net: unbreak tap networking
[qemu-kvm/fedora.git] / cpu-exec.c
blobbb77b5e8c003fd2bebe1ca4ab46168d3eefdc8b0
1 /*
2 * i386 emulator main execution loop
4 * Copyright (c) 2003-2005 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, write to the Free Software
18 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston MA 02110-1301 USA
20 #include "config.h"
21 #include "exec.h"
22 #include "disas.h"
23 #if !defined(TARGET_IA64)
24 #include "tcg.h"
25 #endif
26 #include "kvm.h"
28 #if !defined(CONFIG_SOFTMMU)
29 #undef EAX
30 #undef ECX
31 #undef EDX
32 #undef EBX
33 #undef ESP
34 #undef EBP
35 #undef ESI
36 #undef EDI
37 #undef EIP
38 #include <signal.h>
39 #ifdef __linux__
40 #include <sys/ucontext.h>
41 #endif
42 #endif
44 #include "qemu-kvm.h"
46 #if defined(__sparc__) && !defined(HOST_SOLARIS)
47 // Work around ugly bugs in glibc that mangle global register contents
48 #undef env
49 #define env cpu_single_env
50 #endif
52 int tb_invalidated_flag;
54 //#define DEBUG_EXEC
55 //#define DEBUG_SIGNAL
57 void cpu_loop_exit(void)
59 /* NOTE: the register at this point must be saved by hand because
60 longjmp restore them */
61 regs_to_env();
62 longjmp(env->jmp_env, 1);
65 /* exit the current TB from a signal handler. The host registers are
66 restored in a state compatible with the CPU emulator
68 void cpu_resume_from_signal(CPUState *env1, void *puc)
70 #if !defined(CONFIG_SOFTMMU)
71 #ifdef __linux__
72 struct ucontext *uc = puc;
73 #elif defined(__OpenBSD__)
74 struct sigcontext *uc = puc;
75 #endif
76 #endif
78 env = env1;
80 /* XXX: restore cpu registers saved in host registers */
82 #if !defined(CONFIG_SOFTMMU)
83 if (puc) {
84 /* XXX: use siglongjmp ? */
85 #ifdef __linux__
86 sigprocmask(SIG_SETMASK, &uc->uc_sigmask, NULL);
87 #elif defined(__OpenBSD__)
88 sigprocmask(SIG_SETMASK, &uc->sc_mask, NULL);
89 #endif
91 #endif
92 env->exception_index = -1;
93 longjmp(env->jmp_env, 1);
96 /* Execute the code without caching the generated code. An interpreter
97 could be used if available. */
98 static void cpu_exec_nocache(int max_cycles, TranslationBlock *orig_tb)
100 unsigned long next_tb;
101 TranslationBlock *tb;
103 /* Should never happen.
104 We only end up here when an existing TB is too long. */
105 if (max_cycles > CF_COUNT_MASK)
106 max_cycles = CF_COUNT_MASK;
108 tb = tb_gen_code(env, orig_tb->pc, orig_tb->cs_base, orig_tb->flags,
109 max_cycles);
110 env->current_tb = tb;
111 /* execute the generated code */
112 next_tb = tcg_qemu_tb_exec(tb->tc_ptr);
114 if ((next_tb & 3) == 2) {
115 /* Restore PC. This may happen if async event occurs before
116 the TB starts executing. */
117 cpu_pc_from_tb(env, tb);
119 tb_phys_invalidate(tb, -1);
120 tb_free(tb);
123 static TranslationBlock *tb_find_slow(target_ulong pc,
124 target_ulong cs_base,
125 uint64_t flags)
127 TranslationBlock *tb, **ptb1;
128 unsigned int h;
129 target_ulong phys_pc, phys_page1, phys_page2, virt_page2;
131 tb_invalidated_flag = 0;
133 regs_to_env(); /* XXX: do it just before cpu_gen_code() */
135 /* find translated block using physical mappings */
136 phys_pc = get_phys_addr_code(env, pc);
137 phys_page1 = phys_pc & TARGET_PAGE_MASK;
138 phys_page2 = -1;
139 h = tb_phys_hash_func(phys_pc);
140 ptb1 = &tb_phys_hash[h];
141 for(;;) {
142 tb = *ptb1;
143 if (!tb)
144 goto not_found;
145 if (tb->pc == pc &&
146 tb->page_addr[0] == phys_page1 &&
147 tb->cs_base == cs_base &&
148 tb->flags == flags) {
149 /* check next page if needed */
150 if (tb->page_addr[1] != -1) {
151 virt_page2 = (pc & TARGET_PAGE_MASK) +
152 TARGET_PAGE_SIZE;
153 phys_page2 = get_phys_addr_code(env, virt_page2);
154 if (tb->page_addr[1] == phys_page2)
155 goto found;
156 } else {
157 goto found;
160 ptb1 = &tb->phys_hash_next;
162 not_found:
163 /* if no translated code available, then translate it now */
164 tb = tb_gen_code(env, pc, cs_base, flags, 0);
166 found:
167 /* we add the TB in the virtual pc hash table */
168 env->tb_jmp_cache[tb_jmp_cache_hash_func(pc)] = tb;
169 return tb;
172 static inline TranslationBlock *tb_find_fast(void)
174 TranslationBlock *tb;
175 target_ulong cs_base, pc;
176 int flags;
178 /* we record a subset of the CPU state. It will
179 always be the same before a given translated block
180 is executed. */
181 cpu_get_tb_cpu_state(env, &pc, &cs_base, &flags);
182 tb = env->tb_jmp_cache[tb_jmp_cache_hash_func(pc)];
183 if (unlikely(!tb || tb->pc != pc || tb->cs_base != cs_base ||
184 tb->flags != flags)) {
185 tb = tb_find_slow(pc, cs_base, flags);
187 return tb;
190 static CPUDebugExcpHandler *debug_excp_handler;
192 CPUDebugExcpHandler *cpu_set_debug_excp_handler(CPUDebugExcpHandler *handler)
194 CPUDebugExcpHandler *old_handler = debug_excp_handler;
196 debug_excp_handler = handler;
197 return old_handler;
200 static void cpu_handle_debug_exception(CPUState *env)
202 CPUWatchpoint *wp;
204 if (!env->watchpoint_hit)
205 TAILQ_FOREACH(wp, &env->watchpoints, entry)
206 wp->flags &= ~BP_WATCHPOINT_HIT;
208 if (debug_excp_handler)
209 debug_excp_handler(env);
212 /* main execution loop */
214 int cpu_exec(CPUState *env1)
216 #define DECLARE_HOST_REGS 1
217 #include "hostregs_helper.h"
218 int ret, interrupt_request;
219 TranslationBlock *tb;
220 uint8_t *tc_ptr;
221 unsigned long next_tb;
223 if (cpu_halted(env1) == EXCP_HALTED)
224 return EXCP_HALTED;
226 cpu_single_env = env1;
228 /* first we save global registers */
229 #define SAVE_HOST_REGS 1
230 #include "hostregs_helper.h"
231 env = env1;
233 env_to_regs();
234 #if defined(TARGET_I386)
235 /* put eflags in CPU temporary format */
236 CC_SRC = env->eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
237 DF = 1 - (2 * ((env->eflags >> 10) & 1));
238 CC_OP = CC_OP_EFLAGS;
239 env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
240 #elif defined(TARGET_SPARC)
241 #elif defined(TARGET_M68K)
242 env->cc_op = CC_OP_FLAGS;
243 env->cc_dest = env->sr & 0xf;
244 env->cc_x = (env->sr >> 4) & 1;
245 #elif defined(TARGET_ALPHA)
246 #elif defined(TARGET_ARM)
247 #elif defined(TARGET_PPC)
248 #elif defined(TARGET_MIPS)
249 #elif defined(TARGET_SH4)
250 #elif defined(TARGET_CRIS)
251 #elif defined(TARGET_IA64)
252 /* XXXXX */
253 #else
254 #error unsupported target CPU
255 #endif
256 env->exception_index = -1;
258 /* prepare setjmp context for exception handling */
259 for(;;) {
260 if (setjmp(env->jmp_env) == 0) {
261 #if defined(__sparc__) && !defined(HOST_SOLARIS)
262 #undef env
263 env = cpu_single_env;
264 #define env cpu_single_env
265 #endif
266 env->current_tb = NULL;
267 /* if an exception is pending, we execute it here */
268 if (env->exception_index >= 0) {
269 if (env->exception_index >= EXCP_INTERRUPT) {
270 /* exit request from the cpu execution loop */
271 ret = env->exception_index;
272 if (ret == EXCP_DEBUG)
273 cpu_handle_debug_exception(env);
274 break;
275 } else {
276 #if defined(CONFIG_USER_ONLY)
277 /* if user mode only, we simulate a fake exception
278 which will be handled outside the cpu execution
279 loop */
280 #if defined(TARGET_I386)
281 do_interrupt_user(env->exception_index,
282 env->exception_is_int,
283 env->error_code,
284 env->exception_next_eip);
285 /* successfully delivered */
286 env->old_exception = -1;
287 #endif
288 ret = env->exception_index;
289 break;
290 #else
291 #if defined(TARGET_I386)
292 /* simulate a real cpu exception. On i386, it can
293 trigger new exceptions, but we do not handle
294 double or triple faults yet. */
295 do_interrupt(env->exception_index,
296 env->exception_is_int,
297 env->error_code,
298 env->exception_next_eip, 0);
299 /* successfully delivered */
300 env->old_exception = -1;
301 #elif defined(TARGET_PPC)
302 do_interrupt(env);
303 #elif defined(TARGET_MIPS)
304 do_interrupt(env);
305 #elif defined(TARGET_SPARC)
306 do_interrupt(env);
307 #elif defined(TARGET_ARM)
308 do_interrupt(env);
309 #elif defined(TARGET_SH4)
310 do_interrupt(env);
311 #elif defined(TARGET_ALPHA)
312 do_interrupt(env);
313 #elif defined(TARGET_CRIS)
314 do_interrupt(env);
315 #elif defined(TARGET_M68K)
316 do_interrupt(0);
317 #elif defined(TARGET_IA64)
318 do_interrupt(env);
319 #endif
320 #endif
322 env->exception_index = -1;
324 #ifdef CONFIG_KQEMU
325 if (kqemu_is_ok(env) && env->interrupt_request == 0 && env->exit_request == 0) {
326 int ret;
327 env->eflags = env->eflags | helper_cc_compute_all(CC_OP) | (DF & DF_MASK);
328 ret = kqemu_cpu_exec(env);
329 /* put eflags in CPU temporary format */
330 CC_SRC = env->eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
331 DF = 1 - (2 * ((env->eflags >> 10) & 1));
332 CC_OP = CC_OP_EFLAGS;
333 env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
334 if (ret == 1) {
335 /* exception */
336 longjmp(env->jmp_env, 1);
337 } else if (ret == 2) {
338 /* softmmu execution needed */
339 } else {
340 if (env->interrupt_request != 0 || env->exit_request != 0) {
341 /* hardware interrupt will be executed just after */
342 } else {
343 /* otherwise, we restart */
344 longjmp(env->jmp_env, 1);
348 #endif
350 /* kvm vcpu threads */
351 if (kvm_enabled()) {
352 kvm_cpu_exec(env);
353 longjmp(env->jmp_env, 1);
356 if (kvm_enabled()) {
357 kvm_cpu_exec(env);
358 longjmp(env->jmp_env, 1);
361 next_tb = 0; /* force lookup of first TB */
362 for(;;) {
363 interrupt_request = env->interrupt_request;
364 if (unlikely(interrupt_request)) {
365 if (unlikely(env->singlestep_enabled & SSTEP_NOIRQ)) {
366 /* Mask out external interrupts for this step. */
367 interrupt_request &= ~(CPU_INTERRUPT_HARD |
368 CPU_INTERRUPT_FIQ |
369 CPU_INTERRUPT_SMI |
370 CPU_INTERRUPT_NMI);
372 if (interrupt_request & CPU_INTERRUPT_DEBUG) {
373 env->interrupt_request &= ~CPU_INTERRUPT_DEBUG;
374 env->exception_index = EXCP_DEBUG;
375 cpu_loop_exit();
377 #if defined(TARGET_ARM) || defined(TARGET_SPARC) || defined(TARGET_MIPS) || \
378 defined(TARGET_PPC) || defined(TARGET_ALPHA) || defined(TARGET_CRIS)
379 if (interrupt_request & CPU_INTERRUPT_HALT) {
380 env->interrupt_request &= ~CPU_INTERRUPT_HALT;
381 env->halted = 1;
382 env->exception_index = EXCP_HLT;
383 cpu_loop_exit();
385 #endif
386 #if defined(TARGET_I386)
387 if (env->hflags2 & HF2_GIF_MASK) {
388 if ((interrupt_request & CPU_INTERRUPT_SMI) &&
389 !(env->hflags & HF_SMM_MASK)) {
390 svm_check_intercept(SVM_EXIT_SMI);
391 env->interrupt_request &= ~CPU_INTERRUPT_SMI;
392 do_smm_enter();
393 next_tb = 0;
394 } else if ((interrupt_request & CPU_INTERRUPT_NMI) &&
395 !(env->hflags2 & HF2_NMI_MASK)) {
396 env->interrupt_request &= ~CPU_INTERRUPT_NMI;
397 env->hflags2 |= HF2_NMI_MASK;
398 do_interrupt(EXCP02_NMI, 0, 0, 0, 1);
399 next_tb = 0;
400 } else if ((interrupt_request & CPU_INTERRUPT_HARD) &&
401 (((env->hflags2 & HF2_VINTR_MASK) &&
402 (env->hflags2 & HF2_HIF_MASK)) ||
403 (!(env->hflags2 & HF2_VINTR_MASK) &&
404 (env->eflags & IF_MASK &&
405 !(env->hflags & HF_INHIBIT_IRQ_MASK))))) {
406 int intno;
407 svm_check_intercept(SVM_EXIT_INTR);
408 env->interrupt_request &= ~(CPU_INTERRUPT_HARD | CPU_INTERRUPT_VIRQ);
409 intno = cpu_get_pic_interrupt(env);
410 qemu_log_mask(CPU_LOG_TB_IN_ASM, "Servicing hardware INT=0x%02x\n", intno);
411 #if defined(__sparc__) && !defined(HOST_SOLARIS)
412 #undef env
413 env = cpu_single_env;
414 #define env cpu_single_env
415 #endif
416 do_interrupt(intno, 0, 0, 0, 1);
417 /* ensure that no TB jump will be modified as
418 the program flow was changed */
419 next_tb = 0;
420 #if !defined(CONFIG_USER_ONLY)
421 } else if ((interrupt_request & CPU_INTERRUPT_VIRQ) &&
422 (env->eflags & IF_MASK) &&
423 !(env->hflags & HF_INHIBIT_IRQ_MASK)) {
424 int intno;
425 /* FIXME: this should respect TPR */
426 svm_check_intercept(SVM_EXIT_VINTR);
427 intno = ldl_phys(env->vm_vmcb + offsetof(struct vmcb, control.int_vector));
428 qemu_log_mask(CPU_LOG_TB_IN_ASM, "Servicing virtual hardware INT=0x%02x\n", intno);
429 do_interrupt(intno, 0, 0, 0, 1);
430 env->interrupt_request &= ~CPU_INTERRUPT_VIRQ;
431 next_tb = 0;
432 #endif
435 #elif defined(TARGET_PPC)
436 #if 0
437 if ((interrupt_request & CPU_INTERRUPT_RESET)) {
438 cpu_ppc_reset(env);
440 #endif
441 if (interrupt_request & CPU_INTERRUPT_HARD) {
442 ppc_hw_interrupt(env);
443 if (env->pending_interrupts == 0)
444 env->interrupt_request &= ~CPU_INTERRUPT_HARD;
445 next_tb = 0;
447 #elif defined(TARGET_MIPS)
448 if ((interrupt_request & CPU_INTERRUPT_HARD) &&
449 (env->CP0_Status & env->CP0_Cause & CP0Ca_IP_mask) &&
450 (env->CP0_Status & (1 << CP0St_IE)) &&
451 !(env->CP0_Status & (1 << CP0St_EXL)) &&
452 !(env->CP0_Status & (1 << CP0St_ERL)) &&
453 !(env->hflags & MIPS_HFLAG_DM)) {
454 /* Raise it */
455 env->exception_index = EXCP_EXT_INTERRUPT;
456 env->error_code = 0;
457 do_interrupt(env);
458 next_tb = 0;
460 #elif defined(TARGET_SPARC)
461 if ((interrupt_request & CPU_INTERRUPT_HARD) &&
462 (env->psret != 0)) {
463 int pil = env->interrupt_index & 15;
464 int type = env->interrupt_index & 0xf0;
466 if (((type == TT_EXTINT) &&
467 (pil == 15 || pil > env->psrpil)) ||
468 type != TT_EXTINT) {
469 env->interrupt_request &= ~CPU_INTERRUPT_HARD;
470 env->exception_index = env->interrupt_index;
471 do_interrupt(env);
472 env->interrupt_index = 0;
473 #if !defined(TARGET_SPARC64) && !defined(CONFIG_USER_ONLY)
474 cpu_check_irqs(env);
475 #endif
476 next_tb = 0;
478 } else if (interrupt_request & CPU_INTERRUPT_TIMER) {
479 //do_interrupt(0, 0, 0, 0, 0);
480 env->interrupt_request &= ~CPU_INTERRUPT_TIMER;
482 #elif defined(TARGET_ARM)
483 if (interrupt_request & CPU_INTERRUPT_FIQ
484 && !(env->uncached_cpsr & CPSR_F)) {
485 env->exception_index = EXCP_FIQ;
486 do_interrupt(env);
487 next_tb = 0;
489 /* ARMv7-M interrupt return works by loading a magic value
490 into the PC. On real hardware the load causes the
491 return to occur. The qemu implementation performs the
492 jump normally, then does the exception return when the
493 CPU tries to execute code at the magic address.
494 This will cause the magic PC value to be pushed to
495 the stack if an interrupt occured at the wrong time.
496 We avoid this by disabling interrupts when
497 pc contains a magic address. */
498 if (interrupt_request & CPU_INTERRUPT_HARD
499 && ((IS_M(env) && env->regs[15] < 0xfffffff0)
500 || !(env->uncached_cpsr & CPSR_I))) {
501 env->exception_index = EXCP_IRQ;
502 do_interrupt(env);
503 next_tb = 0;
505 #elif defined(TARGET_SH4)
506 if (interrupt_request & CPU_INTERRUPT_HARD) {
507 do_interrupt(env);
508 next_tb = 0;
510 #elif defined(TARGET_ALPHA)
511 if (interrupt_request & CPU_INTERRUPT_HARD) {
512 do_interrupt(env);
513 next_tb = 0;
515 #elif defined(TARGET_CRIS)
516 if (interrupt_request & CPU_INTERRUPT_HARD
517 && (env->pregs[PR_CCS] & I_FLAG)) {
518 env->exception_index = EXCP_IRQ;
519 do_interrupt(env);
520 next_tb = 0;
522 if (interrupt_request & CPU_INTERRUPT_NMI
523 && (env->pregs[PR_CCS] & M_FLAG)) {
524 env->exception_index = EXCP_NMI;
525 do_interrupt(env);
526 next_tb = 0;
528 #elif defined(TARGET_M68K)
529 if (interrupt_request & CPU_INTERRUPT_HARD
530 && ((env->sr & SR_I) >> SR_I_SHIFT)
531 < env->pending_level) {
532 /* Real hardware gets the interrupt vector via an
533 IACK cycle at this point. Current emulated
534 hardware doesn't rely on this, so we
535 provide/save the vector when the interrupt is
536 first signalled. */
537 env->exception_index = env->pending_vector;
538 do_interrupt(1);
539 next_tb = 0;
541 #endif
542 /* Don't use the cached interupt_request value,
543 do_interrupt may have updated the EXITTB flag. */
544 if (env->interrupt_request & CPU_INTERRUPT_EXITTB) {
545 env->interrupt_request &= ~CPU_INTERRUPT_EXITTB;
546 /* ensure that no TB jump will be modified as
547 the program flow was changed */
548 next_tb = 0;
551 if (unlikely(env->exit_request)) {
552 env->exit_request = 0;
553 env->exception_index = EXCP_INTERRUPT;
554 cpu_loop_exit();
556 #ifdef DEBUG_EXEC
557 if (qemu_loglevel_mask(CPU_LOG_TB_CPU)) {
558 /* restore flags in standard format */
559 regs_to_env();
560 #if defined(TARGET_I386)
561 env->eflags = env->eflags | helper_cc_compute_all(CC_OP) | (DF & DF_MASK);
562 log_cpu_state(env, X86_DUMP_CCOP);
563 env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
564 #elif defined(TARGET_ARM)
565 log_cpu_state(env, 0);
566 #elif defined(TARGET_SPARC)
567 log_cpu_state(env, 0);
568 #elif defined(TARGET_PPC)
569 log_cpu_state(env, 0);
570 #elif defined(TARGET_M68K)
571 cpu_m68k_flush_flags(env, env->cc_op);
572 env->cc_op = CC_OP_FLAGS;
573 env->sr = (env->sr & 0xffe0)
574 | env->cc_dest | (env->cc_x << 4);
575 log_cpu_state(env, 0);
576 #elif defined(TARGET_MIPS)
577 log_cpu_state(env, 0);
578 #elif defined(TARGET_SH4)
579 log_cpu_state(env, 0);
580 #elif defined(TARGET_ALPHA)
581 log_cpu_state(env, 0);
582 #elif defined(TARGET_CRIS)
583 log_cpu_state(env, 0);
584 #else
585 #error unsupported target CPU
586 #endif
588 #endif
589 spin_lock(&tb_lock);
590 tb = tb_find_fast();
591 /* Note: we do it here to avoid a gcc bug on Mac OS X when
592 doing it in tb_find_slow */
593 if (tb_invalidated_flag) {
594 /* as some TB could have been invalidated because
595 of memory exceptions while generating the code, we
596 must recompute the hash index here */
597 next_tb = 0;
598 tb_invalidated_flag = 0;
600 #ifdef DEBUG_EXEC
601 qemu_log_mask(CPU_LOG_EXEC, "Trace 0x%08lx [" TARGET_FMT_lx "] %s\n",
602 (long)tb->tc_ptr, tb->pc,
603 lookup_symbol(tb->pc));
604 #endif
605 /* see if we can patch the calling TB. When the TB
606 spans two pages, we cannot safely do a direct
607 jump. */
609 if (next_tb != 0 &&
610 #ifdef CONFIG_KQEMU
611 (env->kqemu_enabled != 2) &&
612 #endif
613 tb->page_addr[1] == -1) {
614 tb_add_jump((TranslationBlock *)(next_tb & ~3), next_tb & 3, tb);
617 spin_unlock(&tb_lock);
618 env->current_tb = tb;
620 /* cpu_interrupt might be called while translating the
621 TB, but before it is linked into a potentially
622 infinite loop and becomes env->current_tb. Avoid
623 starting execution if there is a pending interrupt. */
624 if (unlikely (env->exit_request))
625 env->current_tb = NULL;
627 while (env->current_tb) {
628 tc_ptr = tb->tc_ptr;
629 /* execute the generated code */
630 #if defined(__sparc__) && !defined(HOST_SOLARIS)
631 #undef env
632 env = cpu_single_env;
633 #define env cpu_single_env
634 #endif
635 next_tb = tcg_qemu_tb_exec(tc_ptr);
636 env->current_tb = NULL;
637 if ((next_tb & 3) == 2) {
638 /* Instruction counter expired. */
639 int insns_left;
640 tb = (TranslationBlock *)(long)(next_tb & ~3);
641 /* Restore PC. */
642 cpu_pc_from_tb(env, tb);
643 insns_left = env->icount_decr.u32;
644 if (env->icount_extra && insns_left >= 0) {
645 /* Refill decrementer and continue execution. */
646 env->icount_extra += insns_left;
647 if (env->icount_extra > 0xffff) {
648 insns_left = 0xffff;
649 } else {
650 insns_left = env->icount_extra;
652 env->icount_extra -= insns_left;
653 env->icount_decr.u16.low = insns_left;
654 } else {
655 if (insns_left > 0) {
656 /* Execute remaining instructions. */
657 cpu_exec_nocache(insns_left, tb);
659 env->exception_index = EXCP_INTERRUPT;
660 next_tb = 0;
661 cpu_loop_exit();
665 /* reset soft MMU for next block (it can currently
666 only be set by a memory fault) */
667 #if defined(CONFIG_KQEMU)
668 #define MIN_CYCLE_BEFORE_SWITCH (100 * 1000)
669 if (kqemu_is_ok(env) &&
670 (cpu_get_time_fast() - env->last_io_time) >= MIN_CYCLE_BEFORE_SWITCH) {
671 cpu_loop_exit();
673 #endif
674 } /* for(;;) */
675 } else {
676 env_to_regs();
678 } /* for(;;) */
681 #if defined(TARGET_I386)
682 /* restore flags in standard format */
683 env->eflags = env->eflags | helper_cc_compute_all(CC_OP) | (DF & DF_MASK);
684 #elif defined(TARGET_ARM)
685 /* XXX: Save/restore host fpu exception state?. */
686 #elif defined(TARGET_SPARC)
687 #elif defined(TARGET_PPC)
688 #elif defined(TARGET_M68K)
689 cpu_m68k_flush_flags(env, env->cc_op);
690 env->cc_op = CC_OP_FLAGS;
691 env->sr = (env->sr & 0xffe0)
692 | env->cc_dest | (env->cc_x << 4);
693 #elif defined(TARGET_MIPS)
694 #elif defined(TARGET_SH4)
695 #elif defined(TARGET_IA64)
696 #elif defined(TARGET_ALPHA)
697 #elif defined(TARGET_CRIS)
698 /* XXXXX */
699 #else
700 #error unsupported target CPU
701 #endif
703 /* restore global registers */
704 #include "hostregs_helper.h"
706 /* fail safe : never use cpu_single_env outside cpu_exec() */
707 cpu_single_env = NULL;
708 return ret;
711 /* must only be called from the generated code as an exception can be
712 generated */
713 void tb_invalidate_page_range(target_ulong start, target_ulong end)
715 /* XXX: cannot enable it yet because it yields to MMU exception
716 where NIP != read address on PowerPC */
717 #if 0
718 target_ulong phys_addr;
719 phys_addr = get_phys_addr_code(env, start);
720 tb_invalidate_phys_page_range(phys_addr, phys_addr + end - start, 0);
721 #endif
724 #if defined(TARGET_I386) && defined(CONFIG_USER_ONLY)
726 void cpu_x86_load_seg(CPUX86State *s, int seg_reg, int selector)
728 CPUX86State *saved_env;
730 saved_env = env;
731 env = s;
732 if (!(env->cr[0] & CR0_PE_MASK) || (env->eflags & VM_MASK)) {
733 selector &= 0xffff;
734 cpu_x86_load_seg_cache(env, seg_reg, selector,
735 (selector << 4), 0xffff, 0);
736 } else {
737 helper_load_seg(seg_reg, selector);
739 env = saved_env;
742 void cpu_x86_fsave(CPUX86State *s, target_ulong ptr, int data32)
744 CPUX86State *saved_env;
746 saved_env = env;
747 env = s;
749 helper_fsave(ptr, data32);
751 env = saved_env;
754 void cpu_x86_frstor(CPUX86State *s, target_ulong ptr, int data32)
756 CPUX86State *saved_env;
758 saved_env = env;
759 env = s;
761 helper_frstor(ptr, data32);
763 env = saved_env;
766 #endif /* TARGET_I386 */
768 #if !defined(CONFIG_SOFTMMU)
770 #if defined(TARGET_I386)
772 /* 'pc' is the host PC at which the exception was raised. 'address' is
773 the effective address of the memory exception. 'is_write' is 1 if a
774 write caused the exception and otherwise 0'. 'old_set' is the
775 signal set which should be restored */
776 static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
777 int is_write, sigset_t *old_set,
778 void *puc)
780 TranslationBlock *tb;
781 int ret;
783 if (cpu_single_env)
784 env = cpu_single_env; /* XXX: find a correct solution for multithread */
785 #if defined(DEBUG_SIGNAL)
786 qemu_printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
787 pc, address, is_write, *(unsigned long *)old_set);
788 #endif
789 /* XXX: locking issue */
790 if (is_write && page_unprotect(h2g(address), pc, puc)) {
791 return 1;
794 /* see if it is an MMU fault */
795 ret = cpu_x86_handle_mmu_fault(env, address, is_write, MMU_USER_IDX, 0);
796 if (ret < 0)
797 return 0; /* not an MMU fault */
798 if (ret == 0)
799 return 1; /* the MMU fault was handled without causing real CPU fault */
800 /* now we have a real cpu fault */
801 tb = tb_find_pc(pc);
802 if (tb) {
803 /* the PC is inside the translated code. It means that we have
804 a virtual CPU fault */
805 cpu_restore_state(tb, env, pc, puc);
807 if (ret == 1) {
808 #if 0
809 printf("PF exception: EIP=0x%08x CR2=0x%08x error=0x%x\n",
810 env->eip, env->cr[2], env->error_code);
811 #endif
812 /* we restore the process signal mask as the sigreturn should
813 do it (XXX: use sigsetjmp) */
814 sigprocmask(SIG_SETMASK, old_set, NULL);
815 raise_exception_err(env->exception_index, env->error_code);
816 } else {
817 /* activate soft MMU for this block */
818 env->hflags |= HF_SOFTMMU_MASK;
819 cpu_resume_from_signal(env, puc);
821 /* never comes here */
822 return 1;
825 #elif defined(TARGET_ARM)
826 static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
827 int is_write, sigset_t *old_set,
828 void *puc)
830 TranslationBlock *tb;
831 int ret;
833 if (cpu_single_env)
834 env = cpu_single_env; /* XXX: find a correct solution for multithread */
835 #if defined(DEBUG_SIGNAL)
836 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
837 pc, address, is_write, *(unsigned long *)old_set);
838 #endif
839 /* XXX: locking issue */
840 if (is_write && page_unprotect(h2g(address), pc, puc)) {
841 return 1;
843 /* see if it is an MMU fault */
844 ret = cpu_arm_handle_mmu_fault(env, address, is_write, MMU_USER_IDX, 0);
845 if (ret < 0)
846 return 0; /* not an MMU fault */
847 if (ret == 0)
848 return 1; /* the MMU fault was handled without causing real CPU fault */
849 /* now we have a real cpu fault */
850 tb = tb_find_pc(pc);
851 if (tb) {
852 /* the PC is inside the translated code. It means that we have
853 a virtual CPU fault */
854 cpu_restore_state(tb, env, pc, puc);
856 /* we restore the process signal mask as the sigreturn should
857 do it (XXX: use sigsetjmp) */
858 sigprocmask(SIG_SETMASK, old_set, NULL);
859 cpu_loop_exit();
860 /* never comes here */
861 return 1;
863 #elif defined(TARGET_SPARC)
864 static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
865 int is_write, sigset_t *old_set,
866 void *puc)
868 TranslationBlock *tb;
869 int ret;
871 if (cpu_single_env)
872 env = cpu_single_env; /* XXX: find a correct solution for multithread */
873 #if defined(DEBUG_SIGNAL)
874 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
875 pc, address, is_write, *(unsigned long *)old_set);
876 #endif
877 /* XXX: locking issue */
878 if (is_write && page_unprotect(h2g(address), pc, puc)) {
879 return 1;
881 /* see if it is an MMU fault */
882 ret = cpu_sparc_handle_mmu_fault(env, address, is_write, MMU_USER_IDX, 0);
883 if (ret < 0)
884 return 0; /* not an MMU fault */
885 if (ret == 0)
886 return 1; /* the MMU fault was handled without causing real CPU fault */
887 /* now we have a real cpu fault */
888 tb = tb_find_pc(pc);
889 if (tb) {
890 /* the PC is inside the translated code. It means that we have
891 a virtual CPU fault */
892 cpu_restore_state(tb, env, pc, puc);
894 /* we restore the process signal mask as the sigreturn should
895 do it (XXX: use sigsetjmp) */
896 sigprocmask(SIG_SETMASK, old_set, NULL);
897 cpu_loop_exit();
898 /* never comes here */
899 return 1;
901 #elif defined (TARGET_PPC)
902 static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
903 int is_write, sigset_t *old_set,
904 void *puc)
906 TranslationBlock *tb;
907 int ret;
909 if (cpu_single_env)
910 env = cpu_single_env; /* XXX: find a correct solution for multithread */
911 #if defined(DEBUG_SIGNAL)
912 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
913 pc, address, is_write, *(unsigned long *)old_set);
914 #endif
915 /* XXX: locking issue */
916 if (is_write && page_unprotect(h2g(address), pc, puc)) {
917 return 1;
920 /* see if it is an MMU fault */
921 ret = cpu_ppc_handle_mmu_fault(env, address, is_write, MMU_USER_IDX, 0);
922 if (ret < 0)
923 return 0; /* not an MMU fault */
924 if (ret == 0)
925 return 1; /* the MMU fault was handled without causing real CPU fault */
927 /* now we have a real cpu fault */
928 tb = tb_find_pc(pc);
929 if (tb) {
930 /* the PC is inside the translated code. It means that we have
931 a virtual CPU fault */
932 cpu_restore_state(tb, env, pc, puc);
934 if (ret == 1) {
935 #if 0
936 printf("PF exception: NIP=0x%08x error=0x%x %p\n",
937 env->nip, env->error_code, tb);
938 #endif
939 /* we restore the process signal mask as the sigreturn should
940 do it (XXX: use sigsetjmp) */
941 sigprocmask(SIG_SETMASK, old_set, NULL);
942 cpu_loop_exit();
943 } else {
944 /* activate soft MMU for this block */
945 cpu_resume_from_signal(env, puc);
947 /* never comes here */
948 return 1;
951 #elif defined(TARGET_M68K)
952 static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
953 int is_write, sigset_t *old_set,
954 void *puc)
956 TranslationBlock *tb;
957 int ret;
959 if (cpu_single_env)
960 env = cpu_single_env; /* XXX: find a correct solution for multithread */
961 #if defined(DEBUG_SIGNAL)
962 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
963 pc, address, is_write, *(unsigned long *)old_set);
964 #endif
965 /* XXX: locking issue */
966 if (is_write && page_unprotect(address, pc, puc)) {
967 return 1;
969 /* see if it is an MMU fault */
970 ret = cpu_m68k_handle_mmu_fault(env, address, is_write, MMU_USER_IDX, 0);
971 if (ret < 0)
972 return 0; /* not an MMU fault */
973 if (ret == 0)
974 return 1; /* the MMU fault was handled without causing real CPU fault */
975 /* now we have a real cpu fault */
976 tb = tb_find_pc(pc);
977 if (tb) {
978 /* the PC is inside the translated code. It means that we have
979 a virtual CPU fault */
980 cpu_restore_state(tb, env, pc, puc);
982 /* we restore the process signal mask as the sigreturn should
983 do it (XXX: use sigsetjmp) */
984 sigprocmask(SIG_SETMASK, old_set, NULL);
985 cpu_loop_exit();
986 /* never comes here */
987 return 1;
990 #elif defined (TARGET_MIPS)
991 static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
992 int is_write, sigset_t *old_set,
993 void *puc)
995 TranslationBlock *tb;
996 int ret;
998 if (cpu_single_env)
999 env = cpu_single_env; /* XXX: find a correct solution for multithread */
1000 #if defined(DEBUG_SIGNAL)
1001 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
1002 pc, address, is_write, *(unsigned long *)old_set);
1003 #endif
1004 /* XXX: locking issue */
1005 if (is_write && page_unprotect(h2g(address), pc, puc)) {
1006 return 1;
1009 /* see if it is an MMU fault */
1010 ret = cpu_mips_handle_mmu_fault(env, address, is_write, MMU_USER_IDX, 0);
1011 if (ret < 0)
1012 return 0; /* not an MMU fault */
1013 if (ret == 0)
1014 return 1; /* the MMU fault was handled without causing real CPU fault */
1016 /* now we have a real cpu fault */
1017 tb = tb_find_pc(pc);
1018 if (tb) {
1019 /* the PC is inside the translated code. It means that we have
1020 a virtual CPU fault */
1021 cpu_restore_state(tb, env, pc, puc);
1023 if (ret == 1) {
1024 #if 0
1025 printf("PF exception: PC=0x" TARGET_FMT_lx " error=0x%x %p\n",
1026 env->PC, env->error_code, tb);
1027 #endif
1028 /* we restore the process signal mask as the sigreturn should
1029 do it (XXX: use sigsetjmp) */
1030 sigprocmask(SIG_SETMASK, old_set, NULL);
1031 cpu_loop_exit();
1032 } else {
1033 /* activate soft MMU for this block */
1034 cpu_resume_from_signal(env, puc);
1036 /* never comes here */
1037 return 1;
1040 #elif defined (TARGET_SH4)
1041 static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
1042 int is_write, sigset_t *old_set,
1043 void *puc)
1045 TranslationBlock *tb;
1046 int ret;
1048 if (cpu_single_env)
1049 env = cpu_single_env; /* XXX: find a correct solution for multithread */
1050 #if defined(DEBUG_SIGNAL)
1051 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
1052 pc, address, is_write, *(unsigned long *)old_set);
1053 #endif
1054 /* XXX: locking issue */
1055 if (is_write && page_unprotect(h2g(address), pc, puc)) {
1056 return 1;
1059 /* see if it is an MMU fault */
1060 ret = cpu_sh4_handle_mmu_fault(env, address, is_write, MMU_USER_IDX, 0);
1061 if (ret < 0)
1062 return 0; /* not an MMU fault */
1063 if (ret == 0)
1064 return 1; /* the MMU fault was handled without causing real CPU fault */
1066 /* now we have a real cpu fault */
1067 tb = tb_find_pc(pc);
1068 if (tb) {
1069 /* the PC is inside the translated code. It means that we have
1070 a virtual CPU fault */
1071 cpu_restore_state(tb, env, pc, puc);
1073 #if 0
1074 printf("PF exception: NIP=0x%08x error=0x%x %p\n",
1075 env->nip, env->error_code, tb);
1076 #endif
1077 /* we restore the process signal mask as the sigreturn should
1078 do it (XXX: use sigsetjmp) */
1079 sigprocmask(SIG_SETMASK, old_set, NULL);
1080 cpu_loop_exit();
1081 /* never comes here */
1082 return 1;
1085 #elif defined (TARGET_ALPHA)
1086 static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
1087 int is_write, sigset_t *old_set,
1088 void *puc)
1090 TranslationBlock *tb;
1091 int ret;
1093 if (cpu_single_env)
1094 env = cpu_single_env; /* XXX: find a correct solution for multithread */
1095 #if defined(DEBUG_SIGNAL)
1096 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
1097 pc, address, is_write, *(unsigned long *)old_set);
1098 #endif
1099 /* XXX: locking issue */
1100 if (is_write && page_unprotect(h2g(address), pc, puc)) {
1101 return 1;
1104 /* see if it is an MMU fault */
1105 ret = cpu_alpha_handle_mmu_fault(env, address, is_write, MMU_USER_IDX, 0);
1106 if (ret < 0)
1107 return 0; /* not an MMU fault */
1108 if (ret == 0)
1109 return 1; /* the MMU fault was handled without causing real CPU fault */
1111 /* now we have a real cpu fault */
1112 tb = tb_find_pc(pc);
1113 if (tb) {
1114 /* the PC is inside the translated code. It means that we have
1115 a virtual CPU fault */
1116 cpu_restore_state(tb, env, pc, puc);
1118 #if 0
1119 printf("PF exception: NIP=0x%08x error=0x%x %p\n",
1120 env->nip, env->error_code, tb);
1121 #endif
1122 /* we restore the process signal mask as the sigreturn should
1123 do it (XXX: use sigsetjmp) */
1124 sigprocmask(SIG_SETMASK, old_set, NULL);
1125 cpu_loop_exit();
1126 /* never comes here */
1127 return 1;
1129 #elif defined (TARGET_CRIS)
1130 static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
1131 int is_write, sigset_t *old_set,
1132 void *puc)
1134 TranslationBlock *tb;
1135 int ret;
1137 if (cpu_single_env)
1138 env = cpu_single_env; /* XXX: find a correct solution for multithread */
1139 #if defined(DEBUG_SIGNAL)
1140 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
1141 pc, address, is_write, *(unsigned long *)old_set);
1142 #endif
1143 /* XXX: locking issue */
1144 if (is_write && page_unprotect(h2g(address), pc, puc)) {
1145 return 1;
1148 /* see if it is an MMU fault */
1149 ret = cpu_cris_handle_mmu_fault(env, address, is_write, MMU_USER_IDX, 0);
1150 if (ret < 0)
1151 return 0; /* not an MMU fault */
1152 if (ret == 0)
1153 return 1; /* the MMU fault was handled without causing real CPU fault */
1155 /* now we have a real cpu fault */
1156 tb = tb_find_pc(pc);
1157 if (tb) {
1158 /* the PC is inside the translated code. It means that we have
1159 a virtual CPU fault */
1160 cpu_restore_state(tb, env, pc, puc);
1162 /* we restore the process signal mask as the sigreturn should
1163 do it (XXX: use sigsetjmp) */
1164 sigprocmask(SIG_SETMASK, old_set, NULL);
1165 cpu_loop_exit();
1166 /* never comes here */
1167 return 1;
1170 #else
1171 #error unsupported target CPU
1172 #endif
1174 #if defined(__i386__)
1176 #if defined(__APPLE__)
1177 # include <sys/ucontext.h>
1179 # define EIP_sig(context) (*((unsigned long*)&(context)->uc_mcontext->ss.eip))
1180 # define TRAP_sig(context) ((context)->uc_mcontext->es.trapno)
1181 # define ERROR_sig(context) ((context)->uc_mcontext->es.err)
1182 # define MASK_sig(context) ((context)->uc_sigmask)
1183 #elif defined(__OpenBSD__)
1184 # define EIP_sig(context) ((context)->sc_eip)
1185 # define TRAP_sig(context) ((context)->sc_trapno)
1186 # define ERROR_sig(context) ((context)->sc_err)
1187 # define MASK_sig(context) ((context)->sc_mask)
1188 #else
1189 # define EIP_sig(context) ((context)->uc_mcontext.gregs[REG_EIP])
1190 # define TRAP_sig(context) ((context)->uc_mcontext.gregs[REG_TRAPNO])
1191 # define ERROR_sig(context) ((context)->uc_mcontext.gregs[REG_ERR])
1192 # define MASK_sig(context) ((context)->uc_sigmask)
1193 #endif
1195 int cpu_signal_handler(int host_signum, void *pinfo,
1196 void *puc)
1198 siginfo_t *info = pinfo;
1199 #if defined(__OpenBSD__)
1200 struct sigcontext *uc = puc;
1201 #else
1202 struct ucontext *uc = puc;
1203 #endif
1204 unsigned long pc;
1205 int trapno;
1207 #ifndef REG_EIP
1208 /* for glibc 2.1 */
1209 #define REG_EIP EIP
1210 #define REG_ERR ERR
1211 #define REG_TRAPNO TRAPNO
1212 #endif
1213 pc = EIP_sig(uc);
1214 trapno = TRAP_sig(uc);
1215 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1216 trapno == 0xe ?
1217 (ERROR_sig(uc) >> 1) & 1 : 0,
1218 &MASK_sig(uc), puc);
1221 #elif defined(__x86_64__)
1223 #ifdef __NetBSD__
1224 #define PC_sig(context) _UC_MACHINE_PC(context)
1225 #define TRAP_sig(context) ((context)->uc_mcontext.__gregs[_REG_TRAPNO])
1226 #define ERROR_sig(context) ((context)->uc_mcontext.__gregs[_REG_ERR])
1227 #define MASK_sig(context) ((context)->uc_sigmask)
1228 #elif defined(__OpenBSD__)
1229 #define PC_sig(context) ((context)->sc_rip)
1230 #define TRAP_sig(context) ((context)->sc_trapno)
1231 #define ERROR_sig(context) ((context)->sc_err)
1232 #define MASK_sig(context) ((context)->sc_mask)
1233 #else
1234 #define PC_sig(context) ((context)->uc_mcontext.gregs[REG_RIP])
1235 #define TRAP_sig(context) ((context)->uc_mcontext.gregs[REG_TRAPNO])
1236 #define ERROR_sig(context) ((context)->uc_mcontext.gregs[REG_ERR])
1237 #define MASK_sig(context) ((context)->uc_sigmask)
1238 #endif
1240 int cpu_signal_handler(int host_signum, void *pinfo,
1241 void *puc)
1243 siginfo_t *info = pinfo;
1244 unsigned long pc;
1245 #ifdef __NetBSD__
1246 ucontext_t *uc = puc;
1247 #elif defined(__OpenBSD__)
1248 struct sigcontext *uc = puc;
1249 #else
1250 struct ucontext *uc = puc;
1251 #endif
1253 pc = PC_sig(uc);
1254 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1255 TRAP_sig(uc) == 0xe ?
1256 (ERROR_sig(uc) >> 1) & 1 : 0,
1257 &MASK_sig(uc), puc);
1260 #elif defined(_ARCH_PPC)
1262 /***********************************************************************
1263 * signal context platform-specific definitions
1264 * From Wine
1266 #ifdef linux
1267 /* All Registers access - only for local access */
1268 # define REG_sig(reg_name, context) ((context)->uc_mcontext.regs->reg_name)
1269 /* Gpr Registers access */
1270 # define GPR_sig(reg_num, context) REG_sig(gpr[reg_num], context)
1271 # define IAR_sig(context) REG_sig(nip, context) /* Program counter */
1272 # define MSR_sig(context) REG_sig(msr, context) /* Machine State Register (Supervisor) */
1273 # define CTR_sig(context) REG_sig(ctr, context) /* Count register */
1274 # define XER_sig(context) REG_sig(xer, context) /* User's integer exception register */
1275 # define LR_sig(context) REG_sig(link, context) /* Link register */
1276 # define CR_sig(context) REG_sig(ccr, context) /* Condition register */
1277 /* Float Registers access */
1278 # define FLOAT_sig(reg_num, context) (((double*)((char*)((context)->uc_mcontext.regs+48*4)))[reg_num])
1279 # define FPSCR_sig(context) (*(int*)((char*)((context)->uc_mcontext.regs+(48+32*2)*4)))
1280 /* Exception Registers access */
1281 # define DAR_sig(context) REG_sig(dar, context)
1282 # define DSISR_sig(context) REG_sig(dsisr, context)
1283 # define TRAP_sig(context) REG_sig(trap, context)
1284 #endif /* linux */
1286 #ifdef __APPLE__
1287 # include <sys/ucontext.h>
1288 typedef struct ucontext SIGCONTEXT;
1289 /* All Registers access - only for local access */
1290 # define REG_sig(reg_name, context) ((context)->uc_mcontext->ss.reg_name)
1291 # define FLOATREG_sig(reg_name, context) ((context)->uc_mcontext->fs.reg_name)
1292 # define EXCEPREG_sig(reg_name, context) ((context)->uc_mcontext->es.reg_name)
1293 # define VECREG_sig(reg_name, context) ((context)->uc_mcontext->vs.reg_name)
1294 /* Gpr Registers access */
1295 # define GPR_sig(reg_num, context) REG_sig(r##reg_num, context)
1296 # define IAR_sig(context) REG_sig(srr0, context) /* Program counter */
1297 # define MSR_sig(context) REG_sig(srr1, context) /* Machine State Register (Supervisor) */
1298 # define CTR_sig(context) REG_sig(ctr, context)
1299 # define XER_sig(context) REG_sig(xer, context) /* Link register */
1300 # define LR_sig(context) REG_sig(lr, context) /* User's integer exception register */
1301 # define CR_sig(context) REG_sig(cr, context) /* Condition register */
1302 /* Float Registers access */
1303 # define FLOAT_sig(reg_num, context) FLOATREG_sig(fpregs[reg_num], context)
1304 # define FPSCR_sig(context) ((double)FLOATREG_sig(fpscr, context))
1305 /* Exception Registers access */
1306 # define DAR_sig(context) EXCEPREG_sig(dar, context) /* Fault registers for coredump */
1307 # define DSISR_sig(context) EXCEPREG_sig(dsisr, context)
1308 # define TRAP_sig(context) EXCEPREG_sig(exception, context) /* number of powerpc exception taken */
1309 #endif /* __APPLE__ */
1311 int cpu_signal_handler(int host_signum, void *pinfo,
1312 void *puc)
1314 siginfo_t *info = pinfo;
1315 struct ucontext *uc = puc;
1316 unsigned long pc;
1317 int is_write;
1319 pc = IAR_sig(uc);
1320 is_write = 0;
1321 #if 0
1322 /* ppc 4xx case */
1323 if (DSISR_sig(uc) & 0x00800000)
1324 is_write = 1;
1325 #else
1326 if (TRAP_sig(uc) != 0x400 && (DSISR_sig(uc) & 0x02000000))
1327 is_write = 1;
1328 #endif
1329 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1330 is_write, &uc->uc_sigmask, puc);
1333 #elif defined(__alpha__)
1335 int cpu_signal_handler(int host_signum, void *pinfo,
1336 void *puc)
1338 siginfo_t *info = pinfo;
1339 struct ucontext *uc = puc;
1340 uint32_t *pc = uc->uc_mcontext.sc_pc;
1341 uint32_t insn = *pc;
1342 int is_write = 0;
1344 /* XXX: need kernel patch to get write flag faster */
1345 switch (insn >> 26) {
1346 case 0x0d: // stw
1347 case 0x0e: // stb
1348 case 0x0f: // stq_u
1349 case 0x24: // stf
1350 case 0x25: // stg
1351 case 0x26: // sts
1352 case 0x27: // stt
1353 case 0x2c: // stl
1354 case 0x2d: // stq
1355 case 0x2e: // stl_c
1356 case 0x2f: // stq_c
1357 is_write = 1;
1360 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1361 is_write, &uc->uc_sigmask, puc);
1363 #elif defined(__sparc__)
1365 int cpu_signal_handler(int host_signum, void *pinfo,
1366 void *puc)
1368 siginfo_t *info = pinfo;
1369 int is_write;
1370 uint32_t insn;
1371 #if !defined(__arch64__) || defined(HOST_SOLARIS)
1372 uint32_t *regs = (uint32_t *)(info + 1);
1373 void *sigmask = (regs + 20);
1374 /* XXX: is there a standard glibc define ? */
1375 unsigned long pc = regs[1];
1376 #else
1377 #ifdef __linux__
1378 struct sigcontext *sc = puc;
1379 unsigned long pc = sc->sigc_regs.tpc;
1380 void *sigmask = (void *)sc->sigc_mask;
1381 #elif defined(__OpenBSD__)
1382 struct sigcontext *uc = puc;
1383 unsigned long pc = uc->sc_pc;
1384 void *sigmask = (void *)(long)uc->sc_mask;
1385 #endif
1386 #endif
1388 /* XXX: need kernel patch to get write flag faster */
1389 is_write = 0;
1390 insn = *(uint32_t *)pc;
1391 if ((insn >> 30) == 3) {
1392 switch((insn >> 19) & 0x3f) {
1393 case 0x05: // stb
1394 case 0x06: // sth
1395 case 0x04: // st
1396 case 0x07: // std
1397 case 0x24: // stf
1398 case 0x27: // stdf
1399 case 0x25: // stfsr
1400 is_write = 1;
1401 break;
1404 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1405 is_write, sigmask, NULL);
1408 #elif defined(__arm__)
1410 int cpu_signal_handler(int host_signum, void *pinfo,
1411 void *puc)
1413 siginfo_t *info = pinfo;
1414 struct ucontext *uc = puc;
1415 unsigned long pc;
1416 int is_write;
1418 #if (__GLIBC__ < 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ <= 3))
1419 pc = uc->uc_mcontext.gregs[R15];
1420 #else
1421 pc = uc->uc_mcontext.arm_pc;
1422 #endif
1423 /* XXX: compute is_write */
1424 is_write = 0;
1425 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1426 is_write,
1427 &uc->uc_sigmask, puc);
1430 #elif defined(__mc68000)
1432 int cpu_signal_handler(int host_signum, void *pinfo,
1433 void *puc)
1435 siginfo_t *info = pinfo;
1436 struct ucontext *uc = puc;
1437 unsigned long pc;
1438 int is_write;
1440 pc = uc->uc_mcontext.gregs[16];
1441 /* XXX: compute is_write */
1442 is_write = 0;
1443 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1444 is_write,
1445 &uc->uc_sigmask, puc);
1448 #elif defined(__ia64)
1450 #ifndef __ISR_VALID
1451 /* This ought to be in <bits/siginfo.h>... */
1452 # define __ISR_VALID 1
1453 #endif
1455 int cpu_signal_handler(int host_signum, void *pinfo, void *puc)
1457 siginfo_t *info = pinfo;
1458 struct ucontext *uc = puc;
1459 unsigned long ip;
1460 int is_write = 0;
1462 ip = uc->uc_mcontext.sc_ip;
1463 switch (host_signum) {
1464 case SIGILL:
1465 case SIGFPE:
1466 case SIGSEGV:
1467 case SIGBUS:
1468 case SIGTRAP:
1469 if (info->si_code && (info->si_segvflags & __ISR_VALID))
1470 /* ISR.W (write-access) is bit 33: */
1471 is_write = (info->si_isr >> 33) & 1;
1472 break;
1474 default:
1475 break;
1477 return handle_cpu_signal(ip, (unsigned long)info->si_addr,
1478 is_write,
1479 &uc->uc_sigmask, puc);
1482 #elif defined(__s390__)
1484 int cpu_signal_handler(int host_signum, void *pinfo,
1485 void *puc)
1487 siginfo_t *info = pinfo;
1488 struct ucontext *uc = puc;
1489 unsigned long pc;
1490 int is_write;
1492 pc = uc->uc_mcontext.psw.addr;
1493 /* XXX: compute is_write */
1494 is_write = 0;
1495 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1496 is_write, &uc->uc_sigmask, puc);
1499 #elif defined(__mips__)
1501 int cpu_signal_handler(int host_signum, void *pinfo,
1502 void *puc)
1504 siginfo_t *info = pinfo;
1505 struct ucontext *uc = puc;
1506 greg_t pc = uc->uc_mcontext.pc;
1507 int is_write;
1509 /* XXX: compute is_write */
1510 is_write = 0;
1511 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1512 is_write, &uc->uc_sigmask, puc);
1515 #elif defined(__hppa__)
1517 int cpu_signal_handler(int host_signum, void *pinfo,
1518 void *puc)
1520 struct siginfo *info = pinfo;
1521 struct ucontext *uc = puc;
1522 unsigned long pc;
1523 int is_write;
1525 pc = uc->uc_mcontext.sc_iaoq[0];
1526 /* FIXME: compute is_write */
1527 is_write = 0;
1528 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1529 is_write,
1530 &uc->uc_sigmask, puc);
1533 #else
1535 #error host CPU specific signal handler needed
1537 #endif
1539 #endif /* !defined(CONFIG_SOFTMMU) */