Virtio register pow2 memory regions
[qemu-kvm/fedora.git] / qemu-kvm-x86.c
blob78490c52031dd7d2de3459c19aa205aed41d0bb1
1 /*
2 * qemu/kvm integration, x86 specific code
4 * Copyright (C) 2006-2008 Qumranet Technologies
6 * Licensed under the terms of the GNU GPL version 2 or higher.
7 */
9 #include "config.h"
10 #include "config-host.h"
12 #include <string.h>
13 #include "hw/hw.h"
15 #include "qemu-kvm.h"
16 #include <libkvm.h>
17 #include <pthread.h>
18 #include <sys/utsname.h>
19 #include <linux/kvm_para.h>
21 #define MSR_IA32_TSC 0x10
23 #define ARRAY_SIZE(a) (sizeof(a) / sizeof(a[0]))
25 static struct kvm_msr_list *kvm_msr_list;
26 extern unsigned int kvm_shadow_memory;
27 extern kvm_context_t kvm_context;
28 static int kvm_has_msr_star;
30 static int lm_capable_kernel;
32 int kvm_arch_qemu_create_context(void)
34 int i;
35 struct utsname utsname;
37 uname(&utsname);
38 lm_capable_kernel = strcmp(utsname.machine, "x86_64") == 0;
40 if (kvm_shadow_memory)
41 kvm_set_shadow_pages(kvm_context, kvm_shadow_memory);
43 kvm_msr_list = kvm_get_msr_list(kvm_context);
44 if (!kvm_msr_list)
45 return -1;
46 for (i = 0; i < kvm_msr_list->nmsrs; ++i)
47 if (kvm_msr_list->indices[i] == MSR_STAR)
48 kvm_has_msr_star = 1;
49 return 0;
52 static void set_msr_entry(struct kvm_msr_entry *entry, uint32_t index,
53 uint64_t data)
55 entry->index = index;
56 entry->data = data;
59 /* returns 0 on success, non-0 on failure */
60 static int get_msr_entry(struct kvm_msr_entry *entry, CPUState *env)
62 switch (entry->index) {
63 case MSR_IA32_SYSENTER_CS:
64 env->sysenter_cs = entry->data;
65 break;
66 case MSR_IA32_SYSENTER_ESP:
67 env->sysenter_esp = entry->data;
68 break;
69 case MSR_IA32_SYSENTER_EIP:
70 env->sysenter_eip = entry->data;
71 break;
72 case MSR_STAR:
73 env->star = entry->data;
74 break;
75 #ifdef TARGET_X86_64
76 case MSR_CSTAR:
77 env->cstar = entry->data;
78 break;
79 case MSR_KERNELGSBASE:
80 env->kernelgsbase = entry->data;
81 break;
82 case MSR_FMASK:
83 env->fmask = entry->data;
84 break;
85 case MSR_LSTAR:
86 env->lstar = entry->data;
87 break;
88 #endif
89 case MSR_IA32_TSC:
90 env->tsc = entry->data;
91 break;
92 default:
93 printf("Warning unknown msr index 0x%x\n", entry->index);
94 return 1;
96 return 0;
99 #ifdef TARGET_X86_64
100 #define MSR_COUNT 9
101 #else
102 #define MSR_COUNT 5
103 #endif
105 static void set_v8086_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
107 lhs->selector = rhs->selector;
108 lhs->base = rhs->base;
109 lhs->limit = rhs->limit;
110 lhs->type = 3;
111 lhs->present = 1;
112 lhs->dpl = 3;
113 lhs->db = 0;
114 lhs->s = 1;
115 lhs->l = 0;
116 lhs->g = 0;
117 lhs->avl = 0;
118 lhs->unusable = 0;
121 static void set_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
123 unsigned flags = rhs->flags;
124 lhs->selector = rhs->selector;
125 lhs->base = rhs->base;
126 lhs->limit = rhs->limit;
127 lhs->type = (flags >> DESC_TYPE_SHIFT) & 15;
128 lhs->present = (flags & DESC_P_MASK) != 0;
129 lhs->dpl = rhs->selector & 3;
130 lhs->db = (flags >> DESC_B_SHIFT) & 1;
131 lhs->s = (flags & DESC_S_MASK) != 0;
132 lhs->l = (flags >> DESC_L_SHIFT) & 1;
133 lhs->g = (flags & DESC_G_MASK) != 0;
134 lhs->avl = (flags & DESC_AVL_MASK) != 0;
135 lhs->unusable = 0;
138 static void get_seg(SegmentCache *lhs, const struct kvm_segment *rhs)
140 lhs->selector = rhs->selector;
141 lhs->base = rhs->base;
142 lhs->limit = rhs->limit;
143 lhs->flags =
144 (rhs->type << DESC_TYPE_SHIFT)
145 | (rhs->present * DESC_P_MASK)
146 | (rhs->dpl << DESC_DPL_SHIFT)
147 | (rhs->db << DESC_B_SHIFT)
148 | (rhs->s * DESC_S_MASK)
149 | (rhs->l << DESC_L_SHIFT)
150 | (rhs->g * DESC_G_MASK)
151 | (rhs->avl * DESC_AVL_MASK);
154 /* the reset values of qemu are not compatible to SVM
155 * this function is used to fix the segment descriptor values */
156 static void fix_realmode_dataseg(struct kvm_segment *seg)
158 seg->type = 0x02;
159 seg->present = 1;
160 seg->s = 1;
163 void kvm_arch_load_regs(CPUState *env)
165 struct kvm_regs regs;
166 struct kvm_fpu fpu;
167 struct kvm_sregs sregs;
168 struct kvm_msr_entry msrs[MSR_COUNT];
169 int rc, n, i;
171 regs.rax = env->regs[R_EAX];
172 regs.rbx = env->regs[R_EBX];
173 regs.rcx = env->regs[R_ECX];
174 regs.rdx = env->regs[R_EDX];
175 regs.rsi = env->regs[R_ESI];
176 regs.rdi = env->regs[R_EDI];
177 regs.rsp = env->regs[R_ESP];
178 regs.rbp = env->regs[R_EBP];
179 #ifdef TARGET_X86_64
180 regs.r8 = env->regs[8];
181 regs.r9 = env->regs[9];
182 regs.r10 = env->regs[10];
183 regs.r11 = env->regs[11];
184 regs.r12 = env->regs[12];
185 regs.r13 = env->regs[13];
186 regs.r14 = env->regs[14];
187 regs.r15 = env->regs[15];
188 #endif
190 regs.rflags = env->eflags;
191 regs.rip = env->eip;
193 kvm_set_regs(kvm_context, env->cpu_index, &regs);
195 memset(&fpu, 0, sizeof fpu);
196 fpu.fsw = env->fpus & ~(7 << 11);
197 fpu.fsw |= (env->fpstt & 7) << 11;
198 fpu.fcw = env->fpuc;
199 for (i = 0; i < 8; ++i)
200 fpu.ftwx |= (!env->fptags[i]) << i;
201 memcpy(fpu.fpr, env->fpregs, sizeof env->fpregs);
202 memcpy(fpu.xmm, env->xmm_regs, sizeof env->xmm_regs);
203 fpu.mxcsr = env->mxcsr;
204 kvm_set_fpu(kvm_context, env->cpu_index, &fpu);
206 memcpy(sregs.interrupt_bitmap, env->kvm_interrupt_bitmap, sizeof(sregs.interrupt_bitmap));
208 if ((env->eflags & VM_MASK)) {
209 set_v8086_seg(&sregs.cs, &env->segs[R_CS]);
210 set_v8086_seg(&sregs.ds, &env->segs[R_DS]);
211 set_v8086_seg(&sregs.es, &env->segs[R_ES]);
212 set_v8086_seg(&sregs.fs, &env->segs[R_FS]);
213 set_v8086_seg(&sregs.gs, &env->segs[R_GS]);
214 set_v8086_seg(&sregs.ss, &env->segs[R_SS]);
215 } else {
216 set_seg(&sregs.cs, &env->segs[R_CS]);
217 set_seg(&sregs.ds, &env->segs[R_DS]);
218 set_seg(&sregs.es, &env->segs[R_ES]);
219 set_seg(&sregs.fs, &env->segs[R_FS]);
220 set_seg(&sregs.gs, &env->segs[R_GS]);
221 set_seg(&sregs.ss, &env->segs[R_SS]);
223 if (env->cr[0] & CR0_PE_MASK) {
224 /* force ss cpl to cs cpl */
225 sregs.ss.selector = (sregs.ss.selector & ~3) |
226 (sregs.cs.selector & 3);
227 sregs.ss.dpl = sregs.ss.selector & 3;
230 if (!(env->cr[0] & CR0_PG_MASK)) {
231 fix_realmode_dataseg(&sregs.cs);
232 fix_realmode_dataseg(&sregs.ds);
233 fix_realmode_dataseg(&sregs.es);
234 fix_realmode_dataseg(&sregs.fs);
235 fix_realmode_dataseg(&sregs.gs);
236 fix_realmode_dataseg(&sregs.ss);
240 set_seg(&sregs.tr, &env->tr);
241 set_seg(&sregs.ldt, &env->ldt);
243 sregs.idt.limit = env->idt.limit;
244 sregs.idt.base = env->idt.base;
245 sregs.gdt.limit = env->gdt.limit;
246 sregs.gdt.base = env->gdt.base;
248 sregs.cr0 = env->cr[0];
249 sregs.cr2 = env->cr[2];
250 sregs.cr3 = env->cr[3];
251 sregs.cr4 = env->cr[4];
253 sregs.apic_base = cpu_get_apic_base(env);
254 sregs.efer = env->efer;
255 sregs.cr8 = cpu_get_apic_tpr(env);
257 kvm_set_sregs(kvm_context, env->cpu_index, &sregs);
259 /* msrs */
260 n = 0;
261 set_msr_entry(&msrs[n++], MSR_IA32_SYSENTER_CS, env->sysenter_cs);
262 set_msr_entry(&msrs[n++], MSR_IA32_SYSENTER_ESP, env->sysenter_esp);
263 set_msr_entry(&msrs[n++], MSR_IA32_SYSENTER_EIP, env->sysenter_eip);
264 if (kvm_has_msr_star)
265 set_msr_entry(&msrs[n++], MSR_STAR, env->star);
266 set_msr_entry(&msrs[n++], MSR_IA32_TSC, env->tsc);
267 #ifdef TARGET_X86_64
268 if (lm_capable_kernel) {
269 set_msr_entry(&msrs[n++], MSR_CSTAR, env->cstar);
270 set_msr_entry(&msrs[n++], MSR_KERNELGSBASE, env->kernelgsbase);
271 set_msr_entry(&msrs[n++], MSR_FMASK, env->fmask);
272 set_msr_entry(&msrs[n++], MSR_LSTAR , env->lstar);
274 #endif
276 rc = kvm_set_msrs(kvm_context, env->cpu_index, msrs, n);
277 if (rc == -1)
278 perror("kvm_set_msrs FAILED");
282 void kvm_arch_save_regs(CPUState *env)
284 struct kvm_regs regs;
285 struct kvm_fpu fpu;
286 struct kvm_sregs sregs;
287 struct kvm_msr_entry msrs[MSR_COUNT];
288 uint32_t hflags;
289 uint32_t i, n, rc;
291 kvm_get_regs(kvm_context, env->cpu_index, &regs);
293 env->regs[R_EAX] = regs.rax;
294 env->regs[R_EBX] = regs.rbx;
295 env->regs[R_ECX] = regs.rcx;
296 env->regs[R_EDX] = regs.rdx;
297 env->regs[R_ESI] = regs.rsi;
298 env->regs[R_EDI] = regs.rdi;
299 env->regs[R_ESP] = regs.rsp;
300 env->regs[R_EBP] = regs.rbp;
301 #ifdef TARGET_X86_64
302 env->regs[8] = regs.r8;
303 env->regs[9] = regs.r9;
304 env->regs[10] = regs.r10;
305 env->regs[11] = regs.r11;
306 env->regs[12] = regs.r12;
307 env->regs[13] = regs.r13;
308 env->regs[14] = regs.r14;
309 env->regs[15] = regs.r15;
310 #endif
312 env->eflags = regs.rflags;
313 env->eip = regs.rip;
315 kvm_get_fpu(kvm_context, env->cpu_index, &fpu);
316 env->fpstt = (fpu.fsw >> 11) & 7;
317 env->fpus = fpu.fsw;
318 env->fpuc = fpu.fcw;
319 for (i = 0; i < 8; ++i)
320 env->fptags[i] = !((fpu.ftwx >> i) & 1);
321 memcpy(env->fpregs, fpu.fpr, sizeof env->fpregs);
322 memcpy(env->xmm_regs, fpu.xmm, sizeof env->xmm_regs);
323 env->mxcsr = fpu.mxcsr;
325 kvm_get_sregs(kvm_context, env->cpu_index, &sregs);
327 memcpy(env->kvm_interrupt_bitmap, sregs.interrupt_bitmap, sizeof(env->kvm_interrupt_bitmap));
329 get_seg(&env->segs[R_CS], &sregs.cs);
330 get_seg(&env->segs[R_DS], &sregs.ds);
331 get_seg(&env->segs[R_ES], &sregs.es);
332 get_seg(&env->segs[R_FS], &sregs.fs);
333 get_seg(&env->segs[R_GS], &sregs.gs);
334 get_seg(&env->segs[R_SS], &sregs.ss);
336 get_seg(&env->tr, &sregs.tr);
337 get_seg(&env->ldt, &sregs.ldt);
339 env->idt.limit = sregs.idt.limit;
340 env->idt.base = sregs.idt.base;
341 env->gdt.limit = sregs.gdt.limit;
342 env->gdt.base = sregs.gdt.base;
344 env->cr[0] = sregs.cr0;
345 env->cr[2] = sregs.cr2;
346 env->cr[3] = sregs.cr3;
347 env->cr[4] = sregs.cr4;
349 cpu_set_apic_base(env, sregs.apic_base);
351 env->efer = sregs.efer;
352 //cpu_set_apic_tpr(env, sregs.cr8);
354 #define HFLAG_COPY_MASK ~( \
355 HF_CPL_MASK | HF_PE_MASK | HF_MP_MASK | HF_EM_MASK | \
356 HF_TS_MASK | HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK | \
357 HF_OSFXSR_MASK | HF_LMA_MASK | HF_CS32_MASK | \
358 HF_SS32_MASK | HF_CS64_MASK | HF_ADDSEG_MASK)
362 hflags = (env->segs[R_CS].flags >> DESC_DPL_SHIFT) & HF_CPL_MASK;
363 hflags |= (env->cr[0] & CR0_PE_MASK) << (HF_PE_SHIFT - CR0_PE_SHIFT);
364 hflags |= (env->cr[0] << (HF_MP_SHIFT - CR0_MP_SHIFT)) &
365 (HF_MP_MASK | HF_EM_MASK | HF_TS_MASK);
366 hflags |= (env->eflags & (HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK));
367 hflags |= (env->cr[4] & CR4_OSFXSR_MASK) <<
368 (HF_OSFXSR_SHIFT - CR4_OSFXSR_SHIFT);
370 if (env->efer & MSR_EFER_LMA) {
371 hflags |= HF_LMA_MASK;
374 if ((hflags & HF_LMA_MASK) && (env->segs[R_CS].flags & DESC_L_MASK)) {
375 hflags |= HF_CS32_MASK | HF_SS32_MASK | HF_CS64_MASK;
376 } else {
377 hflags |= (env->segs[R_CS].flags & DESC_B_MASK) >>
378 (DESC_B_SHIFT - HF_CS32_SHIFT);
379 hflags |= (env->segs[R_SS].flags & DESC_B_MASK) >>
380 (DESC_B_SHIFT - HF_SS32_SHIFT);
381 if (!(env->cr[0] & CR0_PE_MASK) ||
382 (env->eflags & VM_MASK) ||
383 !(hflags & HF_CS32_MASK)) {
384 hflags |= HF_ADDSEG_MASK;
385 } else {
386 hflags |= ((env->segs[R_DS].base |
387 env->segs[R_ES].base |
388 env->segs[R_SS].base) != 0) <<
389 HF_ADDSEG_SHIFT;
392 env->hflags = (env->hflags & HFLAG_COPY_MASK) | hflags;
393 env->cc_src = env->eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
394 env->df = 1 - (2 * ((env->eflags >> 10) & 1));
395 env->cc_op = CC_OP_EFLAGS;
396 env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
398 /* msrs */
399 n = 0;
400 msrs[n++].index = MSR_IA32_SYSENTER_CS;
401 msrs[n++].index = MSR_IA32_SYSENTER_ESP;
402 msrs[n++].index = MSR_IA32_SYSENTER_EIP;
403 if (kvm_has_msr_star)
404 msrs[n++].index = MSR_STAR;
405 msrs[n++].index = MSR_IA32_TSC;
406 #ifdef TARGET_X86_64
407 if (lm_capable_kernel) {
408 msrs[n++].index = MSR_CSTAR;
409 msrs[n++].index = MSR_KERNELGSBASE;
410 msrs[n++].index = MSR_FMASK;
411 msrs[n++].index = MSR_LSTAR;
413 #endif
414 rc = kvm_get_msrs(kvm_context, env->cpu_index, msrs, n);
415 if (rc == -1) {
416 perror("kvm_get_msrs FAILED");
418 else {
419 n = rc; /* actual number of MSRs */
420 for (i=0 ; i<n; i++) {
421 if (get_msr_entry(&msrs[i], env))
422 return;
427 static void host_cpuid(uint32_t function, uint32_t *eax, uint32_t *ebx,
428 uint32_t *ecx, uint32_t *edx)
430 uint32_t vec[4];
432 #ifdef __x86_64__
433 asm volatile("cpuid"
434 : "=a"(vec[0]), "=b"(vec[1]),
435 "=c"(vec[2]), "=d"(vec[3])
436 : "0"(function) : "cc");
437 #else
438 asm volatile("pusha \n\t"
439 "cpuid \n\t"
440 "mov %%eax, 0(%1) \n\t"
441 "mov %%ebx, 4(%1) \n\t"
442 "mov %%ecx, 8(%1) \n\t"
443 "mov %%edx, 12(%1) \n\t"
444 "popa"
445 : : "a"(function), "S"(vec)
446 : "memory", "cc");
447 #endif
449 if (eax)
450 *eax = vec[0];
451 if (ebx)
452 *ebx = vec[1];
453 if (ecx)
454 *ecx = vec[2];
455 if (edx)
456 *edx = vec[3];
460 static void do_cpuid_ent(struct kvm_cpuid_entry *e, uint32_t function,
461 CPUState *env)
463 env->regs[R_EAX] = function;
464 qemu_kvm_cpuid_on_env(env);
465 e->function = function;
466 e->eax = env->regs[R_EAX];
467 e->ebx = env->regs[R_EBX];
468 e->ecx = env->regs[R_ECX];
469 e->edx = env->regs[R_EDX];
470 if (function == 0x80000001) {
471 uint32_t h_eax, h_edx;
473 host_cpuid(function, &h_eax, NULL, NULL, &h_edx);
475 // long mode
476 if ((h_edx & 0x20000000) == 0 || !lm_capable_kernel)
477 e->edx &= ~0x20000000u;
478 // syscall
479 if ((h_edx & 0x00000800) == 0)
480 e->edx &= ~0x00000800u;
481 // nx
482 if ((h_edx & 0x00100000) == 0)
483 e->edx &= ~0x00100000u;
484 // svm
485 if (e->ecx & 4)
486 e->ecx &= ~4u;
488 // sysenter isn't supported on compatibility mode on AMD. and syscall
489 // isn't supported in compatibility mode on Intel. so advertise the
490 // actuall cpu, and say goodbye to migration between different vendors
491 // is you use compatibility mode.
492 if (function == 0) {
493 uint32_t bcd[3];
495 host_cpuid(0, NULL, &bcd[0], &bcd[1], &bcd[2]);
496 e->ebx = bcd[0];
497 e->ecx = bcd[1];
498 e->edx = bcd[2];
502 struct kvm_para_features {
503 int cap;
504 int feature;
505 } para_features[] = {
506 #ifdef KVM_CAP_CLOCKSOURCE
507 { KVM_CAP_CLOCKSOURCE, KVM_FEATURE_CLOCKSOURCE },
508 #endif
509 #ifdef KVM_CAP_NOP_IO_DELAY
510 { KVM_CAP_NOP_IO_DELAY, KVM_FEATURE_NOP_IO_DELAY },
511 #endif
512 #ifdef KVM_CAP_PV_MMU
513 { KVM_CAP_PV_MMU, KVM_FEATURE_MMU_OP },
514 #endif
515 #ifdef KVM_CAP_CR3_CACHE
516 { KVM_CAP_CR3_CACHE, KVM_FEATURE_CR3_CACHE },
517 #endif
518 { -1, -1 }
521 static int get_para_features(kvm_context_t kvm_context)
523 int i, features = 0;
525 for (i = 0; i < ARRAY_SIZE(para_features)-1; i++) {
526 if (kvm_check_extension(kvm_context, para_features[i].cap))
527 features |= (1 << para_features[i].feature);
530 return features;
533 int kvm_arch_qemu_init_env(CPUState *cenv)
535 struct kvm_cpuid_entry cpuid_ent[100];
536 #ifdef KVM_CPUID_SIGNATURE
537 struct kvm_cpuid_entry *pv_ent;
538 uint32_t signature[3];
539 #endif
540 int cpuid_nent = 0;
541 CPUState copy;
542 uint32_t i, limit;
544 copy = *cenv;
546 #ifdef KVM_CPUID_SIGNATURE
547 /* Paravirtualization CPUIDs */
548 memcpy(signature, "KVMKVMKVM", 12);
549 pv_ent = &cpuid_ent[cpuid_nent++];
550 memset(pv_ent, 0, sizeof(*pv_ent));
551 pv_ent->function = KVM_CPUID_SIGNATURE;
552 pv_ent->eax = 0;
553 pv_ent->ebx = signature[0];
554 pv_ent->ecx = signature[1];
555 pv_ent->edx = signature[2];
557 pv_ent = &cpuid_ent[cpuid_nent++];
558 memset(pv_ent, 0, sizeof(*pv_ent));
559 pv_ent->function = KVM_CPUID_FEATURES;
560 pv_ent->eax = get_para_features(kvm_context);
561 #endif
563 copy.regs[R_EAX] = 0;
564 qemu_kvm_cpuid_on_env(&copy);
565 limit = copy.regs[R_EAX];
567 for (i = 0; i <= limit; ++i)
568 do_cpuid_ent(&cpuid_ent[cpuid_nent++], i, &copy);
570 copy.regs[R_EAX] = 0x80000000;
571 qemu_kvm_cpuid_on_env(&copy);
572 limit = copy.regs[R_EAX];
574 for (i = 0x80000000; i <= limit; ++i)
575 do_cpuid_ent(&cpuid_ent[cpuid_nent++], i, &copy);
577 kvm_setup_cpuid(kvm_context, cenv->cpu_index, cpuid_nent, cpuid_ent);
578 return 0;
581 int kvm_arch_halt(void *opaque, int vcpu)
583 CPUState *env = cpu_single_env;
585 if (!((env->interrupt_request & CPU_INTERRUPT_HARD) &&
586 (env->eflags & IF_MASK))) {
587 env->hflags |= HF_HALTED_MASK;
588 env->exception_index = EXCP_HLT;
590 return 1;
593 void kvm_arch_pre_kvm_run(void *opaque, int vcpu)
595 CPUState *env = cpu_single_env;
597 if (!kvm_irqchip_in_kernel(kvm_context))
598 kvm_set_cr8(kvm_context, vcpu, cpu_get_apic_tpr(env));
601 void kvm_arch_post_kvm_run(void *opaque, int vcpu)
603 CPUState *env = qemu_kvm_cpu_env(vcpu);
604 cpu_single_env = env;
606 env->eflags = kvm_get_interrupt_flag(kvm_context, vcpu)
607 ? env->eflags | IF_MASK : env->eflags & ~IF_MASK;
608 env->ready_for_interrupt_injection
609 = kvm_is_ready_for_interrupt_injection(kvm_context, vcpu);
611 cpu_set_apic_tpr(env, kvm_get_cr8(kvm_context, vcpu));
612 cpu_set_apic_base(env, kvm_get_apic_base(kvm_context, vcpu));
615 int kvm_arch_has_work(CPUState *env)
617 if ((env->interrupt_request & (CPU_INTERRUPT_HARD | CPU_INTERRUPT_EXIT)) &&
618 (env->eflags & IF_MASK))
619 return 1;
620 return 0;
623 int kvm_arch_try_push_interrupts(void *opaque)
625 CPUState *env = cpu_single_env;
626 int r, irq;
628 if (env->ready_for_interrupt_injection &&
629 (env->interrupt_request & CPU_INTERRUPT_HARD) &&
630 (env->eflags & IF_MASK)) {
631 env->interrupt_request &= ~CPU_INTERRUPT_HARD;
632 irq = cpu_get_pic_interrupt(env);
633 if (irq >= 0) {
634 r = kvm_inject_irq(kvm_context, env->cpu_index, irq);
635 if (r < 0)
636 printf("cpu %d fail inject %x\n", env->cpu_index, irq);
640 return (env->interrupt_request & CPU_INTERRUPT_HARD) != 0;
643 void kvm_arch_update_regs_for_sipi(CPUState *env)
645 SegmentCache cs = env->segs[R_CS];
647 kvm_arch_save_regs(env);
648 env->segs[R_CS] = cs;
649 env->eip = 0;
650 kvm_arch_load_regs(env);
653 int handle_tpr_access(void *opaque, int vcpu,
654 uint64_t rip, int is_write)
656 kvm_tpr_access_report(cpu_single_env, rip, is_write);
657 return 0;