kvm: testsuite: add harness for real-mode tests in C
[qemu-kvm/fedora.git] / hw / omap_dma.c
blobba980df5e17d71ecaced7f8bb290495427c97a01
1 /*
2 * TI OMAP DMA gigacell.
4 * Copyright (C) 2006-2008 Andrzej Zaborowski <balrog@zabor.org>
5 * Copyright (C) 2007-2008 Lauro Ramos Venancio <lauro.venancio@indt.org.br>
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License as
9 * published by the Free Software Foundation; either version 2 of
10 * the License, or (at your option) any later version.
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
20 * MA 02111-1307 USA
22 #include "qemu-common.h"
23 #include "qemu-timer.h"
24 #include "omap.h"
25 #include "irq.h"
26 #include "soc_dma.h"
28 struct omap_dma_channel_s {
29 /* transfer data */
30 int burst[2];
31 int pack[2];
32 int endian[2];
33 int endian_lock[2];
34 int translate[2];
35 enum omap_dma_port port[2];
36 target_phys_addr_t addr[2];
37 omap_dma_addressing_t mode[2];
38 uint32_t elements;
39 uint16_t frames;
40 int32_t frame_index[2];
41 int16_t element_index[2];
42 int data_type;
44 /* transfer type */
45 int transparent_copy;
46 int constant_fill;
47 uint32_t color;
48 int prefetch;
50 /* auto init and linked channel data */
51 int end_prog;
52 int repeat;
53 int auto_init;
54 int link_enabled;
55 int link_next_ch;
57 /* interruption data */
58 int interrupts;
59 int status;
60 int cstatus;
62 /* state data */
63 int active;
64 int enable;
65 int sync;
66 int src_sync;
67 int pending_request;
68 int waiting_end_prog;
69 uint16_t cpc;
70 int set_update;
72 /* sync type */
73 int fs;
74 int bs;
76 /* compatibility */
77 int omap_3_1_compatible_disable;
79 qemu_irq irq;
80 struct omap_dma_channel_s *sibling;
82 struct omap_dma_reg_set_s {
83 target_phys_addr_t src, dest;
84 int frame;
85 int element;
86 int pck_element;
87 int frame_delta[2];
88 int elem_delta[2];
89 int frames;
90 int elements;
91 int pck_elements;
92 } active_set;
94 struct soc_dma_ch_s *dma;
96 /* unused parameters */
97 int write_mode;
98 int priority;
99 int interleave_disabled;
100 int type;
101 int suspend;
102 int buf_disable;
105 struct omap_dma_s {
106 struct soc_dma_s *dma;
108 struct omap_mpu_state_s *mpu;
109 target_phys_addr_t base;
110 omap_clk clk;
111 qemu_irq irq[4];
112 void (*intr_update)(struct omap_dma_s *s);
113 enum omap_dma_model model;
114 int omap_3_1_mapping_disabled;
116 uint32_t gcr;
117 uint32_t ocp;
118 uint32_t caps[5];
119 uint32_t irqen[4];
120 uint32_t irqstat[4];
122 int chans;
123 struct omap_dma_channel_s ch[32];
124 struct omap_dma_lcd_channel_s lcd_ch;
127 /* Interrupts */
128 #define TIMEOUT_INTR (1 << 0)
129 #define EVENT_DROP_INTR (1 << 1)
130 #define HALF_FRAME_INTR (1 << 2)
131 #define END_FRAME_INTR (1 << 3)
132 #define LAST_FRAME_INTR (1 << 4)
133 #define END_BLOCK_INTR (1 << 5)
134 #define SYNC (1 << 6)
135 #define END_PKT_INTR (1 << 7)
136 #define TRANS_ERR_INTR (1 << 8)
137 #define MISALIGN_INTR (1 << 11)
139 static inline void omap_dma_interrupts_update(struct omap_dma_s *s)
141 return s->intr_update(s);
144 static void omap_dma_channel_load(struct omap_dma_channel_s *ch)
146 struct omap_dma_reg_set_s *a = &ch->active_set;
147 int i, normal;
148 int omap_3_1 = !ch->omap_3_1_compatible_disable;
151 * TODO: verify address ranges and alignment
152 * TODO: port endianness
155 a->src = ch->addr[0];
156 a->dest = ch->addr[1];
157 a->frames = ch->frames;
158 a->elements = ch->elements;
159 a->pck_elements = ch->frame_index[!ch->src_sync];
160 a->frame = 0;
161 a->element = 0;
162 a->pck_element = 0;
164 if (unlikely(!ch->elements || !ch->frames)) {
165 printf("%s: bad DMA request\n", __FUNCTION__);
166 return;
169 for (i = 0; i < 2; i ++)
170 switch (ch->mode[i]) {
171 case constant:
172 a->elem_delta[i] = 0;
173 a->frame_delta[i] = 0;
174 break;
175 case post_incremented:
176 a->elem_delta[i] = ch->data_type;
177 a->frame_delta[i] = 0;
178 break;
179 case single_index:
180 a->elem_delta[i] = ch->data_type +
181 ch->element_index[omap_3_1 ? 0 : i] - 1;
182 a->frame_delta[i] = 0;
183 break;
184 case double_index:
185 a->elem_delta[i] = ch->data_type +
186 ch->element_index[omap_3_1 ? 0 : i] - 1;
187 a->frame_delta[i] = ch->frame_index[omap_3_1 ? 0 : i] -
188 ch->element_index[omap_3_1 ? 0 : i];
189 break;
190 default:
191 break;
194 normal = !ch->transparent_copy && !ch->constant_fill &&
195 /* FIFO is big-endian so either (ch->endian[n] == 1) OR
196 * (ch->endian_lock[n] == 1) mean no endianism conversion. */
197 (ch->endian[0] | ch->endian_lock[0]) ==
198 (ch->endian[1] | ch->endian_lock[1]);
199 for (i = 0; i < 2; i ++) {
200 /* TODO: for a->frame_delta[i] > 0 still use the fast path, just
201 * limit min_elems in omap_dma_transfer_setup to the nearest frame
202 * end. */
203 if (!a->elem_delta[i] && normal &&
204 (a->frames == 1 || !a->frame_delta[i]))
205 ch->dma->type[i] = soc_dma_access_const;
206 else if (a->elem_delta[i] == ch->data_type && normal &&
207 (a->frames == 1 || !a->frame_delta[i]))
208 ch->dma->type[i] = soc_dma_access_linear;
209 else
210 ch->dma->type[i] = soc_dma_access_other;
212 ch->dma->vaddr[i] = ch->addr[i];
214 soc_dma_ch_update(ch->dma);
217 static void omap_dma_activate_channel(struct omap_dma_s *s,
218 struct omap_dma_channel_s *ch)
220 if (!ch->active) {
221 if (ch->set_update) {
222 /* It's not clear when the active set is supposed to be
223 * loaded from registers. We're already loading it when the
224 * channel is enabled, and for some guests this is not enough
225 * but that may be also because of a race condition (no
226 * delays in qemu) in the guest code, which we're just
227 * working around here. */
228 omap_dma_channel_load(ch);
229 ch->set_update = 0;
232 ch->active = 1;
233 soc_dma_set_request(ch->dma, 1);
234 if (ch->sync)
235 ch->status |= SYNC;
239 static void omap_dma_deactivate_channel(struct omap_dma_s *s,
240 struct omap_dma_channel_s *ch)
242 /* Update cpc */
243 ch->cpc = ch->active_set.dest & 0xffff;
245 if (ch->pending_request && !ch->waiting_end_prog && ch->enable) {
246 /* Don't deactivate the channel */
247 ch->pending_request = 0;
248 return;
251 /* Don't deactive the channel if it is synchronized and the DMA request is
252 active */
253 if (ch->sync && ch->enable && (s->dma->drqbmp & (1 << ch->sync)))
254 return;
256 if (ch->active) {
257 ch->active = 0;
258 ch->status &= ~SYNC;
259 soc_dma_set_request(ch->dma, 0);
263 static void omap_dma_enable_channel(struct omap_dma_s *s,
264 struct omap_dma_channel_s *ch)
266 if (!ch->enable) {
267 ch->enable = 1;
268 ch->waiting_end_prog = 0;
269 omap_dma_channel_load(ch);
270 /* TODO: theoretically if ch->sync && ch->prefetch &&
271 * !s->dma->drqbmp[ch->sync], we should also activate and fetch
272 * from source and then stall until signalled. */
273 if ((!ch->sync) || (s->dma->drqbmp & (1 << ch->sync)))
274 omap_dma_activate_channel(s, ch);
278 static void omap_dma_disable_channel(struct omap_dma_s *s,
279 struct omap_dma_channel_s *ch)
281 if (ch->enable) {
282 ch->enable = 0;
283 /* Discard any pending request */
284 ch->pending_request = 0;
285 omap_dma_deactivate_channel(s, ch);
289 static void omap_dma_channel_end_prog(struct omap_dma_s *s,
290 struct omap_dma_channel_s *ch)
292 if (ch->waiting_end_prog) {
293 ch->waiting_end_prog = 0;
294 if (!ch->sync || ch->pending_request) {
295 ch->pending_request = 0;
296 omap_dma_activate_channel(s, ch);
301 static void omap_dma_interrupts_3_1_update(struct omap_dma_s *s)
303 struct omap_dma_channel_s *ch = s->ch;
305 /* First three interrupts are shared between two channels each. */
306 if (ch[0].status | ch[6].status)
307 qemu_irq_raise(ch[0].irq);
308 if (ch[1].status | ch[7].status)
309 qemu_irq_raise(ch[1].irq);
310 if (ch[2].status | ch[8].status)
311 qemu_irq_raise(ch[2].irq);
312 if (ch[3].status)
313 qemu_irq_raise(ch[3].irq);
314 if (ch[4].status)
315 qemu_irq_raise(ch[4].irq);
316 if (ch[5].status)
317 qemu_irq_raise(ch[5].irq);
320 static void omap_dma_interrupts_3_2_update(struct omap_dma_s *s)
322 struct omap_dma_channel_s *ch = s->ch;
323 int i;
325 for (i = s->chans; i; ch ++, i --)
326 if (ch->status)
327 qemu_irq_raise(ch->irq);
330 static void omap_dma_enable_3_1_mapping(struct omap_dma_s *s)
332 s->omap_3_1_mapping_disabled = 0;
333 s->chans = 9;
334 s->intr_update = omap_dma_interrupts_3_1_update;
337 static void omap_dma_disable_3_1_mapping(struct omap_dma_s *s)
339 s->omap_3_1_mapping_disabled = 1;
340 s->chans = 16;
341 s->intr_update = omap_dma_interrupts_3_2_update;
344 static void omap_dma_process_request(struct omap_dma_s *s, int request)
346 int channel;
347 int drop_event = 0;
348 struct omap_dma_channel_s *ch = s->ch;
350 for (channel = 0; channel < s->chans; channel ++, ch ++) {
351 if (ch->enable && ch->sync == request) {
352 if (!ch->active)
353 omap_dma_activate_channel(s, ch);
354 else if (!ch->pending_request)
355 ch->pending_request = 1;
356 else {
357 /* Request collision */
358 /* Second request received while processing other request */
359 ch->status |= EVENT_DROP_INTR;
360 drop_event = 1;
365 if (drop_event)
366 omap_dma_interrupts_update(s);
369 static void omap_dma_transfer_generic(struct soc_dma_ch_s *dma)
371 uint8_t value[4];
372 struct omap_dma_channel_s *ch = dma->opaque;
373 struct omap_dma_reg_set_s *a = &ch->active_set;
374 int bytes = dma->bytes;
375 #ifdef MULTI_REQ
376 uint16_t status = ch->status;
377 #endif
379 do {
380 /* Transfer a single element */
381 /* FIXME: check the endianness */
382 if (!ch->constant_fill)
383 cpu_physical_memory_read(a->src, value, ch->data_type);
384 else
385 *(uint32_t *) value = ch->color;
387 if (!ch->transparent_copy || *(uint32_t *) value != ch->color)
388 cpu_physical_memory_write(a->dest, value, ch->data_type);
390 a->src += a->elem_delta[0];
391 a->dest += a->elem_delta[1];
392 a->element ++;
394 #ifndef MULTI_REQ
395 if (a->element == a->elements) {
396 /* End of Frame */
397 a->element = 0;
398 a->src += a->frame_delta[0];
399 a->dest += a->frame_delta[1];
400 a->frame ++;
402 /* If the channel is async, update cpc */
403 if (!ch->sync)
404 ch->cpc = a->dest & 0xffff;
406 } while ((bytes -= ch->data_type));
407 #else
408 /* If the channel is element synchronized, deactivate it */
409 if (ch->sync && !ch->fs && !ch->bs)
410 omap_dma_deactivate_channel(s, ch);
412 /* If it is the last frame, set the LAST_FRAME interrupt */
413 if (a->element == 1 && a->frame == a->frames - 1)
414 if (ch->interrupts & LAST_FRAME_INTR)
415 ch->status |= LAST_FRAME_INTR;
417 /* If the half of the frame was reached, set the HALF_FRAME
418 interrupt */
419 if (a->element == (a->elements >> 1))
420 if (ch->interrupts & HALF_FRAME_INTR)
421 ch->status |= HALF_FRAME_INTR;
423 if (ch->fs && ch->bs) {
424 a->pck_element ++;
425 /* Check if a full packet has beed transferred. */
426 if (a->pck_element == a->pck_elements) {
427 a->pck_element = 0;
429 /* Set the END_PKT interrupt */
430 if ((ch->interrupts & END_PKT_INTR) && !ch->src_sync)
431 ch->status |= END_PKT_INTR;
433 /* If the channel is packet-synchronized, deactivate it */
434 if (ch->sync)
435 omap_dma_deactivate_channel(s, ch);
439 if (a->element == a->elements) {
440 /* End of Frame */
441 a->element = 0;
442 a->src += a->frame_delta[0];
443 a->dest += a->frame_delta[1];
444 a->frame ++;
446 /* If the channel is frame synchronized, deactivate it */
447 if (ch->sync && ch->fs && !ch->bs)
448 omap_dma_deactivate_channel(s, ch);
450 /* If the channel is async, update cpc */
451 if (!ch->sync)
452 ch->cpc = a->dest & 0xffff;
454 /* Set the END_FRAME interrupt */
455 if (ch->interrupts & END_FRAME_INTR)
456 ch->status |= END_FRAME_INTR;
458 if (a->frame == a->frames) {
459 /* End of Block */
460 /* Disable the channel */
462 if (ch->omap_3_1_compatible_disable) {
463 omap_dma_disable_channel(s, ch);
464 if (ch->link_enabled)
465 omap_dma_enable_channel(s,
466 &s->ch[ch->link_next_ch]);
467 } else {
468 if (!ch->auto_init)
469 omap_dma_disable_channel(s, ch);
470 else if (ch->repeat || ch->end_prog)
471 omap_dma_channel_load(ch);
472 else {
473 ch->waiting_end_prog = 1;
474 omap_dma_deactivate_channel(s, ch);
478 if (ch->interrupts & END_BLOCK_INTR)
479 ch->status |= END_BLOCK_INTR;
482 } while (status == ch->status && ch->active);
484 omap_dma_interrupts_update(s);
485 #endif
488 enum {
489 omap_dma_intr_element_sync,
490 omap_dma_intr_last_frame,
491 omap_dma_intr_half_frame,
492 omap_dma_intr_frame,
493 omap_dma_intr_frame_sync,
494 omap_dma_intr_packet,
495 omap_dma_intr_packet_sync,
496 omap_dma_intr_block,
497 __omap_dma_intr_last,
500 static void omap_dma_transfer_setup(struct soc_dma_ch_s *dma)
502 struct omap_dma_port_if_s *src_p, *dest_p;
503 struct omap_dma_reg_set_s *a;
504 struct omap_dma_channel_s *ch = dma->opaque;
505 struct omap_dma_s *s = dma->dma->opaque;
506 int frames, min_elems, elements[__omap_dma_intr_last];
508 a = &ch->active_set;
510 src_p = &s->mpu->port[ch->port[0]];
511 dest_p = &s->mpu->port[ch->port[1]];
512 if ((!ch->constant_fill && !src_p->addr_valid(s->mpu, a->src)) ||
513 (!dest_p->addr_valid(s->mpu, a->dest))) {
514 #if 0
515 /* Bus time-out */
516 if (ch->interrupts & TIMEOUT_INTR)
517 ch->status |= TIMEOUT_INTR;
518 omap_dma_deactivate_channel(s, ch);
519 continue;
520 #endif
521 printf("%s: Bus time-out in DMA%i operation\n",
522 __FUNCTION__, dma->num);
525 min_elems = INT_MAX;
527 /* Check all the conditions that terminate the transfer starting
528 * with those that can occur the soonest. */
529 #define INTR_CHECK(cond, id, nelements) \
530 if (cond) { \
531 elements[id] = nelements; \
532 if (elements[id] < min_elems) \
533 min_elems = elements[id]; \
534 } else \
535 elements[id] = INT_MAX;
537 /* Elements */
538 INTR_CHECK(
539 ch->sync && !ch->fs && !ch->bs,
540 omap_dma_intr_element_sync,
543 /* Frames */
544 /* TODO: for transfers where entire frames can be read and written
545 * using memcpy() but a->frame_delta is non-zero, try to still do
546 * transfers using soc_dma but limit min_elems to a->elements - ...
547 * See also the TODO in omap_dma_channel_load. */
548 INTR_CHECK(
549 (ch->interrupts & LAST_FRAME_INTR) &&
550 ((a->frame < a->frames - 1) || !a->element),
551 omap_dma_intr_last_frame,
552 (a->frames - a->frame - 2) * a->elements +
553 (a->elements - a->element + 1))
554 INTR_CHECK(
555 ch->interrupts & HALF_FRAME_INTR,
556 omap_dma_intr_half_frame,
557 (a->elements >> 1) +
558 (a->element >= (a->elements >> 1) ? a->elements : 0) -
559 a->element)
560 INTR_CHECK(
561 ch->sync && ch->fs && (ch->interrupts & END_FRAME_INTR),
562 omap_dma_intr_frame,
563 a->elements - a->element)
564 INTR_CHECK(
565 ch->sync && ch->fs && !ch->bs,
566 omap_dma_intr_frame_sync,
567 a->elements - a->element)
569 /* Packets */
570 INTR_CHECK(
571 ch->fs && ch->bs &&
572 (ch->interrupts & END_PKT_INTR) && !ch->src_sync,
573 omap_dma_intr_packet,
574 a->pck_elements - a->pck_element)
575 INTR_CHECK(
576 ch->fs && ch->bs && ch->sync,
577 omap_dma_intr_packet_sync,
578 a->pck_elements - a->pck_element)
580 /* Blocks */
581 INTR_CHECK(
583 omap_dma_intr_block,
584 (a->frames - a->frame - 1) * a->elements +
585 (a->elements - a->element))
587 dma->bytes = min_elems * ch->data_type;
589 /* Set appropriate interrupts and/or deactivate channels */
591 #ifdef MULTI_REQ
592 /* TODO: should all of this only be done if dma->update, and otherwise
593 * inside omap_dma_transfer_generic below - check what's faster. */
594 if (dma->update) {
595 #endif
597 /* If the channel is element synchronized, deactivate it */
598 if (min_elems == elements[omap_dma_intr_element_sync])
599 omap_dma_deactivate_channel(s, ch);
601 /* If it is the last frame, set the LAST_FRAME interrupt */
602 if (min_elems == elements[omap_dma_intr_last_frame])
603 ch->status |= LAST_FRAME_INTR;
605 /* If exactly half of the frame was reached, set the HALF_FRAME
606 interrupt */
607 if (min_elems == elements[omap_dma_intr_half_frame])
608 ch->status |= HALF_FRAME_INTR;
610 /* If a full packet has been transferred, set the END_PKT interrupt */
611 if (min_elems == elements[omap_dma_intr_packet])
612 ch->status |= END_PKT_INTR;
614 /* If the channel is packet-synchronized, deactivate it */
615 if (min_elems == elements[omap_dma_intr_packet_sync])
616 omap_dma_deactivate_channel(s, ch);
618 /* If the channel is frame synchronized, deactivate it */
619 if (min_elems == elements[omap_dma_intr_frame_sync])
620 omap_dma_deactivate_channel(s, ch);
622 /* Set the END_FRAME interrupt */
623 if (min_elems == elements[omap_dma_intr_frame])
624 ch->status |= END_FRAME_INTR;
626 if (min_elems == elements[omap_dma_intr_block]) {
627 /* End of Block */
628 /* Disable the channel */
630 if (ch->omap_3_1_compatible_disable) {
631 omap_dma_disable_channel(s, ch);
632 if (ch->link_enabled)
633 omap_dma_enable_channel(s, &s->ch[ch->link_next_ch]);
634 } else {
635 if (!ch->auto_init)
636 omap_dma_disable_channel(s, ch);
637 else if (ch->repeat || ch->end_prog)
638 omap_dma_channel_load(ch);
639 else {
640 ch->waiting_end_prog = 1;
641 omap_dma_deactivate_channel(s, ch);
645 if (ch->interrupts & END_BLOCK_INTR)
646 ch->status |= END_BLOCK_INTR;
649 /* Update packet number */
650 if (ch->fs && ch->bs) {
651 a->pck_element += min_elems;
652 a->pck_element %= a->pck_elements;
655 /* TODO: check if we really need to update anything here or perhaps we
656 * can skip part of this. */
657 #ifndef MULTI_REQ
658 if (dma->update) {
659 #endif
660 a->element += min_elems;
662 frames = a->element / a->elements;
663 a->element = a->element % a->elements;
664 a->frame += frames;
665 a->src += min_elems * a->elem_delta[0] + frames * a->frame_delta[0];
666 a->dest += min_elems * a->elem_delta[1] + frames * a->frame_delta[1];
668 /* If the channel is async, update cpc */
669 if (!ch->sync && frames)
670 ch->cpc = a->dest & 0xffff;
672 /* TODO: if the destination port is IMIF or EMIFF, set the dirty
673 * bits on it. */
676 omap_dma_interrupts_update(s);
679 void omap_dma_reset(struct soc_dma_s *dma)
681 int i;
682 struct omap_dma_s *s = dma->opaque;
684 soc_dma_reset(s->dma);
685 if (s->model < omap_dma_4)
686 s->gcr = 0x0004;
687 else
688 s->gcr = 0x00010010;
689 s->ocp = 0x00000000;
690 memset(&s->irqstat, 0, sizeof(s->irqstat));
691 memset(&s->irqen, 0, sizeof(s->irqen));
692 s->lcd_ch.src = emiff;
693 s->lcd_ch.condition = 0;
694 s->lcd_ch.interrupts = 0;
695 s->lcd_ch.dual = 0;
696 if (s->model < omap_dma_4)
697 omap_dma_enable_3_1_mapping(s);
698 for (i = 0; i < s->chans; i ++) {
699 s->ch[i].suspend = 0;
700 s->ch[i].prefetch = 0;
701 s->ch[i].buf_disable = 0;
702 s->ch[i].src_sync = 0;
703 memset(&s->ch[i].burst, 0, sizeof(s->ch[i].burst));
704 memset(&s->ch[i].port, 0, sizeof(s->ch[i].port));
705 memset(&s->ch[i].mode, 0, sizeof(s->ch[i].mode));
706 memset(&s->ch[i].frame_index, 0, sizeof(s->ch[i].frame_index));
707 memset(&s->ch[i].element_index, 0, sizeof(s->ch[i].element_index));
708 memset(&s->ch[i].endian, 0, sizeof(s->ch[i].endian));
709 memset(&s->ch[i].endian_lock, 0, sizeof(s->ch[i].endian_lock));
710 memset(&s->ch[i].translate, 0, sizeof(s->ch[i].translate));
711 s->ch[i].write_mode = 0;
712 s->ch[i].data_type = 0;
713 s->ch[i].transparent_copy = 0;
714 s->ch[i].constant_fill = 0;
715 s->ch[i].color = 0x00000000;
716 s->ch[i].end_prog = 0;
717 s->ch[i].repeat = 0;
718 s->ch[i].auto_init = 0;
719 s->ch[i].link_enabled = 0;
720 if (s->model < omap_dma_4)
721 s->ch[i].interrupts = 0x0003;
722 else
723 s->ch[i].interrupts = 0x0000;
724 s->ch[i].status = 0;
725 s->ch[i].cstatus = 0;
726 s->ch[i].active = 0;
727 s->ch[i].enable = 0;
728 s->ch[i].sync = 0;
729 s->ch[i].pending_request = 0;
730 s->ch[i].waiting_end_prog = 0;
731 s->ch[i].cpc = 0x0000;
732 s->ch[i].fs = 0;
733 s->ch[i].bs = 0;
734 s->ch[i].omap_3_1_compatible_disable = 0;
735 memset(&s->ch[i].active_set, 0, sizeof(s->ch[i].active_set));
736 s->ch[i].priority = 0;
737 s->ch[i].interleave_disabled = 0;
738 s->ch[i].type = 0;
742 static int omap_dma_ch_reg_read(struct omap_dma_s *s,
743 struct omap_dma_channel_s *ch, int reg, uint16_t *value)
745 switch (reg) {
746 case 0x00: /* SYS_DMA_CSDP_CH0 */
747 *value = (ch->burst[1] << 14) |
748 (ch->pack[1] << 13) |
749 (ch->port[1] << 9) |
750 (ch->burst[0] << 7) |
751 (ch->pack[0] << 6) |
752 (ch->port[0] << 2) |
753 (ch->data_type >> 1);
754 break;
756 case 0x02: /* SYS_DMA_CCR_CH0 */
757 if (s->model <= omap_dma_3_1)
758 *value = 0 << 10; /* FIFO_FLUSH reads as 0 */
759 else
760 *value = ch->omap_3_1_compatible_disable << 10;
761 *value |= (ch->mode[1] << 14) |
762 (ch->mode[0] << 12) |
763 (ch->end_prog << 11) |
764 (ch->repeat << 9) |
765 (ch->auto_init << 8) |
766 (ch->enable << 7) |
767 (ch->priority << 6) |
768 (ch->fs << 5) | ch->sync;
769 break;
771 case 0x04: /* SYS_DMA_CICR_CH0 */
772 *value = ch->interrupts;
773 break;
775 case 0x06: /* SYS_DMA_CSR_CH0 */
776 *value = ch->status;
777 ch->status &= SYNC;
778 if (!ch->omap_3_1_compatible_disable && ch->sibling) {
779 *value |= (ch->sibling->status & 0x3f) << 6;
780 ch->sibling->status &= SYNC;
782 qemu_irq_lower(ch->irq);
783 break;
785 case 0x08: /* SYS_DMA_CSSA_L_CH0 */
786 *value = ch->addr[0] & 0x0000ffff;
787 break;
789 case 0x0a: /* SYS_DMA_CSSA_U_CH0 */
790 *value = ch->addr[0] >> 16;
791 break;
793 case 0x0c: /* SYS_DMA_CDSA_L_CH0 */
794 *value = ch->addr[1] & 0x0000ffff;
795 break;
797 case 0x0e: /* SYS_DMA_CDSA_U_CH0 */
798 *value = ch->addr[1] >> 16;
799 break;
801 case 0x10: /* SYS_DMA_CEN_CH0 */
802 *value = ch->elements;
803 break;
805 case 0x12: /* SYS_DMA_CFN_CH0 */
806 *value = ch->frames;
807 break;
809 case 0x14: /* SYS_DMA_CFI_CH0 */
810 *value = ch->frame_index[0];
811 break;
813 case 0x16: /* SYS_DMA_CEI_CH0 */
814 *value = ch->element_index[0];
815 break;
817 case 0x18: /* SYS_DMA_CPC_CH0 or DMA_CSAC */
818 if (ch->omap_3_1_compatible_disable)
819 *value = ch->active_set.src & 0xffff; /* CSAC */
820 else
821 *value = ch->cpc;
822 break;
824 case 0x1a: /* DMA_CDAC */
825 *value = ch->active_set.dest & 0xffff; /* CDAC */
826 break;
828 case 0x1c: /* DMA_CDEI */
829 *value = ch->element_index[1];
830 break;
832 case 0x1e: /* DMA_CDFI */
833 *value = ch->frame_index[1];
834 break;
836 case 0x20: /* DMA_COLOR_L */
837 *value = ch->color & 0xffff;
838 break;
840 case 0x22: /* DMA_COLOR_U */
841 *value = ch->color >> 16;
842 break;
844 case 0x24: /* DMA_CCR2 */
845 *value = (ch->bs << 2) |
846 (ch->transparent_copy << 1) |
847 ch->constant_fill;
848 break;
850 case 0x28: /* DMA_CLNK_CTRL */
851 *value = (ch->link_enabled << 15) |
852 (ch->link_next_ch & 0xf);
853 break;
855 case 0x2a: /* DMA_LCH_CTRL */
856 *value = (ch->interleave_disabled << 15) |
857 ch->type;
858 break;
860 default:
861 return 1;
863 return 0;
866 static int omap_dma_ch_reg_write(struct omap_dma_s *s,
867 struct omap_dma_channel_s *ch, int reg, uint16_t value)
869 switch (reg) {
870 case 0x00: /* SYS_DMA_CSDP_CH0 */
871 ch->burst[1] = (value & 0xc000) >> 14;
872 ch->pack[1] = (value & 0x2000) >> 13;
873 ch->port[1] = (enum omap_dma_port) ((value & 0x1e00) >> 9);
874 ch->burst[0] = (value & 0x0180) >> 7;
875 ch->pack[0] = (value & 0x0040) >> 6;
876 ch->port[0] = (enum omap_dma_port) ((value & 0x003c) >> 2);
877 ch->data_type = 1 << (value & 3);
878 if (ch->port[0] >= __omap_dma_port_last)
879 printf("%s: invalid DMA port %i\n", __FUNCTION__,
880 ch->port[0]);
881 if (ch->port[1] >= __omap_dma_port_last)
882 printf("%s: invalid DMA port %i\n", __FUNCTION__,
883 ch->port[1]);
884 if ((value & 3) == 3)
885 printf("%s: bad data_type for DMA channel\n", __FUNCTION__);
886 break;
888 case 0x02: /* SYS_DMA_CCR_CH0 */
889 ch->mode[1] = (omap_dma_addressing_t) ((value & 0xc000) >> 14);
890 ch->mode[0] = (omap_dma_addressing_t) ((value & 0x3000) >> 12);
891 ch->end_prog = (value & 0x0800) >> 11;
892 if (s->model >= omap_dma_3_2)
893 ch->omap_3_1_compatible_disable = (value >> 10) & 0x1;
894 ch->repeat = (value & 0x0200) >> 9;
895 ch->auto_init = (value & 0x0100) >> 8;
896 ch->priority = (value & 0x0040) >> 6;
897 ch->fs = (value & 0x0020) >> 5;
898 ch->sync = value & 0x001f;
900 if (value & 0x0080)
901 omap_dma_enable_channel(s, ch);
902 else
903 omap_dma_disable_channel(s, ch);
905 if (ch->end_prog)
906 omap_dma_channel_end_prog(s, ch);
908 break;
910 case 0x04: /* SYS_DMA_CICR_CH0 */
911 ch->interrupts = value & 0x3f;
912 break;
914 case 0x06: /* SYS_DMA_CSR_CH0 */
915 OMAP_RO_REG((target_phys_addr_t) reg);
916 break;
918 case 0x08: /* SYS_DMA_CSSA_L_CH0 */
919 ch->addr[0] &= 0xffff0000;
920 ch->addr[0] |= value;
921 break;
923 case 0x0a: /* SYS_DMA_CSSA_U_CH0 */
924 ch->addr[0] &= 0x0000ffff;
925 ch->addr[0] |= (uint32_t) value << 16;
926 break;
928 case 0x0c: /* SYS_DMA_CDSA_L_CH0 */
929 ch->addr[1] &= 0xffff0000;
930 ch->addr[1] |= value;
931 break;
933 case 0x0e: /* SYS_DMA_CDSA_U_CH0 */
934 ch->addr[1] &= 0x0000ffff;
935 ch->addr[1] |= (uint32_t) value << 16;
936 break;
938 case 0x10: /* SYS_DMA_CEN_CH0 */
939 ch->elements = value;
940 break;
942 case 0x12: /* SYS_DMA_CFN_CH0 */
943 ch->frames = value;
944 break;
946 case 0x14: /* SYS_DMA_CFI_CH0 */
947 ch->frame_index[0] = (int16_t) value;
948 break;
950 case 0x16: /* SYS_DMA_CEI_CH0 */
951 ch->element_index[0] = (int16_t) value;
952 break;
954 case 0x18: /* SYS_DMA_CPC_CH0 or DMA_CSAC */
955 OMAP_RO_REG((target_phys_addr_t) reg);
956 break;
958 case 0x1c: /* DMA_CDEI */
959 ch->element_index[1] = (int16_t) value;
960 break;
962 case 0x1e: /* DMA_CDFI */
963 ch->frame_index[1] = (int16_t) value;
964 break;
966 case 0x20: /* DMA_COLOR_L */
967 ch->color &= 0xffff0000;
968 ch->color |= value;
969 break;
971 case 0x22: /* DMA_COLOR_U */
972 ch->color &= 0xffff;
973 ch->color |= value << 16;
974 break;
976 case 0x24: /* DMA_CCR2 */
977 ch->bs = (value >> 2) & 0x1;
978 ch->transparent_copy = (value >> 1) & 0x1;
979 ch->constant_fill = value & 0x1;
980 break;
982 case 0x28: /* DMA_CLNK_CTRL */
983 ch->link_enabled = (value >> 15) & 0x1;
984 if (value & (1 << 14)) { /* Stop_Lnk */
985 ch->link_enabled = 0;
986 omap_dma_disable_channel(s, ch);
988 ch->link_next_ch = value & 0x1f;
989 break;
991 case 0x2a: /* DMA_LCH_CTRL */
992 ch->interleave_disabled = (value >> 15) & 0x1;
993 ch->type = value & 0xf;
994 break;
996 default:
997 return 1;
999 return 0;
1002 static int omap_dma_3_2_lcd_write(struct omap_dma_lcd_channel_s *s, int offset,
1003 uint16_t value)
1005 switch (offset) {
1006 case 0xbc0: /* DMA_LCD_CSDP */
1007 s->brust_f2 = (value >> 14) & 0x3;
1008 s->pack_f2 = (value >> 13) & 0x1;
1009 s->data_type_f2 = (1 << ((value >> 11) & 0x3));
1010 s->brust_f1 = (value >> 7) & 0x3;
1011 s->pack_f1 = (value >> 6) & 0x1;
1012 s->data_type_f1 = (1 << ((value >> 0) & 0x3));
1013 break;
1015 case 0xbc2: /* DMA_LCD_CCR */
1016 s->mode_f2 = (value >> 14) & 0x3;
1017 s->mode_f1 = (value >> 12) & 0x3;
1018 s->end_prog = (value >> 11) & 0x1;
1019 s->omap_3_1_compatible_disable = (value >> 10) & 0x1;
1020 s->repeat = (value >> 9) & 0x1;
1021 s->auto_init = (value >> 8) & 0x1;
1022 s->running = (value >> 7) & 0x1;
1023 s->priority = (value >> 6) & 0x1;
1024 s->bs = (value >> 4) & 0x1;
1025 break;
1027 case 0xbc4: /* DMA_LCD_CTRL */
1028 s->dst = (value >> 8) & 0x1;
1029 s->src = ((value >> 6) & 0x3) << 1;
1030 s->condition = 0;
1031 /* Assume no bus errors and thus no BUS_ERROR irq bits. */
1032 s->interrupts = (value >> 1) & 1;
1033 s->dual = value & 1;
1034 break;
1036 case 0xbc8: /* TOP_B1_L */
1037 s->src_f1_top &= 0xffff0000;
1038 s->src_f1_top |= 0x0000ffff & value;
1039 break;
1041 case 0xbca: /* TOP_B1_U */
1042 s->src_f1_top &= 0x0000ffff;
1043 s->src_f1_top |= value << 16;
1044 break;
1046 case 0xbcc: /* BOT_B1_L */
1047 s->src_f1_bottom &= 0xffff0000;
1048 s->src_f1_bottom |= 0x0000ffff & value;
1049 break;
1051 case 0xbce: /* BOT_B1_U */
1052 s->src_f1_bottom &= 0x0000ffff;
1053 s->src_f1_bottom |= (uint32_t) value << 16;
1054 break;
1056 case 0xbd0: /* TOP_B2_L */
1057 s->src_f2_top &= 0xffff0000;
1058 s->src_f2_top |= 0x0000ffff & value;
1059 break;
1061 case 0xbd2: /* TOP_B2_U */
1062 s->src_f2_top &= 0x0000ffff;
1063 s->src_f2_top |= (uint32_t) value << 16;
1064 break;
1066 case 0xbd4: /* BOT_B2_L */
1067 s->src_f2_bottom &= 0xffff0000;
1068 s->src_f2_bottom |= 0x0000ffff & value;
1069 break;
1071 case 0xbd6: /* BOT_B2_U */
1072 s->src_f2_bottom &= 0x0000ffff;
1073 s->src_f2_bottom |= (uint32_t) value << 16;
1074 break;
1076 case 0xbd8: /* DMA_LCD_SRC_EI_B1 */
1077 s->element_index_f1 = value;
1078 break;
1080 case 0xbda: /* DMA_LCD_SRC_FI_B1_L */
1081 s->frame_index_f1 &= 0xffff0000;
1082 s->frame_index_f1 |= 0x0000ffff & value;
1083 break;
1085 case 0xbf4: /* DMA_LCD_SRC_FI_B1_U */
1086 s->frame_index_f1 &= 0x0000ffff;
1087 s->frame_index_f1 |= (uint32_t) value << 16;
1088 break;
1090 case 0xbdc: /* DMA_LCD_SRC_EI_B2 */
1091 s->element_index_f2 = value;
1092 break;
1094 case 0xbde: /* DMA_LCD_SRC_FI_B2_L */
1095 s->frame_index_f2 &= 0xffff0000;
1096 s->frame_index_f2 |= 0x0000ffff & value;
1097 break;
1099 case 0xbf6: /* DMA_LCD_SRC_FI_B2_U */
1100 s->frame_index_f2 &= 0x0000ffff;
1101 s->frame_index_f2 |= (uint32_t) value << 16;
1102 break;
1104 case 0xbe0: /* DMA_LCD_SRC_EN_B1 */
1105 s->elements_f1 = value;
1106 break;
1108 case 0xbe4: /* DMA_LCD_SRC_FN_B1 */
1109 s->frames_f1 = value;
1110 break;
1112 case 0xbe2: /* DMA_LCD_SRC_EN_B2 */
1113 s->elements_f2 = value;
1114 break;
1116 case 0xbe6: /* DMA_LCD_SRC_FN_B2 */
1117 s->frames_f2 = value;
1118 break;
1120 case 0xbea: /* DMA_LCD_LCH_CTRL */
1121 s->lch_type = value & 0xf;
1122 break;
1124 default:
1125 return 1;
1127 return 0;
1130 static int omap_dma_3_2_lcd_read(struct omap_dma_lcd_channel_s *s, int offset,
1131 uint16_t *ret)
1133 switch (offset) {
1134 case 0xbc0: /* DMA_LCD_CSDP */
1135 *ret = (s->brust_f2 << 14) |
1136 (s->pack_f2 << 13) |
1137 ((s->data_type_f2 >> 1) << 11) |
1138 (s->brust_f1 << 7) |
1139 (s->pack_f1 << 6) |
1140 ((s->data_type_f1 >> 1) << 0);
1141 break;
1143 case 0xbc2: /* DMA_LCD_CCR */
1144 *ret = (s->mode_f2 << 14) |
1145 (s->mode_f1 << 12) |
1146 (s->end_prog << 11) |
1147 (s->omap_3_1_compatible_disable << 10) |
1148 (s->repeat << 9) |
1149 (s->auto_init << 8) |
1150 (s->running << 7) |
1151 (s->priority << 6) |
1152 (s->bs << 4);
1153 break;
1155 case 0xbc4: /* DMA_LCD_CTRL */
1156 qemu_irq_lower(s->irq);
1157 *ret = (s->dst << 8) |
1158 ((s->src & 0x6) << 5) |
1159 (s->condition << 3) |
1160 (s->interrupts << 1) |
1161 s->dual;
1162 break;
1164 case 0xbc8: /* TOP_B1_L */
1165 *ret = s->src_f1_top & 0xffff;
1166 break;
1168 case 0xbca: /* TOP_B1_U */
1169 *ret = s->src_f1_top >> 16;
1170 break;
1172 case 0xbcc: /* BOT_B1_L */
1173 *ret = s->src_f1_bottom & 0xffff;
1174 break;
1176 case 0xbce: /* BOT_B1_U */
1177 *ret = s->src_f1_bottom >> 16;
1178 break;
1180 case 0xbd0: /* TOP_B2_L */
1181 *ret = s->src_f2_top & 0xffff;
1182 break;
1184 case 0xbd2: /* TOP_B2_U */
1185 *ret = s->src_f2_top >> 16;
1186 break;
1188 case 0xbd4: /* BOT_B2_L */
1189 *ret = s->src_f2_bottom & 0xffff;
1190 break;
1192 case 0xbd6: /* BOT_B2_U */
1193 *ret = s->src_f2_bottom >> 16;
1194 break;
1196 case 0xbd8: /* DMA_LCD_SRC_EI_B1 */
1197 *ret = s->element_index_f1;
1198 break;
1200 case 0xbda: /* DMA_LCD_SRC_FI_B1_L */
1201 *ret = s->frame_index_f1 & 0xffff;
1202 break;
1204 case 0xbf4: /* DMA_LCD_SRC_FI_B1_U */
1205 *ret = s->frame_index_f1 >> 16;
1206 break;
1208 case 0xbdc: /* DMA_LCD_SRC_EI_B2 */
1209 *ret = s->element_index_f2;
1210 break;
1212 case 0xbde: /* DMA_LCD_SRC_FI_B2_L */
1213 *ret = s->frame_index_f2 & 0xffff;
1214 break;
1216 case 0xbf6: /* DMA_LCD_SRC_FI_B2_U */
1217 *ret = s->frame_index_f2 >> 16;
1218 break;
1220 case 0xbe0: /* DMA_LCD_SRC_EN_B1 */
1221 *ret = s->elements_f1;
1222 break;
1224 case 0xbe4: /* DMA_LCD_SRC_FN_B1 */
1225 *ret = s->frames_f1;
1226 break;
1228 case 0xbe2: /* DMA_LCD_SRC_EN_B2 */
1229 *ret = s->elements_f2;
1230 break;
1232 case 0xbe6: /* DMA_LCD_SRC_FN_B2 */
1233 *ret = s->frames_f2;
1234 break;
1236 case 0xbea: /* DMA_LCD_LCH_CTRL */
1237 *ret = s->lch_type;
1238 break;
1240 default:
1241 return 1;
1243 return 0;
1246 static int omap_dma_3_1_lcd_write(struct omap_dma_lcd_channel_s *s, int offset,
1247 uint16_t value)
1249 switch (offset) {
1250 case 0x300: /* SYS_DMA_LCD_CTRL */
1251 s->src = (value & 0x40) ? imif : emiff;
1252 s->condition = 0;
1253 /* Assume no bus errors and thus no BUS_ERROR irq bits. */
1254 s->interrupts = (value >> 1) & 1;
1255 s->dual = value & 1;
1256 break;
1258 case 0x302: /* SYS_DMA_LCD_TOP_F1_L */
1259 s->src_f1_top &= 0xffff0000;
1260 s->src_f1_top |= 0x0000ffff & value;
1261 break;
1263 case 0x304: /* SYS_DMA_LCD_TOP_F1_U */
1264 s->src_f1_top &= 0x0000ffff;
1265 s->src_f1_top |= value << 16;
1266 break;
1268 case 0x306: /* SYS_DMA_LCD_BOT_F1_L */
1269 s->src_f1_bottom &= 0xffff0000;
1270 s->src_f1_bottom |= 0x0000ffff & value;
1271 break;
1273 case 0x308: /* SYS_DMA_LCD_BOT_F1_U */
1274 s->src_f1_bottom &= 0x0000ffff;
1275 s->src_f1_bottom |= value << 16;
1276 break;
1278 case 0x30a: /* SYS_DMA_LCD_TOP_F2_L */
1279 s->src_f2_top &= 0xffff0000;
1280 s->src_f2_top |= 0x0000ffff & value;
1281 break;
1283 case 0x30c: /* SYS_DMA_LCD_TOP_F2_U */
1284 s->src_f2_top &= 0x0000ffff;
1285 s->src_f2_top |= value << 16;
1286 break;
1288 case 0x30e: /* SYS_DMA_LCD_BOT_F2_L */
1289 s->src_f2_bottom &= 0xffff0000;
1290 s->src_f2_bottom |= 0x0000ffff & value;
1291 break;
1293 case 0x310: /* SYS_DMA_LCD_BOT_F2_U */
1294 s->src_f2_bottom &= 0x0000ffff;
1295 s->src_f2_bottom |= value << 16;
1296 break;
1298 default:
1299 return 1;
1301 return 0;
1304 static int omap_dma_3_1_lcd_read(struct omap_dma_lcd_channel_s *s, int offset,
1305 uint16_t *ret)
1307 int i;
1309 switch (offset) {
1310 case 0x300: /* SYS_DMA_LCD_CTRL */
1311 i = s->condition;
1312 s->condition = 0;
1313 qemu_irq_lower(s->irq);
1314 *ret = ((s->src == imif) << 6) | (i << 3) |
1315 (s->interrupts << 1) | s->dual;
1316 break;
1318 case 0x302: /* SYS_DMA_LCD_TOP_F1_L */
1319 *ret = s->src_f1_top & 0xffff;
1320 break;
1322 case 0x304: /* SYS_DMA_LCD_TOP_F1_U */
1323 *ret = s->src_f1_top >> 16;
1324 break;
1326 case 0x306: /* SYS_DMA_LCD_BOT_F1_L */
1327 *ret = s->src_f1_bottom & 0xffff;
1328 break;
1330 case 0x308: /* SYS_DMA_LCD_BOT_F1_U */
1331 *ret = s->src_f1_bottom >> 16;
1332 break;
1334 case 0x30a: /* SYS_DMA_LCD_TOP_F2_L */
1335 *ret = s->src_f2_top & 0xffff;
1336 break;
1338 case 0x30c: /* SYS_DMA_LCD_TOP_F2_U */
1339 *ret = s->src_f2_top >> 16;
1340 break;
1342 case 0x30e: /* SYS_DMA_LCD_BOT_F2_L */
1343 *ret = s->src_f2_bottom & 0xffff;
1344 break;
1346 case 0x310: /* SYS_DMA_LCD_BOT_F2_U */
1347 *ret = s->src_f2_bottom >> 16;
1348 break;
1350 default:
1351 return 1;
1353 return 0;
1356 static int omap_dma_sys_write(struct omap_dma_s *s, int offset, uint16_t value)
1358 switch (offset) {
1359 case 0x400: /* SYS_DMA_GCR */
1360 s->gcr = value;
1361 break;
1363 case 0x404: /* DMA_GSCR */
1364 if (value & 0x8)
1365 omap_dma_disable_3_1_mapping(s);
1366 else
1367 omap_dma_enable_3_1_mapping(s);
1368 break;
1370 case 0x408: /* DMA_GRST */
1371 if (value & 0x1)
1372 omap_dma_reset(s->dma);
1373 break;
1375 default:
1376 return 1;
1378 return 0;
1381 static int omap_dma_sys_read(struct omap_dma_s *s, int offset,
1382 uint16_t *ret)
1384 switch (offset) {
1385 case 0x400: /* SYS_DMA_GCR */
1386 *ret = s->gcr;
1387 break;
1389 case 0x404: /* DMA_GSCR */
1390 *ret = s->omap_3_1_mapping_disabled << 3;
1391 break;
1393 case 0x408: /* DMA_GRST */
1394 *ret = 0;
1395 break;
1397 case 0x442: /* DMA_HW_ID */
1398 case 0x444: /* DMA_PCh2_ID */
1399 case 0x446: /* DMA_PCh0_ID */
1400 case 0x448: /* DMA_PCh1_ID */
1401 case 0x44a: /* DMA_PChG_ID */
1402 case 0x44c: /* DMA_PChD_ID */
1403 *ret = 1;
1404 break;
1406 case 0x44e: /* DMA_CAPS_0_U */
1407 *ret = (s->caps[0] >> 16) & 0xffff;
1408 break;
1409 case 0x450: /* DMA_CAPS_0_L */
1410 *ret = (s->caps[0] >> 0) & 0xffff;
1411 break;
1413 case 0x452: /* DMA_CAPS_1_U */
1414 *ret = (s->caps[1] >> 16) & 0xffff;
1415 break;
1416 case 0x454: /* DMA_CAPS_1_L */
1417 *ret = (s->caps[1] >> 0) & 0xffff;
1418 break;
1420 case 0x456: /* DMA_CAPS_2 */
1421 *ret = s->caps[2];
1422 break;
1424 case 0x458: /* DMA_CAPS_3 */
1425 *ret = s->caps[3];
1426 break;
1428 case 0x45a: /* DMA_CAPS_4 */
1429 *ret = s->caps[4];
1430 break;
1432 case 0x460: /* DMA_PCh2_SR */
1433 case 0x480: /* DMA_PCh0_SR */
1434 case 0x482: /* DMA_PCh1_SR */
1435 case 0x4c0: /* DMA_PChD_SR_0 */
1436 printf("%s: Physical Channel Status Registers not implemented.\n",
1437 __FUNCTION__);
1438 *ret = 0xff;
1439 break;
1441 default:
1442 return 1;
1444 return 0;
1447 static uint32_t omap_dma_read(void *opaque, target_phys_addr_t addr)
1449 struct omap_dma_s *s = (struct omap_dma_s *) opaque;
1450 int reg, ch, offset = addr - s->base;
1451 uint16_t ret;
1453 switch (offset) {
1454 case 0x300 ... 0x3fe:
1455 if (s->model <= omap_dma_3_1 || !s->omap_3_1_mapping_disabled) {
1456 if (omap_dma_3_1_lcd_read(&s->lcd_ch, offset, &ret))
1457 break;
1458 return ret;
1460 /* Fall through. */
1461 case 0x000 ... 0x2fe:
1462 reg = offset & 0x3f;
1463 ch = (offset >> 6) & 0x0f;
1464 if (omap_dma_ch_reg_read(s, &s->ch[ch], reg, &ret))
1465 break;
1466 return ret;
1468 case 0x404 ... 0x4fe:
1469 if (s->model <= omap_dma_3_1)
1470 break;
1471 /* Fall through. */
1472 case 0x400:
1473 if (omap_dma_sys_read(s, offset, &ret))
1474 break;
1475 return ret;
1477 case 0xb00 ... 0xbfe:
1478 if (s->model == omap_dma_3_2 && s->omap_3_1_mapping_disabled) {
1479 if (omap_dma_3_2_lcd_read(&s->lcd_ch, offset, &ret))
1480 break;
1481 return ret;
1483 break;
1486 OMAP_BAD_REG(addr);
1487 return 0;
1490 static void omap_dma_write(void *opaque, target_phys_addr_t addr,
1491 uint32_t value)
1493 struct omap_dma_s *s = (struct omap_dma_s *) opaque;
1494 int reg, ch, offset = addr - s->base;
1496 switch (offset) {
1497 case 0x300 ... 0x3fe:
1498 if (s->model <= omap_dma_3_1 || !s->omap_3_1_mapping_disabled) {
1499 if (omap_dma_3_1_lcd_write(&s->lcd_ch, offset, value))
1500 break;
1501 return;
1503 /* Fall through. */
1504 case 0x000 ... 0x2fe:
1505 reg = offset & 0x3f;
1506 ch = (offset >> 6) & 0x0f;
1507 if (omap_dma_ch_reg_write(s, &s->ch[ch], reg, value))
1508 break;
1509 return;
1511 case 0x404 ... 0x4fe:
1512 if (s->model <= omap_dma_3_1)
1513 break;
1514 case 0x400:
1515 /* Fall through. */
1516 if (omap_dma_sys_write(s, offset, value))
1517 break;
1518 return;
1520 case 0xb00 ... 0xbfe:
1521 if (s->model == omap_dma_3_2 && s->omap_3_1_mapping_disabled) {
1522 if (omap_dma_3_2_lcd_write(&s->lcd_ch, offset, value))
1523 break;
1524 return;
1526 break;
1529 OMAP_BAD_REG(addr);
1532 static CPUReadMemoryFunc *omap_dma_readfn[] = {
1533 omap_badwidth_read16,
1534 omap_dma_read,
1535 omap_badwidth_read16,
1538 static CPUWriteMemoryFunc *omap_dma_writefn[] = {
1539 omap_badwidth_write16,
1540 omap_dma_write,
1541 omap_badwidth_write16,
1544 static void omap_dma_request(void *opaque, int drq, int req)
1546 struct omap_dma_s *s = (struct omap_dma_s *) opaque;
1547 /* The request pins are level triggered in QEMU. */
1548 if (req) {
1549 if (~s->dma->drqbmp & (1 << drq)) {
1550 s->dma->drqbmp |= 1 << drq;
1551 omap_dma_process_request(s, drq);
1553 } else
1554 s->dma->drqbmp &= ~(1 << drq);
1557 /* XXX: this won't be needed once soc_dma knows about clocks. */
1558 static void omap_dma_clk_update(void *opaque, int line, int on)
1560 struct omap_dma_s *s = (struct omap_dma_s *) opaque;
1561 int i;
1563 s->dma->freq = omap_clk_getrate(s->clk);
1565 for (i = 0; i < s->chans; i ++)
1566 if (s->ch[i].active)
1567 soc_dma_set_request(s->ch[i].dma, on);
1570 static void omap_dma_setcaps(struct omap_dma_s *s)
1572 switch (s->model) {
1573 default:
1574 case omap_dma_3_1:
1575 break;
1576 case omap_dma_3_2:
1577 case omap_dma_4:
1578 /* XXX Only available for sDMA */
1579 s->caps[0] =
1580 (1 << 19) | /* Constant Fill Capability */
1581 (1 << 18); /* Transparent BLT Capability */
1582 s->caps[1] =
1583 (1 << 1); /* 1-bit palettized capability (DMA 3.2 only) */
1584 s->caps[2] =
1585 (1 << 8) | /* SEPARATE_SRC_AND_DST_INDEX_CPBLTY */
1586 (1 << 7) | /* DST_DOUBLE_INDEX_ADRS_CPBLTY */
1587 (1 << 6) | /* DST_SINGLE_INDEX_ADRS_CPBLTY */
1588 (1 << 5) | /* DST_POST_INCRMNT_ADRS_CPBLTY */
1589 (1 << 4) | /* DST_CONST_ADRS_CPBLTY */
1590 (1 << 3) | /* SRC_DOUBLE_INDEX_ADRS_CPBLTY */
1591 (1 << 2) | /* SRC_SINGLE_INDEX_ADRS_CPBLTY */
1592 (1 << 1) | /* SRC_POST_INCRMNT_ADRS_CPBLTY */
1593 (1 << 0); /* SRC_CONST_ADRS_CPBLTY */
1594 s->caps[3] =
1595 (1 << 6) | /* BLOCK_SYNCHR_CPBLTY (DMA 4 only) */
1596 (1 << 7) | /* PKT_SYNCHR_CPBLTY (DMA 4 only) */
1597 (1 << 5) | /* CHANNEL_CHAINING_CPBLTY */
1598 (1 << 4) | /* LCh_INTERLEAVE_CPBLTY */
1599 (1 << 3) | /* AUTOINIT_REPEAT_CPBLTY (DMA 3.2 only) */
1600 (1 << 2) | /* AUTOINIT_ENDPROG_CPBLTY (DMA 3.2 only) */
1601 (1 << 1) | /* FRAME_SYNCHR_CPBLTY */
1602 (1 << 0); /* ELMNT_SYNCHR_CPBLTY */
1603 s->caps[4] =
1604 (1 << 7) | /* PKT_INTERRUPT_CPBLTY (DMA 4 only) */
1605 (1 << 6) | /* SYNC_STATUS_CPBLTY */
1606 (1 << 5) | /* BLOCK_INTERRUPT_CPBLTY */
1607 (1 << 4) | /* LAST_FRAME_INTERRUPT_CPBLTY */
1608 (1 << 3) | /* FRAME_INTERRUPT_CPBLTY */
1609 (1 << 2) | /* HALF_FRAME_INTERRUPT_CPBLTY */
1610 (1 << 1) | /* EVENT_DROP_INTERRUPT_CPBLTY */
1611 (1 << 0); /* TIMEOUT_INTERRUPT_CPBLTY (DMA 3.2 only) */
1612 break;
1616 struct soc_dma_s *omap_dma_init(target_phys_addr_t base, qemu_irq *irqs,
1617 qemu_irq lcd_irq, struct omap_mpu_state_s *mpu, omap_clk clk,
1618 enum omap_dma_model model)
1620 int iomemtype, num_irqs, memsize, i;
1621 struct omap_dma_s *s = (struct omap_dma_s *)
1622 qemu_mallocz(sizeof(struct omap_dma_s));
1624 if (model <= omap_dma_3_1) {
1625 num_irqs = 6;
1626 memsize = 0x800;
1627 } else {
1628 num_irqs = 16;
1629 memsize = 0xc00;
1631 s->base = base;
1632 s->model = model;
1633 s->mpu = mpu;
1634 s->clk = clk;
1635 s->lcd_ch.irq = lcd_irq;
1636 s->lcd_ch.mpu = mpu;
1638 s->dma = soc_dma_init((model <= omap_dma_3_1) ? 9 : 16);
1639 s->dma->freq = omap_clk_getrate(clk);
1640 s->dma->transfer_fn = omap_dma_transfer_generic;
1641 s->dma->setup_fn = omap_dma_transfer_setup;
1642 s->dma->drq = qemu_allocate_irqs(omap_dma_request, s, 32);
1643 s->dma->opaque = s;
1645 while (num_irqs --)
1646 s->ch[num_irqs].irq = irqs[num_irqs];
1647 for (i = 0; i < 3; i ++) {
1648 s->ch[i].sibling = &s->ch[i + 6];
1649 s->ch[i + 6].sibling = &s->ch[i];
1651 for (i = (model <= omap_dma_3_1) ? 8 : 15; i >= 0; i --) {
1652 s->ch[i].dma = &s->dma->ch[i];
1653 s->dma->ch[i].opaque = &s->ch[i];
1656 omap_dma_setcaps(s);
1657 omap_clk_adduser(s->clk, qemu_allocate_irqs(omap_dma_clk_update, s, 1)[0]);
1658 omap_dma_reset(s->dma);
1659 omap_dma_clk_update(s, 0, 1);
1661 iomemtype = cpu_register_io_memory(0, omap_dma_readfn,
1662 omap_dma_writefn, s);
1663 cpu_register_physical_memory(s->base, memsize, iomemtype);
1665 mpu->drq = s->dma->drq;
1667 return s->dma;
1670 static void omap_dma_interrupts_4_update(struct omap_dma_s *s)
1672 struct omap_dma_channel_s *ch = s->ch;
1673 uint32_t bmp, bit;
1675 for (bmp = 0, bit = 1; bit; ch ++, bit <<= 1)
1676 if (ch->status) {
1677 bmp |= bit;
1678 ch->cstatus |= ch->status;
1679 ch->status = 0;
1681 if ((s->irqstat[0] |= s->irqen[0] & bmp))
1682 qemu_irq_raise(s->irq[0]);
1683 if ((s->irqstat[1] |= s->irqen[1] & bmp))
1684 qemu_irq_raise(s->irq[1]);
1685 if ((s->irqstat[2] |= s->irqen[2] & bmp))
1686 qemu_irq_raise(s->irq[2]);
1687 if ((s->irqstat[3] |= s->irqen[3] & bmp))
1688 qemu_irq_raise(s->irq[3]);
1691 static uint32_t omap_dma4_read(void *opaque, target_phys_addr_t addr)
1693 struct omap_dma_s *s = (struct omap_dma_s *) opaque;
1694 int irqn = 0, chnum, offset = addr - s->base;
1695 struct omap_dma_channel_s *ch;
1697 switch (offset) {
1698 case 0x00: /* DMA4_REVISION */
1699 return 0x40;
1701 case 0x14: /* DMA4_IRQSTATUS_L3 */
1702 irqn ++;
1703 case 0x10: /* DMA4_IRQSTATUS_L2 */
1704 irqn ++;
1705 case 0x0c: /* DMA4_IRQSTATUS_L1 */
1706 irqn ++;
1707 case 0x08: /* DMA4_IRQSTATUS_L0 */
1708 return s->irqstat[irqn];
1710 case 0x24: /* DMA4_IRQENABLE_L3 */
1711 irqn ++;
1712 case 0x20: /* DMA4_IRQENABLE_L2 */
1713 irqn ++;
1714 case 0x1c: /* DMA4_IRQENABLE_L1 */
1715 irqn ++;
1716 case 0x18: /* DMA4_IRQENABLE_L0 */
1717 return s->irqen[irqn];
1719 case 0x28: /* DMA4_SYSSTATUS */
1720 return 1; /* RESETDONE */
1722 case 0x2c: /* DMA4_OCP_SYSCONFIG */
1723 return s->ocp;
1725 case 0x64: /* DMA4_CAPS_0 */
1726 return s->caps[0];
1727 case 0x6c: /* DMA4_CAPS_2 */
1728 return s->caps[2];
1729 case 0x70: /* DMA4_CAPS_3 */
1730 return s->caps[3];
1731 case 0x74: /* DMA4_CAPS_4 */
1732 return s->caps[4];
1734 case 0x78: /* DMA4_GCR */
1735 return s->gcr;
1737 case 0x80 ... 0xfff:
1738 offset -= 0x80;
1739 chnum = offset / 0x60;
1740 ch = s->ch + chnum;
1741 offset -= chnum * 0x60;
1742 break;
1744 default:
1745 OMAP_BAD_REG(addr);
1746 return 0;
1749 /* Per-channel registers */
1750 switch (offset) {
1751 case 0x00: /* DMA4_CCR */
1752 return (ch->buf_disable << 25) |
1753 (ch->src_sync << 24) |
1754 (ch->prefetch << 23) |
1755 ((ch->sync & 0x60) << 14) |
1756 (ch->bs << 18) |
1757 (ch->transparent_copy << 17) |
1758 (ch->constant_fill << 16) |
1759 (ch->mode[1] << 14) |
1760 (ch->mode[0] << 12) |
1761 (0 << 10) | (0 << 9) |
1762 (ch->suspend << 8) |
1763 (ch->enable << 7) |
1764 (ch->priority << 6) |
1765 (ch->fs << 5) | (ch->sync & 0x1f);
1767 case 0x04: /* DMA4_CLNK_CTRL */
1768 return (ch->link_enabled << 15) | ch->link_next_ch;
1770 case 0x08: /* DMA4_CICR */
1771 return ch->interrupts;
1773 case 0x0c: /* DMA4_CSR */
1774 return ch->cstatus;
1776 case 0x10: /* DMA4_CSDP */
1777 return (ch->endian[0] << 21) |
1778 (ch->endian_lock[0] << 20) |
1779 (ch->endian[1] << 19) |
1780 (ch->endian_lock[1] << 18) |
1781 (ch->write_mode << 16) |
1782 (ch->burst[1] << 14) |
1783 (ch->pack[1] << 13) |
1784 (ch->translate[1] << 9) |
1785 (ch->burst[0] << 7) |
1786 (ch->pack[0] << 6) |
1787 (ch->translate[0] << 2) |
1788 (ch->data_type >> 1);
1790 case 0x14: /* DMA4_CEN */
1791 return ch->elements;
1793 case 0x18: /* DMA4_CFN */
1794 return ch->frames;
1796 case 0x1c: /* DMA4_CSSA */
1797 return ch->addr[0];
1799 case 0x20: /* DMA4_CDSA */
1800 return ch->addr[1];
1802 case 0x24: /* DMA4_CSEI */
1803 return ch->element_index[0];
1805 case 0x28: /* DMA4_CSFI */
1806 return ch->frame_index[0];
1808 case 0x2c: /* DMA4_CDEI */
1809 return ch->element_index[1];
1811 case 0x30: /* DMA4_CDFI */
1812 return ch->frame_index[1];
1814 case 0x34: /* DMA4_CSAC */
1815 return ch->active_set.src & 0xffff;
1817 case 0x38: /* DMA4_CDAC */
1818 return ch->active_set.dest & 0xffff;
1820 case 0x3c: /* DMA4_CCEN */
1821 return ch->active_set.element;
1823 case 0x40: /* DMA4_CCFN */
1824 return ch->active_set.frame;
1826 case 0x44: /* DMA4_COLOR */
1827 /* XXX only in sDMA */
1828 return ch->color;
1830 default:
1831 OMAP_BAD_REG(addr);
1832 return 0;
1836 static void omap_dma4_write(void *opaque, target_phys_addr_t addr,
1837 uint32_t value)
1839 struct omap_dma_s *s = (struct omap_dma_s *) opaque;
1840 int chnum, irqn = 0, offset = addr - s->base;
1841 struct omap_dma_channel_s *ch;
1843 switch (offset) {
1844 case 0x14: /* DMA4_IRQSTATUS_L3 */
1845 irqn ++;
1846 case 0x10: /* DMA4_IRQSTATUS_L2 */
1847 irqn ++;
1848 case 0x0c: /* DMA4_IRQSTATUS_L1 */
1849 irqn ++;
1850 case 0x08: /* DMA4_IRQSTATUS_L0 */
1851 s->irqstat[irqn] &= ~value;
1852 if (!s->irqstat[irqn])
1853 qemu_irq_lower(s->irq[irqn]);
1854 return;
1856 case 0x24: /* DMA4_IRQENABLE_L3 */
1857 irqn ++;
1858 case 0x20: /* DMA4_IRQENABLE_L2 */
1859 irqn ++;
1860 case 0x1c: /* DMA4_IRQENABLE_L1 */
1861 irqn ++;
1862 case 0x18: /* DMA4_IRQENABLE_L0 */
1863 s->irqen[irqn] = value;
1864 return;
1866 case 0x2c: /* DMA4_OCP_SYSCONFIG */
1867 if (value & 2) /* SOFTRESET */
1868 omap_dma_reset(s->dma);
1869 s->ocp = value & 0x3321;
1870 if (((s->ocp >> 12) & 3) == 3) /* MIDLEMODE */
1871 fprintf(stderr, "%s: invalid DMA power mode\n", __FUNCTION__);
1872 return;
1874 case 0x78: /* DMA4_GCR */
1875 s->gcr = value & 0x00ff00ff;
1876 if ((value & 0xff) == 0x00) /* MAX_CHANNEL_FIFO_DEPTH */
1877 fprintf(stderr, "%s: wrong FIFO depth in GCR\n", __FUNCTION__);
1878 return;
1880 case 0x80 ... 0xfff:
1881 offset -= 0x80;
1882 chnum = offset / 0x60;
1883 ch = s->ch + chnum;
1884 offset -= chnum * 0x60;
1885 break;
1887 case 0x00: /* DMA4_REVISION */
1888 case 0x28: /* DMA4_SYSSTATUS */
1889 case 0x64: /* DMA4_CAPS_0 */
1890 case 0x6c: /* DMA4_CAPS_2 */
1891 case 0x70: /* DMA4_CAPS_3 */
1892 case 0x74: /* DMA4_CAPS_4 */
1893 OMAP_RO_REG(addr);
1894 return;
1896 default:
1897 OMAP_BAD_REG(addr);
1898 return;
1901 /* Per-channel registers */
1902 switch (offset) {
1903 case 0x00: /* DMA4_CCR */
1904 ch->buf_disable = (value >> 25) & 1;
1905 ch->src_sync = (value >> 24) & 1; /* XXX For CamDMA must be 1 */
1906 if (ch->buf_disable && !ch->src_sync)
1907 fprintf(stderr, "%s: Buffering disable is not allowed in "
1908 "destination synchronised mode\n", __FUNCTION__);
1909 ch->prefetch = (value >> 23) & 1;
1910 ch->bs = (value >> 18) & 1;
1911 ch->transparent_copy = (value >> 17) & 1;
1912 ch->constant_fill = (value >> 16) & 1;
1913 ch->mode[1] = (omap_dma_addressing_t) ((value & 0xc000) >> 14);
1914 ch->mode[0] = (omap_dma_addressing_t) ((value & 0x3000) >> 12);
1915 ch->suspend = (value & 0x0100) >> 8;
1916 ch->priority = (value & 0x0040) >> 6;
1917 ch->fs = (value & 0x0020) >> 5;
1918 if (ch->fs && ch->bs && ch->mode[0] && ch->mode[1])
1919 fprintf(stderr, "%s: For a packet transfer at least one port "
1920 "must be constant-addressed\n", __FUNCTION__);
1921 ch->sync = (value & 0x001f) | ((value >> 14) & 0x0060);
1922 /* XXX must be 0x01 for CamDMA */
1924 if (value & 0x0080)
1925 omap_dma_enable_channel(s, ch);
1926 else
1927 omap_dma_disable_channel(s, ch);
1929 break;
1931 case 0x04: /* DMA4_CLNK_CTRL */
1932 ch->link_enabled = (value >> 15) & 0x1;
1933 ch->link_next_ch = value & 0x1f;
1934 break;
1936 case 0x08: /* DMA4_CICR */
1937 ch->interrupts = value & 0x09be;
1938 break;
1940 case 0x0c: /* DMA4_CSR */
1941 ch->cstatus &= ~value;
1942 break;
1944 case 0x10: /* DMA4_CSDP */
1945 ch->endian[0] =(value >> 21) & 1;
1946 ch->endian_lock[0] =(value >> 20) & 1;
1947 ch->endian[1] =(value >> 19) & 1;
1948 ch->endian_lock[1] =(value >> 18) & 1;
1949 if (ch->endian[0] != ch->endian[1])
1950 fprintf(stderr, "%s: DMA endiannes conversion enable attempt\n",
1951 __FUNCTION__);
1952 ch->write_mode = (value >> 16) & 3;
1953 ch->burst[1] = (value & 0xc000) >> 14;
1954 ch->pack[1] = (value & 0x2000) >> 13;
1955 ch->translate[1] = (value & 0x1e00) >> 9;
1956 ch->burst[0] = (value & 0x0180) >> 7;
1957 ch->pack[0] = (value & 0x0040) >> 6;
1958 ch->translate[0] = (value & 0x003c) >> 2;
1959 if (ch->translate[0] | ch->translate[1])
1960 fprintf(stderr, "%s: bad MReqAddressTranslate sideband signal\n",
1961 __FUNCTION__);
1962 ch->data_type = 1 << (value & 3);
1963 if ((value & 3) == 3)
1964 printf("%s: bad data_type for DMA channel\n", __FUNCTION__);
1965 break;
1967 case 0x14: /* DMA4_CEN */
1968 ch->set_update = 1;
1969 ch->elements = value & 0xffffff;
1970 break;
1972 case 0x18: /* DMA4_CFN */
1973 ch->frames = value & 0xffff;
1974 ch->set_update = 1;
1975 break;
1977 case 0x1c: /* DMA4_CSSA */
1978 ch->addr[0] = (target_phys_addr_t) (uint32_t) value;
1979 ch->set_update = 1;
1980 break;
1982 case 0x20: /* DMA4_CDSA */
1983 ch->addr[1] = (target_phys_addr_t) (uint32_t) value;
1984 ch->set_update = 1;
1985 break;
1987 case 0x24: /* DMA4_CSEI */
1988 ch->element_index[0] = (int16_t) value;
1989 ch->set_update = 1;
1990 break;
1992 case 0x28: /* DMA4_CSFI */
1993 ch->frame_index[0] = (int32_t) value;
1994 ch->set_update = 1;
1995 break;
1997 case 0x2c: /* DMA4_CDEI */
1998 ch->element_index[1] = (int16_t) value;
1999 ch->set_update = 1;
2000 break;
2002 case 0x30: /* DMA4_CDFI */
2003 ch->frame_index[1] = (int32_t) value;
2004 ch->set_update = 1;
2005 break;
2007 case 0x44: /* DMA4_COLOR */
2008 /* XXX only in sDMA */
2009 ch->color = value;
2010 break;
2012 case 0x34: /* DMA4_CSAC */
2013 case 0x38: /* DMA4_CDAC */
2014 case 0x3c: /* DMA4_CCEN */
2015 case 0x40: /* DMA4_CCFN */
2016 OMAP_RO_REG(addr);
2017 break;
2019 default:
2020 OMAP_BAD_REG(addr);
2024 static CPUReadMemoryFunc *omap_dma4_readfn[] = {
2025 omap_badwidth_read16,
2026 omap_dma4_read,
2027 omap_dma4_read,
2030 static CPUWriteMemoryFunc *omap_dma4_writefn[] = {
2031 omap_badwidth_write16,
2032 omap_dma4_write,
2033 omap_dma4_write,
2036 struct soc_dma_s *omap_dma4_init(target_phys_addr_t base, qemu_irq *irqs,
2037 struct omap_mpu_state_s *mpu, int fifo,
2038 int chans, omap_clk iclk, omap_clk fclk)
2040 int iomemtype, i;
2041 struct omap_dma_s *s = (struct omap_dma_s *)
2042 qemu_mallocz(sizeof(struct omap_dma_s));
2044 s->base = base;
2045 s->model = omap_dma_4;
2046 s->chans = chans;
2047 s->mpu = mpu;
2048 s->clk = fclk;
2050 s->dma = soc_dma_init(s->chans);
2051 s->dma->freq = omap_clk_getrate(fclk);
2052 s->dma->transfer_fn = omap_dma_transfer_generic;
2053 s->dma->setup_fn = omap_dma_transfer_setup;
2054 s->dma->drq = qemu_allocate_irqs(omap_dma_request, s, 64);
2055 s->dma->opaque = s;
2056 for (i = 0; i < s->chans; i ++) {
2057 s->ch[i].dma = &s->dma->ch[i];
2058 s->dma->ch[i].opaque = &s->ch[i];
2061 memcpy(&s->irq, irqs, sizeof(s->irq));
2062 s->intr_update = omap_dma_interrupts_4_update;
2064 omap_dma_setcaps(s);
2065 omap_clk_adduser(s->clk, qemu_allocate_irqs(omap_dma_clk_update, s, 1)[0]);
2066 omap_dma_reset(s->dma);
2067 omap_dma_clk_update(s, 0, !!s->dma->freq);
2069 iomemtype = cpu_register_io_memory(0, omap_dma4_readfn,
2070 omap_dma4_writefn, s);
2071 cpu_register_physical_memory(s->base, 0x1000, iomemtype);
2073 mpu->drq = s->dma->drq;
2075 return s->dma;
2078 struct omap_dma_lcd_channel_s *omap_dma_get_lcdch(struct soc_dma_s *dma)
2080 struct omap_dma_s *s = dma->opaque;
2082 return &s->lcd_ch;