv88w8618_pit_read(void *opaque, target_phys_addr_t offset)
1100 mv88w8618_pit_state *s = opaque;
1101 mv88w8618_timer_state *t;
1103 switch (offset) {
1104 case MP_PIT_TIMER1_VALUE ... MP_PIT_TIMER4_VALUE:
1105 t = &s->timer[(offset-MP_PIT_TIMER1_VALUE) >> 2];
1106 return ptimer_get_count(t->ptimer);
1108 default:
1109 return 0;
1113 static void mv88w8618_pit_write(void *opaque, target_phys_addr_t offset,
1114 uint32_t value)
1116 mv88w8618_pit_state *s = opaque;
1117 mv88w8618_timer_state *t;
1118 int i;
1120 switch (offset) {
1121 case MP_PIT_TIMER1_LENGTH ... MP_PIT_TIMER4_LENGTH:
1122 t = &s->timer[offset >> 2];
1123 t->limit = value;
1124 ptimer_set_limit(t->ptimer, t->limit, 1);
1125 break;
1127 case MP_PIT_CONTROL:
1128 for (i = 0; i < 4; i++) {
1129 if (value & 0xf) {
1130 t = &s->timer[i];
1131 ptimer_set_limit(t->ptimer, t->limit, 0);
1132 ptimer_set_freq(t->ptimer, t->freq);
1133 ptimer_run(t->ptimer, 0);
1135 value >>= 4;
1137 break;
1139 case MP_BOARD_RESET:
1140 if (value == MP_BOARD_RESET_MAGIC)
1141 qemu_system_reset_request();
1142 break;
1146 static CPUReadMemoryFunc *mv88w8618_pit_readfn[] = {
1147 mv88w8618_pit_read,
1148 mv88w8618_pit_read,
1149 mv88w8618_pit_read
1152 static CPUWriteMemoryFunc *mv88w8618_pit_writefn[] = {
1153 mv88w8618_pit_write,
1154 mv88w8618_pit_write,
1155 mv88w8618_pit_write
1158 static void mv88w8618_pit_init(SysBusDevice *dev)
1160 int iomemtype;
1161 mv88w8618_pit_state *s = FROM_SYSBUS(mv88w8618_pit_state, dev);
1162 int i;
1164 /* Letting them all run at 1 MHz is likely just a pragmatic
1165 * simplification. */
1166 for (i = 0; i < 4; i++) {
1167 mv88w8618_timer_init(dev, &s->timer[i], 1000000);
1170 iomemtype = cpu_register_io_memory(mv88w8618_pit_readfn,
1171 mv88w8618_pit_writefn, s);
1172 sysbus_init_mmio(dev, MP_PIT_SIZE, iomemtype);
1175 /* Flash config register offsets */
1176 #define MP_FLASHCFG_CFGR0 0x04
1178 typedef struct mv88w8618_flashcfg_state {
1179 SysBusDevice busdev;
1180 uint32_t cfgr0;
1181 } mv88w8618_flashcfg_state;
1183 static uint32_t mv88w8618_flashcfg_read(void *opaque,
1184 target_phys_addr_t offset)
1186 mv88w8618_flashcfg_state *s = opaque;
1188 switch (offset) {
1189 case MP_FLASHCFG_CFGR0:
1190 return s->cfgr0;
1192 default:
1193 return 0;
1197 static void mv88w8618_flashcfg_write(void *opaque, target_phys_addr_t offset,
1198 uint32_t value)
1200 mv88w8618_flashcfg_state *s = opaque;
1202 switch (offset) {
1203 case MP_FLASHCFG_CFGR0:
1204 s->cfgr0 = value;
1205 break;
1209 static CPUReadMemoryFunc *mv88w8618_flashcfg_readfn[] = {
1210 mv88w8618_flashcfg_read,
1211 mv88w8618_flashcfg_read,
1212 mv88w8618_flashcfg_read
1215 static CPUWriteMemoryFunc *mv88w8618_flashcfg_writefn[] = {
1216 mv88w8618_flashcfg_write,
1217 mv88w8618_flashcfg_write,
1218 mv88w8618_flashcfg_write
1221 static void mv88w8618_flashcfg_init(SysBusDevice *dev)
1223 int iomemtype;
1224 mv88w8618_flashcfg_state *s = FROM_SYSBUS(mv88w8618_flashcfg_state, dev);
1226 s->cfgr0 = 0xfffe4285; /* Default as set by U-Boot for 8 MB flash */
1227 iomemtype = cpu_register_io_memory(mv88w8618_flashcfg_readfn,
1228 mv88w8618_flashcfg_writefn, s);
1229 sysbus_init_mmio(dev, MP_FLASHCFG_SIZE, iomemtype);
1232 /* Misc register offsets */
1233 #define MP_MISC_BOARD_REVISION 0x18
1235 #define MP_BOARD_REVISION 0x31
1237 static uint32_t musicpal_misc_read(void *opaque, target_phys_addr_t offset)
1239 switch (offset) {
1240 case MP_MISC_BOARD_REVISION:
1241 return MP_BOARD_REVISION;
1243 default:
1244 return 0;
1248 static void musicpal_misc_write(void *opaque, target_phys_addr_t offset,
1249 uint32_t value)
1253 static CPUReadMemoryFunc *musicpal_misc_readfn[] = {
1254 musicpal_misc_read,
1255 musicpal_misc_read,
1256 musicpal_misc_read,
1259 static CPUWriteMemoryFunc *musicpal_misc_writefn[] = {
1260 musicpal_misc_write,
1261 musicpal_misc_write,
1262 musicpal_misc_write,
1265 static void musicpal_misc_init(void)
1267 int iomemtype;
1269 iomemtype = cpu_register_io_memory(musicpal_misc_readfn,
1270 musicpal_misc_writefn, NULL);
1271 cpu_register_physical_memory(MP_MISC_BASE, MP_MISC_SIZE, iomemtype);
1274 /* WLAN register offsets */
1275 #define MP_WLAN_MAGIC1 0x11c
1276 #define MP_WLAN_MAGIC2 0x124
1278 static uint32_t mv88w8618_wlan_read(void *opaque, target_phys_addr_t offset)
1280 switch (offset) {
1281 /* Workaround to allow loading the binary-only wlandrv.ko crap
1282 * from the original Freecom firmware. */
1283 case MP_WLAN_MAGIC1:
1284 return ~3;
1285 case MP_WLAN_MAGIC2:
1286 return -1;
1288 default:
1289 return 0;
1293 static void mv88w8618_wlan_write(void *opaque, target_phys_addr_t offset,
1294 uint32_t value)
1298 static CPUReadMemoryFunc *mv88w8618_wlan_readfn[] = {
1299 mv88w8618_wlan_read,
1300 mv88w8618_wlan_read,
1301 mv88w8618_wlan_read,
1304 static CPUWriteMemoryFunc *mv88w8618_wlan_writefn[] = {
1305 mv88w8618_wlan_write,
1306 mv88w8618_wlan_write,
1307 mv88w8618_wlan_write,
1310 static void mv88w8618_wlan_init(SysBusDevice *dev)
1312 int iomemtype;
1314 iomemtype = cpu_register_io_memory(mv88w8618_wlan_readfn,
1315 mv88w8618_wlan_writefn, NULL);
1316 sysbus_init_mmio(dev, MP_WLAN_SIZE, iomemtype);
1319 /* GPIO register offsets */
1320 #define MP_GPIO_OE_LO 0x008
1321 #define MP_GPIO_OUT_LO 0x00c
1322 #define MP_GPIO_IN_LO 0x010
1323 #define MP_GPIO_ISR_LO 0x020
1324 #define MP_GPIO_OE_HI 0x508
1325 #define MP_GPIO_OUT_HI 0x50c
1326 #define MP_GPIO_IN_HI 0x510
1327 #define MP_GPIO_ISR_HI 0x520
1329 /* GPIO bits & masks */
1330 #define MP_GPIO_WHEEL_VOL (1 << 8)
1331 #define MP_GPIO_WHEEL_VOL_INV (1 << 9)
1332 #define MP_GPIO_WHEEL_NAV (1 << 10)
1333 #define MP_GPIO_WHEEL_NAV_INV (1 << 11)
1334 #define MP_GPIO_LCD_BRIGHTNESS 0x00070000
1335 #define MP_GPIO_BTN_FAVORITS (1 << 19)
1336 #define MP_GPIO_BTN_MENU (1 << 20)
1337 #define MP_GPIO_BTN_VOLUME (1 << 21)
1338 #define MP_GPIO_BTN_NAVIGATION (1 << 22)
1339 #define MP_GPIO_I2C_DATA_BIT 29
1340 #define MP_GPIO_I2C_DATA (1 << MP_GPIO_I2C_DATA_BIT)
1341 #define MP_GPIO_I2C_CLOCK_BIT 30
1343 /* LCD brightness bits in GPIO_OE_HI */
1344 #define MP_OE_LCD_BRIGHTNESS 0x0007
1346 static uint32_t musicpal_gpio_read(void *opaque, target_phys_addr_t offset)
1348 switch (offset) {
1349 case MP_GPIO_OE_HI: /* used for LCD brightness control */
1350 return lcd_brightness & MP_OE_LCD_BRIGHTNESS;
1352 case MP_GPIO_OUT_LO:
1353 return gpio_out_state & 0xFFFF;
1354 case MP_GPIO_OUT_HI:
1355 return gpio_out_state >> 16;
1357 case MP_GPIO_IN_LO:
1358 return gpio_in_state & 0xFFFF;
1359 case MP_GPIO_IN_HI:
1360 /* Update received I2C data */
1361 gpio_in_state = (gpio_in_state & ~MP_GPIO_I2C_DATA) |
1362 (i2c_get_data(mixer_i2c) << MP_GPIO_I2C_DATA_BIT);
1363 return gpio_in_state >> 16;
1365 case MP_GPIO_ISR_LO:
1366 return gpio_isr & 0xFFFF;
1367 case MP_GPIO_ISR_HI:
1368 return gpio_isr >> 16;
1370 default:
1371 return 0;
1375 static void musicpal_gpio_write(void *opaque, target_phys_addr_t offset,
1376 uint32_t value)
1378 switch (offset) {
1379 case MP_GPIO_OE_HI: /* used for LCD brightness control */
1380 lcd_brightness = (lcd_brightness & MP_GPIO_LCD_BRIGHTNESS) |
1381 (value & MP_OE_LCD_BRIGHTNESS);
1382 break;
1384 case MP_GPIO_OUT_LO:
1385 gpio_out_state = (gpio_out_state & 0xFFFF0000) | (value & 0xFFFF);
1386 break;
1387 case MP_GPIO_OUT_HI:
1388 gpio_out_state = (gpio_out_state & 0xFFFF) | (value << 16);
1389 lcd_brightness = (lcd_brightness & 0xFFFF) |
1390 (gpio_out_state & MP_GPIO_LCD_BRIGHTNESS);
1391 i2c_state_update(mixer_i2c,
1392 (gpio_out_state >> MP_GPIO_I2C_DATA_BIT) & 1,
1393 (gpio_out_state >> MP_GPIO_I2C_CLOCK_BIT) & 1);
1394 break;
1399 static CPUReadMemoryFunc *musicpal_gpio_readfn[] = {
1400 musicpal_gpio_read,
1401 musicpal_gpio_read,
1402 musicpal_gpio_read,
1405 static CPUWriteMemoryFunc *musicpal_gpio_writefn[] = {
1406 musicpal_gpio_write,
1407 musicpal_gpio_write,
1408 musicpal_gpio_write,
1411 static void musicpal_gpio_init(void)
1413 int iomemtype;
1415 iomemtype = cpu_register_io_memory(musicpal_gpio_readfn,
1416 musicpal_gpio_writefn, NULL);
1417 cpu_register_physical_memory(MP_GPIO_BASE, MP_GPIO_SIZE, iomemtype);
1420 /* Keyboard codes & masks */
1421 #define KEY_RELEASED 0x80
1422 #define KEY_CODE 0x7f
1424 #define KEYCODE_TAB 0x0f
1425 #define KEYCODE_ENTER 0x1c
1426 #define KEYCODE_F 0x21
1427 #define KEYCODE_M 0x32
1429 #define KEYCODE_EXTENDED 0xe0
1430 #define KEYCODE_UP 0x48
1431 #define KEYCODE_DOWN 0x50
1432 #define KEYCODE_LEFT 0x4b
1433 #define KEYCODE_RIGHT 0x4d
1435 static void musicpal_key_event(void *opaque, int keycode)
1437 qemu_irq irq = opaque;
1438 uint32_t event = 0;
1439 static int kbd_extended;
1441 if (keycode == KEYCODE_EXTENDED) {
1442 kbd_extended = 1;
1443 return;
1446 if (kbd_extended)
1447 switch (keycode & KEY_CODE) {
1448 case KEYCODE_UP:
1449 event = MP_GPIO_WHEEL_NAV | MP_GPIO_WHEEL_NAV_INV;
1450 break;
1452 case KEYCODE_DOWN:
1453 event = MP_GPIO_WHEEL_NAV;
1454 break;
1456 case KEYCODE_LEFT:
1457 event = MP_GPIO_WHEEL_VOL | MP_GPIO_WHEEL_VOL_INV;
1458 break;
1460 case KEYCODE_RIGHT:
1461 event = MP_GPIO_WHEEL_VOL;
1462 break;
1464 else {
1465 switch (keycode & KEY_CODE) {
1466 case KEYCODE_F:
1467 event = MP_GPIO_BTN_FAVORITS;
1468 break;
1470 case KEYCODE_TAB:
1471 event = MP_GPIO_BTN_VOLUME;
1472 break;
1474 case KEYCODE_ENTER:
1475 event = MP_GPIO_BTN_NAVIGATION;
1476 break;
1478 case KEYCODE_M:
1479 event = MP_GPIO_BTN_MENU;
1480 break;
1482 /* Do not repeat already pressed buttons */
1483 if (!(keycode & KEY_RELEASED) && !(gpio_in_state & event))
1484 event = 0;
1487 if (event) {
1488 if (keycode & KEY_RELEASED) {
1489 gpio_in_state |= event;
1490 } else {
1491 gpio_in_state &= ~event;
1492 gpio_isr = event;
1493 qemu_irq_raise(irq);
1497 kbd_extended = 0;
1500 static struct arm_boot_info musicpal_binfo = {
1501 .loader_start = 0x0,
1502 .board_id = 0x20e,
1505 static void musicpal_init(ram_addr_t ram_size,
1506 const char *boot_device,
1507 const char *kernel_filename, const char *kernel_cmdline,
1508 const char *initrd_filename, const char *cpu_model)
1510 CPUState *env;
1511 qemu_irq *cpu_pic;
1512 qemu_irq pic[32];
1513 DeviceState *dev;
1514 int i;
1515 int index;
1516 unsigned long flash_size;
1518 if (!cpu_model)
1519 cpu_model = "arm926";
1521 env = cpu_init(cpu_model);
1522 if (!env) {
1523 fprintf(stderr, "Unable to find CPU definition\n");
1524 exit(1);
1526 cpu_pic = arm_pic_init_cpu(env);
1528 /* For now we use a fixed - the original - RAM size */
1529 cpu_register_physical_memory(0, MP_RAM_DEFAULT_SIZE,
1530 qemu_ram_alloc(MP_RAM_DEFAULT_SIZE));
1532 sram_off = qemu_ram_alloc(MP_SRAM_SIZE);
1533 cpu_register_physical_memory(MP_SRAM_BASE, MP_SRAM_SIZE, sram_off);
1535 dev = sysbus_create_simple("mv88w8618_pic", MP_PIC_BASE,
1536 cpu_pic[ARM_PIC_CPU_IRQ]);
1537 for (i = 0; i < 32; i++) {
1538 pic[i] = qdev_get_gpio_in(dev, i);
1540 sysbus_create_varargs("mv88w8618_pit", MP_PIT_BASE, pic[MP_TIMER1_IRQ],
1541 pic[MP_TIMER2_IRQ], pic[MP_TIMER3_IRQ],
1542 pic[MP_TIMER4_IRQ], NULL);
1544 if (serial_hds[0])
1545 serial_mm_init(MP_UART1_BASE, 2, pic[MP_UART1_IRQ], 1825000,
1546 serial_hds[0], 1);
1547 if (serial_hds[1])
1548 serial_mm_init(MP_UART2_BASE, 2, pic[MP_UART2_IRQ], 1825000,
1549 serial_hds[1], 1);
1551 /* Register flash */
1552 index = drive_get_index(IF_PFLASH, 0, 0);
1553 if (index != -1) {
1554 flash_size = bdrv_getlength(drives_table[index].bdrv);
1555 if (flash_size != 8*1024*1024 && flash_size != 16*1024*1024 &&
1556 flash_size != 32*1024*1024) {
1557 fprintf(stderr, "Invalid flash image size\n");
1558 exit(1);
1562 * The original U-Boot accesses the flash at 0xFE000000 instead of
1563 * 0xFF800000 (if there is 8 MB flash). So remap flash access if the
1564 * image is smaller than 32 MB.
1566 pflash_cfi02_register(0-MP_FLASH_SIZE_MAX, qemu_ram_alloc(flash_size),
1567 drives_table[index].bdrv, 0x10000,
1568 (flash_size + 0xffff) >> 16,
1569 MP_FLASH_SIZE_MAX / flash_size,
1570 2, 0x00BF, 0x236D, 0x0000, 0x0000,
1571 0x5555, 0x2AAA);
1573 sysbus_create_simple("mv88w8618_flashcfg", MP_FLASHCFG_BASE, NULL);
1575 sysbus_create_simple("musicpal_lcd", MP_LCD_BASE, NULL);
1577 qemu_add_kbd_event_handler(musicpal_key_event, pic[MP_GPIO_IRQ]);
1579 qemu_check_nic_model(&nd_table[0], "mv88w8618");
1580 dev = qdev_create(NULL, "mv88w8618_eth");
1581 qdev_set_netdev(dev, &nd_table[0]);
1582 qdev_init(dev);
1583 sysbus_mmio_map(sysbus_from_qdev(dev), 0, MP_ETH_BASE);
1584 sysbus_connect_irq(sysbus_from_qdev(dev), 0, pic[MP_ETH_IRQ]);
1586 mixer_i2c = musicpal_audio_init(pic[MP_AUDIO_IRQ]);
1588 sysbus_create_simple("mv88w8618_wlan", MP_WLAN_BASE, NULL);
1590 musicpal_misc_init();
1591 musicpal_gpio_init();
1593 musicpal_binfo.ram_size = MP_RAM_DEFAULT_SIZE;
1594 musicpal_binfo.kernel_filename = kernel_filename;
1595 musicpal_binfo.kernel_cmdline = kernel_cmdline;
1596 musicpal_binfo.initrd_filename = initrd_filename;
1597 arm_load_kernel(env, &musicpal_binfo);
1600 static QEMUMachine musicpal_machine = {
1601 .name = "musicpal",
1602 .desc = "Marvell 88w8618 / MusicPal (ARM926EJ-S)",
1603 .init = musicpal_init,
1606 static void musicpal_machine_init(void)
1608 qemu_register_machine(&musicpal_machine);
1611 machine_init(musicpal_machine_init);
1613 static void musicpal_register_devices(void)
1615 sysbus_register_dev("mv88w8618_pic", sizeof(mv88w8618_pic_state),
1616 mv88w8618_pic_init);
1617 sysbus_register_dev("mv88w8618_pit", sizeof(mv88w8618_pit_state),
1618 mv88w8618_pit_init);
1619 sysbus_register_dev("mv88w8618_flashcfg", sizeof(mv88w8618_flashcfg_state),
1620 mv88w8618_flashcfg_init);
1621 sysbus_register_dev("mv88w8618_eth", sizeof(mv88w8618_eth_state),
1622 mv88w8618_eth_init);
1623 sysbus_register_dev("mv88w8618_wlan", sizeof(SysBusDevice),
1624 mv88w8618_wlan_init);
1625 sysbus_register_dev("musicpal_lcd", sizeof(musicpal_lcd_state),
1626 musicpal_lcd_init);
1629 device_init(musicpal_register_devices)