kvm: testsuite: add harness for real-mode tests in C
[qemu-kvm/fedora.git] / hw / m48t59.c
blobb781f50bf980ce34f250d11550d6296203794e83
1 /*
2 * QEMU M48T59 and M48T08 NVRAM emulation for PPC PREP and Sparc platforms
4 * Copyright (c) 2003-2005, 2007 Jocelyn Mayer
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
24 #include "hw.h"
25 #include "nvram.h"
26 #include "isa.h"
27 #include "qemu-timer.h"
28 #include "sysemu.h"
30 //#define DEBUG_NVRAM
32 #if defined(DEBUG_NVRAM)
33 #define NVRAM_PRINTF(fmt, args...) do { printf(fmt , ##args); } while (0)
34 #else
35 #define NVRAM_PRINTF(fmt, args...) do { } while (0)
36 #endif
39 * The M48T02, M48T08 and M48T59 chips are very similar. The newer '59 has
40 * alarm and a watchdog timer and related control registers. In the
41 * PPC platform there is also a nvram lock function.
43 struct m48t59_t {
44 /* Model parameters */
45 int type; // 2 = m48t02, 8 = m48t08, 59 = m48t59
46 /* Hardware parameters */
47 qemu_irq IRQ;
48 int mem_index;
49 target_phys_addr_t mem_base;
50 uint32_t io_base;
51 uint16_t size;
52 /* RTC management */
53 time_t time_offset;
54 time_t stop_time;
55 /* Alarm & watchdog */
56 struct tm alarm;
57 struct QEMUTimer *alrm_timer;
58 struct QEMUTimer *wd_timer;
59 /* NVRAM storage */
60 uint8_t lock;
61 uint16_t addr;
62 uint8_t *buffer;
65 /* Fake timer functions */
66 /* Generic helpers for BCD */
67 static inline uint8_t toBCD (uint8_t value)
69 return (((value / 10) % 10) << 4) | (value % 10);
72 static inline uint8_t fromBCD (uint8_t BCD)
74 return ((BCD >> 4) * 10) + (BCD & 0x0F);
77 /* Alarm management */
78 static void alarm_cb (void *opaque)
80 struct tm tm;
81 uint64_t next_time;
82 m48t59_t *NVRAM = opaque;
84 qemu_set_irq(NVRAM->IRQ, 1);
85 if ((NVRAM->buffer[0x1FF5] & 0x80) == 0 &&
86 (NVRAM->buffer[0x1FF4] & 0x80) == 0 &&
87 (NVRAM->buffer[0x1FF3] & 0x80) == 0 &&
88 (NVRAM->buffer[0x1FF2] & 0x80) == 0) {
89 /* Repeat once a month */
90 qemu_get_timedate(&tm, NVRAM->time_offset);
91 tm.tm_mon++;
92 if (tm.tm_mon == 13) {
93 tm.tm_mon = 1;
94 tm.tm_year++;
96 next_time = qemu_timedate_diff(&tm) - NVRAM->time_offset;
97 } else if ((NVRAM->buffer[0x1FF5] & 0x80) != 0 &&
98 (NVRAM->buffer[0x1FF4] & 0x80) == 0 &&
99 (NVRAM->buffer[0x1FF3] & 0x80) == 0 &&
100 (NVRAM->buffer[0x1FF2] & 0x80) == 0) {
101 /* Repeat once a day */
102 next_time = 24 * 60 * 60;
103 } else if ((NVRAM->buffer[0x1FF5] & 0x80) != 0 &&
104 (NVRAM->buffer[0x1FF4] & 0x80) != 0 &&
105 (NVRAM->buffer[0x1FF3] & 0x80) == 0 &&
106 (NVRAM->buffer[0x1FF2] & 0x80) == 0) {
107 /* Repeat once an hour */
108 next_time = 60 * 60;
109 } else if ((NVRAM->buffer[0x1FF5] & 0x80) != 0 &&
110 (NVRAM->buffer[0x1FF4] & 0x80) != 0 &&
111 (NVRAM->buffer[0x1FF3] & 0x80) != 0 &&
112 (NVRAM->buffer[0x1FF2] & 0x80) == 0) {
113 /* Repeat once a minute */
114 next_time = 60;
115 } else {
116 /* Repeat once a second */
117 next_time = 1;
119 qemu_mod_timer(NVRAM->alrm_timer, qemu_get_clock(vm_clock) +
120 next_time * 1000);
121 qemu_set_irq(NVRAM->IRQ, 0);
124 static void set_alarm (m48t59_t *NVRAM)
126 int diff;
127 if (NVRAM->alrm_timer != NULL) {
128 qemu_del_timer(NVRAM->alrm_timer);
129 diff = qemu_timedate_diff(&NVRAM->alarm) - NVRAM->time_offset;
130 if (diff > 0)
131 qemu_mod_timer(NVRAM->alrm_timer, diff * 1000);
135 /* RTC management helpers */
136 static inline void get_time (m48t59_t *NVRAM, struct tm *tm)
138 qemu_get_timedate(tm, NVRAM->time_offset);
141 static void set_time (m48t59_t *NVRAM, struct tm *tm)
143 NVRAM->time_offset = qemu_timedate_diff(tm);
144 set_alarm(NVRAM);
147 /* Watchdog management */
148 static void watchdog_cb (void *opaque)
150 m48t59_t *NVRAM = opaque;
152 NVRAM->buffer[0x1FF0] |= 0x80;
153 if (NVRAM->buffer[0x1FF7] & 0x80) {
154 NVRAM->buffer[0x1FF7] = 0x00;
155 NVRAM->buffer[0x1FFC] &= ~0x40;
156 /* May it be a hw CPU Reset instead ? */
157 qemu_system_reset_request();
158 } else {
159 qemu_set_irq(NVRAM->IRQ, 1);
160 qemu_set_irq(NVRAM->IRQ, 0);
164 static void set_up_watchdog (m48t59_t *NVRAM, uint8_t value)
166 uint64_t interval; /* in 1/16 seconds */
168 NVRAM->buffer[0x1FF0] &= ~0x80;
169 if (NVRAM->wd_timer != NULL) {
170 qemu_del_timer(NVRAM->wd_timer);
171 if (value != 0) {
172 interval = (1 << (2 * (value & 0x03))) * ((value >> 2) & 0x1F);
173 qemu_mod_timer(NVRAM->wd_timer, ((uint64_t)time(NULL) * 1000) +
174 ((interval * 1000) >> 4));
179 /* Direct access to NVRAM */
180 void m48t59_write (void *opaque, uint32_t addr, uint32_t val)
182 m48t59_t *NVRAM = opaque;
183 struct tm tm;
184 int tmp;
186 if (addr > 0x1FF8 && addr < 0x2000)
187 NVRAM_PRINTF("%s: 0x%08x => 0x%08x\n", __func__, addr, val);
189 /* check for NVRAM access */
190 if ((NVRAM->type == 2 && addr < 0x7f8) ||
191 (NVRAM->type == 8 && addr < 0x1ff8) ||
192 (NVRAM->type == 59 && addr < 0x1ff0))
193 goto do_write;
195 /* TOD access */
196 switch (addr) {
197 case 0x1FF0:
198 /* flags register : read-only */
199 break;
200 case 0x1FF1:
201 /* unused */
202 break;
203 case 0x1FF2:
204 /* alarm seconds */
205 tmp = fromBCD(val & 0x7F);
206 if (tmp >= 0 && tmp <= 59) {
207 NVRAM->alarm.tm_sec = tmp;
208 NVRAM->buffer[0x1FF2] = val;
209 set_alarm(NVRAM);
211 break;
212 case 0x1FF3:
213 /* alarm minutes */
214 tmp = fromBCD(val & 0x7F);
215 if (tmp >= 0 && tmp <= 59) {
216 NVRAM->alarm.tm_min = tmp;
217 NVRAM->buffer[0x1FF3] = val;
218 set_alarm(NVRAM);
220 break;
221 case 0x1FF4:
222 /* alarm hours */
223 tmp = fromBCD(val & 0x3F);
224 if (tmp >= 0 && tmp <= 23) {
225 NVRAM->alarm.tm_hour = tmp;
226 NVRAM->buffer[0x1FF4] = val;
227 set_alarm(NVRAM);
229 break;
230 case 0x1FF5:
231 /* alarm date */
232 tmp = fromBCD(val & 0x1F);
233 if (tmp != 0) {
234 NVRAM->alarm.tm_mday = tmp;
235 NVRAM->buffer[0x1FF5] = val;
236 set_alarm(NVRAM);
238 break;
239 case 0x1FF6:
240 /* interrupts */
241 NVRAM->buffer[0x1FF6] = val;
242 break;
243 case 0x1FF7:
244 /* watchdog */
245 NVRAM->buffer[0x1FF7] = val;
246 set_up_watchdog(NVRAM, val);
247 break;
248 case 0x1FF8:
249 case 0x07F8:
250 /* control */
251 NVRAM->buffer[addr] = (val & ~0xA0) | 0x90;
252 break;
253 case 0x1FF9:
254 case 0x07F9:
255 /* seconds (BCD) */
256 tmp = fromBCD(val & 0x7F);
257 if (tmp >= 0 && tmp <= 59) {
258 get_time(NVRAM, &tm);
259 tm.tm_sec = tmp;
260 set_time(NVRAM, &tm);
262 if ((val & 0x80) ^ (NVRAM->buffer[addr] & 0x80)) {
263 if (val & 0x80) {
264 NVRAM->stop_time = time(NULL);
265 } else {
266 NVRAM->time_offset += NVRAM->stop_time - time(NULL);
267 NVRAM->stop_time = 0;
270 NVRAM->buffer[addr] = val & 0x80;
271 break;
272 case 0x1FFA:
273 case 0x07FA:
274 /* minutes (BCD) */
275 tmp = fromBCD(val & 0x7F);
276 if (tmp >= 0 && tmp <= 59) {
277 get_time(NVRAM, &tm);
278 tm.tm_min = tmp;
279 set_time(NVRAM, &tm);
281 break;
282 case 0x1FFB:
283 case 0x07FB:
284 /* hours (BCD) */
285 tmp = fromBCD(val & 0x3F);
286 if (tmp >= 0 && tmp <= 23) {
287 get_time(NVRAM, &tm);
288 tm.tm_hour = tmp;
289 set_time(NVRAM, &tm);
291 break;
292 case 0x1FFC:
293 case 0x07FC:
294 /* day of the week / century */
295 tmp = fromBCD(val & 0x07);
296 get_time(NVRAM, &tm);
297 tm.tm_wday = tmp;
298 set_time(NVRAM, &tm);
299 NVRAM->buffer[addr] = val & 0x40;
300 break;
301 case 0x1FFD:
302 case 0x07FD:
303 /* date */
304 tmp = fromBCD(val & 0x1F);
305 if (tmp != 0) {
306 get_time(NVRAM, &tm);
307 tm.tm_mday = tmp;
308 set_time(NVRAM, &tm);
310 break;
311 case 0x1FFE:
312 case 0x07FE:
313 /* month */
314 tmp = fromBCD(val & 0x1F);
315 if (tmp >= 1 && tmp <= 12) {
316 get_time(NVRAM, &tm);
317 tm.tm_mon = tmp - 1;
318 set_time(NVRAM, &tm);
320 break;
321 case 0x1FFF:
322 case 0x07FF:
323 /* year */
324 tmp = fromBCD(val);
325 if (tmp >= 0 && tmp <= 99) {
326 get_time(NVRAM, &tm);
327 if (NVRAM->type == 8)
328 tm.tm_year = fromBCD(val) + 68; // Base year is 1968
329 else
330 tm.tm_year = fromBCD(val);
331 set_time(NVRAM, &tm);
333 break;
334 default:
335 /* Check lock registers state */
336 if (addr >= 0x20 && addr <= 0x2F && (NVRAM->lock & 1))
337 break;
338 if (addr >= 0x30 && addr <= 0x3F && (NVRAM->lock & 2))
339 break;
340 do_write:
341 if (addr < NVRAM->size) {
342 NVRAM->buffer[addr] = val & 0xFF;
344 break;
348 uint32_t m48t59_read (void *opaque, uint32_t addr)
350 m48t59_t *NVRAM = opaque;
351 struct tm tm;
352 uint32_t retval = 0xFF;
354 /* check for NVRAM access */
355 if ((NVRAM->type == 2 && addr < 0x078f) ||
356 (NVRAM->type == 8 && addr < 0x1ff8) ||
357 (NVRAM->type == 59 && addr < 0x1ff0))
358 goto do_read;
360 /* TOD access */
361 switch (addr) {
362 case 0x1FF0:
363 /* flags register */
364 goto do_read;
365 case 0x1FF1:
366 /* unused */
367 retval = 0;
368 break;
369 case 0x1FF2:
370 /* alarm seconds */
371 goto do_read;
372 case 0x1FF3:
373 /* alarm minutes */
374 goto do_read;
375 case 0x1FF4:
376 /* alarm hours */
377 goto do_read;
378 case 0x1FF5:
379 /* alarm date */
380 goto do_read;
381 case 0x1FF6:
382 /* interrupts */
383 goto do_read;
384 case 0x1FF7:
385 /* A read resets the watchdog */
386 set_up_watchdog(NVRAM, NVRAM->buffer[0x1FF7]);
387 goto do_read;
388 case 0x1FF8:
389 case 0x07F8:
390 /* control */
391 goto do_read;
392 case 0x1FF9:
393 case 0x07F9:
394 /* seconds (BCD) */
395 get_time(NVRAM, &tm);
396 retval = (NVRAM->buffer[addr] & 0x80) | toBCD(tm.tm_sec);
397 break;
398 case 0x1FFA:
399 case 0x07FA:
400 /* minutes (BCD) */
401 get_time(NVRAM, &tm);
402 retval = toBCD(tm.tm_min);
403 break;
404 case 0x1FFB:
405 case 0x07FB:
406 /* hours (BCD) */
407 get_time(NVRAM, &tm);
408 retval = toBCD(tm.tm_hour);
409 break;
410 case 0x1FFC:
411 case 0x07FC:
412 /* day of the week / century */
413 get_time(NVRAM, &tm);
414 retval = NVRAM->buffer[addr] | tm.tm_wday;
415 break;
416 case 0x1FFD:
417 case 0x07FD:
418 /* date */
419 get_time(NVRAM, &tm);
420 retval = toBCD(tm.tm_mday);
421 break;
422 case 0x1FFE:
423 case 0x07FE:
424 /* month */
425 get_time(NVRAM, &tm);
426 retval = toBCD(tm.tm_mon + 1);
427 break;
428 case 0x1FFF:
429 case 0x07FF:
430 /* year */
431 get_time(NVRAM, &tm);
432 if (NVRAM->type == 8)
433 retval = toBCD(tm.tm_year - 68); // Base year is 1968
434 else
435 retval = toBCD(tm.tm_year);
436 break;
437 default:
438 /* Check lock registers state */
439 if (addr >= 0x20 && addr <= 0x2F && (NVRAM->lock & 1))
440 break;
441 if (addr >= 0x30 && addr <= 0x3F && (NVRAM->lock & 2))
442 break;
443 do_read:
444 if (addr < NVRAM->size) {
445 retval = NVRAM->buffer[addr];
447 break;
449 if (addr > 0x1FF9 && addr < 0x2000)
450 NVRAM_PRINTF("%s: 0x%08x <= 0x%08x\n", __func__, addr, retval);
452 return retval;
455 void m48t59_set_addr (void *opaque, uint32_t addr)
457 m48t59_t *NVRAM = opaque;
459 NVRAM->addr = addr;
462 void m48t59_toggle_lock (void *opaque, int lock)
464 m48t59_t *NVRAM = opaque;
466 NVRAM->lock ^= 1 << lock;
469 /* IO access to NVRAM */
470 static void NVRAM_writeb (void *opaque, uint32_t addr, uint32_t val)
472 m48t59_t *NVRAM = opaque;
474 addr -= NVRAM->io_base;
475 NVRAM_PRINTF("%s: 0x%08x => 0x%08x\n", __func__, addr, val);
476 switch (addr) {
477 case 0:
478 NVRAM->addr &= ~0x00FF;
479 NVRAM->addr |= val;
480 break;
481 case 1:
482 NVRAM->addr &= ~0xFF00;
483 NVRAM->addr |= val << 8;
484 break;
485 case 3:
486 m48t59_write(NVRAM, val, NVRAM->addr);
487 NVRAM->addr = 0x0000;
488 break;
489 default:
490 break;
494 static uint32_t NVRAM_readb (void *opaque, uint32_t addr)
496 m48t59_t *NVRAM = opaque;
497 uint32_t retval;
499 addr -= NVRAM->io_base;
500 switch (addr) {
501 case 3:
502 retval = m48t59_read(NVRAM, NVRAM->addr);
503 break;
504 default:
505 retval = -1;
506 break;
508 NVRAM_PRINTF("%s: 0x%08x <= 0x%08x\n", __func__, addr, retval);
510 return retval;
513 static void nvram_writeb (void *opaque, target_phys_addr_t addr, uint32_t value)
515 m48t59_t *NVRAM = opaque;
517 addr -= NVRAM->mem_base;
518 m48t59_write(NVRAM, addr, value & 0xff);
521 static void nvram_writew (void *opaque, target_phys_addr_t addr, uint32_t value)
523 m48t59_t *NVRAM = opaque;
525 addr -= NVRAM->mem_base;
526 m48t59_write(NVRAM, addr, (value >> 8) & 0xff);
527 m48t59_write(NVRAM, addr + 1, value & 0xff);
530 static void nvram_writel (void *opaque, target_phys_addr_t addr, uint32_t value)
532 m48t59_t *NVRAM = opaque;
534 addr -= NVRAM->mem_base;
535 m48t59_write(NVRAM, addr, (value >> 24) & 0xff);
536 m48t59_write(NVRAM, addr + 1, (value >> 16) & 0xff);
537 m48t59_write(NVRAM, addr + 2, (value >> 8) & 0xff);
538 m48t59_write(NVRAM, addr + 3, value & 0xff);
541 static uint32_t nvram_readb (void *opaque, target_phys_addr_t addr)
543 m48t59_t *NVRAM = opaque;
544 uint32_t retval;
546 addr -= NVRAM->mem_base;
547 retval = m48t59_read(NVRAM, addr);
548 return retval;
551 static uint32_t nvram_readw (void *opaque, target_phys_addr_t addr)
553 m48t59_t *NVRAM = opaque;
554 uint32_t retval;
556 addr -= NVRAM->mem_base;
557 retval = m48t59_read(NVRAM, addr) << 8;
558 retval |= m48t59_read(NVRAM, addr + 1);
559 return retval;
562 static uint32_t nvram_readl (void *opaque, target_phys_addr_t addr)
564 m48t59_t *NVRAM = opaque;
565 uint32_t retval;
567 addr -= NVRAM->mem_base;
568 retval = m48t59_read(NVRAM, addr) << 24;
569 retval |= m48t59_read(NVRAM, addr + 1) << 16;
570 retval |= m48t59_read(NVRAM, addr + 2) << 8;
571 retval |= m48t59_read(NVRAM, addr + 3);
572 return retval;
575 static CPUWriteMemoryFunc *nvram_write[] = {
576 &nvram_writeb,
577 &nvram_writew,
578 &nvram_writel,
581 static CPUReadMemoryFunc *nvram_read[] = {
582 &nvram_readb,
583 &nvram_readw,
584 &nvram_readl,
587 static void m48t59_save(QEMUFile *f, void *opaque)
589 m48t59_t *s = opaque;
591 qemu_put_8s(f, &s->lock);
592 qemu_put_be16s(f, &s->addr);
593 qemu_put_buffer(f, s->buffer, s->size);
596 static int m48t59_load(QEMUFile *f, void *opaque, int version_id)
598 m48t59_t *s = opaque;
600 if (version_id != 1)
601 return -EINVAL;
603 qemu_get_8s(f, &s->lock);
604 qemu_get_be16s(f, &s->addr);
605 qemu_get_buffer(f, s->buffer, s->size);
607 return 0;
610 static void m48t59_reset(void *opaque)
612 m48t59_t *NVRAM = opaque;
614 if (NVRAM->alrm_timer != NULL)
615 qemu_del_timer(NVRAM->alrm_timer);
617 if (NVRAM->wd_timer != NULL)
618 qemu_del_timer(NVRAM->wd_timer);
621 /* Initialisation routine */
622 m48t59_t *m48t59_init (qemu_irq IRQ, target_phys_addr_t mem_base,
623 uint32_t io_base, uint16_t size,
624 int type)
626 m48t59_t *s;
627 target_phys_addr_t save_base;
629 s = qemu_mallocz(sizeof(m48t59_t));
630 if (!s)
631 return NULL;
632 s->buffer = qemu_mallocz(size);
633 if (!s->buffer) {
634 qemu_free(s);
635 return NULL;
637 s->IRQ = IRQ;
638 s->size = size;
639 s->mem_base = mem_base;
640 s->io_base = io_base;
641 s->addr = 0;
642 s->type = type;
643 if (io_base != 0) {
644 register_ioport_read(io_base, 0x04, 1, NVRAM_readb, s);
645 register_ioport_write(io_base, 0x04, 1, NVRAM_writeb, s);
647 if (mem_base != 0) {
648 s->mem_index = cpu_register_io_memory(0, nvram_read, nvram_write, s);
649 cpu_register_physical_memory(mem_base, size, s->mem_index);
651 if (type == 59) {
652 s->alrm_timer = qemu_new_timer(vm_clock, &alarm_cb, s);
653 s->wd_timer = qemu_new_timer(vm_clock, &watchdog_cb, s);
655 s->lock = 0;
656 qemu_get_timedate(&s->alarm, 0);
658 qemu_register_reset(m48t59_reset, s);
659 save_base = mem_base ? mem_base : io_base;
660 register_savevm("m48t59", save_base, 1, m48t59_save, m48t59_load, s);
662 return s;