Virtio register pow2 memory regions
[qemu-kvm/fedora.git] / target-arm / op_helper.c
blob2b9ec0fa75c2e8a2493f412c52c9698a08373ade
1 /*
2 * ARM helper routines
4 * Copyright (c) 2005-2007 CodeSourcery, LLC
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
20 #include "exec.h"
22 void raise_exception(int tt)
24 env->exception_index = tt;
25 cpu_loop_exit();
28 /* thread support */
30 spinlock_t global_cpu_lock = SPIN_LOCK_UNLOCKED;
32 void cpu_lock(void)
34 spin_lock(&global_cpu_lock);
37 void cpu_unlock(void)
39 spin_unlock(&global_cpu_lock);
42 /* VFP support. */
44 void do_vfp_abss(void)
46 FT0s = float32_abs(FT0s);
49 void do_vfp_absd(void)
51 FT0d = float64_abs(FT0d);
54 void do_vfp_sqrts(void)
56 FT0s = float32_sqrt(FT0s, &env->vfp.fp_status);
59 void do_vfp_sqrtd(void)
61 FT0d = float64_sqrt(FT0d, &env->vfp.fp_status);
64 /* XXX: check quiet/signaling case */
65 #define DO_VFP_cmp(p, size) \
66 void do_vfp_cmp##p(void) \
67 { \
68 uint32_t flags; \
69 switch(float ## size ## _compare_quiet(FT0##p, FT1##p, &env->vfp.fp_status)) {\
70 case 0: flags = 0x6; break;\
71 case -1: flags = 0x8; break;\
72 case 1: flags = 0x2; break;\
73 default: case 2: flags = 0x3; break;\
75 env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28)\
76 | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
77 FORCE_RET(); \
80 void do_vfp_cmpe##p(void) \
81 { \
82 uint32_t flags; \
83 switch(float ## size ## _compare(FT0##p, FT1##p, &env->vfp.fp_status)) {\
84 case 0: flags = 0x6; break;\
85 case -1: flags = 0x8; break;\
86 case 1: flags = 0x2; break;\
87 default: case 2: flags = 0x3; break;\
89 env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28)\
90 | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
91 FORCE_RET(); \
93 DO_VFP_cmp(s, 32)
94 DO_VFP_cmp(d, 64)
95 #undef DO_VFP_cmp
97 /* Convert host exception flags to vfp form. */
98 static inline int vfp_exceptbits_from_host(int host_bits)
100 int target_bits = 0;
102 if (host_bits & float_flag_invalid)
103 target_bits |= 1;
104 if (host_bits & float_flag_divbyzero)
105 target_bits |= 2;
106 if (host_bits & float_flag_overflow)
107 target_bits |= 4;
108 if (host_bits & float_flag_underflow)
109 target_bits |= 8;
110 if (host_bits & float_flag_inexact)
111 target_bits |= 0x10;
112 return target_bits;
115 /* Convert vfp exception flags to target form. */
116 static inline int vfp_exceptbits_to_host(int target_bits)
118 int host_bits = 0;
120 if (target_bits & 1)
121 host_bits |= float_flag_invalid;
122 if (target_bits & 2)
123 host_bits |= float_flag_divbyzero;
124 if (target_bits & 4)
125 host_bits |= float_flag_overflow;
126 if (target_bits & 8)
127 host_bits |= float_flag_underflow;
128 if (target_bits & 0x10)
129 host_bits |= float_flag_inexact;
130 return host_bits;
133 void do_vfp_set_fpscr(void)
135 int i;
136 uint32_t changed;
138 changed = env->vfp.xregs[ARM_VFP_FPSCR];
139 env->vfp.xregs[ARM_VFP_FPSCR] = (T0 & 0xffc8ffff);
140 env->vfp.vec_len = (T0 >> 16) & 7;
141 env->vfp.vec_stride = (T0 >> 20) & 3;
143 changed ^= T0;
144 if (changed & (3 << 22)) {
145 i = (T0 >> 22) & 3;
146 switch (i) {
147 case 0:
148 i = float_round_nearest_even;
149 break;
150 case 1:
151 i = float_round_up;
152 break;
153 case 2:
154 i = float_round_down;
155 break;
156 case 3:
157 i = float_round_to_zero;
158 break;
160 set_float_rounding_mode(i, &env->vfp.fp_status);
163 i = vfp_exceptbits_to_host((T0 >> 8) & 0x1f);
164 set_float_exception_flags(i, &env->vfp.fp_status);
165 /* XXX: FZ and DN are not implemented. */
168 void do_vfp_get_fpscr(void)
170 int i;
172 T0 = (env->vfp.xregs[ARM_VFP_FPSCR] & 0xffc8ffff) | (env->vfp.vec_len << 16)
173 | (env->vfp.vec_stride << 20);
174 i = get_float_exception_flags(&env->vfp.fp_status);
175 T0 |= vfp_exceptbits_from_host(i);
178 float32 helper_recps_f32(float32 a, float32 b)
180 float_status *s = &env->vfp.fp_status;
181 float32 two = int32_to_float32(2, s);
182 return float32_sub(two, float32_mul(a, b, s), s);
185 float32 helper_rsqrts_f32(float32 a, float32 b)
187 float_status *s = &env->vfp.fp_status;
188 float32 three = int32_to_float32(3, s);
189 return float32_sub(three, float32_mul(a, b, s), s);
192 /* TODO: The architecture specifies the value that the estimate functions
193 should return. We return the exact reciprocal/root instead. */
194 float32 helper_recpe_f32(float32 a)
196 float_status *s = &env->vfp.fp_status;
197 float32 one = int32_to_float32(1, s);
198 return float32_div(one, a, s);
201 float32 helper_rsqrte_f32(float32 a)
203 float_status *s = &env->vfp.fp_status;
204 float32 one = int32_to_float32(1, s);
205 return float32_div(one, float32_sqrt(a, s), s);
208 uint32_t helper_recpe_u32(uint32_t a)
210 float_status *s = &env->vfp.fp_status;
211 float32 tmp;
212 tmp = int32_to_float32(a, s);
213 tmp = float32_scalbn(tmp, -32, s);
214 tmp = helper_recpe_f32(tmp);
215 tmp = float32_scalbn(tmp, 31, s);
216 return float32_to_int32(tmp, s);
219 uint32_t helper_rsqrte_u32(uint32_t a)
221 float_status *s = &env->vfp.fp_status;
222 float32 tmp;
223 tmp = int32_to_float32(a, s);
224 tmp = float32_scalbn(tmp, -32, s);
225 tmp = helper_rsqrte_f32(tmp);
226 tmp = float32_scalbn(tmp, 31, s);
227 return float32_to_int32(tmp, s);
230 void helper_neon_tbl(int rn, int maxindex)
232 uint32_t val;
233 uint32_t mask;
234 uint32_t tmp;
235 int index;
236 int shift;
237 uint64_t *table;
238 table = (uint64_t *)&env->vfp.regs[rn];
239 val = 0;
240 mask = 0;
241 for (shift = 0; shift < 32; shift += 8) {
242 index = (T1 >> shift) & 0xff;
243 if (index <= maxindex) {
244 tmp = (table[index >> 3] >> (index & 7)) & 0xff;
245 val |= tmp << shift;
246 } else {
247 val |= T0 & (0xff << shift);
250 T0 = val;
253 #if !defined(CONFIG_USER_ONLY)
255 #define MMUSUFFIX _mmu
256 #ifdef __s390__
257 # define GETPC() ((void*)((unsigned long)__builtin_return_address(0) & 0x7fffffffUL))
258 #else
259 # define GETPC() (__builtin_return_address(0))
260 #endif
262 #define SHIFT 0
263 #include "softmmu_template.h"
265 #define SHIFT 1
266 #include "softmmu_template.h"
268 #define SHIFT 2
269 #include "softmmu_template.h"
271 #define SHIFT 3
272 #include "softmmu_template.h"
274 /* try to fill the TLB and return an exception if error. If retaddr is
275 NULL, it means that the function was called in C code (i.e. not
276 from generated code or from helper.c) */
277 /* XXX: fix it to restore all registers */
278 void tlb_fill (target_ulong addr, int is_write, int mmu_idx, void *retaddr)
280 TranslationBlock *tb;
281 CPUState *saved_env;
282 unsigned long pc;
283 int ret;
285 /* XXX: hack to restore env in all cases, even if not called from
286 generated code */
287 saved_env = env;
288 env = cpu_single_env;
289 ret = cpu_arm_handle_mmu_fault(env, addr, is_write, mmu_idx, 1);
290 if (__builtin_expect(ret, 0)) {
291 if (retaddr) {
292 /* now we have a real cpu fault */
293 pc = (unsigned long)retaddr;
294 tb = tb_find_pc(pc);
295 if (tb) {
296 /* the PC is inside the translated code. It means that we have
297 a virtual CPU fault */
298 cpu_restore_state(tb, env, pc, NULL);
301 raise_exception(env->exception_index);
303 env = saved_env;
305 #endif