kvm: libkvm: get_slot(): fix is-address-in-range check
[qemu-kvm/fedora.git] / gdbstub.c
blob66a4d5681842986b6546ddcc135cb47557dddc91
1 /*
2 * gdb server stub
4 * Copyright (c) 2003-2005 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
20 #include "config.h"
21 #ifdef CONFIG_USER_ONLY
22 #include <stdlib.h>
23 #include <stdio.h>
24 #include <stdarg.h>
25 #include <string.h>
26 #include <errno.h>
27 #include <unistd.h>
28 #include <fcntl.h>
30 #include "qemu.h"
31 #else
32 #include "qemu-common.h"
33 #include "qemu-char.h"
34 #include "sysemu.h"
35 #include "gdbstub.h"
36 #include "qemu-kvm.h"
37 #endif
39 #include "qemu_socket.h"
40 #ifdef _WIN32
41 /* XXX: these constants may be independent of the host ones even for Unix */
42 #ifndef SIGTRAP
43 #define SIGTRAP 5
44 #endif
45 #ifndef SIGINT
46 #define SIGINT 2
47 #endif
48 #else
49 #include <signal.h>
50 #endif
52 //#define DEBUG_GDB
54 enum RSState {
55 RS_IDLE,
56 RS_GETLINE,
57 RS_CHKSUM1,
58 RS_CHKSUM2,
59 RS_SYSCALL,
61 typedef struct GDBState {
62 CPUState *env; /* current CPU */
63 enum RSState state; /* parsing state */
64 char line_buf[4096];
65 int line_buf_index;
66 int line_csum;
67 uint8_t last_packet[4100];
68 int last_packet_len;
69 #ifdef CONFIG_USER_ONLY
70 int fd;
71 int running_state;
72 #else
73 CharDriverState *chr;
74 #endif
75 } GDBState;
77 #ifdef CONFIG_USER_ONLY
78 /* XXX: This is not thread safe. Do we care? */
79 static int gdbserver_fd = -1;
81 /* XXX: remove this hack. */
82 static GDBState gdbserver_state;
84 static int get_char(GDBState *s)
86 uint8_t ch;
87 int ret;
89 for(;;) {
90 ret = recv(s->fd, &ch, 1, 0);
91 if (ret < 0) {
92 if (errno != EINTR && errno != EAGAIN)
93 return -1;
94 } else if (ret == 0) {
95 return -1;
96 } else {
97 break;
100 return ch;
102 #endif
104 /* GDB stub state for use by semihosting syscalls. */
105 static GDBState *gdb_syscall_state;
106 static gdb_syscall_complete_cb gdb_current_syscall_cb;
108 enum {
109 GDB_SYS_UNKNOWN,
110 GDB_SYS_ENABLED,
111 GDB_SYS_DISABLED,
112 } gdb_syscall_mode;
114 /* If gdb is connected when the first semihosting syscall occurs then use
115 remote gdb syscalls. Otherwise use native file IO. */
116 int use_gdb_syscalls(void)
118 if (gdb_syscall_mode == GDB_SYS_UNKNOWN) {
119 gdb_syscall_mode = (gdb_syscall_state ? GDB_SYS_ENABLED
120 : GDB_SYS_DISABLED);
122 return gdb_syscall_mode == GDB_SYS_ENABLED;
125 static void put_buffer(GDBState *s, const uint8_t *buf, int len)
127 #ifdef CONFIG_USER_ONLY
128 int ret;
130 while (len > 0) {
131 ret = send(s->fd, buf, len, 0);
132 if (ret < 0) {
133 if (errno != EINTR && errno != EAGAIN)
134 return;
135 } else {
136 buf += ret;
137 len -= ret;
140 #else
141 qemu_chr_write(s->chr, buf, len);
142 #endif
145 static inline int fromhex(int v)
147 if (v >= '0' && v <= '9')
148 return v - '0';
149 else if (v >= 'A' && v <= 'F')
150 return v - 'A' + 10;
151 else if (v >= 'a' && v <= 'f')
152 return v - 'a' + 10;
153 else
154 return 0;
157 static inline int tohex(int v)
159 if (v < 10)
160 return v + '0';
161 else
162 return v - 10 + 'a';
165 static void memtohex(char *buf, const uint8_t *mem, int len)
167 int i, c;
168 char *q;
169 q = buf;
170 for(i = 0; i < len; i++) {
171 c = mem[i];
172 *q++ = tohex(c >> 4);
173 *q++ = tohex(c & 0xf);
175 *q = '\0';
178 static void hextomem(uint8_t *mem, const char *buf, int len)
180 int i;
182 for(i = 0; i < len; i++) {
183 mem[i] = (fromhex(buf[0]) << 4) | fromhex(buf[1]);
184 buf += 2;
188 /* return -1 if error, 0 if OK */
189 static int put_packet(GDBState *s, char *buf)
191 int len, csum, i;
192 uint8_t *p;
194 #ifdef DEBUG_GDB
195 printf("reply='%s'\n", buf);
196 #endif
198 for(;;) {
199 p = s->last_packet;
200 *(p++) = '$';
201 len = strlen(buf);
202 memcpy(p, buf, len);
203 p += len;
204 csum = 0;
205 for(i = 0; i < len; i++) {
206 csum += buf[i];
208 *(p++) = '#';
209 *(p++) = tohex((csum >> 4) & 0xf);
210 *(p++) = tohex((csum) & 0xf);
212 s->last_packet_len = p - s->last_packet;
213 put_buffer(s, (uint8_t *)s->last_packet, s->last_packet_len);
215 #ifdef CONFIG_USER_ONLY
216 i = get_char(s);
217 if (i < 0)
218 return -1;
219 if (i == '+')
220 break;
221 #else
222 break;
223 #endif
225 return 0;
228 #if defined(TARGET_X86_64)
230 static int cpu_gdb_read_registers(CPUState *env, uint8_t *mem_buf)
232 uint8_t *p = mem_buf;
233 int i, fpus;
235 #define PUTREG(x) do { \
236 target_ulong reg = tswapl(x); \
237 memcpy(p, &reg, sizeof reg); \
238 p += sizeof reg; \
239 } while (0)
240 #define PUTREG32(x) do { \
241 uint32_t reg = tswap32(x); \
242 memcpy(p, &reg, sizeof reg); \
243 p += sizeof reg; \
244 } while (0)
245 #define PUTREGF(x) do { \
246 memcpy(p, &(x), 10); \
247 p += sizeof (x); \
248 } while (0)
250 PUTREG(env->regs[R_EAX]);
251 PUTREG(env->regs[R_EBX]);
252 PUTREG(env->regs[R_ECX]);
253 PUTREG(env->regs[R_EDX]);
254 PUTREG(env->regs[R_ESI]);
255 PUTREG(env->regs[R_EDI]);
256 PUTREG(env->regs[R_EBP]);
257 PUTREG(env->regs[R_ESP]);
258 PUTREG(env->regs[8]);
259 PUTREG(env->regs[9]);
260 PUTREG(env->regs[10]);
261 PUTREG(env->regs[11]);
262 PUTREG(env->regs[12]);
263 PUTREG(env->regs[13]);
264 PUTREG(env->regs[14]);
265 PUTREG(env->regs[15]);
267 PUTREG(env->eip);
268 PUTREG32(env->eflags);
269 PUTREG32(env->segs[R_CS].selector);
270 PUTREG32(env->segs[R_SS].selector);
271 PUTREG32(env->segs[R_DS].selector);
272 PUTREG32(env->segs[R_ES].selector);
273 PUTREG32(env->segs[R_FS].selector);
274 PUTREG32(env->segs[R_GS].selector);
275 /* XXX: convert floats */
276 for(i = 0; i < 8; i++) {
277 PUTREGF(env->fpregs[i]);
279 PUTREG32(env->fpuc);
280 fpus = (env->fpus & ~0x3800) | (env->fpstt & 0x7) << 11;
281 PUTREG32(fpus);
282 PUTREG32(0); /* XXX: convert tags */
283 PUTREG32(0); /* fiseg */
284 PUTREG32(0); /* fioff */
285 PUTREG32(0); /* foseg */
286 PUTREG32(0); /* fooff */
287 PUTREG32(0); /* fop */
289 #undef PUTREG
290 #undef PUTREG32
291 #undef PUTREGF
293 return p - mem_buf;
296 static void cpu_gdb_write_registers(CPUState *env, uint8_t *mem_buf, int size)
298 uint8_t *p = mem_buf;
299 uint32_t junk;
300 int i, fpus;
302 #define GETREG(x) do { \
303 target_ulong reg; \
304 memcpy(&reg, p, sizeof reg); \
305 x = tswapl(reg); \
306 p += sizeof reg; \
307 } while (0)
308 #define GETREG32(x) do { \
309 uint32_t reg; \
310 memcpy(&reg, p, sizeof reg); \
311 x = tswap32(reg); \
312 p += sizeof reg; \
313 } while (0)
314 #define GETREGF(x) do { \
315 memcpy(&(x), p, 10); \
316 p += 10; \
317 } while (0)
319 GETREG(env->regs[R_EAX]);
320 GETREG(env->regs[R_EBX]);
321 GETREG(env->regs[R_ECX]);
322 GETREG(env->regs[R_EDX]);
323 GETREG(env->regs[R_ESI]);
324 GETREG(env->regs[R_EDI]);
325 GETREG(env->regs[R_EBP]);
326 GETREG(env->regs[R_ESP]);
327 GETREG(env->regs[8]);
328 GETREG(env->regs[9]);
329 GETREG(env->regs[10]);
330 GETREG(env->regs[11]);
331 GETREG(env->regs[12]);
332 GETREG(env->regs[13]);
333 GETREG(env->regs[14]);
334 GETREG(env->regs[15]);
336 GETREG(env->eip);
337 GETREG32(env->eflags);
338 GETREG32(env->segs[R_CS].selector);
339 GETREG32(env->segs[R_SS].selector);
340 GETREG32(env->segs[R_DS].selector);
341 GETREG32(env->segs[R_ES].selector);
342 GETREG32(env->segs[R_FS].selector);
343 GETREG32(env->segs[R_GS].selector);
344 /* XXX: convert floats */
345 for(i = 0; i < 8; i++) {
346 GETREGF(env->fpregs[i]);
348 GETREG32(env->fpuc);
349 GETREG32(fpus); /* XXX: convert fpus */
350 GETREG32(junk); /* XXX: convert tags */
351 GETREG32(junk); /* fiseg */
352 GETREG32(junk); /* fioff */
353 GETREG32(junk); /* foseg */
354 GETREG32(junk); /* fooff */
355 GETREG32(junk); /* fop */
357 #undef GETREG
358 #undef GETREG32
359 #undef GETREGF
362 #elif defined(TARGET_I386)
364 static int cpu_gdb_read_registers(CPUState *env, uint8_t *mem_buf)
366 int i, fpus;
367 uint32_t *registers = (uint32_t *)mem_buf;
369 #ifdef TARGET_X86_64
370 /* This corresponds with amd64_register_info[] in gdb/amd64-tdep.c */
371 uint64_t *registers64 = (uint64_t *)mem_buf;
373 if (env->hflags & HF_CS64_MASK) {
374 registers64[0] = tswap64(env->regs[R_EAX]);
375 registers64[1] = tswap64(env->regs[R_EBX]);
376 registers64[2] = tswap64(env->regs[R_ECX]);
377 registers64[3] = tswap64(env->regs[R_EDX]);
378 registers64[4] = tswap64(env->regs[R_ESI]);
379 registers64[5] = tswap64(env->regs[R_EDI]);
380 registers64[6] = tswap64(env->regs[R_EBP]);
381 registers64[7] = tswap64(env->regs[R_ESP]);
382 for(i = 8; i < 16; i++) {
383 registers64[i] = tswap64(env->regs[i]);
385 registers64[16] = tswap64(env->eip);
387 registers = (uint32_t *)&registers64[17];
388 registers[0] = tswap32(env->eflags);
389 registers[1] = tswap32(env->segs[R_CS].selector);
390 registers[2] = tswap32(env->segs[R_SS].selector);
391 registers[3] = tswap32(env->segs[R_DS].selector);
392 registers[4] = tswap32(env->segs[R_ES].selector);
393 registers[5] = tswap32(env->segs[R_FS].selector);
394 registers[6] = tswap32(env->segs[R_GS].selector);
395 /* XXX: convert floats */
396 for(i = 0; i < 8; i++) {
397 memcpy(mem_buf + 16 * 8 + 7 * 4 + i * 10, &env->fpregs[i], 10);
399 registers[27] = tswap32(env->fpuc); /* fctrl */
400 fpus = (env->fpus & ~0x3800) | (env->fpstt & 0x7) << 11;
401 registers[28] = tswap32(fpus); /* fstat */
402 registers[29] = 0; /* ftag */
403 registers[30] = 0; /* fiseg */
404 registers[31] = 0; /* fioff */
405 registers[32] = 0; /* foseg */
406 registers[33] = 0; /* fooff */
407 registers[34] = 0; /* fop */
408 for(i = 0; i < 16; i++) {
409 memcpy(mem_buf + 16 * 8 + 35 * 4 + i * 16, &env->xmm_regs[i], 16);
411 registers[99] = tswap32(env->mxcsr);
413 return 8 * 17 + 4 * 7 + 10 * 8 + 4 * 8 + 16 * 16 + 4;
415 #endif
417 for(i = 0; i < 8; i++) {
418 registers[i] = env->regs[i];
420 registers[8] = env->eip;
421 registers[9] = env->eflags;
422 registers[10] = env->segs[R_CS].selector;
423 registers[11] = env->segs[R_SS].selector;
424 registers[12] = env->segs[R_DS].selector;
425 registers[13] = env->segs[R_ES].selector;
426 registers[14] = env->segs[R_FS].selector;
427 registers[15] = env->segs[R_GS].selector;
428 /* XXX: convert floats */
429 for(i = 0; i < 8; i++) {
430 memcpy(mem_buf + 16 * 4 + i * 10, &env->fpregs[i], 10);
432 registers[36] = env->fpuc;
433 fpus = (env->fpus & ~0x3800) | (env->fpstt & 0x7) << 11;
434 registers[37] = fpus;
435 registers[38] = 0; /* XXX: convert tags */
436 registers[39] = 0; /* fiseg */
437 registers[40] = 0; /* fioff */
438 registers[41] = 0; /* foseg */
439 registers[42] = 0; /* fooff */
440 registers[43] = 0; /* fop */
442 for(i = 0; i < 16; i++)
443 tswapls(&registers[i]);
444 for(i = 36; i < 44; i++)
445 tswapls(&registers[i]);
446 return 44 * 4;
449 static void cpu_gdb_write_registers(CPUState *env, uint8_t *mem_buf, int size)
451 uint32_t *registers = (uint32_t *)mem_buf;
452 int i;
454 for(i = 0; i < 8; i++) {
455 env->regs[i] = tswapl(registers[i]);
457 env->eip = tswapl(registers[8]);
458 env->eflags = tswapl(registers[9]);
459 #if defined(CONFIG_USER_ONLY)
460 #define LOAD_SEG(index, sreg)\
461 if (tswapl(registers[index]) != env->segs[sreg].selector)\
462 cpu_x86_load_seg(env, sreg, tswapl(registers[index]));
463 LOAD_SEG(10, R_CS);
464 LOAD_SEG(11, R_SS);
465 LOAD_SEG(12, R_DS);
466 LOAD_SEG(13, R_ES);
467 LOAD_SEG(14, R_FS);
468 LOAD_SEG(15, R_GS);
469 #endif
472 #elif defined (TARGET_PPC)
473 static int cpu_gdb_read_registers(CPUState *env, uint8_t *mem_buf)
475 uint32_t *registers = (uint32_t *)mem_buf, tmp;
476 int i;
478 /* fill in gprs */
479 for(i = 0; i < 32; i++) {
480 registers[i] = tswapl(env->gpr[i]);
482 /* fill in fprs */
483 for (i = 0; i < 32; i++) {
484 registers[(i * 2) + 32] = tswapl(*((uint32_t *)&env->fpr[i]));
485 registers[(i * 2) + 33] = tswapl(*((uint32_t *)&env->fpr[i] + 1));
487 /* nip, msr, ccr, lnk, ctr, xer, mq */
488 registers[96] = tswapl(env->nip);
489 registers[97] = tswapl(env->msr);
490 tmp = 0;
491 for (i = 0; i < 8; i++)
492 tmp |= env->crf[i] << (32 - ((i + 1) * 4));
493 registers[98] = tswapl(tmp);
494 registers[99] = tswapl(env->lr);
495 registers[100] = tswapl(env->ctr);
496 registers[101] = tswapl(ppc_load_xer(env));
497 registers[102] = 0;
499 return 103 * 4;
502 static void cpu_gdb_write_registers(CPUState *env, uint8_t *mem_buf, int size)
504 uint32_t *registers = (uint32_t *)mem_buf;
505 int i;
507 /* fill in gprs */
508 for (i = 0; i < 32; i++) {
509 env->gpr[i] = tswapl(registers[i]);
511 /* fill in fprs */
512 for (i = 0; i < 32; i++) {
513 *((uint32_t *)&env->fpr[i]) = tswapl(registers[(i * 2) + 32]);
514 *((uint32_t *)&env->fpr[i] + 1) = tswapl(registers[(i * 2) + 33]);
516 /* nip, msr, ccr, lnk, ctr, xer, mq */
517 env->nip = tswapl(registers[96]);
518 ppc_store_msr(env, tswapl(registers[97]));
519 registers[98] = tswapl(registers[98]);
520 for (i = 0; i < 8; i++)
521 env->crf[i] = (registers[98] >> (32 - ((i + 1) * 4))) & 0xF;
522 env->lr = tswapl(registers[99]);
523 env->ctr = tswapl(registers[100]);
524 ppc_store_xer(env, tswapl(registers[101]));
526 #elif defined (TARGET_SPARC)
527 static int cpu_gdb_read_registers(CPUState *env, uint8_t *mem_buf)
529 target_ulong *registers = (target_ulong *)mem_buf;
530 int i;
532 /* fill in g0..g7 */
533 for(i = 0; i < 8; i++) {
534 registers[i] = tswapl(env->gregs[i]);
536 /* fill in register window */
537 for(i = 0; i < 24; i++) {
538 registers[i + 8] = tswapl(env->regwptr[i]);
540 #ifndef TARGET_SPARC64
541 /* fill in fprs */
542 for (i = 0; i < 32; i++) {
543 registers[i + 32] = tswapl(*((uint32_t *)&env->fpr[i]));
545 /* Y, PSR, WIM, TBR, PC, NPC, FPSR, CPSR */
546 registers[64] = tswapl(env->y);
548 target_ulong tmp;
550 tmp = GET_PSR(env);
551 registers[65] = tswapl(tmp);
553 registers[66] = tswapl(env->wim);
554 registers[67] = tswapl(env->tbr);
555 registers[68] = tswapl(env->pc);
556 registers[69] = tswapl(env->npc);
557 registers[70] = tswapl(env->fsr);
558 registers[71] = 0; /* csr */
559 registers[72] = 0;
560 return 73 * sizeof(target_ulong);
561 #else
562 /* fill in fprs */
563 for (i = 0; i < 64; i += 2) {
564 uint64_t tmp;
566 tmp = ((uint64_t)*(uint32_t *)&env->fpr[i]) << 32;
567 tmp |= *(uint32_t *)&env->fpr[i + 1];
568 registers[i / 2 + 32] = tswap64(tmp);
570 registers[64] = tswapl(env->pc);
571 registers[65] = tswapl(env->npc);
572 registers[66] = tswapl(((uint64_t)GET_CCR(env) << 32) |
573 ((env->asi & 0xff) << 24) |
574 ((env->pstate & 0xfff) << 8) |
575 GET_CWP64(env));
576 registers[67] = tswapl(env->fsr);
577 registers[68] = tswapl(env->fprs);
578 registers[69] = tswapl(env->y);
579 return 70 * sizeof(target_ulong);
580 #endif
583 static void cpu_gdb_write_registers(CPUState *env, uint8_t *mem_buf, int size)
585 target_ulong *registers = (target_ulong *)mem_buf;
586 int i;
588 /* fill in g0..g7 */
589 for(i = 0; i < 7; i++) {
590 env->gregs[i] = tswapl(registers[i]);
592 /* fill in register window */
593 for(i = 0; i < 24; i++) {
594 env->regwptr[i] = tswapl(registers[i + 8]);
596 #ifndef TARGET_SPARC64
597 /* fill in fprs */
598 for (i = 0; i < 32; i++) {
599 *((uint32_t *)&env->fpr[i]) = tswapl(registers[i + 32]);
601 /* Y, PSR, WIM, TBR, PC, NPC, FPSR, CPSR */
602 env->y = tswapl(registers[64]);
603 PUT_PSR(env, tswapl(registers[65]));
604 env->wim = tswapl(registers[66]);
605 env->tbr = tswapl(registers[67]);
606 env->pc = tswapl(registers[68]);
607 env->npc = tswapl(registers[69]);
608 env->fsr = tswapl(registers[70]);
609 #else
610 for (i = 0; i < 64; i += 2) {
611 uint64_t tmp;
613 tmp = tswap64(registers[i / 2 + 32]);
614 *((uint32_t *)&env->fpr[i]) = tmp >> 32;
615 *((uint32_t *)&env->fpr[i + 1]) = tmp & 0xffffffff;
617 env->pc = tswapl(registers[64]);
618 env->npc = tswapl(registers[65]);
620 uint64_t tmp = tswapl(registers[66]);
622 PUT_CCR(env, tmp >> 32);
623 env->asi = (tmp >> 24) & 0xff;
624 env->pstate = (tmp >> 8) & 0xfff;
625 PUT_CWP64(env, tmp & 0xff);
627 env->fsr = tswapl(registers[67]);
628 env->fprs = tswapl(registers[68]);
629 env->y = tswapl(registers[69]);
630 #endif
632 #elif defined (TARGET_ARM)
633 static int cpu_gdb_read_registers(CPUState *env, uint8_t *mem_buf)
635 int i;
636 uint8_t *ptr;
638 ptr = mem_buf;
639 /* 16 core integer registers (4 bytes each). */
640 for (i = 0; i < 16; i++)
642 *(uint32_t *)ptr = tswapl(env->regs[i]);
643 ptr += 4;
645 /* 8 FPA registers (12 bytes each), FPS (4 bytes).
646 Not yet implemented. */
647 memset (ptr, 0, 8 * 12 + 4);
648 ptr += 8 * 12 + 4;
649 /* CPSR (4 bytes). */
650 *(uint32_t *)ptr = tswapl (cpsr_read(env));
651 ptr += 4;
653 return ptr - mem_buf;
656 static void cpu_gdb_write_registers(CPUState *env, uint8_t *mem_buf, int size)
658 int i;
659 uint8_t *ptr;
661 ptr = mem_buf;
662 /* Core integer registers. */
663 for (i = 0; i < 16; i++)
665 env->regs[i] = tswapl(*(uint32_t *)ptr);
666 ptr += 4;
668 /* Ignore FPA regs and scr. */
669 ptr += 8 * 12 + 4;
670 cpsr_write (env, tswapl(*(uint32_t *)ptr), 0xffffffff);
672 #elif defined (TARGET_M68K)
673 static int cpu_gdb_read_registers(CPUState *env, uint8_t *mem_buf)
675 int i;
676 uint8_t *ptr;
677 CPU_DoubleU u;
679 ptr = mem_buf;
680 /* D0-D7 */
681 for (i = 0; i < 8; i++) {
682 *(uint32_t *)ptr = tswapl(env->dregs[i]);
683 ptr += 4;
685 /* A0-A7 */
686 for (i = 0; i < 8; i++) {
687 *(uint32_t *)ptr = tswapl(env->aregs[i]);
688 ptr += 4;
690 *(uint32_t *)ptr = tswapl(env->sr);
691 ptr += 4;
692 *(uint32_t *)ptr = tswapl(env->pc);
693 ptr += 4;
694 /* F0-F7. The 68881/68040 have 12-bit extended precision registers.
695 ColdFire has 8-bit double precision registers. */
696 for (i = 0; i < 8; i++) {
697 u.d = env->fregs[i];
698 *(uint32_t *)ptr = tswap32(u.l.upper);
699 *(uint32_t *)ptr = tswap32(u.l.lower);
701 /* FP control regs (not implemented). */
702 memset (ptr, 0, 3 * 4);
703 ptr += 3 * 4;
705 return ptr - mem_buf;
708 static void cpu_gdb_write_registers(CPUState *env, uint8_t *mem_buf, int size)
710 int i;
711 uint8_t *ptr;
712 CPU_DoubleU u;
714 ptr = mem_buf;
715 /* D0-D7 */
716 for (i = 0; i < 8; i++) {
717 env->dregs[i] = tswapl(*(uint32_t *)ptr);
718 ptr += 4;
720 /* A0-A7 */
721 for (i = 0; i < 8; i++) {
722 env->aregs[i] = tswapl(*(uint32_t *)ptr);
723 ptr += 4;
725 env->sr = tswapl(*(uint32_t *)ptr);
726 ptr += 4;
727 env->pc = tswapl(*(uint32_t *)ptr);
728 ptr += 4;
729 /* F0-F7. The 68881/68040 have 12-bit extended precision registers.
730 ColdFire has 8-bit double precision registers. */
731 for (i = 0; i < 8; i++) {
732 u.l.upper = tswap32(*(uint32_t *)ptr);
733 u.l.lower = tswap32(*(uint32_t *)ptr);
734 env->fregs[i] = u.d;
736 /* FP control regs (not implemented). */
737 ptr += 3 * 4;
739 #elif defined (TARGET_MIPS)
740 static int cpu_gdb_read_registers(CPUState *env, uint8_t *mem_buf)
742 int i;
743 uint8_t *ptr;
745 ptr = mem_buf;
746 for (i = 0; i < 32; i++)
748 *(target_ulong *)ptr = tswapl(env->gpr[i][env->current_tc]);
749 ptr += sizeof(target_ulong);
752 *(target_ulong *)ptr = (int32_t)tswap32(env->CP0_Status);
753 ptr += sizeof(target_ulong);
755 *(target_ulong *)ptr = tswapl(env->LO[0][env->current_tc]);
756 ptr += sizeof(target_ulong);
758 *(target_ulong *)ptr = tswapl(env->HI[0][env->current_tc]);
759 ptr += sizeof(target_ulong);
761 *(target_ulong *)ptr = tswapl(env->CP0_BadVAddr);
762 ptr += sizeof(target_ulong);
764 *(target_ulong *)ptr = (int32_t)tswap32(env->CP0_Cause);
765 ptr += sizeof(target_ulong);
767 *(target_ulong *)ptr = tswapl(env->PC[env->current_tc]);
768 ptr += sizeof(target_ulong);
770 if (env->CP0_Config1 & (1 << CP0C1_FP))
772 for (i = 0; i < 32; i++)
774 if (env->CP0_Status & (1 << CP0St_FR))
775 *(target_ulong *)ptr = tswapl(env->fpu->fpr[i].d);
776 else
777 *(target_ulong *)ptr = tswap32(env->fpu->fpr[i].w[FP_ENDIAN_IDX]);
778 ptr += sizeof(target_ulong);
781 *(target_ulong *)ptr = (int32_t)tswap32(env->fpu->fcr31);
782 ptr += sizeof(target_ulong);
784 *(target_ulong *)ptr = (int32_t)tswap32(env->fpu->fcr0);
785 ptr += sizeof(target_ulong);
788 /* "fp", pseudo frame pointer. Not yet implemented in gdb. */
789 *(target_ulong *)ptr = 0;
790 ptr += sizeof(target_ulong);
792 /* Registers for embedded use, we just pad them. */
793 for (i = 0; i < 16; i++)
795 *(target_ulong *)ptr = 0;
796 ptr += sizeof(target_ulong);
799 /* Processor ID. */
800 *(target_ulong *)ptr = (int32_t)tswap32(env->CP0_PRid);
801 ptr += sizeof(target_ulong);
803 return ptr - mem_buf;
806 /* convert MIPS rounding mode in FCR31 to IEEE library */
807 static unsigned int ieee_rm[] =
809 float_round_nearest_even,
810 float_round_to_zero,
811 float_round_up,
812 float_round_down
814 #define RESTORE_ROUNDING_MODE \
815 set_float_rounding_mode(ieee_rm[env->fpu->fcr31 & 3], &env->fpu->fp_status)
817 static void cpu_gdb_write_registers(CPUState *env, uint8_t *mem_buf, int size)
819 int i;
820 uint8_t *ptr;
822 ptr = mem_buf;
823 for (i = 0; i < 32; i++)
825 env->gpr[i][env->current_tc] = tswapl(*(target_ulong *)ptr);
826 ptr += sizeof(target_ulong);
829 env->CP0_Status = tswapl(*(target_ulong *)ptr);
830 ptr += sizeof(target_ulong);
832 env->LO[0][env->current_tc] = tswapl(*(target_ulong *)ptr);
833 ptr += sizeof(target_ulong);
835 env->HI[0][env->current_tc] = tswapl(*(target_ulong *)ptr);
836 ptr += sizeof(target_ulong);
838 env->CP0_BadVAddr = tswapl(*(target_ulong *)ptr);
839 ptr += sizeof(target_ulong);
841 env->CP0_Cause = tswapl(*(target_ulong *)ptr);
842 ptr += sizeof(target_ulong);
844 env->PC[env->current_tc] = tswapl(*(target_ulong *)ptr);
845 ptr += sizeof(target_ulong);
847 if (env->CP0_Config1 & (1 << CP0C1_FP))
849 for (i = 0; i < 32; i++)
851 if (env->CP0_Status & (1 << CP0St_FR))
852 env->fpu->fpr[i].d = tswapl(*(target_ulong *)ptr);
853 else
854 env->fpu->fpr[i].w[FP_ENDIAN_IDX] = tswapl(*(target_ulong *)ptr);
855 ptr += sizeof(target_ulong);
858 env->fpu->fcr31 = tswapl(*(target_ulong *)ptr) & 0xFF83FFFF;
859 ptr += sizeof(target_ulong);
861 /* The remaining registers are assumed to be read-only. */
863 /* set rounding mode */
864 RESTORE_ROUNDING_MODE;
866 #ifndef CONFIG_SOFTFLOAT
867 /* no floating point exception for native float */
868 SET_FP_ENABLE(env->fcr31, 0);
869 #endif
872 #elif defined (TARGET_SH4)
874 /* Hint: Use "set architecture sh4" in GDB to see fpu registers */
876 static int cpu_gdb_read_registers(CPUState *env, uint8_t *mem_buf)
878 uint32_t *ptr = (uint32_t *)mem_buf;
879 int i;
881 #define SAVE(x) *ptr++=tswapl(x)
882 if ((env->sr & (SR_MD | SR_RB)) == (SR_MD | SR_RB)) {
883 for (i = 0; i < 8; i++) SAVE(env->gregs[i + 16]);
884 } else {
885 for (i = 0; i < 8; i++) SAVE(env->gregs[i]);
887 for (i = 8; i < 16; i++) SAVE(env->gregs[i]);
888 SAVE (env->pc);
889 SAVE (env->pr);
890 SAVE (env->gbr);
891 SAVE (env->vbr);
892 SAVE (env->mach);
893 SAVE (env->macl);
894 SAVE (env->sr);
895 SAVE (env->fpul);
896 SAVE (env->fpscr);
897 for (i = 0; i < 16; i++)
898 SAVE(env->fregs[i + ((env->fpscr & FPSCR_FR) ? 16 : 0)]);
899 SAVE (env->ssr);
900 SAVE (env->spc);
901 for (i = 0; i < 8; i++) SAVE(env->gregs[i]);
902 for (i = 0; i < 8; i++) SAVE(env->gregs[i + 16]);
903 return ((uint8_t *)ptr - mem_buf);
906 static void cpu_gdb_write_registers(CPUState *env, uint8_t *mem_buf, int size)
908 uint32_t *ptr = (uint32_t *)mem_buf;
909 int i;
911 #define LOAD(x) (x)=*ptr++;
912 if ((env->sr & (SR_MD | SR_RB)) == (SR_MD | SR_RB)) {
913 for (i = 0; i < 8; i++) LOAD(env->gregs[i + 16]);
914 } else {
915 for (i = 0; i < 8; i++) LOAD(env->gregs[i]);
917 for (i = 8; i < 16; i++) LOAD(env->gregs[i]);
918 LOAD (env->pc);
919 LOAD (env->pr);
920 LOAD (env->gbr);
921 LOAD (env->vbr);
922 LOAD (env->mach);
923 LOAD (env->macl);
924 LOAD (env->sr);
925 LOAD (env->fpul);
926 LOAD (env->fpscr);
927 for (i = 0; i < 16; i++)
928 LOAD(env->fregs[i + ((env->fpscr & FPSCR_FR) ? 16 : 0)]);
929 LOAD (env->ssr);
930 LOAD (env->spc);
931 for (i = 0; i < 8; i++) LOAD(env->gregs[i]);
932 for (i = 0; i < 8; i++) LOAD(env->gregs[i + 16]);
934 #elif defined (TARGET_CRIS)
936 static int cris_save_32 (unsigned char *d, uint32_t value)
938 *d++ = (value);
939 *d++ = (value >>= 8);
940 *d++ = (value >>= 8);
941 *d++ = (value >>= 8);
942 return 4;
944 static int cris_save_16 (unsigned char *d, uint32_t value)
946 *d++ = (value);
947 *d++ = (value >>= 8);
948 return 2;
950 static int cris_save_8 (unsigned char *d, uint32_t value)
952 *d++ = (value);
953 return 1;
956 /* FIXME: this will bug on archs not supporting unaligned word accesses. */
957 static int cpu_gdb_read_registers(CPUState *env, uint8_t *mem_buf)
959 uint8_t *ptr = mem_buf;
960 uint8_t srs;
961 int i;
963 for (i = 0; i < 16; i++)
964 ptr += cris_save_32 (ptr, env->regs[i]);
966 srs = env->pregs[SR_SRS];
968 ptr += cris_save_8 (ptr, env->pregs[0]);
969 ptr += cris_save_8 (ptr, env->pregs[1]);
970 ptr += cris_save_32 (ptr, env->pregs[2]);
971 ptr += cris_save_8 (ptr, srs);
972 ptr += cris_save_16 (ptr, env->pregs[4]);
974 for (i = 5; i < 16; i++)
975 ptr += cris_save_32 (ptr, env->pregs[i]);
977 ptr += cris_save_32 (ptr, env->pc);
979 for (i = 0; i < 16; i++)
980 ptr += cris_save_32 (ptr, env->sregs[srs][i]);
982 return ((uint8_t *)ptr - mem_buf);
985 static void cpu_gdb_write_registers(CPUState *env, uint8_t *mem_buf, int size)
987 uint32_t *ptr = (uint32_t *)mem_buf;
988 int i;
990 #define LOAD(x) (x)=*ptr++;
991 for (i = 0; i < 16; i++) LOAD(env->regs[i]);
992 LOAD (env->pc);
994 #else
995 static int cpu_gdb_read_registers(CPUState *env, uint8_t *mem_buf)
997 return 0;
1000 static void cpu_gdb_write_registers(CPUState *env, uint8_t *mem_buf, int size)
1004 #endif
1006 static int gdb_handle_packet(GDBState *s, CPUState *env, const char *line_buf)
1008 const char *p;
1009 int ch, reg_size, type;
1010 char buf[4096];
1011 uint8_t mem_buf[4096];
1012 uint32_t *registers;
1013 target_ulong addr, len;
1015 #ifdef DEBUG_GDB
1016 printf("command='%s'\n", line_buf);
1017 #endif
1018 p = line_buf;
1019 ch = *p++;
1020 switch(ch) {
1021 case '?':
1022 /* TODO: Make this return the correct value for user-mode. */
1023 snprintf(buf, sizeof(buf), "S%02x", SIGTRAP);
1024 put_packet(s, buf);
1025 break;
1026 case 'c':
1027 if (*p != '\0') {
1028 addr = strtoull(p, (char **)&p, 16);
1029 #if defined(TARGET_I386)
1030 env->eip = addr;
1031 #ifdef USE_KVM
1032 kvm_load_registers(env);
1033 #endif
1034 #elif defined (TARGET_PPC)
1035 env->nip = addr;
1036 #elif defined (TARGET_SPARC)
1037 env->pc = addr;
1038 env->npc = addr + 4;
1039 #elif defined (TARGET_ARM)
1040 env->regs[15] = addr;
1041 #elif defined (TARGET_SH4)
1042 env->pc = addr;
1043 #elif defined (TARGET_MIPS)
1044 env->PC[env->current_tc] = addr;
1045 #elif defined (TARGET_CRIS)
1046 env->pc = addr;
1047 #endif
1049 #ifdef CONFIG_USER_ONLY
1050 s->running_state = 1;
1051 #else
1052 vm_start();
1053 #endif
1054 return RS_IDLE;
1055 case 's':
1056 if (*p != '\0') {
1057 addr = strtoull(p, (char **)&p, 16);
1058 #if defined(TARGET_I386)
1059 env->eip = addr;
1060 #ifdef USE_KVM
1061 kvm_load_registers(env);
1062 #endif
1063 #elif defined (TARGET_PPC)
1064 env->nip = addr;
1065 #elif defined (TARGET_SPARC)
1066 env->pc = addr;
1067 env->npc = addr + 4;
1068 #elif defined (TARGET_ARM)
1069 env->regs[15] = addr;
1070 #elif defined (TARGET_SH4)
1071 env->pc = addr;
1072 #elif defined (TARGET_MIPS)
1073 env->PC[env->current_tc] = addr;
1074 #elif defined (TARGET_CRIS)
1075 env->pc = addr;
1076 #endif
1078 cpu_single_step(env, 1);
1079 #ifdef CONFIG_USER_ONLY
1080 s->running_state = 1;
1081 #else
1082 vm_start();
1083 #endif
1084 return RS_IDLE;
1085 case 'F':
1087 target_ulong ret;
1088 target_ulong err;
1090 ret = strtoull(p, (char **)&p, 16);
1091 if (*p == ',') {
1092 p++;
1093 err = strtoull(p, (char **)&p, 16);
1094 } else {
1095 err = 0;
1097 if (*p == ',')
1098 p++;
1099 type = *p;
1100 if (gdb_current_syscall_cb)
1101 gdb_current_syscall_cb(s->env, ret, err);
1102 if (type == 'C') {
1103 put_packet(s, "T02");
1104 } else {
1105 #ifdef CONFIG_USER_ONLY
1106 s->running_state = 1;
1107 #else
1108 vm_start();
1109 #endif
1112 break;
1113 case 'g':
1114 #ifdef USE_KVM
1115 kvm_save_registers(env);
1116 #endif
1117 reg_size = cpu_gdb_read_registers(env, mem_buf);
1118 memtohex(buf, mem_buf, reg_size);
1119 put_packet(s, buf);
1120 break;
1121 case 'G':
1122 registers = (void *)mem_buf;
1123 len = strlen(p) / 2;
1124 hextomem((uint8_t *)registers, p, len);
1125 cpu_gdb_write_registers(env, mem_buf, len);
1126 #ifdef USE_KVM
1127 kvm_load_registers(env);
1128 #endif
1129 put_packet(s, "OK");
1130 break;
1131 case 'm':
1132 addr = strtoull(p, (char **)&p, 16);
1133 if (*p == ',')
1134 p++;
1135 len = strtoull(p, NULL, 16);
1136 if (cpu_memory_rw_debug(env, addr, mem_buf, len, 0) != 0) {
1137 put_packet (s, "E14");
1138 } else {
1139 memtohex(buf, mem_buf, len);
1140 put_packet(s, buf);
1142 break;
1143 case 'M':
1144 addr = strtoull(p, (char **)&p, 16);
1145 if (*p == ',')
1146 p++;
1147 len = strtoull(p, (char **)&p, 16);
1148 if (*p == ':')
1149 p++;
1150 hextomem(mem_buf, p, len);
1151 if (cpu_memory_rw_debug(env, addr, mem_buf, len, 1) != 0)
1152 put_packet(s, "E14");
1153 else
1154 put_packet(s, "OK");
1155 break;
1156 case 'Z':
1157 type = strtoul(p, (char **)&p, 16);
1158 if (*p == ',')
1159 p++;
1160 addr = strtoull(p, (char **)&p, 16);
1161 if (*p == ',')
1162 p++;
1163 len = strtoull(p, (char **)&p, 16);
1164 if (type == 0 || type == 1) {
1165 if (cpu_breakpoint_insert(env, addr) < 0)
1166 goto breakpoint_error;
1167 put_packet(s, "OK");
1168 #ifndef CONFIG_USER_ONLY
1169 } else if (type == 2) {
1170 if (cpu_watchpoint_insert(env, addr) < 0)
1171 goto breakpoint_error;
1172 put_packet(s, "OK");
1173 #endif
1174 } else {
1175 breakpoint_error:
1176 put_packet(s, "E22");
1178 break;
1179 case 'z':
1180 type = strtoul(p, (char **)&p, 16);
1181 if (*p == ',')
1182 p++;
1183 addr = strtoull(p, (char **)&p, 16);
1184 if (*p == ',')
1185 p++;
1186 len = strtoull(p, (char **)&p, 16);
1187 if (type == 0 || type == 1) {
1188 cpu_breakpoint_remove(env, addr);
1189 put_packet(s, "OK");
1190 #ifndef CONFIG_USER_ONLY
1191 } else if (type == 2) {
1192 cpu_watchpoint_remove(env, addr);
1193 put_packet(s, "OK");
1194 #endif
1195 } else {
1196 goto breakpoint_error;
1198 break;
1199 #ifdef CONFIG_LINUX_USER
1200 case 'q':
1201 if (strncmp(p, "Offsets", 7) == 0) {
1202 TaskState *ts = env->opaque;
1204 sprintf(buf,
1205 "Text=" TARGET_ABI_FMT_lx ";Data=" TARGET_ABI_FMT_lx
1206 ";Bss=" TARGET_ABI_FMT_lx,
1207 ts->info->code_offset,
1208 ts->info->data_offset,
1209 ts->info->data_offset);
1210 put_packet(s, buf);
1211 break;
1213 /* Fall through. */
1214 #endif
1215 default:
1216 // unknown_command:
1217 /* put empty packet */
1218 buf[0] = '\0';
1219 put_packet(s, buf);
1220 break;
1222 return RS_IDLE;
1225 extern void tb_flush(CPUState *env);
1227 #ifndef CONFIG_USER_ONLY
1228 static void gdb_vm_stopped(void *opaque, int reason)
1230 GDBState *s = opaque;
1231 char buf[256];
1232 int ret;
1234 if (s->state == RS_SYSCALL)
1235 return;
1237 /* disable single step if it was enable */
1238 cpu_single_step(s->env, 0);
1240 if (reason == EXCP_DEBUG) {
1241 if (s->env->watchpoint_hit) {
1242 snprintf(buf, sizeof(buf), "T%02xwatch:" TARGET_FMT_lx ";",
1243 SIGTRAP,
1244 s->env->watchpoint[s->env->watchpoint_hit - 1].vaddr);
1245 put_packet(s, buf);
1246 s->env->watchpoint_hit = 0;
1247 return;
1249 tb_flush(s->env);
1250 ret = SIGTRAP;
1251 } else if (reason == EXCP_INTERRUPT) {
1252 ret = SIGINT;
1253 } else {
1254 ret = 0;
1256 snprintf(buf, sizeof(buf), "S%02x", ret);
1257 put_packet(s, buf);
1259 #endif
1261 /* Send a gdb syscall request.
1262 This accepts limited printf-style format specifiers, specifically:
1263 %x - target_ulong argument printed in hex.
1264 %lx - 64-bit argument printed in hex.
1265 %s - string pointer (target_ulong) and length (int) pair. */
1266 void gdb_do_syscall(gdb_syscall_complete_cb cb, char *fmt, ...)
1268 va_list va;
1269 char buf[256];
1270 char *p;
1271 target_ulong addr;
1272 uint64_t i64;
1273 GDBState *s;
1275 s = gdb_syscall_state;
1276 if (!s)
1277 return;
1278 gdb_current_syscall_cb = cb;
1279 s->state = RS_SYSCALL;
1280 #ifndef CONFIG_USER_ONLY
1281 vm_stop(EXCP_DEBUG);
1282 #endif
1283 s->state = RS_IDLE;
1284 va_start(va, fmt);
1285 p = buf;
1286 *(p++) = 'F';
1287 while (*fmt) {
1288 if (*fmt == '%') {
1289 fmt++;
1290 switch (*fmt++) {
1291 case 'x':
1292 addr = va_arg(va, target_ulong);
1293 p += sprintf(p, TARGET_FMT_lx, addr);
1294 break;
1295 case 'l':
1296 if (*(fmt++) != 'x')
1297 goto bad_format;
1298 i64 = va_arg(va, uint64_t);
1299 p += sprintf(p, "%" PRIx64, i64);
1300 break;
1301 case 's':
1302 addr = va_arg(va, target_ulong);
1303 p += sprintf(p, TARGET_FMT_lx "/%x", addr, va_arg(va, int));
1304 break;
1305 default:
1306 bad_format:
1307 fprintf(stderr, "gdbstub: Bad syscall format string '%s'\n",
1308 fmt - 1);
1309 break;
1311 } else {
1312 *(p++) = *(fmt++);
1315 *p = 0;
1316 va_end(va);
1317 put_packet(s, buf);
1318 #ifdef CONFIG_USER_ONLY
1319 gdb_handlesig(s->env, 0);
1320 #else
1321 cpu_interrupt(s->env, CPU_INTERRUPT_EXIT);
1322 #endif
1325 static void gdb_read_byte(GDBState *s, int ch)
1327 CPUState *env = s->env;
1328 int i, csum;
1329 uint8_t reply;
1331 #ifndef CONFIG_USER_ONLY
1332 if (s->last_packet_len) {
1333 /* Waiting for a response to the last packet. If we see the start
1334 of a new command then abandon the previous response. */
1335 if (ch == '-') {
1336 #ifdef DEBUG_GDB
1337 printf("Got NACK, retransmitting\n");
1338 #endif
1339 put_buffer(s, (uint8_t *)s->last_packet, s->last_packet_len);
1341 #ifdef DEBUG_GDB
1342 else if (ch == '+')
1343 printf("Got ACK\n");
1344 else
1345 printf("Got '%c' when expecting ACK/NACK\n", ch);
1346 #endif
1347 if (ch == '+' || ch == '$')
1348 s->last_packet_len = 0;
1349 if (ch != '$')
1350 return;
1352 if (vm_running) {
1353 /* when the CPU is running, we cannot do anything except stop
1354 it when receiving a char */
1355 vm_stop(EXCP_INTERRUPT);
1356 } else
1357 #endif
1359 switch(s->state) {
1360 case RS_IDLE:
1361 if (ch == '$') {
1362 s->line_buf_index = 0;
1363 s->state = RS_GETLINE;
1365 break;
1366 case RS_GETLINE:
1367 if (ch == '#') {
1368 s->state = RS_CHKSUM1;
1369 } else if (s->line_buf_index >= sizeof(s->line_buf) - 1) {
1370 s->state = RS_IDLE;
1371 } else {
1372 s->line_buf[s->line_buf_index++] = ch;
1374 break;
1375 case RS_CHKSUM1:
1376 s->line_buf[s->line_buf_index] = '\0';
1377 s->line_csum = fromhex(ch) << 4;
1378 s->state = RS_CHKSUM2;
1379 break;
1380 case RS_CHKSUM2:
1381 s->line_csum |= fromhex(ch);
1382 csum = 0;
1383 for(i = 0; i < s->line_buf_index; i++) {
1384 csum += s->line_buf[i];
1386 if (s->line_csum != (csum & 0xff)) {
1387 reply = '-';
1388 put_buffer(s, &reply, 1);
1389 s->state = RS_IDLE;
1390 } else {
1391 reply = '+';
1392 put_buffer(s, &reply, 1);
1393 s->state = gdb_handle_packet(s, env, s->line_buf);
1395 break;
1396 default:
1397 abort();
1402 #ifdef CONFIG_USER_ONLY
1404 gdb_handlesig (CPUState *env, int sig)
1406 GDBState *s;
1407 char buf[256];
1408 int n;
1410 if (gdbserver_fd < 0)
1411 return sig;
1413 s = &gdbserver_state;
1415 /* disable single step if it was enabled */
1416 cpu_single_step(env, 0);
1417 tb_flush(env);
1419 if (sig != 0)
1421 snprintf(buf, sizeof(buf), "S%02x", sig);
1422 put_packet(s, buf);
1425 sig = 0;
1426 s->state = RS_IDLE;
1427 s->running_state = 0;
1428 while (s->running_state == 0) {
1429 n = read (s->fd, buf, 256);
1430 if (n > 0)
1432 int i;
1434 for (i = 0; i < n; i++)
1435 gdb_read_byte (s, buf[i]);
1437 else if (n == 0 || errno != EAGAIN)
1439 /* XXX: Connection closed. Should probably wait for annother
1440 connection before continuing. */
1441 return sig;
1444 return sig;
1447 /* Tell the remote gdb that the process has exited. */
1448 void gdb_exit(CPUState *env, int code)
1450 GDBState *s;
1451 char buf[4];
1453 if (gdbserver_fd < 0)
1454 return;
1456 s = &gdbserver_state;
1458 snprintf(buf, sizeof(buf), "W%02x", code);
1459 put_packet(s, buf);
1463 static void gdb_accept(void *opaque)
1465 GDBState *s;
1466 struct sockaddr_in sockaddr;
1467 socklen_t len;
1468 int val, fd;
1470 for(;;) {
1471 len = sizeof(sockaddr);
1472 fd = accept(gdbserver_fd, (struct sockaddr *)&sockaddr, &len);
1473 if (fd < 0 && errno != EINTR) {
1474 perror("accept");
1475 return;
1476 } else if (fd >= 0) {
1477 break;
1481 /* set short latency */
1482 val = 1;
1483 setsockopt(fd, IPPROTO_TCP, TCP_NODELAY, (char *)&val, sizeof(val));
1485 s = &gdbserver_state;
1486 memset (s, 0, sizeof (GDBState));
1487 s->env = first_cpu; /* XXX: allow to change CPU */
1488 s->fd = fd;
1490 gdb_syscall_state = s;
1492 fcntl(fd, F_SETFL, O_NONBLOCK);
1495 static int gdbserver_open(int port)
1497 struct sockaddr_in sockaddr;
1498 int fd, val, ret;
1500 fd = socket(PF_INET, SOCK_STREAM, 0);
1501 if (fd < 0) {
1502 perror("socket");
1503 return -1;
1506 /* allow fast reuse */
1507 val = 1;
1508 setsockopt(fd, SOL_SOCKET, SO_REUSEADDR, (char *)&val, sizeof(val));
1510 sockaddr.sin_family = AF_INET;
1511 sockaddr.sin_port = htons(port);
1512 sockaddr.sin_addr.s_addr = 0;
1513 ret = bind(fd, (struct sockaddr *)&sockaddr, sizeof(sockaddr));
1514 if (ret < 0) {
1515 perror("bind");
1516 return -1;
1518 ret = listen(fd, 0);
1519 if (ret < 0) {
1520 perror("listen");
1521 return -1;
1523 return fd;
1526 int gdbserver_start(int port)
1528 gdbserver_fd = gdbserver_open(port);
1529 if (gdbserver_fd < 0)
1530 return -1;
1531 /* accept connections */
1532 gdb_accept (NULL);
1533 return 0;
1535 #else
1536 static int gdb_chr_can_receive(void *opaque)
1538 return 1;
1541 static void gdb_chr_receive(void *opaque, const uint8_t *buf, int size)
1543 GDBState *s = opaque;
1544 int i;
1546 for (i = 0; i < size; i++) {
1547 gdb_read_byte(s, buf[i]);
1551 static void gdb_chr_event(void *opaque, int event)
1553 switch (event) {
1554 case CHR_EVENT_RESET:
1555 vm_stop(EXCP_INTERRUPT);
1556 gdb_syscall_state = opaque;
1557 break;
1558 default:
1559 break;
1563 int gdbserver_start(const char *port)
1565 GDBState *s;
1566 char gdbstub_port_name[128];
1567 int port_num;
1568 char *p;
1569 CharDriverState *chr;
1571 if (!port || !*port)
1572 return -1;
1574 port_num = strtol(port, &p, 10);
1575 if (*p == 0) {
1576 /* A numeric value is interpreted as a port number. */
1577 snprintf(gdbstub_port_name, sizeof(gdbstub_port_name),
1578 "tcp::%d,nowait,nodelay,server", port_num);
1579 port = gdbstub_port_name;
1582 chr = qemu_chr_open(port);
1583 if (!chr)
1584 return -1;
1586 s = qemu_mallocz(sizeof(GDBState));
1587 if (!s) {
1588 return -1;
1590 s->env = first_cpu; /* XXX: allow to change CPU */
1591 s->chr = chr;
1592 qemu_chr_add_handlers(chr, gdb_chr_can_receive, gdb_chr_receive,
1593 gdb_chr_event, s);
1594 qemu_add_vm_stop_handler(gdb_vm_stopped, s);
1595 return 0;
1597 #endif