Avoid some brconds
[qemu-kvm/fedora.git] / vl.c
blob807e0354c5f50e31c3f0f692bae8a10c08f57af5
1 /*
2 * QEMU System Emulator
4 * Copyright (c) 2003-2008 Fabrice Bellard
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
24 #include "hw/hw.h"
25 #include "hw/boards.h"
26 #include "hw/usb.h"
27 #include "hw/pcmcia.h"
28 #include "hw/pc.h"
29 #include "hw/audiodev.h"
30 #include "hw/isa.h"
31 #include "hw/baum.h"
32 #include "net.h"
33 #include "console.h"
34 #include "sysemu.h"
35 #include "gdbstub.h"
36 #include "qemu-timer.h"
37 #include "qemu-char.h"
38 #include "block.h"
39 #include "audio/audio.h"
41 #include <unistd.h>
42 #include <fcntl.h>
43 #include <signal.h>
44 #include <time.h>
45 #include <errno.h>
46 #include <sys/time.h>
47 #include <zlib.h>
49 #ifndef _WIN32
50 #include <sys/times.h>
51 #include <sys/wait.h>
52 #include <termios.h>
53 #include <sys/poll.h>
54 #include <sys/mman.h>
55 #include <sys/ioctl.h>
56 #include <sys/socket.h>
57 #include <netinet/in.h>
58 #include <dirent.h>
59 #include <netdb.h>
60 #include <sys/select.h>
61 #include <arpa/inet.h>
62 #ifdef _BSD
63 #include <sys/stat.h>
64 #ifndef __APPLE__
65 #include <libutil.h>
66 #endif
67 #elif defined (__GLIBC__) && defined (__FreeBSD_kernel__)
68 #include <freebsd/stdlib.h>
69 #else
70 #ifndef __sun__
71 #include <linux/if.h>
72 #include <linux/if_tun.h>
73 #include <pty.h>
74 #include <malloc.h>
75 #include <linux/rtc.h>
77 /* For the benefit of older linux systems which don't supply it,
78 we use a local copy of hpet.h. */
79 /* #include <linux/hpet.h> */
80 #include "hpet.h"
82 #include <linux/ppdev.h>
83 #include <linux/parport.h>
84 #else
85 #include <sys/stat.h>
86 #include <sys/ethernet.h>
87 #include <sys/sockio.h>
88 #include <netinet/arp.h>
89 #include <netinet/in.h>
90 #include <netinet/in_systm.h>
91 #include <netinet/ip.h>
92 #include <netinet/ip_icmp.h> // must come after ip.h
93 #include <netinet/udp.h>
94 #include <netinet/tcp.h>
95 #include <net/if.h>
96 #include <syslog.h>
97 #include <stropts.h>
98 #endif
99 #endif
100 #else
101 #include <winsock2.h>
102 int inet_aton(const char *cp, struct in_addr *ia);
103 #endif
105 #if defined(CONFIG_SLIRP)
106 #include "libslirp.h"
107 #endif
109 #ifdef _WIN32
110 #include <malloc.h>
111 #include <sys/timeb.h>
112 #include <mmsystem.h>
113 #define getopt_long_only getopt_long
114 #define memalign(align, size) malloc(size)
115 #endif
117 #include "qemu_socket.h"
119 #ifdef CONFIG_SDL
120 #ifdef __APPLE__
121 #include <SDL/SDL.h>
122 #endif
123 #endif /* CONFIG_SDL */
125 #ifdef CONFIG_COCOA
126 #undef main
127 #define main qemu_main
128 #endif /* CONFIG_COCOA */
130 #include "disas.h"
132 #include "exec-all.h"
134 #define DEFAULT_NETWORK_SCRIPT "/etc/qemu-ifup"
135 #define DEFAULT_NETWORK_DOWN_SCRIPT "/etc/qemu-ifdown"
136 #ifdef __sun__
137 #define SMBD_COMMAND "/usr/sfw/sbin/smbd"
138 #else
139 #define SMBD_COMMAND "/usr/sbin/smbd"
140 #endif
142 //#define DEBUG_UNUSED_IOPORT
143 //#define DEBUG_IOPORT
145 #ifdef TARGET_PPC
146 #define DEFAULT_RAM_SIZE 144
147 #else
148 #define DEFAULT_RAM_SIZE 128
149 #endif
150 /* in ms */
151 #define GUI_REFRESH_INTERVAL 30
153 /* Max number of USB devices that can be specified on the commandline. */
154 #define MAX_USB_CMDLINE 8
156 /* XXX: use a two level table to limit memory usage */
157 #define MAX_IOPORTS 65536
159 const char *bios_dir = CONFIG_QEMU_SHAREDIR;
160 const char *bios_name = NULL;
161 void *ioport_opaque[MAX_IOPORTS];
162 IOPortReadFunc *ioport_read_table[3][MAX_IOPORTS];
163 IOPortWriteFunc *ioport_write_table[3][MAX_IOPORTS];
164 /* Note: drives_table[MAX_DRIVES] is a dummy block driver if none available
165 to store the VM snapshots */
166 DriveInfo drives_table[MAX_DRIVES+1];
167 int nb_drives;
168 /* point to the block driver where the snapshots are managed */
169 BlockDriverState *bs_snapshots;
170 int vga_ram_size;
171 static DisplayState display_state;
172 int nographic;
173 int curses;
174 const char* keyboard_layout = NULL;
175 int64_t ticks_per_sec;
176 ram_addr_t ram_size;
177 int pit_min_timer_count = 0;
178 int nb_nics;
179 NICInfo nd_table[MAX_NICS];
180 int vm_running;
181 static int rtc_utc = 1;
182 static int rtc_date_offset = -1; /* -1 means no change */
183 int cirrus_vga_enabled = 1;
184 int vmsvga_enabled = 0;
185 #ifdef TARGET_SPARC
186 int graphic_width = 1024;
187 int graphic_height = 768;
188 int graphic_depth = 8;
189 #else
190 int graphic_width = 800;
191 int graphic_height = 600;
192 int graphic_depth = 15;
193 #endif
194 int full_screen = 0;
195 int no_frame = 0;
196 int no_quit = 0;
197 CharDriverState *serial_hds[MAX_SERIAL_PORTS];
198 CharDriverState *parallel_hds[MAX_PARALLEL_PORTS];
199 #ifdef TARGET_I386
200 int win2k_install_hack = 0;
201 #endif
202 int usb_enabled = 0;
203 static VLANState *first_vlan;
204 int smp_cpus = 1;
205 const char *vnc_display;
206 #if defined(TARGET_SPARC)
207 #define MAX_CPUS 16
208 #elif defined(TARGET_I386)
209 #define MAX_CPUS 255
210 #else
211 #define MAX_CPUS 1
212 #endif
213 int acpi_enabled = 1;
214 int fd_bootchk = 1;
215 int no_reboot = 0;
216 int no_shutdown = 0;
217 int cursor_hide = 1;
218 int graphic_rotate = 0;
219 int daemonize = 0;
220 const char *option_rom[MAX_OPTION_ROMS];
221 int nb_option_roms;
222 int semihosting_enabled = 0;
223 int autostart = 1;
224 #ifdef TARGET_ARM
225 int old_param = 0;
226 #endif
227 const char *qemu_name;
228 int alt_grab = 0;
229 #ifdef TARGET_SPARC
230 unsigned int nb_prom_envs = 0;
231 const char *prom_envs[MAX_PROM_ENVS];
232 #endif
233 int nb_drives_opt;
234 struct drive_opt {
235 const char *file;
236 char opt[1024];
237 } drives_opt[MAX_DRIVES];
239 static CPUState *cur_cpu;
240 static CPUState *next_cpu;
241 static int event_pending = 1;
243 #define TFR(expr) do { if ((expr) != -1) break; } while (errno == EINTR)
245 /***********************************************************/
246 /* x86 ISA bus support */
248 target_phys_addr_t isa_mem_base = 0;
249 PicState2 *isa_pic;
251 static uint32_t default_ioport_readb(void *opaque, uint32_t address)
253 #ifdef DEBUG_UNUSED_IOPORT
254 fprintf(stderr, "unused inb: port=0x%04x\n", address);
255 #endif
256 return 0xff;
259 static void default_ioport_writeb(void *opaque, uint32_t address, uint32_t data)
261 #ifdef DEBUG_UNUSED_IOPORT
262 fprintf(stderr, "unused outb: port=0x%04x data=0x%02x\n", address, data);
263 #endif
266 /* default is to make two byte accesses */
267 static uint32_t default_ioport_readw(void *opaque, uint32_t address)
269 uint32_t data;
270 data = ioport_read_table[0][address](ioport_opaque[address], address);
271 address = (address + 1) & (MAX_IOPORTS - 1);
272 data |= ioport_read_table[0][address](ioport_opaque[address], address) << 8;
273 return data;
276 static void default_ioport_writew(void *opaque, uint32_t address, uint32_t data)
278 ioport_write_table[0][address](ioport_opaque[address], address, data & 0xff);
279 address = (address + 1) & (MAX_IOPORTS - 1);
280 ioport_write_table[0][address](ioport_opaque[address], address, (data >> 8) & 0xff);
283 static uint32_t default_ioport_readl(void *opaque, uint32_t address)
285 #ifdef DEBUG_UNUSED_IOPORT
286 fprintf(stderr, "unused inl: port=0x%04x\n", address);
287 #endif
288 return 0xffffffff;
291 static void default_ioport_writel(void *opaque, uint32_t address, uint32_t data)
293 #ifdef DEBUG_UNUSED_IOPORT
294 fprintf(stderr, "unused outl: port=0x%04x data=0x%02x\n", address, data);
295 #endif
298 static void init_ioports(void)
300 int i;
302 for(i = 0; i < MAX_IOPORTS; i++) {
303 ioport_read_table[0][i] = default_ioport_readb;
304 ioport_write_table[0][i] = default_ioport_writeb;
305 ioport_read_table[1][i] = default_ioport_readw;
306 ioport_write_table[1][i] = default_ioport_writew;
307 ioport_read_table[2][i] = default_ioport_readl;
308 ioport_write_table[2][i] = default_ioport_writel;
312 /* size is the word size in byte */
313 int register_ioport_read(int start, int length, int size,
314 IOPortReadFunc *func, void *opaque)
316 int i, bsize;
318 if (size == 1) {
319 bsize = 0;
320 } else if (size == 2) {
321 bsize = 1;
322 } else if (size == 4) {
323 bsize = 2;
324 } else {
325 hw_error("register_ioport_read: invalid size");
326 return -1;
328 for(i = start; i < start + length; i += size) {
329 ioport_read_table[bsize][i] = func;
330 if (ioport_opaque[i] != NULL && ioport_opaque[i] != opaque)
331 hw_error("register_ioport_read: invalid opaque");
332 ioport_opaque[i] = opaque;
334 return 0;
337 /* size is the word size in byte */
338 int register_ioport_write(int start, int length, int size,
339 IOPortWriteFunc *func, void *opaque)
341 int i, bsize;
343 if (size == 1) {
344 bsize = 0;
345 } else if (size == 2) {
346 bsize = 1;
347 } else if (size == 4) {
348 bsize = 2;
349 } else {
350 hw_error("register_ioport_write: invalid size");
351 return -1;
353 for(i = start; i < start + length; i += size) {
354 ioport_write_table[bsize][i] = func;
355 if (ioport_opaque[i] != NULL && ioport_opaque[i] != opaque)
356 hw_error("register_ioport_write: invalid opaque");
357 ioport_opaque[i] = opaque;
359 return 0;
362 void isa_unassign_ioport(int start, int length)
364 int i;
366 for(i = start; i < start + length; i++) {
367 ioport_read_table[0][i] = default_ioport_readb;
368 ioport_read_table[1][i] = default_ioport_readw;
369 ioport_read_table[2][i] = default_ioport_readl;
371 ioport_write_table[0][i] = default_ioport_writeb;
372 ioport_write_table[1][i] = default_ioport_writew;
373 ioport_write_table[2][i] = default_ioport_writel;
377 /***********************************************************/
379 void cpu_outb(CPUState *env, int addr, int val)
381 #ifdef DEBUG_IOPORT
382 if (loglevel & CPU_LOG_IOPORT)
383 fprintf(logfile, "outb: %04x %02x\n", addr, val);
384 #endif
385 ioport_write_table[0][addr](ioport_opaque[addr], addr, val);
386 #ifdef USE_KQEMU
387 if (env)
388 env->last_io_time = cpu_get_time_fast();
389 #endif
392 void cpu_outw(CPUState *env, int addr, int val)
394 #ifdef DEBUG_IOPORT
395 if (loglevel & CPU_LOG_IOPORT)
396 fprintf(logfile, "outw: %04x %04x\n", addr, val);
397 #endif
398 ioport_write_table[1][addr](ioport_opaque[addr], addr, val);
399 #ifdef USE_KQEMU
400 if (env)
401 env->last_io_time = cpu_get_time_fast();
402 #endif
405 void cpu_outl(CPUState *env, int addr, int val)
407 #ifdef DEBUG_IOPORT
408 if (loglevel & CPU_LOG_IOPORT)
409 fprintf(logfile, "outl: %04x %08x\n", addr, val);
410 #endif
411 ioport_write_table[2][addr](ioport_opaque[addr], addr, val);
412 #ifdef USE_KQEMU
413 if (env)
414 env->last_io_time = cpu_get_time_fast();
415 #endif
418 int cpu_inb(CPUState *env, int addr)
420 int val;
421 val = ioport_read_table[0][addr](ioport_opaque[addr], addr);
422 #ifdef DEBUG_IOPORT
423 if (loglevel & CPU_LOG_IOPORT)
424 fprintf(logfile, "inb : %04x %02x\n", addr, val);
425 #endif
426 #ifdef USE_KQEMU
427 if (env)
428 env->last_io_time = cpu_get_time_fast();
429 #endif
430 return val;
433 int cpu_inw(CPUState *env, int addr)
435 int val;
436 val = ioport_read_table[1][addr](ioport_opaque[addr], addr);
437 #ifdef DEBUG_IOPORT
438 if (loglevel & CPU_LOG_IOPORT)
439 fprintf(logfile, "inw : %04x %04x\n", addr, val);
440 #endif
441 #ifdef USE_KQEMU
442 if (env)
443 env->last_io_time = cpu_get_time_fast();
444 #endif
445 return val;
448 int cpu_inl(CPUState *env, int addr)
450 int val;
451 val = ioport_read_table[2][addr](ioport_opaque[addr], addr);
452 #ifdef DEBUG_IOPORT
453 if (loglevel & CPU_LOG_IOPORT)
454 fprintf(logfile, "inl : %04x %08x\n", addr, val);
455 #endif
456 #ifdef USE_KQEMU
457 if (env)
458 env->last_io_time = cpu_get_time_fast();
459 #endif
460 return val;
463 /***********************************************************/
464 void hw_error(const char *fmt, ...)
466 va_list ap;
467 CPUState *env;
469 va_start(ap, fmt);
470 fprintf(stderr, "qemu: hardware error: ");
471 vfprintf(stderr, fmt, ap);
472 fprintf(stderr, "\n");
473 for(env = first_cpu; env != NULL; env = env->next_cpu) {
474 fprintf(stderr, "CPU #%d:\n", env->cpu_index);
475 #ifdef TARGET_I386
476 cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU);
477 #else
478 cpu_dump_state(env, stderr, fprintf, 0);
479 #endif
481 va_end(ap);
482 abort();
485 /***********************************************************/
486 /* keyboard/mouse */
488 static QEMUPutKBDEvent *qemu_put_kbd_event;
489 static void *qemu_put_kbd_event_opaque;
490 static QEMUPutMouseEntry *qemu_put_mouse_event_head;
491 static QEMUPutMouseEntry *qemu_put_mouse_event_current;
493 void qemu_add_kbd_event_handler(QEMUPutKBDEvent *func, void *opaque)
495 qemu_put_kbd_event_opaque = opaque;
496 qemu_put_kbd_event = func;
499 QEMUPutMouseEntry *qemu_add_mouse_event_handler(QEMUPutMouseEvent *func,
500 void *opaque, int absolute,
501 const char *name)
503 QEMUPutMouseEntry *s, *cursor;
505 s = qemu_mallocz(sizeof(QEMUPutMouseEntry));
506 if (!s)
507 return NULL;
509 s->qemu_put_mouse_event = func;
510 s->qemu_put_mouse_event_opaque = opaque;
511 s->qemu_put_mouse_event_absolute = absolute;
512 s->qemu_put_mouse_event_name = qemu_strdup(name);
513 s->next = NULL;
515 if (!qemu_put_mouse_event_head) {
516 qemu_put_mouse_event_head = qemu_put_mouse_event_current = s;
517 return s;
520 cursor = qemu_put_mouse_event_head;
521 while (cursor->next != NULL)
522 cursor = cursor->next;
524 cursor->next = s;
525 qemu_put_mouse_event_current = s;
527 return s;
530 void qemu_remove_mouse_event_handler(QEMUPutMouseEntry *entry)
532 QEMUPutMouseEntry *prev = NULL, *cursor;
534 if (!qemu_put_mouse_event_head || entry == NULL)
535 return;
537 cursor = qemu_put_mouse_event_head;
538 while (cursor != NULL && cursor != entry) {
539 prev = cursor;
540 cursor = cursor->next;
543 if (cursor == NULL) // does not exist or list empty
544 return;
545 else if (prev == NULL) { // entry is head
546 qemu_put_mouse_event_head = cursor->next;
547 if (qemu_put_mouse_event_current == entry)
548 qemu_put_mouse_event_current = cursor->next;
549 qemu_free(entry->qemu_put_mouse_event_name);
550 qemu_free(entry);
551 return;
554 prev->next = entry->next;
556 if (qemu_put_mouse_event_current == entry)
557 qemu_put_mouse_event_current = prev;
559 qemu_free(entry->qemu_put_mouse_event_name);
560 qemu_free(entry);
563 void kbd_put_keycode(int keycode)
565 if (qemu_put_kbd_event) {
566 qemu_put_kbd_event(qemu_put_kbd_event_opaque, keycode);
570 void kbd_mouse_event(int dx, int dy, int dz, int buttons_state)
572 QEMUPutMouseEvent *mouse_event;
573 void *mouse_event_opaque;
574 int width;
576 if (!qemu_put_mouse_event_current) {
577 return;
580 mouse_event =
581 qemu_put_mouse_event_current->qemu_put_mouse_event;
582 mouse_event_opaque =
583 qemu_put_mouse_event_current->qemu_put_mouse_event_opaque;
585 if (mouse_event) {
586 if (graphic_rotate) {
587 if (qemu_put_mouse_event_current->qemu_put_mouse_event_absolute)
588 width = 0x7fff;
589 else
590 width = graphic_width - 1;
591 mouse_event(mouse_event_opaque,
592 width - dy, dx, dz, buttons_state);
593 } else
594 mouse_event(mouse_event_opaque,
595 dx, dy, dz, buttons_state);
599 int kbd_mouse_is_absolute(void)
601 if (!qemu_put_mouse_event_current)
602 return 0;
604 return qemu_put_mouse_event_current->qemu_put_mouse_event_absolute;
607 void do_info_mice(void)
609 QEMUPutMouseEntry *cursor;
610 int index = 0;
612 if (!qemu_put_mouse_event_head) {
613 term_printf("No mouse devices connected\n");
614 return;
617 term_printf("Mouse devices available:\n");
618 cursor = qemu_put_mouse_event_head;
619 while (cursor != NULL) {
620 term_printf("%c Mouse #%d: %s\n",
621 (cursor == qemu_put_mouse_event_current ? '*' : ' '),
622 index, cursor->qemu_put_mouse_event_name);
623 index++;
624 cursor = cursor->next;
628 void do_mouse_set(int index)
630 QEMUPutMouseEntry *cursor;
631 int i = 0;
633 if (!qemu_put_mouse_event_head) {
634 term_printf("No mouse devices connected\n");
635 return;
638 cursor = qemu_put_mouse_event_head;
639 while (cursor != NULL && index != i) {
640 i++;
641 cursor = cursor->next;
644 if (cursor != NULL)
645 qemu_put_mouse_event_current = cursor;
646 else
647 term_printf("Mouse at given index not found\n");
650 /* compute with 96 bit intermediate result: (a*b)/c */
651 uint64_t muldiv64(uint64_t a, uint32_t b, uint32_t c)
653 union {
654 uint64_t ll;
655 struct {
656 #ifdef WORDS_BIGENDIAN
657 uint32_t high, low;
658 #else
659 uint32_t low, high;
660 #endif
661 } l;
662 } u, res;
663 uint64_t rl, rh;
665 u.ll = a;
666 rl = (uint64_t)u.l.low * (uint64_t)b;
667 rh = (uint64_t)u.l.high * (uint64_t)b;
668 rh += (rl >> 32);
669 res.l.high = rh / c;
670 res.l.low = (((rh % c) << 32) + (rl & 0xffffffff)) / c;
671 return res.ll;
674 /***********************************************************/
675 /* real time host monotonic timer */
677 #define QEMU_TIMER_BASE 1000000000LL
679 #ifdef WIN32
681 static int64_t clock_freq;
683 static void init_get_clock(void)
685 LARGE_INTEGER freq;
686 int ret;
687 ret = QueryPerformanceFrequency(&freq);
688 if (ret == 0) {
689 fprintf(stderr, "Could not calibrate ticks\n");
690 exit(1);
692 clock_freq = freq.QuadPart;
695 static int64_t get_clock(void)
697 LARGE_INTEGER ti;
698 QueryPerformanceCounter(&ti);
699 return muldiv64(ti.QuadPart, QEMU_TIMER_BASE, clock_freq);
702 #else
704 static int use_rt_clock;
706 static void init_get_clock(void)
708 use_rt_clock = 0;
709 #if defined(__linux__)
711 struct timespec ts;
712 if (clock_gettime(CLOCK_MONOTONIC, &ts) == 0) {
713 use_rt_clock = 1;
716 #endif
719 static int64_t get_clock(void)
721 #if defined(__linux__)
722 if (use_rt_clock) {
723 struct timespec ts;
724 clock_gettime(CLOCK_MONOTONIC, &ts);
725 return ts.tv_sec * 1000000000LL + ts.tv_nsec;
726 } else
727 #endif
729 /* XXX: using gettimeofday leads to problems if the date
730 changes, so it should be avoided. */
731 struct timeval tv;
732 gettimeofday(&tv, NULL);
733 return tv.tv_sec * 1000000000LL + (tv.tv_usec * 1000);
737 #endif
739 /***********************************************************/
740 /* guest cycle counter */
742 static int64_t cpu_ticks_prev;
743 static int64_t cpu_ticks_offset;
744 static int64_t cpu_clock_offset;
745 static int cpu_ticks_enabled;
747 /* return the host CPU cycle counter and handle stop/restart */
748 int64_t cpu_get_ticks(void)
750 if (!cpu_ticks_enabled) {
751 return cpu_ticks_offset;
752 } else {
753 int64_t ticks;
754 ticks = cpu_get_real_ticks();
755 if (cpu_ticks_prev > ticks) {
756 /* Note: non increasing ticks may happen if the host uses
757 software suspend */
758 cpu_ticks_offset += cpu_ticks_prev - ticks;
760 cpu_ticks_prev = ticks;
761 return ticks + cpu_ticks_offset;
765 /* return the host CPU monotonic timer and handle stop/restart */
766 static int64_t cpu_get_clock(void)
768 int64_t ti;
769 if (!cpu_ticks_enabled) {
770 return cpu_clock_offset;
771 } else {
772 ti = get_clock();
773 return ti + cpu_clock_offset;
777 /* enable cpu_get_ticks() */
778 void cpu_enable_ticks(void)
780 if (!cpu_ticks_enabled) {
781 cpu_ticks_offset -= cpu_get_real_ticks();
782 cpu_clock_offset -= get_clock();
783 cpu_ticks_enabled = 1;
787 /* disable cpu_get_ticks() : the clock is stopped. You must not call
788 cpu_get_ticks() after that. */
789 void cpu_disable_ticks(void)
791 if (cpu_ticks_enabled) {
792 cpu_ticks_offset = cpu_get_ticks();
793 cpu_clock_offset = cpu_get_clock();
794 cpu_ticks_enabled = 0;
798 /***********************************************************/
799 /* timers */
801 #define QEMU_TIMER_REALTIME 0
802 #define QEMU_TIMER_VIRTUAL 1
804 struct QEMUClock {
805 int type;
806 /* XXX: add frequency */
809 struct QEMUTimer {
810 QEMUClock *clock;
811 int64_t expire_time;
812 QEMUTimerCB *cb;
813 void *opaque;
814 struct QEMUTimer *next;
817 struct qemu_alarm_timer {
818 char const *name;
819 unsigned int flags;
821 int (*start)(struct qemu_alarm_timer *t);
822 void (*stop)(struct qemu_alarm_timer *t);
823 void (*rearm)(struct qemu_alarm_timer *t);
824 void *priv;
827 #define ALARM_FLAG_DYNTICKS 0x1
828 #define ALARM_FLAG_EXPIRED 0x2
830 static inline int alarm_has_dynticks(struct qemu_alarm_timer *t)
832 return t->flags & ALARM_FLAG_DYNTICKS;
835 static void qemu_rearm_alarm_timer(struct qemu_alarm_timer *t)
837 if (!alarm_has_dynticks(t))
838 return;
840 t->rearm(t);
843 /* TODO: MIN_TIMER_REARM_US should be optimized */
844 #define MIN_TIMER_REARM_US 250
846 static struct qemu_alarm_timer *alarm_timer;
848 #ifdef _WIN32
850 struct qemu_alarm_win32 {
851 MMRESULT timerId;
852 HANDLE host_alarm;
853 unsigned int period;
854 } alarm_win32_data = {0, NULL, -1};
856 static int win32_start_timer(struct qemu_alarm_timer *t);
857 static void win32_stop_timer(struct qemu_alarm_timer *t);
858 static void win32_rearm_timer(struct qemu_alarm_timer *t);
860 #else
862 static int unix_start_timer(struct qemu_alarm_timer *t);
863 static void unix_stop_timer(struct qemu_alarm_timer *t);
865 #ifdef __linux__
867 static int dynticks_start_timer(struct qemu_alarm_timer *t);
868 static void dynticks_stop_timer(struct qemu_alarm_timer *t);
869 static void dynticks_rearm_timer(struct qemu_alarm_timer *t);
871 static int hpet_start_timer(struct qemu_alarm_timer *t);
872 static void hpet_stop_timer(struct qemu_alarm_timer *t);
874 static int rtc_start_timer(struct qemu_alarm_timer *t);
875 static void rtc_stop_timer(struct qemu_alarm_timer *t);
877 #endif /* __linux__ */
879 #endif /* _WIN32 */
881 static struct qemu_alarm_timer alarm_timers[] = {
882 #ifndef _WIN32
883 #ifdef __linux__
884 {"dynticks", ALARM_FLAG_DYNTICKS, dynticks_start_timer,
885 dynticks_stop_timer, dynticks_rearm_timer, NULL},
886 /* HPET - if available - is preferred */
887 {"hpet", 0, hpet_start_timer, hpet_stop_timer, NULL, NULL},
888 /* ...otherwise try RTC */
889 {"rtc", 0, rtc_start_timer, rtc_stop_timer, NULL, NULL},
890 #endif
891 {"unix", 0, unix_start_timer, unix_stop_timer, NULL, NULL},
892 #else
893 {"dynticks", ALARM_FLAG_DYNTICKS, win32_start_timer,
894 win32_stop_timer, win32_rearm_timer, &alarm_win32_data},
895 {"win32", 0, win32_start_timer,
896 win32_stop_timer, NULL, &alarm_win32_data},
897 #endif
898 {NULL, }
901 static void show_available_alarms(void)
903 int i;
905 printf("Available alarm timers, in order of precedence:\n");
906 for (i = 0; alarm_timers[i].name; i++)
907 printf("%s\n", alarm_timers[i].name);
910 static void configure_alarms(char const *opt)
912 int i;
913 int cur = 0;
914 int count = (sizeof(alarm_timers) / sizeof(*alarm_timers)) - 1;
915 char *arg;
916 char *name;
918 if (!strcmp(opt, "?")) {
919 show_available_alarms();
920 exit(0);
923 arg = strdup(opt);
925 /* Reorder the array */
926 name = strtok(arg, ",");
927 while (name) {
928 struct qemu_alarm_timer tmp;
930 for (i = 0; i < count && alarm_timers[i].name; i++) {
931 if (!strcmp(alarm_timers[i].name, name))
932 break;
935 if (i == count) {
936 fprintf(stderr, "Unknown clock %s\n", name);
937 goto next;
940 if (i < cur)
941 /* Ignore */
942 goto next;
944 /* Swap */
945 tmp = alarm_timers[i];
946 alarm_timers[i] = alarm_timers[cur];
947 alarm_timers[cur] = tmp;
949 cur++;
950 next:
951 name = strtok(NULL, ",");
954 free(arg);
956 if (cur) {
957 /* Disable remaining timers */
958 for (i = cur; i < count; i++)
959 alarm_timers[i].name = NULL;
960 } else {
961 show_available_alarms();
962 exit(1);
966 QEMUClock *rt_clock;
967 QEMUClock *vm_clock;
969 static QEMUTimer *active_timers[2];
971 static QEMUClock *qemu_new_clock(int type)
973 QEMUClock *clock;
974 clock = qemu_mallocz(sizeof(QEMUClock));
975 if (!clock)
976 return NULL;
977 clock->type = type;
978 return clock;
981 QEMUTimer *qemu_new_timer(QEMUClock *clock, QEMUTimerCB *cb, void *opaque)
983 QEMUTimer *ts;
985 ts = qemu_mallocz(sizeof(QEMUTimer));
986 ts->clock = clock;
987 ts->cb = cb;
988 ts->opaque = opaque;
989 return ts;
992 void qemu_free_timer(QEMUTimer *ts)
994 qemu_free(ts);
997 /* stop a timer, but do not dealloc it */
998 void qemu_del_timer(QEMUTimer *ts)
1000 QEMUTimer **pt, *t;
1002 /* NOTE: this code must be signal safe because
1003 qemu_timer_expired() can be called from a signal. */
1004 pt = &active_timers[ts->clock->type];
1005 for(;;) {
1006 t = *pt;
1007 if (!t)
1008 break;
1009 if (t == ts) {
1010 *pt = t->next;
1011 break;
1013 pt = &t->next;
1017 /* modify the current timer so that it will be fired when current_time
1018 >= expire_time. The corresponding callback will be called. */
1019 void qemu_mod_timer(QEMUTimer *ts, int64_t expire_time)
1021 QEMUTimer **pt, *t;
1023 qemu_del_timer(ts);
1025 /* add the timer in the sorted list */
1026 /* NOTE: this code must be signal safe because
1027 qemu_timer_expired() can be called from a signal. */
1028 pt = &active_timers[ts->clock->type];
1029 for(;;) {
1030 t = *pt;
1031 if (!t)
1032 break;
1033 if (t->expire_time > expire_time)
1034 break;
1035 pt = &t->next;
1037 ts->expire_time = expire_time;
1038 ts->next = *pt;
1039 *pt = ts;
1041 /* Rearm if necessary */
1042 if ((alarm_timer->flags & ALARM_FLAG_EXPIRED) == 0 &&
1043 pt == &active_timers[ts->clock->type])
1044 qemu_rearm_alarm_timer(alarm_timer);
1047 int qemu_timer_pending(QEMUTimer *ts)
1049 QEMUTimer *t;
1050 for(t = active_timers[ts->clock->type]; t != NULL; t = t->next) {
1051 if (t == ts)
1052 return 1;
1054 return 0;
1057 static inline int qemu_timer_expired(QEMUTimer *timer_head, int64_t current_time)
1059 if (!timer_head)
1060 return 0;
1061 return (timer_head->expire_time <= current_time);
1064 static void qemu_run_timers(QEMUTimer **ptimer_head, int64_t current_time)
1066 QEMUTimer *ts;
1068 for(;;) {
1069 ts = *ptimer_head;
1070 if (!ts || ts->expire_time > current_time)
1071 break;
1072 /* remove timer from the list before calling the callback */
1073 *ptimer_head = ts->next;
1074 ts->next = NULL;
1076 /* run the callback (the timer list can be modified) */
1077 ts->cb(ts->opaque);
1081 int64_t qemu_get_clock(QEMUClock *clock)
1083 switch(clock->type) {
1084 case QEMU_TIMER_REALTIME:
1085 return get_clock() / 1000000;
1086 default:
1087 case QEMU_TIMER_VIRTUAL:
1088 return cpu_get_clock();
1092 static void init_timers(void)
1094 init_get_clock();
1095 ticks_per_sec = QEMU_TIMER_BASE;
1096 rt_clock = qemu_new_clock(QEMU_TIMER_REALTIME);
1097 vm_clock = qemu_new_clock(QEMU_TIMER_VIRTUAL);
1100 /* save a timer */
1101 void qemu_put_timer(QEMUFile *f, QEMUTimer *ts)
1103 uint64_t expire_time;
1105 if (qemu_timer_pending(ts)) {
1106 expire_time = ts->expire_time;
1107 } else {
1108 expire_time = -1;
1110 qemu_put_be64(f, expire_time);
1113 void qemu_get_timer(QEMUFile *f, QEMUTimer *ts)
1115 uint64_t expire_time;
1117 expire_time = qemu_get_be64(f);
1118 if (expire_time != -1) {
1119 qemu_mod_timer(ts, expire_time);
1120 } else {
1121 qemu_del_timer(ts);
1125 static void timer_save(QEMUFile *f, void *opaque)
1127 if (cpu_ticks_enabled) {
1128 hw_error("cannot save state if virtual timers are running");
1130 qemu_put_be64(f, cpu_ticks_offset);
1131 qemu_put_be64(f, ticks_per_sec);
1132 qemu_put_be64(f, cpu_clock_offset);
1135 static int timer_load(QEMUFile *f, void *opaque, int version_id)
1137 if (version_id != 1 && version_id != 2)
1138 return -EINVAL;
1139 if (cpu_ticks_enabled) {
1140 return -EINVAL;
1142 cpu_ticks_offset=qemu_get_be64(f);
1143 ticks_per_sec=qemu_get_be64(f);
1144 if (version_id == 2) {
1145 cpu_clock_offset=qemu_get_be64(f);
1147 return 0;
1150 #ifdef _WIN32
1151 void CALLBACK host_alarm_handler(UINT uTimerID, UINT uMsg,
1152 DWORD_PTR dwUser, DWORD_PTR dw1, DWORD_PTR dw2)
1153 #else
1154 static void host_alarm_handler(int host_signum)
1155 #endif
1157 #if 0
1158 #define DISP_FREQ 1000
1160 static int64_t delta_min = INT64_MAX;
1161 static int64_t delta_max, delta_cum, last_clock, delta, ti;
1162 static int count;
1163 ti = qemu_get_clock(vm_clock);
1164 if (last_clock != 0) {
1165 delta = ti - last_clock;
1166 if (delta < delta_min)
1167 delta_min = delta;
1168 if (delta > delta_max)
1169 delta_max = delta;
1170 delta_cum += delta;
1171 if (++count == DISP_FREQ) {
1172 printf("timer: min=%" PRId64 " us max=%" PRId64 " us avg=%" PRId64 " us avg_freq=%0.3f Hz\n",
1173 muldiv64(delta_min, 1000000, ticks_per_sec),
1174 muldiv64(delta_max, 1000000, ticks_per_sec),
1175 muldiv64(delta_cum, 1000000 / DISP_FREQ, ticks_per_sec),
1176 (double)ticks_per_sec / ((double)delta_cum / DISP_FREQ));
1177 count = 0;
1178 delta_min = INT64_MAX;
1179 delta_max = 0;
1180 delta_cum = 0;
1183 last_clock = ti;
1185 #endif
1186 if (alarm_has_dynticks(alarm_timer) ||
1187 qemu_timer_expired(active_timers[QEMU_TIMER_VIRTUAL],
1188 qemu_get_clock(vm_clock)) ||
1189 qemu_timer_expired(active_timers[QEMU_TIMER_REALTIME],
1190 qemu_get_clock(rt_clock))) {
1191 #ifdef _WIN32
1192 struct qemu_alarm_win32 *data = ((struct qemu_alarm_timer*)dwUser)->priv;
1193 SetEvent(data->host_alarm);
1194 #endif
1195 CPUState *env = next_cpu;
1197 alarm_timer->flags |= ALARM_FLAG_EXPIRED;
1199 if (env) {
1200 /* stop the currently executing cpu because a timer occured */
1201 cpu_interrupt(env, CPU_INTERRUPT_EXIT);
1202 #ifdef USE_KQEMU
1203 if (env->kqemu_enabled) {
1204 kqemu_cpu_interrupt(env);
1206 #endif
1208 event_pending = 1;
1212 static uint64_t qemu_next_deadline(void)
1214 int64_t nearest_delta_us = INT64_MAX;
1215 int64_t vmdelta_us;
1217 if (active_timers[QEMU_TIMER_REALTIME])
1218 nearest_delta_us = (active_timers[QEMU_TIMER_REALTIME]->expire_time -
1219 qemu_get_clock(rt_clock))*1000;
1221 if (active_timers[QEMU_TIMER_VIRTUAL]) {
1222 /* round up */
1223 vmdelta_us = (active_timers[QEMU_TIMER_VIRTUAL]->expire_time -
1224 qemu_get_clock(vm_clock)+999)/1000;
1225 if (vmdelta_us < nearest_delta_us)
1226 nearest_delta_us = vmdelta_us;
1229 /* Avoid arming the timer to negative, zero, or too low values */
1230 if (nearest_delta_us <= MIN_TIMER_REARM_US)
1231 nearest_delta_us = MIN_TIMER_REARM_US;
1233 return nearest_delta_us;
1236 #ifndef _WIN32
1238 #if defined(__linux__)
1240 #define RTC_FREQ 1024
1242 static void enable_sigio_timer(int fd)
1244 struct sigaction act;
1246 /* timer signal */
1247 sigfillset(&act.sa_mask);
1248 act.sa_flags = 0;
1249 act.sa_handler = host_alarm_handler;
1251 sigaction(SIGIO, &act, NULL);
1252 fcntl(fd, F_SETFL, O_ASYNC);
1253 fcntl(fd, F_SETOWN, getpid());
1256 static int hpet_start_timer(struct qemu_alarm_timer *t)
1258 struct hpet_info info;
1259 int r, fd;
1261 fd = open("/dev/hpet", O_RDONLY);
1262 if (fd < 0)
1263 return -1;
1265 /* Set frequency */
1266 r = ioctl(fd, HPET_IRQFREQ, RTC_FREQ);
1267 if (r < 0) {
1268 fprintf(stderr, "Could not configure '/dev/hpet' to have a 1024Hz timer. This is not a fatal\n"
1269 "error, but for better emulation accuracy type:\n"
1270 "'echo 1024 > /proc/sys/dev/hpet/max-user-freq' as root.\n");
1271 goto fail;
1274 /* Check capabilities */
1275 r = ioctl(fd, HPET_INFO, &info);
1276 if (r < 0)
1277 goto fail;
1279 /* Enable periodic mode */
1280 r = ioctl(fd, HPET_EPI, 0);
1281 if (info.hi_flags && (r < 0))
1282 goto fail;
1284 /* Enable interrupt */
1285 r = ioctl(fd, HPET_IE_ON, 0);
1286 if (r < 0)
1287 goto fail;
1289 enable_sigio_timer(fd);
1290 t->priv = (void *)(long)fd;
1292 return 0;
1293 fail:
1294 close(fd);
1295 return -1;
1298 static void hpet_stop_timer(struct qemu_alarm_timer *t)
1300 int fd = (long)t->priv;
1302 close(fd);
1305 static int rtc_start_timer(struct qemu_alarm_timer *t)
1307 int rtc_fd;
1308 unsigned long current_rtc_freq = 0;
1310 TFR(rtc_fd = open("/dev/rtc", O_RDONLY));
1311 if (rtc_fd < 0)
1312 return -1;
1313 ioctl(rtc_fd, RTC_IRQP_READ, &current_rtc_freq);
1314 if (current_rtc_freq != RTC_FREQ &&
1315 ioctl(rtc_fd, RTC_IRQP_SET, RTC_FREQ) < 0) {
1316 fprintf(stderr, "Could not configure '/dev/rtc' to have a 1024 Hz timer. This is not a fatal\n"
1317 "error, but for better emulation accuracy either use a 2.6 host Linux kernel or\n"
1318 "type 'echo 1024 > /proc/sys/dev/rtc/max-user-freq' as root.\n");
1319 goto fail;
1321 if (ioctl(rtc_fd, RTC_PIE_ON, 0) < 0) {
1322 fail:
1323 close(rtc_fd);
1324 return -1;
1327 enable_sigio_timer(rtc_fd);
1329 t->priv = (void *)(long)rtc_fd;
1331 return 0;
1334 static void rtc_stop_timer(struct qemu_alarm_timer *t)
1336 int rtc_fd = (long)t->priv;
1338 close(rtc_fd);
1341 static int dynticks_start_timer(struct qemu_alarm_timer *t)
1343 struct sigevent ev;
1344 timer_t host_timer;
1345 struct sigaction act;
1347 sigfillset(&act.sa_mask);
1348 act.sa_flags = 0;
1349 act.sa_handler = host_alarm_handler;
1351 sigaction(SIGALRM, &act, NULL);
1353 ev.sigev_value.sival_int = 0;
1354 ev.sigev_notify = SIGEV_SIGNAL;
1355 ev.sigev_signo = SIGALRM;
1357 if (timer_create(CLOCK_REALTIME, &ev, &host_timer)) {
1358 perror("timer_create");
1360 /* disable dynticks */
1361 fprintf(stderr, "Dynamic Ticks disabled\n");
1363 return -1;
1366 t->priv = (void *)host_timer;
1368 return 0;
1371 static void dynticks_stop_timer(struct qemu_alarm_timer *t)
1373 timer_t host_timer = (timer_t)t->priv;
1375 timer_delete(host_timer);
1378 static void dynticks_rearm_timer(struct qemu_alarm_timer *t)
1380 timer_t host_timer = (timer_t)t->priv;
1381 struct itimerspec timeout;
1382 int64_t nearest_delta_us = INT64_MAX;
1383 int64_t current_us;
1385 if (!active_timers[QEMU_TIMER_REALTIME] &&
1386 !active_timers[QEMU_TIMER_VIRTUAL])
1387 return;
1389 nearest_delta_us = qemu_next_deadline();
1391 /* check whether a timer is already running */
1392 if (timer_gettime(host_timer, &timeout)) {
1393 perror("gettime");
1394 fprintf(stderr, "Internal timer error: aborting\n");
1395 exit(1);
1397 current_us = timeout.it_value.tv_sec * 1000000 + timeout.it_value.tv_nsec/1000;
1398 if (current_us && current_us <= nearest_delta_us)
1399 return;
1401 timeout.it_interval.tv_sec = 0;
1402 timeout.it_interval.tv_nsec = 0; /* 0 for one-shot timer */
1403 timeout.it_value.tv_sec = nearest_delta_us / 1000000;
1404 timeout.it_value.tv_nsec = (nearest_delta_us % 1000000) * 1000;
1405 if (timer_settime(host_timer, 0 /* RELATIVE */, &timeout, NULL)) {
1406 perror("settime");
1407 fprintf(stderr, "Internal timer error: aborting\n");
1408 exit(1);
1412 #endif /* defined(__linux__) */
1414 static int unix_start_timer(struct qemu_alarm_timer *t)
1416 struct sigaction act;
1417 struct itimerval itv;
1418 int err;
1420 /* timer signal */
1421 sigfillset(&act.sa_mask);
1422 act.sa_flags = 0;
1423 act.sa_handler = host_alarm_handler;
1425 sigaction(SIGALRM, &act, NULL);
1427 itv.it_interval.tv_sec = 0;
1428 /* for i386 kernel 2.6 to get 1 ms */
1429 itv.it_interval.tv_usec = 999;
1430 itv.it_value.tv_sec = 0;
1431 itv.it_value.tv_usec = 10 * 1000;
1433 err = setitimer(ITIMER_REAL, &itv, NULL);
1434 if (err)
1435 return -1;
1437 return 0;
1440 static void unix_stop_timer(struct qemu_alarm_timer *t)
1442 struct itimerval itv;
1444 memset(&itv, 0, sizeof(itv));
1445 setitimer(ITIMER_REAL, &itv, NULL);
1448 #endif /* !defined(_WIN32) */
1450 #ifdef _WIN32
1452 static int win32_start_timer(struct qemu_alarm_timer *t)
1454 TIMECAPS tc;
1455 struct qemu_alarm_win32 *data = t->priv;
1456 UINT flags;
1458 data->host_alarm = CreateEvent(NULL, FALSE, FALSE, NULL);
1459 if (!data->host_alarm) {
1460 perror("Failed CreateEvent");
1461 return -1;
1464 memset(&tc, 0, sizeof(tc));
1465 timeGetDevCaps(&tc, sizeof(tc));
1467 if (data->period < tc.wPeriodMin)
1468 data->period = tc.wPeriodMin;
1470 timeBeginPeriod(data->period);
1472 flags = TIME_CALLBACK_FUNCTION;
1473 if (alarm_has_dynticks(t))
1474 flags |= TIME_ONESHOT;
1475 else
1476 flags |= TIME_PERIODIC;
1478 data->timerId = timeSetEvent(1, // interval (ms)
1479 data->period, // resolution
1480 host_alarm_handler, // function
1481 (DWORD)t, // parameter
1482 flags);
1484 if (!data->timerId) {
1485 perror("Failed to initialize win32 alarm timer");
1487 timeEndPeriod(data->period);
1488 CloseHandle(data->host_alarm);
1489 return -1;
1492 qemu_add_wait_object(data->host_alarm, NULL, NULL);
1494 return 0;
1497 static void win32_stop_timer(struct qemu_alarm_timer *t)
1499 struct qemu_alarm_win32 *data = t->priv;
1501 timeKillEvent(data->timerId);
1502 timeEndPeriod(data->period);
1504 CloseHandle(data->host_alarm);
1507 static void win32_rearm_timer(struct qemu_alarm_timer *t)
1509 struct qemu_alarm_win32 *data = t->priv;
1510 uint64_t nearest_delta_us;
1512 if (!active_timers[QEMU_TIMER_REALTIME] &&
1513 !active_timers[QEMU_TIMER_VIRTUAL])
1514 return;
1516 nearest_delta_us = qemu_next_deadline();
1517 nearest_delta_us /= 1000;
1519 timeKillEvent(data->timerId);
1521 data->timerId = timeSetEvent(1,
1522 data->period,
1523 host_alarm_handler,
1524 (DWORD)t,
1525 TIME_ONESHOT | TIME_PERIODIC);
1527 if (!data->timerId) {
1528 perror("Failed to re-arm win32 alarm timer");
1530 timeEndPeriod(data->period);
1531 CloseHandle(data->host_alarm);
1532 exit(1);
1536 #endif /* _WIN32 */
1538 static void init_timer_alarm(void)
1540 struct qemu_alarm_timer *t;
1541 int i, err = -1;
1543 for (i = 0; alarm_timers[i].name; i++) {
1544 t = &alarm_timers[i];
1546 err = t->start(t);
1547 if (!err)
1548 break;
1551 if (err) {
1552 fprintf(stderr, "Unable to find any suitable alarm timer.\n");
1553 fprintf(stderr, "Terminating\n");
1554 exit(1);
1557 alarm_timer = t;
1560 static void quit_timers(void)
1562 alarm_timer->stop(alarm_timer);
1563 alarm_timer = NULL;
1566 /***********************************************************/
1567 /* host time/date access */
1568 void qemu_get_timedate(struct tm *tm, int offset)
1570 time_t ti;
1571 struct tm *ret;
1573 time(&ti);
1574 ti += offset;
1575 if (rtc_date_offset == -1) {
1576 if (rtc_utc)
1577 ret = gmtime(&ti);
1578 else
1579 ret = localtime(&ti);
1580 } else {
1581 ti -= rtc_date_offset;
1582 ret = gmtime(&ti);
1585 memcpy(tm, ret, sizeof(struct tm));
1588 int qemu_timedate_diff(struct tm *tm)
1590 time_t seconds;
1592 if (rtc_date_offset == -1)
1593 if (rtc_utc)
1594 seconds = mktimegm(tm);
1595 else
1596 seconds = mktime(tm);
1597 else
1598 seconds = mktimegm(tm) + rtc_date_offset;
1600 return seconds - time(NULL);
1603 /***********************************************************/
1604 /* character device */
1606 static void qemu_chr_event(CharDriverState *s, int event)
1608 if (!s->chr_event)
1609 return;
1610 s->chr_event(s->handler_opaque, event);
1613 static void qemu_chr_reset_bh(void *opaque)
1615 CharDriverState *s = opaque;
1616 qemu_chr_event(s, CHR_EVENT_RESET);
1617 qemu_bh_delete(s->bh);
1618 s->bh = NULL;
1621 void qemu_chr_reset(CharDriverState *s)
1623 if (s->bh == NULL) {
1624 s->bh = qemu_bh_new(qemu_chr_reset_bh, s);
1625 qemu_bh_schedule(s->bh);
1629 int qemu_chr_write(CharDriverState *s, const uint8_t *buf, int len)
1631 return s->chr_write(s, buf, len);
1634 int qemu_chr_ioctl(CharDriverState *s, int cmd, void *arg)
1636 if (!s->chr_ioctl)
1637 return -ENOTSUP;
1638 return s->chr_ioctl(s, cmd, arg);
1641 int qemu_chr_can_read(CharDriverState *s)
1643 if (!s->chr_can_read)
1644 return 0;
1645 return s->chr_can_read(s->handler_opaque);
1648 void qemu_chr_read(CharDriverState *s, uint8_t *buf, int len)
1650 s->chr_read(s->handler_opaque, buf, len);
1653 void qemu_chr_accept_input(CharDriverState *s)
1655 if (s->chr_accept_input)
1656 s->chr_accept_input(s);
1659 void qemu_chr_printf(CharDriverState *s, const char *fmt, ...)
1661 char buf[4096];
1662 va_list ap;
1663 va_start(ap, fmt);
1664 vsnprintf(buf, sizeof(buf), fmt, ap);
1665 qemu_chr_write(s, (uint8_t *)buf, strlen(buf));
1666 va_end(ap);
1669 void qemu_chr_send_event(CharDriverState *s, int event)
1671 if (s->chr_send_event)
1672 s->chr_send_event(s, event);
1675 void qemu_chr_add_handlers(CharDriverState *s,
1676 IOCanRWHandler *fd_can_read,
1677 IOReadHandler *fd_read,
1678 IOEventHandler *fd_event,
1679 void *opaque)
1681 s->chr_can_read = fd_can_read;
1682 s->chr_read = fd_read;
1683 s->chr_event = fd_event;
1684 s->handler_opaque = opaque;
1685 if (s->chr_update_read_handler)
1686 s->chr_update_read_handler(s);
1689 static int null_chr_write(CharDriverState *chr, const uint8_t *buf, int len)
1691 return len;
1694 static CharDriverState *qemu_chr_open_null(void)
1696 CharDriverState *chr;
1698 chr = qemu_mallocz(sizeof(CharDriverState));
1699 if (!chr)
1700 return NULL;
1701 chr->chr_write = null_chr_write;
1702 return chr;
1705 /* MUX driver for serial I/O splitting */
1706 static int term_timestamps;
1707 static int64_t term_timestamps_start;
1708 #define MAX_MUX 4
1709 #define MUX_BUFFER_SIZE 32 /* Must be a power of 2. */
1710 #define MUX_BUFFER_MASK (MUX_BUFFER_SIZE - 1)
1711 typedef struct {
1712 IOCanRWHandler *chr_can_read[MAX_MUX];
1713 IOReadHandler *chr_read[MAX_MUX];
1714 IOEventHandler *chr_event[MAX_MUX];
1715 void *ext_opaque[MAX_MUX];
1716 CharDriverState *drv;
1717 unsigned char buffer[MUX_BUFFER_SIZE];
1718 int prod;
1719 int cons;
1720 int mux_cnt;
1721 int term_got_escape;
1722 int max_size;
1723 } MuxDriver;
1726 static int mux_chr_write(CharDriverState *chr, const uint8_t *buf, int len)
1728 MuxDriver *d = chr->opaque;
1729 int ret;
1730 if (!term_timestamps) {
1731 ret = d->drv->chr_write(d->drv, buf, len);
1732 } else {
1733 int i;
1735 ret = 0;
1736 for(i = 0; i < len; i++) {
1737 ret += d->drv->chr_write(d->drv, buf+i, 1);
1738 if (buf[i] == '\n') {
1739 char buf1[64];
1740 int64_t ti;
1741 int secs;
1743 ti = get_clock();
1744 if (term_timestamps_start == -1)
1745 term_timestamps_start = ti;
1746 ti -= term_timestamps_start;
1747 secs = ti / 1000000000;
1748 snprintf(buf1, sizeof(buf1),
1749 "[%02d:%02d:%02d.%03d] ",
1750 secs / 3600,
1751 (secs / 60) % 60,
1752 secs % 60,
1753 (int)((ti / 1000000) % 1000));
1754 d->drv->chr_write(d->drv, (uint8_t *)buf1, strlen(buf1));
1758 return ret;
1761 static char *mux_help[] = {
1762 "% h print this help\n\r",
1763 "% x exit emulator\n\r",
1764 "% s save disk data back to file (if -snapshot)\n\r",
1765 "% t toggle console timestamps\n\r"
1766 "% b send break (magic sysrq)\n\r",
1767 "% c switch between console and monitor\n\r",
1768 "% % sends %\n\r",
1769 NULL
1772 static int term_escape_char = 0x01; /* ctrl-a is used for escape */
1773 static void mux_print_help(CharDriverState *chr)
1775 int i, j;
1776 char ebuf[15] = "Escape-Char";
1777 char cbuf[50] = "\n\r";
1779 if (term_escape_char > 0 && term_escape_char < 26) {
1780 sprintf(cbuf,"\n\r");
1781 sprintf(ebuf,"C-%c", term_escape_char - 1 + 'a');
1782 } else {
1783 sprintf(cbuf,"\n\rEscape-Char set to Ascii: 0x%02x\n\r\n\r",
1784 term_escape_char);
1786 chr->chr_write(chr, (uint8_t *)cbuf, strlen(cbuf));
1787 for (i = 0; mux_help[i] != NULL; i++) {
1788 for (j=0; mux_help[i][j] != '\0'; j++) {
1789 if (mux_help[i][j] == '%')
1790 chr->chr_write(chr, (uint8_t *)ebuf, strlen(ebuf));
1791 else
1792 chr->chr_write(chr, (uint8_t *)&mux_help[i][j], 1);
1797 static int mux_proc_byte(CharDriverState *chr, MuxDriver *d, int ch)
1799 if (d->term_got_escape) {
1800 d->term_got_escape = 0;
1801 if (ch == term_escape_char)
1802 goto send_char;
1803 switch(ch) {
1804 case '?':
1805 case 'h':
1806 mux_print_help(chr);
1807 break;
1808 case 'x':
1810 char *term = "QEMU: Terminated\n\r";
1811 chr->chr_write(chr,(uint8_t *)term,strlen(term));
1812 exit(0);
1813 break;
1815 case 's':
1817 int i;
1818 for (i = 0; i < nb_drives; i++) {
1819 bdrv_commit(drives_table[i].bdrv);
1822 break;
1823 case 'b':
1824 qemu_chr_event(chr, CHR_EVENT_BREAK);
1825 break;
1826 case 'c':
1827 /* Switch to the next registered device */
1828 chr->focus++;
1829 if (chr->focus >= d->mux_cnt)
1830 chr->focus = 0;
1831 break;
1832 case 't':
1833 term_timestamps = !term_timestamps;
1834 term_timestamps_start = -1;
1835 break;
1837 } else if (ch == term_escape_char) {
1838 d->term_got_escape = 1;
1839 } else {
1840 send_char:
1841 return 1;
1843 return 0;
1846 static void mux_chr_accept_input(CharDriverState *chr)
1848 int m = chr->focus;
1849 MuxDriver *d = chr->opaque;
1851 while (d->prod != d->cons &&
1852 d->chr_can_read[m] &&
1853 d->chr_can_read[m](d->ext_opaque[m])) {
1854 d->chr_read[m](d->ext_opaque[m],
1855 &d->buffer[d->cons++ & MUX_BUFFER_MASK], 1);
1859 static int mux_chr_can_read(void *opaque)
1861 CharDriverState *chr = opaque;
1862 MuxDriver *d = chr->opaque;
1864 if ((d->prod - d->cons) < MUX_BUFFER_SIZE)
1865 return 1;
1866 if (d->chr_can_read[chr->focus])
1867 return d->chr_can_read[chr->focus](d->ext_opaque[chr->focus]);
1868 return 0;
1871 static void mux_chr_read(void *opaque, const uint8_t *buf, int size)
1873 CharDriverState *chr = opaque;
1874 MuxDriver *d = chr->opaque;
1875 int m = chr->focus;
1876 int i;
1878 mux_chr_accept_input (opaque);
1880 for(i = 0; i < size; i++)
1881 if (mux_proc_byte(chr, d, buf[i])) {
1882 if (d->prod == d->cons &&
1883 d->chr_can_read[m] &&
1884 d->chr_can_read[m](d->ext_opaque[m]))
1885 d->chr_read[m](d->ext_opaque[m], &buf[i], 1);
1886 else
1887 d->buffer[d->prod++ & MUX_BUFFER_MASK] = buf[i];
1891 static void mux_chr_event(void *opaque, int event)
1893 CharDriverState *chr = opaque;
1894 MuxDriver *d = chr->opaque;
1895 int i;
1897 /* Send the event to all registered listeners */
1898 for (i = 0; i < d->mux_cnt; i++)
1899 if (d->chr_event[i])
1900 d->chr_event[i](d->ext_opaque[i], event);
1903 static void mux_chr_update_read_handler(CharDriverState *chr)
1905 MuxDriver *d = chr->opaque;
1907 if (d->mux_cnt >= MAX_MUX) {
1908 fprintf(stderr, "Cannot add I/O handlers, MUX array is full\n");
1909 return;
1911 d->ext_opaque[d->mux_cnt] = chr->handler_opaque;
1912 d->chr_can_read[d->mux_cnt] = chr->chr_can_read;
1913 d->chr_read[d->mux_cnt] = chr->chr_read;
1914 d->chr_event[d->mux_cnt] = chr->chr_event;
1915 /* Fix up the real driver with mux routines */
1916 if (d->mux_cnt == 0) {
1917 qemu_chr_add_handlers(d->drv, mux_chr_can_read, mux_chr_read,
1918 mux_chr_event, chr);
1920 chr->focus = d->mux_cnt;
1921 d->mux_cnt++;
1924 static CharDriverState *qemu_chr_open_mux(CharDriverState *drv)
1926 CharDriverState *chr;
1927 MuxDriver *d;
1929 chr = qemu_mallocz(sizeof(CharDriverState));
1930 if (!chr)
1931 return NULL;
1932 d = qemu_mallocz(sizeof(MuxDriver));
1933 if (!d) {
1934 free(chr);
1935 return NULL;
1938 chr->opaque = d;
1939 d->drv = drv;
1940 chr->focus = -1;
1941 chr->chr_write = mux_chr_write;
1942 chr->chr_update_read_handler = mux_chr_update_read_handler;
1943 chr->chr_accept_input = mux_chr_accept_input;
1944 return chr;
1948 #ifdef _WIN32
1950 static void socket_cleanup(void)
1952 WSACleanup();
1955 static int socket_init(void)
1957 WSADATA Data;
1958 int ret, err;
1960 ret = WSAStartup(MAKEWORD(2,2), &Data);
1961 if (ret != 0) {
1962 err = WSAGetLastError();
1963 fprintf(stderr, "WSAStartup: %d\n", err);
1964 return -1;
1966 atexit(socket_cleanup);
1967 return 0;
1970 static int send_all(int fd, const uint8_t *buf, int len1)
1972 int ret, len;
1974 len = len1;
1975 while (len > 0) {
1976 ret = send(fd, buf, len, 0);
1977 if (ret < 0) {
1978 int errno;
1979 errno = WSAGetLastError();
1980 if (errno != WSAEWOULDBLOCK) {
1981 return -1;
1983 } else if (ret == 0) {
1984 break;
1985 } else {
1986 buf += ret;
1987 len -= ret;
1990 return len1 - len;
1993 void socket_set_nonblock(int fd)
1995 unsigned long opt = 1;
1996 ioctlsocket(fd, FIONBIO, &opt);
1999 #else
2001 static int unix_write(int fd, const uint8_t *buf, int len1)
2003 int ret, len;
2005 len = len1;
2006 while (len > 0) {
2007 ret = write(fd, buf, len);
2008 if (ret < 0) {
2009 if (errno != EINTR && errno != EAGAIN)
2010 return -1;
2011 } else if (ret == 0) {
2012 break;
2013 } else {
2014 buf += ret;
2015 len -= ret;
2018 return len1 - len;
2021 static inline int send_all(int fd, const uint8_t *buf, int len1)
2023 return unix_write(fd, buf, len1);
2026 void socket_set_nonblock(int fd)
2028 fcntl(fd, F_SETFL, O_NONBLOCK);
2030 #endif /* !_WIN32 */
2032 #ifndef _WIN32
2034 typedef struct {
2035 int fd_in, fd_out;
2036 int max_size;
2037 } FDCharDriver;
2039 #define STDIO_MAX_CLIENTS 1
2040 static int stdio_nb_clients = 0;
2042 static int fd_chr_write(CharDriverState *chr, const uint8_t *buf, int len)
2044 FDCharDriver *s = chr->opaque;
2045 return unix_write(s->fd_out, buf, len);
2048 static int fd_chr_read_poll(void *opaque)
2050 CharDriverState *chr = opaque;
2051 FDCharDriver *s = chr->opaque;
2053 s->max_size = qemu_chr_can_read(chr);
2054 return s->max_size;
2057 static void fd_chr_read(void *opaque)
2059 CharDriverState *chr = opaque;
2060 FDCharDriver *s = chr->opaque;
2061 int size, len;
2062 uint8_t buf[1024];
2064 len = sizeof(buf);
2065 if (len > s->max_size)
2066 len = s->max_size;
2067 if (len == 0)
2068 return;
2069 size = read(s->fd_in, buf, len);
2070 if (size == 0) {
2071 /* FD has been closed. Remove it from the active list. */
2072 qemu_set_fd_handler2(s->fd_in, NULL, NULL, NULL, NULL);
2073 return;
2075 if (size > 0) {
2076 qemu_chr_read(chr, buf, size);
2080 static void fd_chr_update_read_handler(CharDriverState *chr)
2082 FDCharDriver *s = chr->opaque;
2084 if (s->fd_in >= 0) {
2085 if (nographic && s->fd_in == 0) {
2086 } else {
2087 qemu_set_fd_handler2(s->fd_in, fd_chr_read_poll,
2088 fd_chr_read, NULL, chr);
2093 static void fd_chr_close(struct CharDriverState *chr)
2095 FDCharDriver *s = chr->opaque;
2097 if (s->fd_in >= 0) {
2098 if (nographic && s->fd_in == 0) {
2099 } else {
2100 qemu_set_fd_handler2(s->fd_in, NULL, NULL, NULL, NULL);
2104 qemu_free(s);
2107 /* open a character device to a unix fd */
2108 static CharDriverState *qemu_chr_open_fd(int fd_in, int fd_out)
2110 CharDriverState *chr;
2111 FDCharDriver *s;
2113 chr = qemu_mallocz(sizeof(CharDriverState));
2114 if (!chr)
2115 return NULL;
2116 s = qemu_mallocz(sizeof(FDCharDriver));
2117 if (!s) {
2118 free(chr);
2119 return NULL;
2121 s->fd_in = fd_in;
2122 s->fd_out = fd_out;
2123 chr->opaque = s;
2124 chr->chr_write = fd_chr_write;
2125 chr->chr_update_read_handler = fd_chr_update_read_handler;
2126 chr->chr_close = fd_chr_close;
2128 qemu_chr_reset(chr);
2130 return chr;
2133 static CharDriverState *qemu_chr_open_file_out(const char *file_out)
2135 int fd_out;
2137 TFR(fd_out = open(file_out, O_WRONLY | O_TRUNC | O_CREAT | O_BINARY, 0666));
2138 if (fd_out < 0)
2139 return NULL;
2140 return qemu_chr_open_fd(-1, fd_out);
2143 static CharDriverState *qemu_chr_open_pipe(const char *filename)
2145 int fd_in, fd_out;
2146 char filename_in[256], filename_out[256];
2148 snprintf(filename_in, 256, "%s.in", filename);
2149 snprintf(filename_out, 256, "%s.out", filename);
2150 TFR(fd_in = open(filename_in, O_RDWR | O_BINARY));
2151 TFR(fd_out = open(filename_out, O_RDWR | O_BINARY));
2152 if (fd_in < 0 || fd_out < 0) {
2153 if (fd_in >= 0)
2154 close(fd_in);
2155 if (fd_out >= 0)
2156 close(fd_out);
2157 TFR(fd_in = fd_out = open(filename, O_RDWR | O_BINARY));
2158 if (fd_in < 0)
2159 return NULL;
2161 return qemu_chr_open_fd(fd_in, fd_out);
2165 /* for STDIO, we handle the case where several clients use it
2166 (nographic mode) */
2168 #define TERM_FIFO_MAX_SIZE 1
2170 static uint8_t term_fifo[TERM_FIFO_MAX_SIZE];
2171 static int term_fifo_size;
2173 static int stdio_read_poll(void *opaque)
2175 CharDriverState *chr = opaque;
2177 /* try to flush the queue if needed */
2178 if (term_fifo_size != 0 && qemu_chr_can_read(chr) > 0) {
2179 qemu_chr_read(chr, term_fifo, 1);
2180 term_fifo_size = 0;
2182 /* see if we can absorb more chars */
2183 if (term_fifo_size == 0)
2184 return 1;
2185 else
2186 return 0;
2189 static void stdio_read(void *opaque)
2191 int size;
2192 uint8_t buf[1];
2193 CharDriverState *chr = opaque;
2195 size = read(0, buf, 1);
2196 if (size == 0) {
2197 /* stdin has been closed. Remove it from the active list. */
2198 qemu_set_fd_handler2(0, NULL, NULL, NULL, NULL);
2199 return;
2201 if (size > 0) {
2202 if (qemu_chr_can_read(chr) > 0) {
2203 qemu_chr_read(chr, buf, 1);
2204 } else if (term_fifo_size == 0) {
2205 term_fifo[term_fifo_size++] = buf[0];
2210 /* init terminal so that we can grab keys */
2211 static struct termios oldtty;
2212 static int old_fd0_flags;
2213 static int term_atexit_done;
2215 static void term_exit(void)
2217 tcsetattr (0, TCSANOW, &oldtty);
2218 fcntl(0, F_SETFL, old_fd0_flags);
2221 static void term_init(void)
2223 struct termios tty;
2225 tcgetattr (0, &tty);
2226 oldtty = tty;
2227 old_fd0_flags = fcntl(0, F_GETFL);
2229 tty.c_iflag &= ~(IGNBRK|BRKINT|PARMRK|ISTRIP
2230 |INLCR|IGNCR|ICRNL|IXON);
2231 tty.c_oflag |= OPOST;
2232 tty.c_lflag &= ~(ECHO|ECHONL|ICANON|IEXTEN);
2233 /* if graphical mode, we allow Ctrl-C handling */
2234 if (nographic)
2235 tty.c_lflag &= ~ISIG;
2236 tty.c_cflag &= ~(CSIZE|PARENB);
2237 tty.c_cflag |= CS8;
2238 tty.c_cc[VMIN] = 1;
2239 tty.c_cc[VTIME] = 0;
2241 tcsetattr (0, TCSANOW, &tty);
2243 if (!term_atexit_done++)
2244 atexit(term_exit);
2246 fcntl(0, F_SETFL, O_NONBLOCK);
2249 static void qemu_chr_close_stdio(struct CharDriverState *chr)
2251 term_exit();
2252 stdio_nb_clients--;
2253 qemu_set_fd_handler2(0, NULL, NULL, NULL, NULL);
2254 fd_chr_close(chr);
2257 static CharDriverState *qemu_chr_open_stdio(void)
2259 CharDriverState *chr;
2261 if (stdio_nb_clients >= STDIO_MAX_CLIENTS)
2262 return NULL;
2263 chr = qemu_chr_open_fd(0, 1);
2264 chr->chr_close = qemu_chr_close_stdio;
2265 qemu_set_fd_handler2(0, stdio_read_poll, stdio_read, NULL, chr);
2266 stdio_nb_clients++;
2267 term_init();
2269 return chr;
2272 #if defined(__linux__) || defined(__sun__)
2273 static CharDriverState *qemu_chr_open_pty(void)
2275 struct termios tty;
2276 char slave_name[1024];
2277 int master_fd, slave_fd;
2279 #if defined(__linux__)
2280 /* Not satisfying */
2281 if (openpty(&master_fd, &slave_fd, slave_name, NULL, NULL) < 0) {
2282 return NULL;
2284 #endif
2286 /* Disabling local echo and line-buffered output */
2287 tcgetattr (master_fd, &tty);
2288 tty.c_lflag &= ~(ECHO|ICANON|ISIG);
2289 tty.c_cc[VMIN] = 1;
2290 tty.c_cc[VTIME] = 0;
2291 tcsetattr (master_fd, TCSAFLUSH, &tty);
2293 fprintf(stderr, "char device redirected to %s\n", slave_name);
2294 return qemu_chr_open_fd(master_fd, master_fd);
2297 static void tty_serial_init(int fd, int speed,
2298 int parity, int data_bits, int stop_bits)
2300 struct termios tty;
2301 speed_t spd;
2303 #if 0
2304 printf("tty_serial_init: speed=%d parity=%c data=%d stop=%d\n",
2305 speed, parity, data_bits, stop_bits);
2306 #endif
2307 tcgetattr (fd, &tty);
2309 #define MARGIN 1.1
2310 if (speed <= 50 * MARGIN)
2311 spd = B50;
2312 else if (speed <= 75 * MARGIN)
2313 spd = B75;
2314 else if (speed <= 300 * MARGIN)
2315 spd = B300;
2316 else if (speed <= 600 * MARGIN)
2317 spd = B600;
2318 else if (speed <= 1200 * MARGIN)
2319 spd = B1200;
2320 else if (speed <= 2400 * MARGIN)
2321 spd = B2400;
2322 else if (speed <= 4800 * MARGIN)
2323 spd = B4800;
2324 else if (speed <= 9600 * MARGIN)
2325 spd = B9600;
2326 else if (speed <= 19200 * MARGIN)
2327 spd = B19200;
2328 else if (speed <= 38400 * MARGIN)
2329 spd = B38400;
2330 else if (speed <= 57600 * MARGIN)
2331 spd = B57600;
2332 else if (speed <= 115200 * MARGIN)
2333 spd = B115200;
2334 else
2335 spd = B115200;
2337 cfsetispeed(&tty, spd);
2338 cfsetospeed(&tty, spd);
2340 tty.c_iflag &= ~(IGNBRK|BRKINT|PARMRK|ISTRIP
2341 |INLCR|IGNCR|ICRNL|IXON);
2342 tty.c_oflag |= OPOST;
2343 tty.c_lflag &= ~(ECHO|ECHONL|ICANON|IEXTEN|ISIG);
2344 tty.c_cflag &= ~(CSIZE|PARENB|PARODD|CRTSCTS|CSTOPB);
2345 switch(data_bits) {
2346 default:
2347 case 8:
2348 tty.c_cflag |= CS8;
2349 break;
2350 case 7:
2351 tty.c_cflag |= CS7;
2352 break;
2353 case 6:
2354 tty.c_cflag |= CS6;
2355 break;
2356 case 5:
2357 tty.c_cflag |= CS5;
2358 break;
2360 switch(parity) {
2361 default:
2362 case 'N':
2363 break;
2364 case 'E':
2365 tty.c_cflag |= PARENB;
2366 break;
2367 case 'O':
2368 tty.c_cflag |= PARENB | PARODD;
2369 break;
2371 if (stop_bits == 2)
2372 tty.c_cflag |= CSTOPB;
2374 tcsetattr (fd, TCSANOW, &tty);
2377 static int tty_serial_ioctl(CharDriverState *chr, int cmd, void *arg)
2379 FDCharDriver *s = chr->opaque;
2381 switch(cmd) {
2382 case CHR_IOCTL_SERIAL_SET_PARAMS:
2384 QEMUSerialSetParams *ssp = arg;
2385 tty_serial_init(s->fd_in, ssp->speed, ssp->parity,
2386 ssp->data_bits, ssp->stop_bits);
2388 break;
2389 case CHR_IOCTL_SERIAL_SET_BREAK:
2391 int enable = *(int *)arg;
2392 if (enable)
2393 tcsendbreak(s->fd_in, 1);
2395 break;
2396 default:
2397 return -ENOTSUP;
2399 return 0;
2402 static CharDriverState *qemu_chr_open_tty(const char *filename)
2404 CharDriverState *chr;
2405 int fd;
2407 TFR(fd = open(filename, O_RDWR | O_NONBLOCK));
2408 fcntl(fd, F_SETFL, O_NONBLOCK);
2409 tty_serial_init(fd, 115200, 'N', 8, 1);
2410 chr = qemu_chr_open_fd(fd, fd);
2411 if (!chr) {
2412 close(fd);
2413 return NULL;
2415 chr->chr_ioctl = tty_serial_ioctl;
2416 qemu_chr_reset(chr);
2417 return chr;
2419 #else /* ! __linux__ && ! __sun__ */
2420 static CharDriverState *qemu_chr_open_pty(void)
2422 return NULL;
2424 #endif /* __linux__ || __sun__ */
2426 #if defined(__linux__)
2427 typedef struct {
2428 int fd;
2429 int mode;
2430 } ParallelCharDriver;
2432 static int pp_hw_mode(ParallelCharDriver *s, uint16_t mode)
2434 if (s->mode != mode) {
2435 int m = mode;
2436 if (ioctl(s->fd, PPSETMODE, &m) < 0)
2437 return 0;
2438 s->mode = mode;
2440 return 1;
2443 static int pp_ioctl(CharDriverState *chr, int cmd, void *arg)
2445 ParallelCharDriver *drv = chr->opaque;
2446 int fd = drv->fd;
2447 uint8_t b;
2449 switch(cmd) {
2450 case CHR_IOCTL_PP_READ_DATA:
2451 if (ioctl(fd, PPRDATA, &b) < 0)
2452 return -ENOTSUP;
2453 *(uint8_t *)arg = b;
2454 break;
2455 case CHR_IOCTL_PP_WRITE_DATA:
2456 b = *(uint8_t *)arg;
2457 if (ioctl(fd, PPWDATA, &b) < 0)
2458 return -ENOTSUP;
2459 break;
2460 case CHR_IOCTL_PP_READ_CONTROL:
2461 if (ioctl(fd, PPRCONTROL, &b) < 0)
2462 return -ENOTSUP;
2463 /* Linux gives only the lowest bits, and no way to know data
2464 direction! For better compatibility set the fixed upper
2465 bits. */
2466 *(uint8_t *)arg = b | 0xc0;
2467 break;
2468 case CHR_IOCTL_PP_WRITE_CONTROL:
2469 b = *(uint8_t *)arg;
2470 if (ioctl(fd, PPWCONTROL, &b) < 0)
2471 return -ENOTSUP;
2472 break;
2473 case CHR_IOCTL_PP_READ_STATUS:
2474 if (ioctl(fd, PPRSTATUS, &b) < 0)
2475 return -ENOTSUP;
2476 *(uint8_t *)arg = b;
2477 break;
2478 case CHR_IOCTL_PP_EPP_READ_ADDR:
2479 if (pp_hw_mode(drv, IEEE1284_MODE_EPP|IEEE1284_ADDR)) {
2480 struct ParallelIOArg *parg = arg;
2481 int n = read(fd, parg->buffer, parg->count);
2482 if (n != parg->count) {
2483 return -EIO;
2486 break;
2487 case CHR_IOCTL_PP_EPP_READ:
2488 if (pp_hw_mode(drv, IEEE1284_MODE_EPP)) {
2489 struct ParallelIOArg *parg = arg;
2490 int n = read(fd, parg->buffer, parg->count);
2491 if (n != parg->count) {
2492 return -EIO;
2495 break;
2496 case CHR_IOCTL_PP_EPP_WRITE_ADDR:
2497 if (pp_hw_mode(drv, IEEE1284_MODE_EPP|IEEE1284_ADDR)) {
2498 struct ParallelIOArg *parg = arg;
2499 int n = write(fd, parg->buffer, parg->count);
2500 if (n != parg->count) {
2501 return -EIO;
2504 break;
2505 case CHR_IOCTL_PP_EPP_WRITE:
2506 if (pp_hw_mode(drv, IEEE1284_MODE_EPP)) {
2507 struct ParallelIOArg *parg = arg;
2508 int n = write(fd, parg->buffer, parg->count);
2509 if (n != parg->count) {
2510 return -EIO;
2513 break;
2514 default:
2515 return -ENOTSUP;
2517 return 0;
2520 static void pp_close(CharDriverState *chr)
2522 ParallelCharDriver *drv = chr->opaque;
2523 int fd = drv->fd;
2525 pp_hw_mode(drv, IEEE1284_MODE_COMPAT);
2526 ioctl(fd, PPRELEASE);
2527 close(fd);
2528 qemu_free(drv);
2531 static CharDriverState *qemu_chr_open_pp(const char *filename)
2533 CharDriverState *chr;
2534 ParallelCharDriver *drv;
2535 int fd;
2537 TFR(fd = open(filename, O_RDWR));
2538 if (fd < 0)
2539 return NULL;
2541 if (ioctl(fd, PPCLAIM) < 0) {
2542 close(fd);
2543 return NULL;
2546 drv = qemu_mallocz(sizeof(ParallelCharDriver));
2547 if (!drv) {
2548 close(fd);
2549 return NULL;
2551 drv->fd = fd;
2552 drv->mode = IEEE1284_MODE_COMPAT;
2554 chr = qemu_mallocz(sizeof(CharDriverState));
2555 if (!chr) {
2556 qemu_free(drv);
2557 close(fd);
2558 return NULL;
2560 chr->chr_write = null_chr_write;
2561 chr->chr_ioctl = pp_ioctl;
2562 chr->chr_close = pp_close;
2563 chr->opaque = drv;
2565 qemu_chr_reset(chr);
2567 return chr;
2569 #endif /* __linux__ */
2571 #else /* _WIN32 */
2573 typedef struct {
2574 int max_size;
2575 HANDLE hcom, hrecv, hsend;
2576 OVERLAPPED orecv, osend;
2577 BOOL fpipe;
2578 DWORD len;
2579 } WinCharState;
2581 #define NSENDBUF 2048
2582 #define NRECVBUF 2048
2583 #define MAXCONNECT 1
2584 #define NTIMEOUT 5000
2586 static int win_chr_poll(void *opaque);
2587 static int win_chr_pipe_poll(void *opaque);
2589 static void win_chr_close(CharDriverState *chr)
2591 WinCharState *s = chr->opaque;
2593 if (s->hsend) {
2594 CloseHandle(s->hsend);
2595 s->hsend = NULL;
2597 if (s->hrecv) {
2598 CloseHandle(s->hrecv);
2599 s->hrecv = NULL;
2601 if (s->hcom) {
2602 CloseHandle(s->hcom);
2603 s->hcom = NULL;
2605 if (s->fpipe)
2606 qemu_del_polling_cb(win_chr_pipe_poll, chr);
2607 else
2608 qemu_del_polling_cb(win_chr_poll, chr);
2611 static int win_chr_init(CharDriverState *chr, const char *filename)
2613 WinCharState *s = chr->opaque;
2614 COMMCONFIG comcfg;
2615 COMMTIMEOUTS cto = { 0, 0, 0, 0, 0};
2616 COMSTAT comstat;
2617 DWORD size;
2618 DWORD err;
2620 s->hsend = CreateEvent(NULL, TRUE, FALSE, NULL);
2621 if (!s->hsend) {
2622 fprintf(stderr, "Failed CreateEvent\n");
2623 goto fail;
2625 s->hrecv = CreateEvent(NULL, TRUE, FALSE, NULL);
2626 if (!s->hrecv) {
2627 fprintf(stderr, "Failed CreateEvent\n");
2628 goto fail;
2631 s->hcom = CreateFile(filename, GENERIC_READ|GENERIC_WRITE, 0, NULL,
2632 OPEN_EXISTING, FILE_FLAG_OVERLAPPED, 0);
2633 if (s->hcom == INVALID_HANDLE_VALUE) {
2634 fprintf(stderr, "Failed CreateFile (%lu)\n", GetLastError());
2635 s->hcom = NULL;
2636 goto fail;
2639 if (!SetupComm(s->hcom, NRECVBUF, NSENDBUF)) {
2640 fprintf(stderr, "Failed SetupComm\n");
2641 goto fail;
2644 ZeroMemory(&comcfg, sizeof(COMMCONFIG));
2645 size = sizeof(COMMCONFIG);
2646 GetDefaultCommConfig(filename, &comcfg, &size);
2647 comcfg.dcb.DCBlength = sizeof(DCB);
2648 CommConfigDialog(filename, NULL, &comcfg);
2650 if (!SetCommState(s->hcom, &comcfg.dcb)) {
2651 fprintf(stderr, "Failed SetCommState\n");
2652 goto fail;
2655 if (!SetCommMask(s->hcom, EV_ERR)) {
2656 fprintf(stderr, "Failed SetCommMask\n");
2657 goto fail;
2660 cto.ReadIntervalTimeout = MAXDWORD;
2661 if (!SetCommTimeouts(s->hcom, &cto)) {
2662 fprintf(stderr, "Failed SetCommTimeouts\n");
2663 goto fail;
2666 if (!ClearCommError(s->hcom, &err, &comstat)) {
2667 fprintf(stderr, "Failed ClearCommError\n");
2668 goto fail;
2670 qemu_add_polling_cb(win_chr_poll, chr);
2671 return 0;
2673 fail:
2674 win_chr_close(chr);
2675 return -1;
2678 static int win_chr_write(CharDriverState *chr, const uint8_t *buf, int len1)
2680 WinCharState *s = chr->opaque;
2681 DWORD len, ret, size, err;
2683 len = len1;
2684 ZeroMemory(&s->osend, sizeof(s->osend));
2685 s->osend.hEvent = s->hsend;
2686 while (len > 0) {
2687 if (s->hsend)
2688 ret = WriteFile(s->hcom, buf, len, &size, &s->osend);
2689 else
2690 ret = WriteFile(s->hcom, buf, len, &size, NULL);
2691 if (!ret) {
2692 err = GetLastError();
2693 if (err == ERROR_IO_PENDING) {
2694 ret = GetOverlappedResult(s->hcom, &s->osend, &size, TRUE);
2695 if (ret) {
2696 buf += size;
2697 len -= size;
2698 } else {
2699 break;
2701 } else {
2702 break;
2704 } else {
2705 buf += size;
2706 len -= size;
2709 return len1 - len;
2712 static int win_chr_read_poll(CharDriverState *chr)
2714 WinCharState *s = chr->opaque;
2716 s->max_size = qemu_chr_can_read(chr);
2717 return s->max_size;
2720 static void win_chr_readfile(CharDriverState *chr)
2722 WinCharState *s = chr->opaque;
2723 int ret, err;
2724 uint8_t buf[1024];
2725 DWORD size;
2727 ZeroMemory(&s->orecv, sizeof(s->orecv));
2728 s->orecv.hEvent = s->hrecv;
2729 ret = ReadFile(s->hcom, buf, s->len, &size, &s->orecv);
2730 if (!ret) {
2731 err = GetLastError();
2732 if (err == ERROR_IO_PENDING) {
2733 ret = GetOverlappedResult(s->hcom, &s->orecv, &size, TRUE);
2737 if (size > 0) {
2738 qemu_chr_read(chr, buf, size);
2742 static void win_chr_read(CharDriverState *chr)
2744 WinCharState *s = chr->opaque;
2746 if (s->len > s->max_size)
2747 s->len = s->max_size;
2748 if (s->len == 0)
2749 return;
2751 win_chr_readfile(chr);
2754 static int win_chr_poll(void *opaque)
2756 CharDriverState *chr = opaque;
2757 WinCharState *s = chr->opaque;
2758 COMSTAT status;
2759 DWORD comerr;
2761 ClearCommError(s->hcom, &comerr, &status);
2762 if (status.cbInQue > 0) {
2763 s->len = status.cbInQue;
2764 win_chr_read_poll(chr);
2765 win_chr_read(chr);
2766 return 1;
2768 return 0;
2771 static CharDriverState *qemu_chr_open_win(const char *filename)
2773 CharDriverState *chr;
2774 WinCharState *s;
2776 chr = qemu_mallocz(sizeof(CharDriverState));
2777 if (!chr)
2778 return NULL;
2779 s = qemu_mallocz(sizeof(WinCharState));
2780 if (!s) {
2781 free(chr);
2782 return NULL;
2784 chr->opaque = s;
2785 chr->chr_write = win_chr_write;
2786 chr->chr_close = win_chr_close;
2788 if (win_chr_init(chr, filename) < 0) {
2789 free(s);
2790 free(chr);
2791 return NULL;
2793 qemu_chr_reset(chr);
2794 return chr;
2797 static int win_chr_pipe_poll(void *opaque)
2799 CharDriverState *chr = opaque;
2800 WinCharState *s = chr->opaque;
2801 DWORD size;
2803 PeekNamedPipe(s->hcom, NULL, 0, NULL, &size, NULL);
2804 if (size > 0) {
2805 s->len = size;
2806 win_chr_read_poll(chr);
2807 win_chr_read(chr);
2808 return 1;
2810 return 0;
2813 static int win_chr_pipe_init(CharDriverState *chr, const char *filename)
2815 WinCharState *s = chr->opaque;
2816 OVERLAPPED ov;
2817 int ret;
2818 DWORD size;
2819 char openname[256];
2821 s->fpipe = TRUE;
2823 s->hsend = CreateEvent(NULL, TRUE, FALSE, NULL);
2824 if (!s->hsend) {
2825 fprintf(stderr, "Failed CreateEvent\n");
2826 goto fail;
2828 s->hrecv = CreateEvent(NULL, TRUE, FALSE, NULL);
2829 if (!s->hrecv) {
2830 fprintf(stderr, "Failed CreateEvent\n");
2831 goto fail;
2834 snprintf(openname, sizeof(openname), "\\\\.\\pipe\\%s", filename);
2835 s->hcom = CreateNamedPipe(openname, PIPE_ACCESS_DUPLEX | FILE_FLAG_OVERLAPPED,
2836 PIPE_TYPE_BYTE | PIPE_READMODE_BYTE |
2837 PIPE_WAIT,
2838 MAXCONNECT, NSENDBUF, NRECVBUF, NTIMEOUT, NULL);
2839 if (s->hcom == INVALID_HANDLE_VALUE) {
2840 fprintf(stderr, "Failed CreateNamedPipe (%lu)\n", GetLastError());
2841 s->hcom = NULL;
2842 goto fail;
2845 ZeroMemory(&ov, sizeof(ov));
2846 ov.hEvent = CreateEvent(NULL, TRUE, FALSE, NULL);
2847 ret = ConnectNamedPipe(s->hcom, &ov);
2848 if (ret) {
2849 fprintf(stderr, "Failed ConnectNamedPipe\n");
2850 goto fail;
2853 ret = GetOverlappedResult(s->hcom, &ov, &size, TRUE);
2854 if (!ret) {
2855 fprintf(stderr, "Failed GetOverlappedResult\n");
2856 if (ov.hEvent) {
2857 CloseHandle(ov.hEvent);
2858 ov.hEvent = NULL;
2860 goto fail;
2863 if (ov.hEvent) {
2864 CloseHandle(ov.hEvent);
2865 ov.hEvent = NULL;
2867 qemu_add_polling_cb(win_chr_pipe_poll, chr);
2868 return 0;
2870 fail:
2871 win_chr_close(chr);
2872 return -1;
2876 static CharDriverState *qemu_chr_open_win_pipe(const char *filename)
2878 CharDriverState *chr;
2879 WinCharState *s;
2881 chr = qemu_mallocz(sizeof(CharDriverState));
2882 if (!chr)
2883 return NULL;
2884 s = qemu_mallocz(sizeof(WinCharState));
2885 if (!s) {
2886 free(chr);
2887 return NULL;
2889 chr->opaque = s;
2890 chr->chr_write = win_chr_write;
2891 chr->chr_close = win_chr_close;
2893 if (win_chr_pipe_init(chr, filename) < 0) {
2894 free(s);
2895 free(chr);
2896 return NULL;
2898 qemu_chr_reset(chr);
2899 return chr;
2902 static CharDriverState *qemu_chr_open_win_file(HANDLE fd_out)
2904 CharDriverState *chr;
2905 WinCharState *s;
2907 chr = qemu_mallocz(sizeof(CharDriverState));
2908 if (!chr)
2909 return NULL;
2910 s = qemu_mallocz(sizeof(WinCharState));
2911 if (!s) {
2912 free(chr);
2913 return NULL;
2915 s->hcom = fd_out;
2916 chr->opaque = s;
2917 chr->chr_write = win_chr_write;
2918 qemu_chr_reset(chr);
2919 return chr;
2922 static CharDriverState *qemu_chr_open_win_con(const char *filename)
2924 return qemu_chr_open_win_file(GetStdHandle(STD_OUTPUT_HANDLE));
2927 static CharDriverState *qemu_chr_open_win_file_out(const char *file_out)
2929 HANDLE fd_out;
2931 fd_out = CreateFile(file_out, GENERIC_WRITE, FILE_SHARE_READ, NULL,
2932 OPEN_ALWAYS, FILE_ATTRIBUTE_NORMAL, NULL);
2933 if (fd_out == INVALID_HANDLE_VALUE)
2934 return NULL;
2936 return qemu_chr_open_win_file(fd_out);
2938 #endif /* !_WIN32 */
2940 /***********************************************************/
2941 /* UDP Net console */
2943 typedef struct {
2944 int fd;
2945 struct sockaddr_in daddr;
2946 uint8_t buf[1024];
2947 int bufcnt;
2948 int bufptr;
2949 int max_size;
2950 } NetCharDriver;
2952 static int udp_chr_write(CharDriverState *chr, const uint8_t *buf, int len)
2954 NetCharDriver *s = chr->opaque;
2956 return sendto(s->fd, buf, len, 0,
2957 (struct sockaddr *)&s->daddr, sizeof(struct sockaddr_in));
2960 static int udp_chr_read_poll(void *opaque)
2962 CharDriverState *chr = opaque;
2963 NetCharDriver *s = chr->opaque;
2965 s->max_size = qemu_chr_can_read(chr);
2967 /* If there were any stray characters in the queue process them
2968 * first
2970 while (s->max_size > 0 && s->bufptr < s->bufcnt) {
2971 qemu_chr_read(chr, &s->buf[s->bufptr], 1);
2972 s->bufptr++;
2973 s->max_size = qemu_chr_can_read(chr);
2975 return s->max_size;
2978 static void udp_chr_read(void *opaque)
2980 CharDriverState *chr = opaque;
2981 NetCharDriver *s = chr->opaque;
2983 if (s->max_size == 0)
2984 return;
2985 s->bufcnt = recv(s->fd, s->buf, sizeof(s->buf), 0);
2986 s->bufptr = s->bufcnt;
2987 if (s->bufcnt <= 0)
2988 return;
2990 s->bufptr = 0;
2991 while (s->max_size > 0 && s->bufptr < s->bufcnt) {
2992 qemu_chr_read(chr, &s->buf[s->bufptr], 1);
2993 s->bufptr++;
2994 s->max_size = qemu_chr_can_read(chr);
2998 static void udp_chr_update_read_handler(CharDriverState *chr)
3000 NetCharDriver *s = chr->opaque;
3002 if (s->fd >= 0) {
3003 qemu_set_fd_handler2(s->fd, udp_chr_read_poll,
3004 udp_chr_read, NULL, chr);
3008 int parse_host_port(struct sockaddr_in *saddr, const char *str);
3009 #ifndef _WIN32
3010 static int parse_unix_path(struct sockaddr_un *uaddr, const char *str);
3011 #endif
3012 int parse_host_src_port(struct sockaddr_in *haddr,
3013 struct sockaddr_in *saddr,
3014 const char *str);
3016 static CharDriverState *qemu_chr_open_udp(const char *def)
3018 CharDriverState *chr = NULL;
3019 NetCharDriver *s = NULL;
3020 int fd = -1;
3021 struct sockaddr_in saddr;
3023 chr = qemu_mallocz(sizeof(CharDriverState));
3024 if (!chr)
3025 goto return_err;
3026 s = qemu_mallocz(sizeof(NetCharDriver));
3027 if (!s)
3028 goto return_err;
3030 fd = socket(PF_INET, SOCK_DGRAM, 0);
3031 if (fd < 0) {
3032 perror("socket(PF_INET, SOCK_DGRAM)");
3033 goto return_err;
3036 if (parse_host_src_port(&s->daddr, &saddr, def) < 0) {
3037 printf("Could not parse: %s\n", def);
3038 goto return_err;
3041 if (bind(fd, (struct sockaddr *)&saddr, sizeof(saddr)) < 0)
3043 perror("bind");
3044 goto return_err;
3047 s->fd = fd;
3048 s->bufcnt = 0;
3049 s->bufptr = 0;
3050 chr->opaque = s;
3051 chr->chr_write = udp_chr_write;
3052 chr->chr_update_read_handler = udp_chr_update_read_handler;
3053 return chr;
3055 return_err:
3056 if (chr)
3057 free(chr);
3058 if (s)
3059 free(s);
3060 if (fd >= 0)
3061 closesocket(fd);
3062 return NULL;
3065 /***********************************************************/
3066 /* TCP Net console */
3068 typedef struct {
3069 int fd, listen_fd;
3070 int connected;
3071 int max_size;
3072 int do_telnetopt;
3073 int do_nodelay;
3074 int is_unix;
3075 } TCPCharDriver;
3077 static void tcp_chr_accept(void *opaque);
3079 static int tcp_chr_write(CharDriverState *chr, const uint8_t *buf, int len)
3081 TCPCharDriver *s = chr->opaque;
3082 if (s->connected) {
3083 return send_all(s->fd, buf, len);
3084 } else {
3085 /* XXX: indicate an error ? */
3086 return len;
3090 static int tcp_chr_read_poll(void *opaque)
3092 CharDriverState *chr = opaque;
3093 TCPCharDriver *s = chr->opaque;
3094 if (!s->connected)
3095 return 0;
3096 s->max_size = qemu_chr_can_read(chr);
3097 return s->max_size;
3100 #define IAC 255
3101 #define IAC_BREAK 243
3102 static void tcp_chr_process_IAC_bytes(CharDriverState *chr,
3103 TCPCharDriver *s,
3104 uint8_t *buf, int *size)
3106 /* Handle any telnet client's basic IAC options to satisfy char by
3107 * char mode with no echo. All IAC options will be removed from
3108 * the buf and the do_telnetopt variable will be used to track the
3109 * state of the width of the IAC information.
3111 * IAC commands come in sets of 3 bytes with the exception of the
3112 * "IAC BREAK" command and the double IAC.
3115 int i;
3116 int j = 0;
3118 for (i = 0; i < *size; i++) {
3119 if (s->do_telnetopt > 1) {
3120 if ((unsigned char)buf[i] == IAC && s->do_telnetopt == 2) {
3121 /* Double IAC means send an IAC */
3122 if (j != i)
3123 buf[j] = buf[i];
3124 j++;
3125 s->do_telnetopt = 1;
3126 } else {
3127 if ((unsigned char)buf[i] == IAC_BREAK && s->do_telnetopt == 2) {
3128 /* Handle IAC break commands by sending a serial break */
3129 qemu_chr_event(chr, CHR_EVENT_BREAK);
3130 s->do_telnetopt++;
3132 s->do_telnetopt++;
3134 if (s->do_telnetopt >= 4) {
3135 s->do_telnetopt = 1;
3137 } else {
3138 if ((unsigned char)buf[i] == IAC) {
3139 s->do_telnetopt = 2;
3140 } else {
3141 if (j != i)
3142 buf[j] = buf[i];
3143 j++;
3147 *size = j;
3150 static void tcp_chr_read(void *opaque)
3152 CharDriverState *chr = opaque;
3153 TCPCharDriver *s = chr->opaque;
3154 uint8_t buf[1024];
3155 int len, size;
3157 if (!s->connected || s->max_size <= 0)
3158 return;
3159 len = sizeof(buf);
3160 if (len > s->max_size)
3161 len = s->max_size;
3162 size = recv(s->fd, buf, len, 0);
3163 if (size == 0) {
3164 /* connection closed */
3165 s->connected = 0;
3166 if (s->listen_fd >= 0) {
3167 qemu_set_fd_handler(s->listen_fd, tcp_chr_accept, NULL, chr);
3169 qemu_set_fd_handler(s->fd, NULL, NULL, NULL);
3170 closesocket(s->fd);
3171 s->fd = -1;
3172 } else if (size > 0) {
3173 if (s->do_telnetopt)
3174 tcp_chr_process_IAC_bytes(chr, s, buf, &size);
3175 if (size > 0)
3176 qemu_chr_read(chr, buf, size);
3180 static void tcp_chr_connect(void *opaque)
3182 CharDriverState *chr = opaque;
3183 TCPCharDriver *s = chr->opaque;
3185 s->connected = 1;
3186 qemu_set_fd_handler2(s->fd, tcp_chr_read_poll,
3187 tcp_chr_read, NULL, chr);
3188 qemu_chr_reset(chr);
3191 #define IACSET(x,a,b,c) x[0] = a; x[1] = b; x[2] = c;
3192 static void tcp_chr_telnet_init(int fd)
3194 char buf[3];
3195 /* Send the telnet negotion to put telnet in binary, no echo, single char mode */
3196 IACSET(buf, 0xff, 0xfb, 0x01); /* IAC WILL ECHO */
3197 send(fd, (char *)buf, 3, 0);
3198 IACSET(buf, 0xff, 0xfb, 0x03); /* IAC WILL Suppress go ahead */
3199 send(fd, (char *)buf, 3, 0);
3200 IACSET(buf, 0xff, 0xfb, 0x00); /* IAC WILL Binary */
3201 send(fd, (char *)buf, 3, 0);
3202 IACSET(buf, 0xff, 0xfd, 0x00); /* IAC DO Binary */
3203 send(fd, (char *)buf, 3, 0);
3206 static void socket_set_nodelay(int fd)
3208 int val = 1;
3209 setsockopt(fd, IPPROTO_TCP, TCP_NODELAY, (char *)&val, sizeof(val));
3212 static void tcp_chr_accept(void *opaque)
3214 CharDriverState *chr = opaque;
3215 TCPCharDriver *s = chr->opaque;
3216 struct sockaddr_in saddr;
3217 #ifndef _WIN32
3218 struct sockaddr_un uaddr;
3219 #endif
3220 struct sockaddr *addr;
3221 socklen_t len;
3222 int fd;
3224 for(;;) {
3225 #ifndef _WIN32
3226 if (s->is_unix) {
3227 len = sizeof(uaddr);
3228 addr = (struct sockaddr *)&uaddr;
3229 } else
3230 #endif
3232 len = sizeof(saddr);
3233 addr = (struct sockaddr *)&saddr;
3235 fd = accept(s->listen_fd, addr, &len);
3236 if (fd < 0 && errno != EINTR) {
3237 return;
3238 } else if (fd >= 0) {
3239 if (s->do_telnetopt)
3240 tcp_chr_telnet_init(fd);
3241 break;
3244 socket_set_nonblock(fd);
3245 if (s->do_nodelay)
3246 socket_set_nodelay(fd);
3247 s->fd = fd;
3248 qemu_set_fd_handler(s->listen_fd, NULL, NULL, NULL);
3249 tcp_chr_connect(chr);
3252 static void tcp_chr_close(CharDriverState *chr)
3254 TCPCharDriver *s = chr->opaque;
3255 if (s->fd >= 0)
3256 closesocket(s->fd);
3257 if (s->listen_fd >= 0)
3258 closesocket(s->listen_fd);
3259 qemu_free(s);
3262 static CharDriverState *qemu_chr_open_tcp(const char *host_str,
3263 int is_telnet,
3264 int is_unix)
3266 CharDriverState *chr = NULL;
3267 TCPCharDriver *s = NULL;
3268 int fd = -1, ret, err, val;
3269 int is_listen = 0;
3270 int is_waitconnect = 1;
3271 int do_nodelay = 0;
3272 const char *ptr;
3273 struct sockaddr_in saddr;
3274 #ifndef _WIN32
3275 struct sockaddr_un uaddr;
3276 #endif
3277 struct sockaddr *addr;
3278 socklen_t addrlen;
3280 #ifndef _WIN32
3281 if (is_unix) {
3282 addr = (struct sockaddr *)&uaddr;
3283 addrlen = sizeof(uaddr);
3284 if (parse_unix_path(&uaddr, host_str) < 0)
3285 goto fail;
3286 } else
3287 #endif
3289 addr = (struct sockaddr *)&saddr;
3290 addrlen = sizeof(saddr);
3291 if (parse_host_port(&saddr, host_str) < 0)
3292 goto fail;
3295 ptr = host_str;
3296 while((ptr = strchr(ptr,','))) {
3297 ptr++;
3298 if (!strncmp(ptr,"server",6)) {
3299 is_listen = 1;
3300 } else if (!strncmp(ptr,"nowait",6)) {
3301 is_waitconnect = 0;
3302 } else if (!strncmp(ptr,"nodelay",6)) {
3303 do_nodelay = 1;
3304 } else {
3305 printf("Unknown option: %s\n", ptr);
3306 goto fail;
3309 if (!is_listen)
3310 is_waitconnect = 0;
3312 chr = qemu_mallocz(sizeof(CharDriverState));
3313 if (!chr)
3314 goto fail;
3315 s = qemu_mallocz(sizeof(TCPCharDriver));
3316 if (!s)
3317 goto fail;
3319 #ifndef _WIN32
3320 if (is_unix)
3321 fd = socket(PF_UNIX, SOCK_STREAM, 0);
3322 else
3323 #endif
3324 fd = socket(PF_INET, SOCK_STREAM, 0);
3326 if (fd < 0)
3327 goto fail;
3329 if (!is_waitconnect)
3330 socket_set_nonblock(fd);
3332 s->connected = 0;
3333 s->fd = -1;
3334 s->listen_fd = -1;
3335 s->is_unix = is_unix;
3336 s->do_nodelay = do_nodelay && !is_unix;
3338 chr->opaque = s;
3339 chr->chr_write = tcp_chr_write;
3340 chr->chr_close = tcp_chr_close;
3342 if (is_listen) {
3343 /* allow fast reuse */
3344 #ifndef _WIN32
3345 if (is_unix) {
3346 char path[109];
3347 strncpy(path, uaddr.sun_path, 108);
3348 path[108] = 0;
3349 unlink(path);
3350 } else
3351 #endif
3353 val = 1;
3354 setsockopt(fd, SOL_SOCKET, SO_REUSEADDR, (const char *)&val, sizeof(val));
3357 ret = bind(fd, addr, addrlen);
3358 if (ret < 0)
3359 goto fail;
3361 ret = listen(fd, 0);
3362 if (ret < 0)
3363 goto fail;
3365 s->listen_fd = fd;
3366 qemu_set_fd_handler(s->listen_fd, tcp_chr_accept, NULL, chr);
3367 if (is_telnet)
3368 s->do_telnetopt = 1;
3369 } else {
3370 for(;;) {
3371 ret = connect(fd, addr, addrlen);
3372 if (ret < 0) {
3373 err = socket_error();
3374 if (err == EINTR || err == EWOULDBLOCK) {
3375 } else if (err == EINPROGRESS) {
3376 break;
3377 #ifdef _WIN32
3378 } else if (err == WSAEALREADY) {
3379 break;
3380 #endif
3381 } else {
3382 goto fail;
3384 } else {
3385 s->connected = 1;
3386 break;
3389 s->fd = fd;
3390 socket_set_nodelay(fd);
3391 if (s->connected)
3392 tcp_chr_connect(chr);
3393 else
3394 qemu_set_fd_handler(s->fd, NULL, tcp_chr_connect, chr);
3397 if (is_listen && is_waitconnect) {
3398 printf("QEMU waiting for connection on: %s\n", host_str);
3399 tcp_chr_accept(chr);
3400 socket_set_nonblock(s->listen_fd);
3403 return chr;
3404 fail:
3405 if (fd >= 0)
3406 closesocket(fd);
3407 qemu_free(s);
3408 qemu_free(chr);
3409 return NULL;
3412 CharDriverState *qemu_chr_open(const char *filename)
3414 const char *p;
3416 if (!strcmp(filename, "vc")) {
3417 return text_console_init(&display_state, 0);
3418 } else if (strstart(filename, "vc:", &p)) {
3419 return text_console_init(&display_state, p);
3420 } else if (!strcmp(filename, "null")) {
3421 return qemu_chr_open_null();
3422 } else
3423 if (strstart(filename, "tcp:", &p)) {
3424 return qemu_chr_open_tcp(p, 0, 0);
3425 } else
3426 if (strstart(filename, "telnet:", &p)) {
3427 return qemu_chr_open_tcp(p, 1, 0);
3428 } else
3429 if (strstart(filename, "udp:", &p)) {
3430 return qemu_chr_open_udp(p);
3431 } else
3432 if (strstart(filename, "mon:", &p)) {
3433 CharDriverState *drv = qemu_chr_open(p);
3434 if (drv) {
3435 drv = qemu_chr_open_mux(drv);
3436 monitor_init(drv, !nographic);
3437 return drv;
3439 printf("Unable to open driver: %s\n", p);
3440 return 0;
3441 } else
3442 #ifndef _WIN32
3443 if (strstart(filename, "unix:", &p)) {
3444 return qemu_chr_open_tcp(p, 0, 1);
3445 } else if (strstart(filename, "file:", &p)) {
3446 return qemu_chr_open_file_out(p);
3447 } else if (strstart(filename, "pipe:", &p)) {
3448 return qemu_chr_open_pipe(p);
3449 } else if (!strcmp(filename, "pty")) {
3450 return qemu_chr_open_pty();
3451 } else if (!strcmp(filename, "stdio")) {
3452 return qemu_chr_open_stdio();
3453 } else
3454 #if defined(__linux__)
3455 if (strstart(filename, "/dev/parport", NULL)) {
3456 return qemu_chr_open_pp(filename);
3457 } else
3458 #endif
3459 #if defined(__linux__) || defined(__sun__)
3460 if (strstart(filename, "/dev/", NULL)) {
3461 return qemu_chr_open_tty(filename);
3462 } else
3463 #endif
3464 #else /* !_WIN32 */
3465 if (strstart(filename, "COM", NULL)) {
3466 return qemu_chr_open_win(filename);
3467 } else
3468 if (strstart(filename, "pipe:", &p)) {
3469 return qemu_chr_open_win_pipe(p);
3470 } else
3471 if (strstart(filename, "con:", NULL)) {
3472 return qemu_chr_open_win_con(filename);
3473 } else
3474 if (strstart(filename, "file:", &p)) {
3475 return qemu_chr_open_win_file_out(p);
3476 } else
3477 #endif
3478 #ifdef CONFIG_BRLAPI
3479 if (!strcmp(filename, "braille")) {
3480 return chr_baum_init();
3481 } else
3482 #endif
3484 return NULL;
3488 void qemu_chr_close(CharDriverState *chr)
3490 if (chr->chr_close)
3491 chr->chr_close(chr);
3492 qemu_free(chr);
3495 /***********************************************************/
3496 /* network device redirectors */
3498 __attribute__ (( unused ))
3499 static void hex_dump(FILE *f, const uint8_t *buf, int size)
3501 int len, i, j, c;
3503 for(i=0;i<size;i+=16) {
3504 len = size - i;
3505 if (len > 16)
3506 len = 16;
3507 fprintf(f, "%08x ", i);
3508 for(j=0;j<16;j++) {
3509 if (j < len)
3510 fprintf(f, " %02x", buf[i+j]);
3511 else
3512 fprintf(f, " ");
3514 fprintf(f, " ");
3515 for(j=0;j<len;j++) {
3516 c = buf[i+j];
3517 if (c < ' ' || c > '~')
3518 c = '.';
3519 fprintf(f, "%c", c);
3521 fprintf(f, "\n");
3525 static int parse_macaddr(uint8_t *macaddr, const char *p)
3527 int i;
3528 char *last_char;
3529 long int offset;
3531 errno = 0;
3532 offset = strtol(p, &last_char, 0);
3533 if (0 == errno && '\0' == *last_char &&
3534 offset >= 0 && offset <= 0xFFFFFF) {
3535 macaddr[3] = (offset & 0xFF0000) >> 16;
3536 macaddr[4] = (offset & 0xFF00) >> 8;
3537 macaddr[5] = offset & 0xFF;
3538 return 0;
3539 } else {
3540 for(i = 0; i < 6; i++) {
3541 macaddr[i] = strtol(p, (char **)&p, 16);
3542 if (i == 5) {
3543 if (*p != '\0')
3544 return -1;
3545 } else {
3546 if (*p != ':' && *p != '-')
3547 return -1;
3548 p++;
3551 return 0;
3554 return -1;
3557 static int get_str_sep(char *buf, int buf_size, const char **pp, int sep)
3559 const char *p, *p1;
3560 int len;
3561 p = *pp;
3562 p1 = strchr(p, sep);
3563 if (!p1)
3564 return -1;
3565 len = p1 - p;
3566 p1++;
3567 if (buf_size > 0) {
3568 if (len > buf_size - 1)
3569 len = buf_size - 1;
3570 memcpy(buf, p, len);
3571 buf[len] = '\0';
3573 *pp = p1;
3574 return 0;
3577 int parse_host_src_port(struct sockaddr_in *haddr,
3578 struct sockaddr_in *saddr,
3579 const char *input_str)
3581 char *str = strdup(input_str);
3582 char *host_str = str;
3583 char *src_str;
3584 char *ptr;
3587 * Chop off any extra arguments at the end of the string which
3588 * would start with a comma, then fill in the src port information
3589 * if it was provided else use the "any address" and "any port".
3591 if ((ptr = strchr(str,',')))
3592 *ptr = '\0';
3594 if ((src_str = strchr(input_str,'@'))) {
3595 *src_str = '\0';
3596 src_str++;
3599 if (parse_host_port(haddr, host_str) < 0)
3600 goto fail;
3602 if (!src_str || *src_str == '\0')
3603 src_str = ":0";
3605 if (parse_host_port(saddr, src_str) < 0)
3606 goto fail;
3608 free(str);
3609 return(0);
3611 fail:
3612 free(str);
3613 return -1;
3616 int parse_host_port(struct sockaddr_in *saddr, const char *str)
3618 char buf[512];
3619 struct hostent *he;
3620 const char *p, *r;
3621 int port;
3623 p = str;
3624 if (get_str_sep(buf, sizeof(buf), &p, ':') < 0)
3625 return -1;
3626 saddr->sin_family = AF_INET;
3627 if (buf[0] == '\0') {
3628 saddr->sin_addr.s_addr = 0;
3629 } else {
3630 if (isdigit(buf[0])) {
3631 if (!inet_aton(buf, &saddr->sin_addr))
3632 return -1;
3633 } else {
3634 if ((he = gethostbyname(buf)) == NULL)
3635 return - 1;
3636 saddr->sin_addr = *(struct in_addr *)he->h_addr;
3639 port = strtol(p, (char **)&r, 0);
3640 if (r == p)
3641 return -1;
3642 saddr->sin_port = htons(port);
3643 return 0;
3646 #ifndef _WIN32
3647 static int parse_unix_path(struct sockaddr_un *uaddr, const char *str)
3649 const char *p;
3650 int len;
3652 len = MIN(108, strlen(str));
3653 p = strchr(str, ',');
3654 if (p)
3655 len = MIN(len, p - str);
3657 memset(uaddr, 0, sizeof(*uaddr));
3659 uaddr->sun_family = AF_UNIX;
3660 memcpy(uaddr->sun_path, str, len);
3662 return 0;
3664 #endif
3666 /* find or alloc a new VLAN */
3667 VLANState *qemu_find_vlan(int id)
3669 VLANState **pvlan, *vlan;
3670 for(vlan = first_vlan; vlan != NULL; vlan = vlan->next) {
3671 if (vlan->id == id)
3672 return vlan;
3674 vlan = qemu_mallocz(sizeof(VLANState));
3675 if (!vlan)
3676 return NULL;
3677 vlan->id = id;
3678 vlan->next = NULL;
3679 pvlan = &first_vlan;
3680 while (*pvlan != NULL)
3681 pvlan = &(*pvlan)->next;
3682 *pvlan = vlan;
3683 return vlan;
3686 VLANClientState *qemu_new_vlan_client(VLANState *vlan,
3687 IOReadHandler *fd_read,
3688 IOCanRWHandler *fd_can_read,
3689 void *opaque)
3691 VLANClientState *vc, **pvc;
3692 vc = qemu_mallocz(sizeof(VLANClientState));
3693 if (!vc)
3694 return NULL;
3695 vc->fd_read = fd_read;
3696 vc->fd_can_read = fd_can_read;
3697 vc->opaque = opaque;
3698 vc->vlan = vlan;
3700 vc->next = NULL;
3701 pvc = &vlan->first_client;
3702 while (*pvc != NULL)
3703 pvc = &(*pvc)->next;
3704 *pvc = vc;
3705 return vc;
3708 int qemu_can_send_packet(VLANClientState *vc1)
3710 VLANState *vlan = vc1->vlan;
3711 VLANClientState *vc;
3713 for(vc = vlan->first_client; vc != NULL; vc = vc->next) {
3714 if (vc != vc1) {
3715 if (vc->fd_can_read && vc->fd_can_read(vc->opaque))
3716 return 1;
3719 return 0;
3722 void qemu_send_packet(VLANClientState *vc1, const uint8_t *buf, int size)
3724 VLANState *vlan = vc1->vlan;
3725 VLANClientState *vc;
3727 #if 0
3728 printf("vlan %d send:\n", vlan->id);
3729 hex_dump(stdout, buf, size);
3730 #endif
3731 for(vc = vlan->first_client; vc != NULL; vc = vc->next) {
3732 if (vc != vc1) {
3733 vc->fd_read(vc->opaque, buf, size);
3738 #if defined(CONFIG_SLIRP)
3740 /* slirp network adapter */
3742 static int slirp_inited;
3743 static VLANClientState *slirp_vc;
3745 int slirp_can_output(void)
3747 return !slirp_vc || qemu_can_send_packet(slirp_vc);
3750 void slirp_output(const uint8_t *pkt, int pkt_len)
3752 #if 0
3753 printf("slirp output:\n");
3754 hex_dump(stdout, pkt, pkt_len);
3755 #endif
3756 if (!slirp_vc)
3757 return;
3758 qemu_send_packet(slirp_vc, pkt, pkt_len);
3761 static void slirp_receive(void *opaque, const uint8_t *buf, int size)
3763 #if 0
3764 printf("slirp input:\n");
3765 hex_dump(stdout, buf, size);
3766 #endif
3767 slirp_input(buf, size);
3770 static int net_slirp_init(VLANState *vlan)
3772 if (!slirp_inited) {
3773 slirp_inited = 1;
3774 slirp_init();
3776 slirp_vc = qemu_new_vlan_client(vlan,
3777 slirp_receive, NULL, NULL);
3778 snprintf(slirp_vc->info_str, sizeof(slirp_vc->info_str), "user redirector");
3779 return 0;
3782 static void net_slirp_redir(const char *redir_str)
3784 int is_udp;
3785 char buf[256], *r;
3786 const char *p;
3787 struct in_addr guest_addr;
3788 int host_port, guest_port;
3790 if (!slirp_inited) {
3791 slirp_inited = 1;
3792 slirp_init();
3795 p = redir_str;
3796 if (get_str_sep(buf, sizeof(buf), &p, ':') < 0)
3797 goto fail;
3798 if (!strcmp(buf, "tcp")) {
3799 is_udp = 0;
3800 } else if (!strcmp(buf, "udp")) {
3801 is_udp = 1;
3802 } else {
3803 goto fail;
3806 if (get_str_sep(buf, sizeof(buf), &p, ':') < 0)
3807 goto fail;
3808 host_port = strtol(buf, &r, 0);
3809 if (r == buf)
3810 goto fail;
3812 if (get_str_sep(buf, sizeof(buf), &p, ':') < 0)
3813 goto fail;
3814 if (buf[0] == '\0') {
3815 pstrcpy(buf, sizeof(buf), "10.0.2.15");
3817 if (!inet_aton(buf, &guest_addr))
3818 goto fail;
3820 guest_port = strtol(p, &r, 0);
3821 if (r == p)
3822 goto fail;
3824 if (slirp_redir(is_udp, host_port, guest_addr, guest_port) < 0) {
3825 fprintf(stderr, "qemu: could not set up redirection\n");
3826 exit(1);
3828 return;
3829 fail:
3830 fprintf(stderr, "qemu: syntax: -redir [tcp|udp]:host-port:[guest-host]:guest-port\n");
3831 exit(1);
3834 #ifndef _WIN32
3836 char smb_dir[1024];
3838 static void erase_dir(char *dir_name)
3840 DIR *d;
3841 struct dirent *de;
3842 char filename[1024];
3844 /* erase all the files in the directory */
3845 if ((d = opendir(dir_name)) != 0) {
3846 for(;;) {
3847 de = readdir(d);
3848 if (!de)
3849 break;
3850 if (strcmp(de->d_name, ".") != 0 &&
3851 strcmp(de->d_name, "..") != 0) {
3852 snprintf(filename, sizeof(filename), "%s/%s",
3853 smb_dir, de->d_name);
3854 if (unlink(filename) != 0) /* is it a directory? */
3855 erase_dir(filename);
3858 closedir(d);
3859 rmdir(dir_name);
3863 /* automatic user mode samba server configuration */
3864 static void smb_exit(void)
3866 erase_dir(smb_dir);
3869 /* automatic user mode samba server configuration */
3870 static void net_slirp_smb(const char *exported_dir)
3872 char smb_conf[1024];
3873 char smb_cmdline[1024];
3874 FILE *f;
3876 if (!slirp_inited) {
3877 slirp_inited = 1;
3878 slirp_init();
3881 /* XXX: better tmp dir construction */
3882 snprintf(smb_dir, sizeof(smb_dir), "/tmp/qemu-smb.%d", getpid());
3883 if (mkdir(smb_dir, 0700) < 0) {
3884 fprintf(stderr, "qemu: could not create samba server dir '%s'\n", smb_dir);
3885 exit(1);
3887 snprintf(smb_conf, sizeof(smb_conf), "%s/%s", smb_dir, "smb.conf");
3889 f = fopen(smb_conf, "w");
3890 if (!f) {
3891 fprintf(stderr, "qemu: could not create samba server configuration file '%s'\n", smb_conf);
3892 exit(1);
3894 fprintf(f,
3895 "[global]\n"
3896 "private dir=%s\n"
3897 "smb ports=0\n"
3898 "socket address=127.0.0.1\n"
3899 "pid directory=%s\n"
3900 "lock directory=%s\n"
3901 "log file=%s/log.smbd\n"
3902 "smb passwd file=%s/smbpasswd\n"
3903 "security = share\n"
3904 "[qemu]\n"
3905 "path=%s\n"
3906 "read only=no\n"
3907 "guest ok=yes\n",
3908 smb_dir,
3909 smb_dir,
3910 smb_dir,
3911 smb_dir,
3912 smb_dir,
3913 exported_dir
3915 fclose(f);
3916 atexit(smb_exit);
3918 snprintf(smb_cmdline, sizeof(smb_cmdline), "%s -s %s",
3919 SMBD_COMMAND, smb_conf);
3921 slirp_add_exec(0, smb_cmdline, 4, 139);
3924 #endif /* !defined(_WIN32) */
3925 void do_info_slirp(void)
3927 slirp_stats();
3930 #endif /* CONFIG_SLIRP */
3932 #if !defined(_WIN32)
3934 typedef struct TAPState {
3935 VLANClientState *vc;
3936 int fd;
3937 char down_script[1024];
3938 } TAPState;
3940 static void tap_receive(void *opaque, const uint8_t *buf, int size)
3942 TAPState *s = opaque;
3943 int ret;
3944 for(;;) {
3945 ret = write(s->fd, buf, size);
3946 if (ret < 0 && (errno == EINTR || errno == EAGAIN)) {
3947 } else {
3948 break;
3953 static void tap_send(void *opaque)
3955 TAPState *s = opaque;
3956 uint8_t buf[4096];
3957 int size;
3959 #ifdef __sun__
3960 struct strbuf sbuf;
3961 int f = 0;
3962 sbuf.maxlen = sizeof(buf);
3963 sbuf.buf = buf;
3964 size = getmsg(s->fd, NULL, &sbuf, &f) >=0 ? sbuf.len : -1;
3965 #else
3966 size = read(s->fd, buf, sizeof(buf));
3967 #endif
3968 if (size > 0) {
3969 qemu_send_packet(s->vc, buf, size);
3973 /* fd support */
3975 static TAPState *net_tap_fd_init(VLANState *vlan, int fd)
3977 TAPState *s;
3979 s = qemu_mallocz(sizeof(TAPState));
3980 if (!s)
3981 return NULL;
3982 s->fd = fd;
3983 s->vc = qemu_new_vlan_client(vlan, tap_receive, NULL, s);
3984 qemu_set_fd_handler(s->fd, tap_send, NULL, s);
3985 snprintf(s->vc->info_str, sizeof(s->vc->info_str), "tap: fd=%d", fd);
3986 return s;
3989 #if defined (_BSD) || defined (__FreeBSD_kernel__)
3990 static int tap_open(char *ifname, int ifname_size)
3992 int fd;
3993 char *dev;
3994 struct stat s;
3996 TFR(fd = open("/dev/tap", O_RDWR));
3997 if (fd < 0) {
3998 fprintf(stderr, "warning: could not open /dev/tap: no virtual network emulation\n");
3999 return -1;
4002 fstat(fd, &s);
4003 dev = devname(s.st_rdev, S_IFCHR);
4004 pstrcpy(ifname, ifname_size, dev);
4006 fcntl(fd, F_SETFL, O_NONBLOCK);
4007 return fd;
4009 #elif defined(__sun__)
4010 #define TUNNEWPPA (('T'<<16) | 0x0001)
4012 * Allocate TAP device, returns opened fd.
4013 * Stores dev name in the first arg(must be large enough).
4015 int tap_alloc(char *dev)
4017 int tap_fd, if_fd, ppa = -1;
4018 static int ip_fd = 0;
4019 char *ptr;
4021 static int arp_fd = 0;
4022 int ip_muxid, arp_muxid;
4023 struct strioctl strioc_if, strioc_ppa;
4024 int link_type = I_PLINK;;
4025 struct lifreq ifr;
4026 char actual_name[32] = "";
4028 memset(&ifr, 0x0, sizeof(ifr));
4030 if( *dev ){
4031 ptr = dev;
4032 while( *ptr && !isdigit((int)*ptr) ) ptr++;
4033 ppa = atoi(ptr);
4036 /* Check if IP device was opened */
4037 if( ip_fd )
4038 close(ip_fd);
4040 TFR(ip_fd = open("/dev/udp", O_RDWR, 0));
4041 if (ip_fd < 0) {
4042 syslog(LOG_ERR, "Can't open /dev/ip (actually /dev/udp)");
4043 return -1;
4046 TFR(tap_fd = open("/dev/tap", O_RDWR, 0));
4047 if (tap_fd < 0) {
4048 syslog(LOG_ERR, "Can't open /dev/tap");
4049 return -1;
4052 /* Assign a new PPA and get its unit number. */
4053 strioc_ppa.ic_cmd = TUNNEWPPA;
4054 strioc_ppa.ic_timout = 0;
4055 strioc_ppa.ic_len = sizeof(ppa);
4056 strioc_ppa.ic_dp = (char *)&ppa;
4057 if ((ppa = ioctl (tap_fd, I_STR, &strioc_ppa)) < 0)
4058 syslog (LOG_ERR, "Can't assign new interface");
4060 TFR(if_fd = open("/dev/tap", O_RDWR, 0));
4061 if (if_fd < 0) {
4062 syslog(LOG_ERR, "Can't open /dev/tap (2)");
4063 return -1;
4065 if(ioctl(if_fd, I_PUSH, "ip") < 0){
4066 syslog(LOG_ERR, "Can't push IP module");
4067 return -1;
4070 if (ioctl(if_fd, SIOCGLIFFLAGS, &ifr) < 0)
4071 syslog(LOG_ERR, "Can't get flags\n");
4073 snprintf (actual_name, 32, "tap%d", ppa);
4074 strncpy (ifr.lifr_name, actual_name, sizeof (ifr.lifr_name));
4076 ifr.lifr_ppa = ppa;
4077 /* Assign ppa according to the unit number returned by tun device */
4079 if (ioctl (if_fd, SIOCSLIFNAME, &ifr) < 0)
4080 syslog (LOG_ERR, "Can't set PPA %d", ppa);
4081 if (ioctl(if_fd, SIOCGLIFFLAGS, &ifr) <0)
4082 syslog (LOG_ERR, "Can't get flags\n");
4083 /* Push arp module to if_fd */
4084 if (ioctl (if_fd, I_PUSH, "arp") < 0)
4085 syslog (LOG_ERR, "Can't push ARP module (2)");
4087 /* Push arp module to ip_fd */
4088 if (ioctl (ip_fd, I_POP, NULL) < 0)
4089 syslog (LOG_ERR, "I_POP failed\n");
4090 if (ioctl (ip_fd, I_PUSH, "arp") < 0)
4091 syslog (LOG_ERR, "Can't push ARP module (3)\n");
4092 /* Open arp_fd */
4093 TFR(arp_fd = open ("/dev/tap", O_RDWR, 0));
4094 if (arp_fd < 0)
4095 syslog (LOG_ERR, "Can't open %s\n", "/dev/tap");
4097 /* Set ifname to arp */
4098 strioc_if.ic_cmd = SIOCSLIFNAME;
4099 strioc_if.ic_timout = 0;
4100 strioc_if.ic_len = sizeof(ifr);
4101 strioc_if.ic_dp = (char *)&ifr;
4102 if (ioctl(arp_fd, I_STR, &strioc_if) < 0){
4103 syslog (LOG_ERR, "Can't set ifname to arp\n");
4106 if((ip_muxid = ioctl(ip_fd, I_LINK, if_fd)) < 0){
4107 syslog(LOG_ERR, "Can't link TAP device to IP");
4108 return -1;
4111 if ((arp_muxid = ioctl (ip_fd, link_type, arp_fd)) < 0)
4112 syslog (LOG_ERR, "Can't link TAP device to ARP");
4114 close (if_fd);
4116 memset(&ifr, 0x0, sizeof(ifr));
4117 strncpy (ifr.lifr_name, actual_name, sizeof (ifr.lifr_name));
4118 ifr.lifr_ip_muxid = ip_muxid;
4119 ifr.lifr_arp_muxid = arp_muxid;
4121 if (ioctl (ip_fd, SIOCSLIFMUXID, &ifr) < 0)
4123 ioctl (ip_fd, I_PUNLINK , arp_muxid);
4124 ioctl (ip_fd, I_PUNLINK, ip_muxid);
4125 syslog (LOG_ERR, "Can't set multiplexor id");
4128 sprintf(dev, "tap%d", ppa);
4129 return tap_fd;
4132 static int tap_open(char *ifname, int ifname_size)
4134 char dev[10]="";
4135 int fd;
4136 if( (fd = tap_alloc(dev)) < 0 ){
4137 fprintf(stderr, "Cannot allocate TAP device\n");
4138 return -1;
4140 pstrcpy(ifname, ifname_size, dev);
4141 fcntl(fd, F_SETFL, O_NONBLOCK);
4142 return fd;
4144 #else
4145 static int tap_open(char *ifname, int ifname_size)
4147 struct ifreq ifr;
4148 int fd, ret;
4150 TFR(fd = open("/dev/net/tun", O_RDWR));
4151 if (fd < 0) {
4152 fprintf(stderr, "warning: could not open /dev/net/tun: no virtual network emulation\n");
4153 return -1;
4155 memset(&ifr, 0, sizeof(ifr));
4156 ifr.ifr_flags = IFF_TAP | IFF_NO_PI;
4157 if (ifname[0] != '\0')
4158 pstrcpy(ifr.ifr_name, IFNAMSIZ, ifname);
4159 else
4160 pstrcpy(ifr.ifr_name, IFNAMSIZ, "tap%d");
4161 ret = ioctl(fd, TUNSETIFF, (void *) &ifr);
4162 if (ret != 0) {
4163 fprintf(stderr, "warning: could not configure /dev/net/tun: no virtual network emulation\n");
4164 close(fd);
4165 return -1;
4167 pstrcpy(ifname, ifname_size, ifr.ifr_name);
4168 fcntl(fd, F_SETFL, O_NONBLOCK);
4169 return fd;
4171 #endif
4173 static int launch_script(const char *setup_script, const char *ifname, int fd)
4175 int pid, status;
4176 char *args[3];
4177 char **parg;
4179 /* try to launch network script */
4180 pid = fork();
4181 if (pid >= 0) {
4182 if (pid == 0) {
4183 int open_max = sysconf (_SC_OPEN_MAX), i;
4184 for (i = 0; i < open_max; i++)
4185 if (i != STDIN_FILENO &&
4186 i != STDOUT_FILENO &&
4187 i != STDERR_FILENO &&
4188 i != fd)
4189 close(i);
4191 parg = args;
4192 *parg++ = (char *)setup_script;
4193 *parg++ = (char *)ifname;
4194 *parg++ = NULL;
4195 execv(setup_script, args);
4196 _exit(1);
4198 while (waitpid(pid, &status, 0) != pid);
4199 if (!WIFEXITED(status) ||
4200 WEXITSTATUS(status) != 0) {
4201 fprintf(stderr, "%s: could not launch network script\n",
4202 setup_script);
4203 return -1;
4206 return 0;
4209 static int net_tap_init(VLANState *vlan, const char *ifname1,
4210 const char *setup_script, const char *down_script)
4212 TAPState *s;
4213 int fd;
4214 char ifname[128];
4216 if (ifname1 != NULL)
4217 pstrcpy(ifname, sizeof(ifname), ifname1);
4218 else
4219 ifname[0] = '\0';
4220 TFR(fd = tap_open(ifname, sizeof(ifname)));
4221 if (fd < 0)
4222 return -1;
4224 if (!setup_script || !strcmp(setup_script, "no"))
4225 setup_script = "";
4226 if (setup_script[0] != '\0') {
4227 if (launch_script(setup_script, ifname, fd))
4228 return -1;
4230 s = net_tap_fd_init(vlan, fd);
4231 if (!s)
4232 return -1;
4233 snprintf(s->vc->info_str, sizeof(s->vc->info_str),
4234 "tap: ifname=%s setup_script=%s", ifname, setup_script);
4235 if (down_script && strcmp(down_script, "no"))
4236 snprintf(s->down_script, sizeof(s->down_script), "%s", down_script);
4237 return 0;
4240 #endif /* !_WIN32 */
4242 /* network connection */
4243 typedef struct NetSocketState {
4244 VLANClientState *vc;
4245 int fd;
4246 int state; /* 0 = getting length, 1 = getting data */
4247 int index;
4248 int packet_len;
4249 uint8_t buf[4096];
4250 struct sockaddr_in dgram_dst; /* contains inet host and port destination iff connectionless (SOCK_DGRAM) */
4251 } NetSocketState;
4253 typedef struct NetSocketListenState {
4254 VLANState *vlan;
4255 int fd;
4256 } NetSocketListenState;
4258 /* XXX: we consider we can send the whole packet without blocking */
4259 static void net_socket_receive(void *opaque, const uint8_t *buf, int size)
4261 NetSocketState *s = opaque;
4262 uint32_t len;
4263 len = htonl(size);
4265 send_all(s->fd, (const uint8_t *)&len, sizeof(len));
4266 send_all(s->fd, buf, size);
4269 static void net_socket_receive_dgram(void *opaque, const uint8_t *buf, int size)
4271 NetSocketState *s = opaque;
4272 sendto(s->fd, buf, size, 0,
4273 (struct sockaddr *)&s->dgram_dst, sizeof(s->dgram_dst));
4276 static void net_socket_send(void *opaque)
4278 NetSocketState *s = opaque;
4279 int l, size, err;
4280 uint8_t buf1[4096];
4281 const uint8_t *buf;
4283 size = recv(s->fd, buf1, sizeof(buf1), 0);
4284 if (size < 0) {
4285 err = socket_error();
4286 if (err != EWOULDBLOCK)
4287 goto eoc;
4288 } else if (size == 0) {
4289 /* end of connection */
4290 eoc:
4291 qemu_set_fd_handler(s->fd, NULL, NULL, NULL);
4292 closesocket(s->fd);
4293 return;
4295 buf = buf1;
4296 while (size > 0) {
4297 /* reassemble a packet from the network */
4298 switch(s->state) {
4299 case 0:
4300 l = 4 - s->index;
4301 if (l > size)
4302 l = size;
4303 memcpy(s->buf + s->index, buf, l);
4304 buf += l;
4305 size -= l;
4306 s->index += l;
4307 if (s->index == 4) {
4308 /* got length */
4309 s->packet_len = ntohl(*(uint32_t *)s->buf);
4310 s->index = 0;
4311 s->state = 1;
4313 break;
4314 case 1:
4315 l = s->packet_len - s->index;
4316 if (l > size)
4317 l = size;
4318 memcpy(s->buf + s->index, buf, l);
4319 s->index += l;
4320 buf += l;
4321 size -= l;
4322 if (s->index >= s->packet_len) {
4323 qemu_send_packet(s->vc, s->buf, s->packet_len);
4324 s->index = 0;
4325 s->state = 0;
4327 break;
4332 static void net_socket_send_dgram(void *opaque)
4334 NetSocketState *s = opaque;
4335 int size;
4337 size = recv(s->fd, s->buf, sizeof(s->buf), 0);
4338 if (size < 0)
4339 return;
4340 if (size == 0) {
4341 /* end of connection */
4342 qemu_set_fd_handler(s->fd, NULL, NULL, NULL);
4343 return;
4345 qemu_send_packet(s->vc, s->buf, size);
4348 static int net_socket_mcast_create(struct sockaddr_in *mcastaddr)
4350 struct ip_mreq imr;
4351 int fd;
4352 int val, ret;
4353 if (!IN_MULTICAST(ntohl(mcastaddr->sin_addr.s_addr))) {
4354 fprintf(stderr, "qemu: error: specified mcastaddr \"%s\" (0x%08x) does not contain a multicast address\n",
4355 inet_ntoa(mcastaddr->sin_addr),
4356 (int)ntohl(mcastaddr->sin_addr.s_addr));
4357 return -1;
4360 fd = socket(PF_INET, SOCK_DGRAM, 0);
4361 if (fd < 0) {
4362 perror("socket(PF_INET, SOCK_DGRAM)");
4363 return -1;
4366 val = 1;
4367 ret=setsockopt(fd, SOL_SOCKET, SO_REUSEADDR,
4368 (const char *)&val, sizeof(val));
4369 if (ret < 0) {
4370 perror("setsockopt(SOL_SOCKET, SO_REUSEADDR)");
4371 goto fail;
4374 ret = bind(fd, (struct sockaddr *)mcastaddr, sizeof(*mcastaddr));
4375 if (ret < 0) {
4376 perror("bind");
4377 goto fail;
4380 /* Add host to multicast group */
4381 imr.imr_multiaddr = mcastaddr->sin_addr;
4382 imr.imr_interface.s_addr = htonl(INADDR_ANY);
4384 ret = setsockopt(fd, IPPROTO_IP, IP_ADD_MEMBERSHIP,
4385 (const char *)&imr, sizeof(struct ip_mreq));
4386 if (ret < 0) {
4387 perror("setsockopt(IP_ADD_MEMBERSHIP)");
4388 goto fail;
4391 /* Force mcast msgs to loopback (eg. several QEMUs in same host */
4392 val = 1;
4393 ret=setsockopt(fd, IPPROTO_IP, IP_MULTICAST_LOOP,
4394 (const char *)&val, sizeof(val));
4395 if (ret < 0) {
4396 perror("setsockopt(SOL_IP, IP_MULTICAST_LOOP)");
4397 goto fail;
4400 socket_set_nonblock(fd);
4401 return fd;
4402 fail:
4403 if (fd >= 0)
4404 closesocket(fd);
4405 return -1;
4408 static NetSocketState *net_socket_fd_init_dgram(VLANState *vlan, int fd,
4409 int is_connected)
4411 struct sockaddr_in saddr;
4412 int newfd;
4413 socklen_t saddr_len;
4414 NetSocketState *s;
4416 /* fd passed: multicast: "learn" dgram_dst address from bound address and save it
4417 * Because this may be "shared" socket from a "master" process, datagrams would be recv()
4418 * by ONLY ONE process: we must "clone" this dgram socket --jjo
4421 if (is_connected) {
4422 if (getsockname(fd, (struct sockaddr *) &saddr, &saddr_len) == 0) {
4423 /* must be bound */
4424 if (saddr.sin_addr.s_addr==0) {
4425 fprintf(stderr, "qemu: error: init_dgram: fd=%d unbound, cannot setup multicast dst addr\n",
4426 fd);
4427 return NULL;
4429 /* clone dgram socket */
4430 newfd = net_socket_mcast_create(&saddr);
4431 if (newfd < 0) {
4432 /* error already reported by net_socket_mcast_create() */
4433 close(fd);
4434 return NULL;
4436 /* clone newfd to fd, close newfd */
4437 dup2(newfd, fd);
4438 close(newfd);
4440 } else {
4441 fprintf(stderr, "qemu: error: init_dgram: fd=%d failed getsockname(): %s\n",
4442 fd, strerror(errno));
4443 return NULL;
4447 s = qemu_mallocz(sizeof(NetSocketState));
4448 if (!s)
4449 return NULL;
4450 s->fd = fd;
4452 s->vc = qemu_new_vlan_client(vlan, net_socket_receive_dgram, NULL, s);
4453 qemu_set_fd_handler(s->fd, net_socket_send_dgram, NULL, s);
4455 /* mcast: save bound address as dst */
4456 if (is_connected) s->dgram_dst=saddr;
4458 snprintf(s->vc->info_str, sizeof(s->vc->info_str),
4459 "socket: fd=%d (%s mcast=%s:%d)",
4460 fd, is_connected? "cloned" : "",
4461 inet_ntoa(saddr.sin_addr), ntohs(saddr.sin_port));
4462 return s;
4465 static void net_socket_connect(void *opaque)
4467 NetSocketState *s = opaque;
4468 qemu_set_fd_handler(s->fd, net_socket_send, NULL, s);
4471 static NetSocketState *net_socket_fd_init_stream(VLANState *vlan, int fd,
4472 int is_connected)
4474 NetSocketState *s;
4475 s = qemu_mallocz(sizeof(NetSocketState));
4476 if (!s)
4477 return NULL;
4478 s->fd = fd;
4479 s->vc = qemu_new_vlan_client(vlan,
4480 net_socket_receive, NULL, s);
4481 snprintf(s->vc->info_str, sizeof(s->vc->info_str),
4482 "socket: fd=%d", fd);
4483 if (is_connected) {
4484 net_socket_connect(s);
4485 } else {
4486 qemu_set_fd_handler(s->fd, NULL, net_socket_connect, s);
4488 return s;
4491 static NetSocketState *net_socket_fd_init(VLANState *vlan, int fd,
4492 int is_connected)
4494 int so_type=-1, optlen=sizeof(so_type);
4496 if(getsockopt(fd, SOL_SOCKET, SO_TYPE, (char *)&so_type,
4497 (socklen_t *)&optlen)< 0) {
4498 fprintf(stderr, "qemu: error: getsockopt(SO_TYPE) for fd=%d failed\n", fd);
4499 return NULL;
4501 switch(so_type) {
4502 case SOCK_DGRAM:
4503 return net_socket_fd_init_dgram(vlan, fd, is_connected);
4504 case SOCK_STREAM:
4505 return net_socket_fd_init_stream(vlan, fd, is_connected);
4506 default:
4507 /* who knows ... this could be a eg. a pty, do warn and continue as stream */
4508 fprintf(stderr, "qemu: warning: socket type=%d for fd=%d is not SOCK_DGRAM or SOCK_STREAM\n", so_type, fd);
4509 return net_socket_fd_init_stream(vlan, fd, is_connected);
4511 return NULL;
4514 static void net_socket_accept(void *opaque)
4516 NetSocketListenState *s = opaque;
4517 NetSocketState *s1;
4518 struct sockaddr_in saddr;
4519 socklen_t len;
4520 int fd;
4522 for(;;) {
4523 len = sizeof(saddr);
4524 fd = accept(s->fd, (struct sockaddr *)&saddr, &len);
4525 if (fd < 0 && errno != EINTR) {
4526 return;
4527 } else if (fd >= 0) {
4528 break;
4531 s1 = net_socket_fd_init(s->vlan, fd, 1);
4532 if (!s1) {
4533 closesocket(fd);
4534 } else {
4535 snprintf(s1->vc->info_str, sizeof(s1->vc->info_str),
4536 "socket: connection from %s:%d",
4537 inet_ntoa(saddr.sin_addr), ntohs(saddr.sin_port));
4541 static int net_socket_listen_init(VLANState *vlan, const char *host_str)
4543 NetSocketListenState *s;
4544 int fd, val, ret;
4545 struct sockaddr_in saddr;
4547 if (parse_host_port(&saddr, host_str) < 0)
4548 return -1;
4550 s = qemu_mallocz(sizeof(NetSocketListenState));
4551 if (!s)
4552 return -1;
4554 fd = socket(PF_INET, SOCK_STREAM, 0);
4555 if (fd < 0) {
4556 perror("socket");
4557 return -1;
4559 socket_set_nonblock(fd);
4561 /* allow fast reuse */
4562 val = 1;
4563 setsockopt(fd, SOL_SOCKET, SO_REUSEADDR, (const char *)&val, sizeof(val));
4565 ret = bind(fd, (struct sockaddr *)&saddr, sizeof(saddr));
4566 if (ret < 0) {
4567 perror("bind");
4568 return -1;
4570 ret = listen(fd, 0);
4571 if (ret < 0) {
4572 perror("listen");
4573 return -1;
4575 s->vlan = vlan;
4576 s->fd = fd;
4577 qemu_set_fd_handler(fd, net_socket_accept, NULL, s);
4578 return 0;
4581 static int net_socket_connect_init(VLANState *vlan, const char *host_str)
4583 NetSocketState *s;
4584 int fd, connected, ret, err;
4585 struct sockaddr_in saddr;
4587 if (parse_host_port(&saddr, host_str) < 0)
4588 return -1;
4590 fd = socket(PF_INET, SOCK_STREAM, 0);
4591 if (fd < 0) {
4592 perror("socket");
4593 return -1;
4595 socket_set_nonblock(fd);
4597 connected = 0;
4598 for(;;) {
4599 ret = connect(fd, (struct sockaddr *)&saddr, sizeof(saddr));
4600 if (ret < 0) {
4601 err = socket_error();
4602 if (err == EINTR || err == EWOULDBLOCK) {
4603 } else if (err == EINPROGRESS) {
4604 break;
4605 #ifdef _WIN32
4606 } else if (err == WSAEALREADY) {
4607 break;
4608 #endif
4609 } else {
4610 perror("connect");
4611 closesocket(fd);
4612 return -1;
4614 } else {
4615 connected = 1;
4616 break;
4619 s = net_socket_fd_init(vlan, fd, connected);
4620 if (!s)
4621 return -1;
4622 snprintf(s->vc->info_str, sizeof(s->vc->info_str),
4623 "socket: connect to %s:%d",
4624 inet_ntoa(saddr.sin_addr), ntohs(saddr.sin_port));
4625 return 0;
4628 static int net_socket_mcast_init(VLANState *vlan, const char *host_str)
4630 NetSocketState *s;
4631 int fd;
4632 struct sockaddr_in saddr;
4634 if (parse_host_port(&saddr, host_str) < 0)
4635 return -1;
4638 fd = net_socket_mcast_create(&saddr);
4639 if (fd < 0)
4640 return -1;
4642 s = net_socket_fd_init(vlan, fd, 0);
4643 if (!s)
4644 return -1;
4646 s->dgram_dst = saddr;
4648 snprintf(s->vc->info_str, sizeof(s->vc->info_str),
4649 "socket: mcast=%s:%d",
4650 inet_ntoa(saddr.sin_addr), ntohs(saddr.sin_port));
4651 return 0;
4655 static const char *get_opt_name(char *buf, int buf_size, const char *p)
4657 char *q;
4659 q = buf;
4660 while (*p != '\0' && *p != '=') {
4661 if (q && (q - buf) < buf_size - 1)
4662 *q++ = *p;
4663 p++;
4665 if (q)
4666 *q = '\0';
4668 return p;
4671 static const char *get_opt_value(char *buf, int buf_size, const char *p)
4673 char *q;
4675 q = buf;
4676 while (*p != '\0') {
4677 if (*p == ',') {
4678 if (*(p + 1) != ',')
4679 break;
4680 p++;
4682 if (q && (q - buf) < buf_size - 1)
4683 *q++ = *p;
4684 p++;
4686 if (q)
4687 *q = '\0';
4689 return p;
4692 static int get_param_value(char *buf, int buf_size,
4693 const char *tag, const char *str)
4695 const char *p;
4696 char option[128];
4698 p = str;
4699 for(;;) {
4700 p = get_opt_name(option, sizeof(option), p);
4701 if (*p != '=')
4702 break;
4703 p++;
4704 if (!strcmp(tag, option)) {
4705 (void)get_opt_value(buf, buf_size, p);
4706 return strlen(buf);
4707 } else {
4708 p = get_opt_value(NULL, 0, p);
4710 if (*p != ',')
4711 break;
4712 p++;
4714 return 0;
4717 static int check_params(char *buf, int buf_size,
4718 char **params, const char *str)
4720 const char *p;
4721 int i;
4723 p = str;
4724 for(;;) {
4725 p = get_opt_name(buf, buf_size, p);
4726 if (*p != '=')
4727 return -1;
4728 p++;
4729 for(i = 0; params[i] != NULL; i++)
4730 if (!strcmp(params[i], buf))
4731 break;
4732 if (params[i] == NULL)
4733 return -1;
4734 p = get_opt_value(NULL, 0, p);
4735 if (*p != ',')
4736 break;
4737 p++;
4739 return 0;
4743 static int net_client_init(const char *str)
4745 const char *p;
4746 char *q;
4747 char device[64];
4748 char buf[1024];
4749 int vlan_id, ret;
4750 VLANState *vlan;
4752 p = str;
4753 q = device;
4754 while (*p != '\0' && *p != ',') {
4755 if ((q - device) < sizeof(device) - 1)
4756 *q++ = *p;
4757 p++;
4759 *q = '\0';
4760 if (*p == ',')
4761 p++;
4762 vlan_id = 0;
4763 if (get_param_value(buf, sizeof(buf), "vlan", p)) {
4764 vlan_id = strtol(buf, NULL, 0);
4766 vlan = qemu_find_vlan(vlan_id);
4767 if (!vlan) {
4768 fprintf(stderr, "Could not create vlan %d\n", vlan_id);
4769 return -1;
4771 if (!strcmp(device, "nic")) {
4772 NICInfo *nd;
4773 uint8_t *macaddr;
4775 if (nb_nics >= MAX_NICS) {
4776 fprintf(stderr, "Too Many NICs\n");
4777 return -1;
4779 nd = &nd_table[nb_nics];
4780 macaddr = nd->macaddr;
4781 macaddr[0] = 0x52;
4782 macaddr[1] = 0x54;
4783 macaddr[2] = 0x00;
4784 macaddr[3] = 0x12;
4785 macaddr[4] = 0x34;
4786 macaddr[5] = 0x56 + nb_nics;
4788 if (get_param_value(buf, sizeof(buf), "macaddr", p)) {
4789 if (parse_macaddr(macaddr, buf) < 0) {
4790 fprintf(stderr, "invalid syntax for ethernet address\n");
4791 return -1;
4794 if (get_param_value(buf, sizeof(buf), "model", p)) {
4795 nd->model = strdup(buf);
4797 nd->vlan = vlan;
4798 nb_nics++;
4799 vlan->nb_guest_devs++;
4800 ret = 0;
4801 } else
4802 if (!strcmp(device, "none")) {
4803 /* does nothing. It is needed to signal that no network cards
4804 are wanted */
4805 ret = 0;
4806 } else
4807 #ifdef CONFIG_SLIRP
4808 if (!strcmp(device, "user")) {
4809 if (get_param_value(buf, sizeof(buf), "hostname", p)) {
4810 pstrcpy(slirp_hostname, sizeof(slirp_hostname), buf);
4812 vlan->nb_host_devs++;
4813 ret = net_slirp_init(vlan);
4814 } else
4815 #endif
4816 #ifdef _WIN32
4817 if (!strcmp(device, "tap")) {
4818 char ifname[64];
4819 if (get_param_value(ifname, sizeof(ifname), "ifname", p) <= 0) {
4820 fprintf(stderr, "tap: no interface name\n");
4821 return -1;
4823 vlan->nb_host_devs++;
4824 ret = tap_win32_init(vlan, ifname);
4825 } else
4826 #else
4827 if (!strcmp(device, "tap")) {
4828 char ifname[64];
4829 char setup_script[1024], down_script[1024];
4830 int fd;
4831 vlan->nb_host_devs++;
4832 if (get_param_value(buf, sizeof(buf), "fd", p) > 0) {
4833 fd = strtol(buf, NULL, 0);
4834 fcntl(fd, F_SETFL, O_NONBLOCK);
4835 ret = -1;
4836 if (net_tap_fd_init(vlan, fd))
4837 ret = 0;
4838 } else {
4839 if (get_param_value(ifname, sizeof(ifname), "ifname", p) <= 0) {
4840 ifname[0] = '\0';
4842 if (get_param_value(setup_script, sizeof(setup_script), "script", p) == 0) {
4843 pstrcpy(setup_script, sizeof(setup_script), DEFAULT_NETWORK_SCRIPT);
4845 if (get_param_value(down_script, sizeof(down_script), "downscript", p) == 0) {
4846 pstrcpy(down_script, sizeof(down_script), DEFAULT_NETWORK_DOWN_SCRIPT);
4848 ret = net_tap_init(vlan, ifname, setup_script, down_script);
4850 } else
4851 #endif
4852 if (!strcmp(device, "socket")) {
4853 if (get_param_value(buf, sizeof(buf), "fd", p) > 0) {
4854 int fd;
4855 fd = strtol(buf, NULL, 0);
4856 ret = -1;
4857 if (net_socket_fd_init(vlan, fd, 1))
4858 ret = 0;
4859 } else if (get_param_value(buf, sizeof(buf), "listen", p) > 0) {
4860 ret = net_socket_listen_init(vlan, buf);
4861 } else if (get_param_value(buf, sizeof(buf), "connect", p) > 0) {
4862 ret = net_socket_connect_init(vlan, buf);
4863 } else if (get_param_value(buf, sizeof(buf), "mcast", p) > 0) {
4864 ret = net_socket_mcast_init(vlan, buf);
4865 } else {
4866 fprintf(stderr, "Unknown socket options: %s\n", p);
4867 return -1;
4869 vlan->nb_host_devs++;
4870 } else
4872 fprintf(stderr, "Unknown network device: %s\n", device);
4873 return -1;
4875 if (ret < 0) {
4876 fprintf(stderr, "Could not initialize device '%s'\n", device);
4879 return ret;
4882 void do_info_network(void)
4884 VLANState *vlan;
4885 VLANClientState *vc;
4887 for(vlan = first_vlan; vlan != NULL; vlan = vlan->next) {
4888 term_printf("VLAN %d devices:\n", vlan->id);
4889 for(vc = vlan->first_client; vc != NULL; vc = vc->next)
4890 term_printf(" %s\n", vc->info_str);
4894 #define HD_ALIAS "index=%d,media=disk"
4895 #ifdef TARGET_PPC
4896 #define CDROM_ALIAS "index=1,media=cdrom"
4897 #else
4898 #define CDROM_ALIAS "index=2,media=cdrom"
4899 #endif
4900 #define FD_ALIAS "index=%d,if=floppy"
4901 #define PFLASH_ALIAS "if=pflash"
4902 #define MTD_ALIAS "if=mtd"
4903 #define SD_ALIAS "index=0,if=sd"
4905 static int drive_add(const char *file, const char *fmt, ...)
4907 va_list ap;
4909 if (nb_drives_opt >= MAX_DRIVES) {
4910 fprintf(stderr, "qemu: too many drives\n");
4911 exit(1);
4914 drives_opt[nb_drives_opt].file = file;
4915 va_start(ap, fmt);
4916 vsnprintf(drives_opt[nb_drives_opt].opt,
4917 sizeof(drives_opt[0].opt), fmt, ap);
4918 va_end(ap);
4920 return nb_drives_opt++;
4923 int drive_get_index(BlockInterfaceType type, int bus, int unit)
4925 int index;
4927 /* seek interface, bus and unit */
4929 for (index = 0; index < nb_drives; index++)
4930 if (drives_table[index].type == type &&
4931 drives_table[index].bus == bus &&
4932 drives_table[index].unit == unit)
4933 return index;
4935 return -1;
4938 int drive_get_max_bus(BlockInterfaceType type)
4940 int max_bus;
4941 int index;
4943 max_bus = -1;
4944 for (index = 0; index < nb_drives; index++) {
4945 if(drives_table[index].type == type &&
4946 drives_table[index].bus > max_bus)
4947 max_bus = drives_table[index].bus;
4949 return max_bus;
4952 static void bdrv_format_print(void *opaque, const char *name)
4954 fprintf(stderr, " %s", name);
4957 static int drive_init(struct drive_opt *arg, int snapshot,
4958 QEMUMachine *machine)
4960 char buf[128];
4961 char file[1024];
4962 char devname[128];
4963 const char *mediastr = "";
4964 BlockInterfaceType type;
4965 enum { MEDIA_DISK, MEDIA_CDROM } media;
4966 int bus_id, unit_id;
4967 int cyls, heads, secs, translation;
4968 BlockDriverState *bdrv;
4969 BlockDriver *drv = NULL;
4970 int max_devs;
4971 int index;
4972 int cache;
4973 int bdrv_flags;
4974 char *str = arg->opt;
4975 char *params[] = { "bus", "unit", "if", "index", "cyls", "heads",
4976 "secs", "trans", "media", "snapshot", "file",
4977 "cache", "format", NULL };
4979 if (check_params(buf, sizeof(buf), params, str) < 0) {
4980 fprintf(stderr, "qemu: unknown parameter '%s' in '%s'\n",
4981 buf, str);
4982 return -1;
4985 file[0] = 0;
4986 cyls = heads = secs = 0;
4987 bus_id = 0;
4988 unit_id = -1;
4989 translation = BIOS_ATA_TRANSLATION_AUTO;
4990 index = -1;
4991 cache = 1;
4993 if (!strcmp(machine->name, "realview") ||
4994 !strcmp(machine->name, "SS-5") ||
4995 !strcmp(machine->name, "SS-10") ||
4996 !strcmp(machine->name, "SS-600MP") ||
4997 !strcmp(machine->name, "versatilepb") ||
4998 !strcmp(machine->name, "versatileab")) {
4999 type = IF_SCSI;
5000 max_devs = MAX_SCSI_DEVS;
5001 strcpy(devname, "scsi");
5002 } else {
5003 type = IF_IDE;
5004 max_devs = MAX_IDE_DEVS;
5005 strcpy(devname, "ide");
5007 media = MEDIA_DISK;
5009 /* extract parameters */
5011 if (get_param_value(buf, sizeof(buf), "bus", str)) {
5012 bus_id = strtol(buf, NULL, 0);
5013 if (bus_id < 0) {
5014 fprintf(stderr, "qemu: '%s' invalid bus id\n", str);
5015 return -1;
5019 if (get_param_value(buf, sizeof(buf), "unit", str)) {
5020 unit_id = strtol(buf, NULL, 0);
5021 if (unit_id < 0) {
5022 fprintf(stderr, "qemu: '%s' invalid unit id\n", str);
5023 return -1;
5027 if (get_param_value(buf, sizeof(buf), "if", str)) {
5028 strncpy(devname, buf, sizeof(devname));
5029 if (!strcmp(buf, "ide")) {
5030 type = IF_IDE;
5031 max_devs = MAX_IDE_DEVS;
5032 } else if (!strcmp(buf, "scsi")) {
5033 type = IF_SCSI;
5034 max_devs = MAX_SCSI_DEVS;
5035 } else if (!strcmp(buf, "floppy")) {
5036 type = IF_FLOPPY;
5037 max_devs = 0;
5038 } else if (!strcmp(buf, "pflash")) {
5039 type = IF_PFLASH;
5040 max_devs = 0;
5041 } else if (!strcmp(buf, "mtd")) {
5042 type = IF_MTD;
5043 max_devs = 0;
5044 } else if (!strcmp(buf, "sd")) {
5045 type = IF_SD;
5046 max_devs = 0;
5047 } else {
5048 fprintf(stderr, "qemu: '%s' unsupported bus type '%s'\n", str, buf);
5049 return -1;
5053 if (get_param_value(buf, sizeof(buf), "index", str)) {
5054 index = strtol(buf, NULL, 0);
5055 if (index < 0) {
5056 fprintf(stderr, "qemu: '%s' invalid index\n", str);
5057 return -1;
5061 if (get_param_value(buf, sizeof(buf), "cyls", str)) {
5062 cyls = strtol(buf, NULL, 0);
5065 if (get_param_value(buf, sizeof(buf), "heads", str)) {
5066 heads = strtol(buf, NULL, 0);
5069 if (get_param_value(buf, sizeof(buf), "secs", str)) {
5070 secs = strtol(buf, NULL, 0);
5073 if (cyls || heads || secs) {
5074 if (cyls < 1 || cyls > 16383) {
5075 fprintf(stderr, "qemu: '%s' invalid physical cyls number\n", str);
5076 return -1;
5078 if (heads < 1 || heads > 16) {
5079 fprintf(stderr, "qemu: '%s' invalid physical heads number\n", str);
5080 return -1;
5082 if (secs < 1 || secs > 63) {
5083 fprintf(stderr, "qemu: '%s' invalid physical secs number\n", str);
5084 return -1;
5088 if (get_param_value(buf, sizeof(buf), "trans", str)) {
5089 if (!cyls) {
5090 fprintf(stderr,
5091 "qemu: '%s' trans must be used with cyls,heads and secs\n",
5092 str);
5093 return -1;
5095 if (!strcmp(buf, "none"))
5096 translation = BIOS_ATA_TRANSLATION_NONE;
5097 else if (!strcmp(buf, "lba"))
5098 translation = BIOS_ATA_TRANSLATION_LBA;
5099 else if (!strcmp(buf, "auto"))
5100 translation = BIOS_ATA_TRANSLATION_AUTO;
5101 else {
5102 fprintf(stderr, "qemu: '%s' invalid translation type\n", str);
5103 return -1;
5107 if (get_param_value(buf, sizeof(buf), "media", str)) {
5108 if (!strcmp(buf, "disk")) {
5109 media = MEDIA_DISK;
5110 } else if (!strcmp(buf, "cdrom")) {
5111 if (cyls || secs || heads) {
5112 fprintf(stderr,
5113 "qemu: '%s' invalid physical CHS format\n", str);
5114 return -1;
5116 media = MEDIA_CDROM;
5117 } else {
5118 fprintf(stderr, "qemu: '%s' invalid media\n", str);
5119 return -1;
5123 if (get_param_value(buf, sizeof(buf), "snapshot", str)) {
5124 if (!strcmp(buf, "on"))
5125 snapshot = 1;
5126 else if (!strcmp(buf, "off"))
5127 snapshot = 0;
5128 else {
5129 fprintf(stderr, "qemu: '%s' invalid snapshot option\n", str);
5130 return -1;
5134 if (get_param_value(buf, sizeof(buf), "cache", str)) {
5135 if (!strcmp(buf, "off"))
5136 cache = 0;
5137 else if (!strcmp(buf, "on"))
5138 cache = 1;
5139 else {
5140 fprintf(stderr, "qemu: invalid cache option\n");
5141 return -1;
5145 if (get_param_value(buf, sizeof(buf), "format", str)) {
5146 if (strcmp(buf, "?") == 0) {
5147 fprintf(stderr, "qemu: Supported formats:");
5148 bdrv_iterate_format(bdrv_format_print, NULL);
5149 fprintf(stderr, "\n");
5150 return -1;
5152 drv = bdrv_find_format(buf);
5153 if (!drv) {
5154 fprintf(stderr, "qemu: '%s' invalid format\n", buf);
5155 return -1;
5159 if (arg->file == NULL)
5160 get_param_value(file, sizeof(file), "file", str);
5161 else
5162 pstrcpy(file, sizeof(file), arg->file);
5164 /* compute bus and unit according index */
5166 if (index != -1) {
5167 if (bus_id != 0 || unit_id != -1) {
5168 fprintf(stderr,
5169 "qemu: '%s' index cannot be used with bus and unit\n", str);
5170 return -1;
5172 if (max_devs == 0)
5174 unit_id = index;
5175 bus_id = 0;
5176 } else {
5177 unit_id = index % max_devs;
5178 bus_id = index / max_devs;
5182 /* if user doesn't specify a unit_id,
5183 * try to find the first free
5186 if (unit_id == -1) {
5187 unit_id = 0;
5188 while (drive_get_index(type, bus_id, unit_id) != -1) {
5189 unit_id++;
5190 if (max_devs && unit_id >= max_devs) {
5191 unit_id -= max_devs;
5192 bus_id++;
5197 /* check unit id */
5199 if (max_devs && unit_id >= max_devs) {
5200 fprintf(stderr, "qemu: '%s' unit %d too big (max is %d)\n",
5201 str, unit_id, max_devs - 1);
5202 return -1;
5206 * ignore multiple definitions
5209 if (drive_get_index(type, bus_id, unit_id) != -1)
5210 return 0;
5212 /* init */
5214 if (type == IF_IDE || type == IF_SCSI)
5215 mediastr = (media == MEDIA_CDROM) ? "-cd" : "-hd";
5216 if (max_devs)
5217 snprintf(buf, sizeof(buf), "%s%i%s%i",
5218 devname, bus_id, mediastr, unit_id);
5219 else
5220 snprintf(buf, sizeof(buf), "%s%s%i",
5221 devname, mediastr, unit_id);
5222 bdrv = bdrv_new(buf);
5223 drives_table[nb_drives].bdrv = bdrv;
5224 drives_table[nb_drives].type = type;
5225 drives_table[nb_drives].bus = bus_id;
5226 drives_table[nb_drives].unit = unit_id;
5227 nb_drives++;
5229 switch(type) {
5230 case IF_IDE:
5231 case IF_SCSI:
5232 switch(media) {
5233 case MEDIA_DISK:
5234 if (cyls != 0) {
5235 bdrv_set_geometry_hint(bdrv, cyls, heads, secs);
5236 bdrv_set_translation_hint(bdrv, translation);
5238 break;
5239 case MEDIA_CDROM:
5240 bdrv_set_type_hint(bdrv, BDRV_TYPE_CDROM);
5241 break;
5243 break;
5244 case IF_SD:
5245 /* FIXME: This isn't really a floppy, but it's a reasonable
5246 approximation. */
5247 case IF_FLOPPY:
5248 bdrv_set_type_hint(bdrv, BDRV_TYPE_FLOPPY);
5249 break;
5250 case IF_PFLASH:
5251 case IF_MTD:
5252 break;
5254 if (!file[0])
5255 return 0;
5256 bdrv_flags = 0;
5257 if (snapshot)
5258 bdrv_flags |= BDRV_O_SNAPSHOT;
5259 if (!cache)
5260 bdrv_flags |= BDRV_O_DIRECT;
5261 if (bdrv_open2(bdrv, file, bdrv_flags, drv) < 0 || qemu_key_check(bdrv, file)) {
5262 fprintf(stderr, "qemu: could not open disk image %s\n",
5263 file);
5264 return -1;
5266 return 0;
5269 /***********************************************************/
5270 /* USB devices */
5272 static USBPort *used_usb_ports;
5273 static USBPort *free_usb_ports;
5275 /* ??? Maybe change this to register a hub to keep track of the topology. */
5276 void qemu_register_usb_port(USBPort *port, void *opaque, int index,
5277 usb_attachfn attach)
5279 port->opaque = opaque;
5280 port->index = index;
5281 port->attach = attach;
5282 port->next = free_usb_ports;
5283 free_usb_ports = port;
5286 static int usb_device_add(const char *devname)
5288 const char *p;
5289 USBDevice *dev;
5290 USBPort *port;
5292 if (!free_usb_ports)
5293 return -1;
5295 if (strstart(devname, "host:", &p)) {
5296 dev = usb_host_device_open(p);
5297 } else if (!strcmp(devname, "mouse")) {
5298 dev = usb_mouse_init();
5299 } else if (!strcmp(devname, "tablet")) {
5300 dev = usb_tablet_init();
5301 } else if (!strcmp(devname, "keyboard")) {
5302 dev = usb_keyboard_init();
5303 } else if (strstart(devname, "disk:", &p)) {
5304 dev = usb_msd_init(p);
5305 } else if (!strcmp(devname, "wacom-tablet")) {
5306 dev = usb_wacom_init();
5307 } else if (strstart(devname, "serial:", &p)) {
5308 dev = usb_serial_init(p);
5309 #ifdef CONFIG_BRLAPI
5310 } else if (!strcmp(devname, "braille")) {
5311 dev = usb_baum_init();
5312 #endif
5313 } else {
5314 return -1;
5316 if (!dev)
5317 return -1;
5319 /* Find a USB port to add the device to. */
5320 port = free_usb_ports;
5321 if (!port->next) {
5322 USBDevice *hub;
5324 /* Create a new hub and chain it on. */
5325 free_usb_ports = NULL;
5326 port->next = used_usb_ports;
5327 used_usb_ports = port;
5329 hub = usb_hub_init(VM_USB_HUB_SIZE);
5330 usb_attach(port, hub);
5331 port = free_usb_ports;
5334 free_usb_ports = port->next;
5335 port->next = used_usb_ports;
5336 used_usb_ports = port;
5337 usb_attach(port, dev);
5338 return 0;
5341 static int usb_device_del(const char *devname)
5343 USBPort *port;
5344 USBPort **lastp;
5345 USBDevice *dev;
5346 int bus_num, addr;
5347 const char *p;
5349 if (!used_usb_ports)
5350 return -1;
5352 p = strchr(devname, '.');
5353 if (!p)
5354 return -1;
5355 bus_num = strtoul(devname, NULL, 0);
5356 addr = strtoul(p + 1, NULL, 0);
5357 if (bus_num != 0)
5358 return -1;
5360 lastp = &used_usb_ports;
5361 port = used_usb_ports;
5362 while (port && port->dev->addr != addr) {
5363 lastp = &port->next;
5364 port = port->next;
5367 if (!port)
5368 return -1;
5370 dev = port->dev;
5371 *lastp = port->next;
5372 usb_attach(port, NULL);
5373 dev->handle_destroy(dev);
5374 port->next = free_usb_ports;
5375 free_usb_ports = port;
5376 return 0;
5379 void do_usb_add(const char *devname)
5381 int ret;
5382 ret = usb_device_add(devname);
5383 if (ret < 0)
5384 term_printf("Could not add USB device '%s'\n", devname);
5387 void do_usb_del(const char *devname)
5389 int ret;
5390 ret = usb_device_del(devname);
5391 if (ret < 0)
5392 term_printf("Could not remove USB device '%s'\n", devname);
5395 void usb_info(void)
5397 USBDevice *dev;
5398 USBPort *port;
5399 const char *speed_str;
5401 if (!usb_enabled) {
5402 term_printf("USB support not enabled\n");
5403 return;
5406 for (port = used_usb_ports; port; port = port->next) {
5407 dev = port->dev;
5408 if (!dev)
5409 continue;
5410 switch(dev->speed) {
5411 case USB_SPEED_LOW:
5412 speed_str = "1.5";
5413 break;
5414 case USB_SPEED_FULL:
5415 speed_str = "12";
5416 break;
5417 case USB_SPEED_HIGH:
5418 speed_str = "480";
5419 break;
5420 default:
5421 speed_str = "?";
5422 break;
5424 term_printf(" Device %d.%d, Speed %s Mb/s, Product %s\n",
5425 0, dev->addr, speed_str, dev->devname);
5429 /***********************************************************/
5430 /* PCMCIA/Cardbus */
5432 static struct pcmcia_socket_entry_s {
5433 struct pcmcia_socket_s *socket;
5434 struct pcmcia_socket_entry_s *next;
5435 } *pcmcia_sockets = 0;
5437 void pcmcia_socket_register(struct pcmcia_socket_s *socket)
5439 struct pcmcia_socket_entry_s *entry;
5441 entry = qemu_malloc(sizeof(struct pcmcia_socket_entry_s));
5442 entry->socket = socket;
5443 entry->next = pcmcia_sockets;
5444 pcmcia_sockets = entry;
5447 void pcmcia_socket_unregister(struct pcmcia_socket_s *socket)
5449 struct pcmcia_socket_entry_s *entry, **ptr;
5451 ptr = &pcmcia_sockets;
5452 for (entry = *ptr; entry; ptr = &entry->next, entry = *ptr)
5453 if (entry->socket == socket) {
5454 *ptr = entry->next;
5455 qemu_free(entry);
5459 void pcmcia_info(void)
5461 struct pcmcia_socket_entry_s *iter;
5462 if (!pcmcia_sockets)
5463 term_printf("No PCMCIA sockets\n");
5465 for (iter = pcmcia_sockets; iter; iter = iter->next)
5466 term_printf("%s: %s\n", iter->socket->slot_string,
5467 iter->socket->attached ? iter->socket->card_string :
5468 "Empty");
5471 /***********************************************************/
5472 /* dumb display */
5474 static void dumb_update(DisplayState *ds, int x, int y, int w, int h)
5478 static void dumb_resize(DisplayState *ds, int w, int h)
5482 static void dumb_refresh(DisplayState *ds)
5484 #if defined(CONFIG_SDL)
5485 vga_hw_update();
5486 #endif
5489 static void dumb_display_init(DisplayState *ds)
5491 ds->data = NULL;
5492 ds->linesize = 0;
5493 ds->depth = 0;
5494 ds->dpy_update = dumb_update;
5495 ds->dpy_resize = dumb_resize;
5496 ds->dpy_refresh = dumb_refresh;
5499 /***********************************************************/
5500 /* I/O handling */
5502 #define MAX_IO_HANDLERS 64
5504 typedef struct IOHandlerRecord {
5505 int fd;
5506 IOCanRWHandler *fd_read_poll;
5507 IOHandler *fd_read;
5508 IOHandler *fd_write;
5509 int deleted;
5510 void *opaque;
5511 /* temporary data */
5512 struct pollfd *ufd;
5513 struct IOHandlerRecord *next;
5514 } IOHandlerRecord;
5516 static IOHandlerRecord *first_io_handler;
5518 /* XXX: fd_read_poll should be suppressed, but an API change is
5519 necessary in the character devices to suppress fd_can_read(). */
5520 int qemu_set_fd_handler2(int fd,
5521 IOCanRWHandler *fd_read_poll,
5522 IOHandler *fd_read,
5523 IOHandler *fd_write,
5524 void *opaque)
5526 IOHandlerRecord **pioh, *ioh;
5528 if (!fd_read && !fd_write) {
5529 pioh = &first_io_handler;
5530 for(;;) {
5531 ioh = *pioh;
5532 if (ioh == NULL)
5533 break;
5534 if (ioh->fd == fd) {
5535 ioh->deleted = 1;
5536 break;
5538 pioh = &ioh->next;
5540 } else {
5541 for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
5542 if (ioh->fd == fd)
5543 goto found;
5545 ioh = qemu_mallocz(sizeof(IOHandlerRecord));
5546 if (!ioh)
5547 return -1;
5548 ioh->next = first_io_handler;
5549 first_io_handler = ioh;
5550 found:
5551 ioh->fd = fd;
5552 ioh->fd_read_poll = fd_read_poll;
5553 ioh->fd_read = fd_read;
5554 ioh->fd_write = fd_write;
5555 ioh->opaque = opaque;
5556 ioh->deleted = 0;
5558 return 0;
5561 int qemu_set_fd_handler(int fd,
5562 IOHandler *fd_read,
5563 IOHandler *fd_write,
5564 void *opaque)
5566 return qemu_set_fd_handler2(fd, NULL, fd_read, fd_write, opaque);
5569 /***********************************************************/
5570 /* Polling handling */
5572 typedef struct PollingEntry {
5573 PollingFunc *func;
5574 void *opaque;
5575 struct PollingEntry *next;
5576 } PollingEntry;
5578 static PollingEntry *first_polling_entry;
5580 int qemu_add_polling_cb(PollingFunc *func, void *opaque)
5582 PollingEntry **ppe, *pe;
5583 pe = qemu_mallocz(sizeof(PollingEntry));
5584 if (!pe)
5585 return -1;
5586 pe->func = func;
5587 pe->opaque = opaque;
5588 for(ppe = &first_polling_entry; *ppe != NULL; ppe = &(*ppe)->next);
5589 *ppe = pe;
5590 return 0;
5593 void qemu_del_polling_cb(PollingFunc *func, void *opaque)
5595 PollingEntry **ppe, *pe;
5596 for(ppe = &first_polling_entry; *ppe != NULL; ppe = &(*ppe)->next) {
5597 pe = *ppe;
5598 if (pe->func == func && pe->opaque == opaque) {
5599 *ppe = pe->next;
5600 qemu_free(pe);
5601 break;
5606 #ifdef _WIN32
5607 /***********************************************************/
5608 /* Wait objects support */
5609 typedef struct WaitObjects {
5610 int num;
5611 HANDLE events[MAXIMUM_WAIT_OBJECTS + 1];
5612 WaitObjectFunc *func[MAXIMUM_WAIT_OBJECTS + 1];
5613 void *opaque[MAXIMUM_WAIT_OBJECTS + 1];
5614 } WaitObjects;
5616 static WaitObjects wait_objects = {0};
5618 int qemu_add_wait_object(HANDLE handle, WaitObjectFunc *func, void *opaque)
5620 WaitObjects *w = &wait_objects;
5622 if (w->num >= MAXIMUM_WAIT_OBJECTS)
5623 return -1;
5624 w->events[w->num] = handle;
5625 w->func[w->num] = func;
5626 w->opaque[w->num] = opaque;
5627 w->num++;
5628 return 0;
5631 void qemu_del_wait_object(HANDLE handle, WaitObjectFunc *func, void *opaque)
5633 int i, found;
5634 WaitObjects *w = &wait_objects;
5636 found = 0;
5637 for (i = 0; i < w->num; i++) {
5638 if (w->events[i] == handle)
5639 found = 1;
5640 if (found) {
5641 w->events[i] = w->events[i + 1];
5642 w->func[i] = w->func[i + 1];
5643 w->opaque[i] = w->opaque[i + 1];
5646 if (found)
5647 w->num--;
5649 #endif
5651 /***********************************************************/
5652 /* savevm/loadvm support */
5654 #define IO_BUF_SIZE 32768
5656 struct QEMUFile {
5657 FILE *outfile;
5658 BlockDriverState *bs;
5659 int is_file;
5660 int is_writable;
5661 int64_t base_offset;
5662 int64_t buf_offset; /* start of buffer when writing, end of buffer
5663 when reading */
5664 int buf_index;
5665 int buf_size; /* 0 when writing */
5666 uint8_t buf[IO_BUF_SIZE];
5669 QEMUFile *qemu_fopen(const char *filename, const char *mode)
5671 QEMUFile *f;
5673 f = qemu_mallocz(sizeof(QEMUFile));
5674 if (!f)
5675 return NULL;
5676 if (!strcmp(mode, "wb")) {
5677 f->is_writable = 1;
5678 } else if (!strcmp(mode, "rb")) {
5679 f->is_writable = 0;
5680 } else {
5681 goto fail;
5683 f->outfile = fopen(filename, mode);
5684 if (!f->outfile)
5685 goto fail;
5686 f->is_file = 1;
5687 return f;
5688 fail:
5689 if (f->outfile)
5690 fclose(f->outfile);
5691 qemu_free(f);
5692 return NULL;
5695 static QEMUFile *qemu_fopen_bdrv(BlockDriverState *bs, int64_t offset, int is_writable)
5697 QEMUFile *f;
5699 f = qemu_mallocz(sizeof(QEMUFile));
5700 if (!f)
5701 return NULL;
5702 f->is_file = 0;
5703 f->bs = bs;
5704 f->is_writable = is_writable;
5705 f->base_offset = offset;
5706 return f;
5709 void qemu_fflush(QEMUFile *f)
5711 if (!f->is_writable)
5712 return;
5713 if (f->buf_index > 0) {
5714 if (f->is_file) {
5715 fseek(f->outfile, f->buf_offset, SEEK_SET);
5716 fwrite(f->buf, 1, f->buf_index, f->outfile);
5717 } else {
5718 bdrv_pwrite(f->bs, f->base_offset + f->buf_offset,
5719 f->buf, f->buf_index);
5721 f->buf_offset += f->buf_index;
5722 f->buf_index = 0;
5726 static void qemu_fill_buffer(QEMUFile *f)
5728 int len;
5730 if (f->is_writable)
5731 return;
5732 if (f->is_file) {
5733 fseek(f->outfile, f->buf_offset, SEEK_SET);
5734 len = fread(f->buf, 1, IO_BUF_SIZE, f->outfile);
5735 if (len < 0)
5736 len = 0;
5737 } else {
5738 len = bdrv_pread(f->bs, f->base_offset + f->buf_offset,
5739 f->buf, IO_BUF_SIZE);
5740 if (len < 0)
5741 len = 0;
5743 f->buf_index = 0;
5744 f->buf_size = len;
5745 f->buf_offset += len;
5748 void qemu_fclose(QEMUFile *f)
5750 if (f->is_writable)
5751 qemu_fflush(f);
5752 if (f->is_file) {
5753 fclose(f->outfile);
5755 qemu_free(f);
5758 void qemu_put_buffer(QEMUFile *f, const uint8_t *buf, int size)
5760 int l;
5761 while (size > 0) {
5762 l = IO_BUF_SIZE - f->buf_index;
5763 if (l > size)
5764 l = size;
5765 memcpy(f->buf + f->buf_index, buf, l);
5766 f->buf_index += l;
5767 buf += l;
5768 size -= l;
5769 if (f->buf_index >= IO_BUF_SIZE)
5770 qemu_fflush(f);
5774 void qemu_put_byte(QEMUFile *f, int v)
5776 f->buf[f->buf_index++] = v;
5777 if (f->buf_index >= IO_BUF_SIZE)
5778 qemu_fflush(f);
5781 int qemu_get_buffer(QEMUFile *f, uint8_t *buf, int size1)
5783 int size, l;
5785 size = size1;
5786 while (size > 0) {
5787 l = f->buf_size - f->buf_index;
5788 if (l == 0) {
5789 qemu_fill_buffer(f);
5790 l = f->buf_size - f->buf_index;
5791 if (l == 0)
5792 break;
5794 if (l > size)
5795 l = size;
5796 memcpy(buf, f->buf + f->buf_index, l);
5797 f->buf_index += l;
5798 buf += l;
5799 size -= l;
5801 return size1 - size;
5804 int qemu_get_byte(QEMUFile *f)
5806 if (f->buf_index >= f->buf_size) {
5807 qemu_fill_buffer(f);
5808 if (f->buf_index >= f->buf_size)
5809 return 0;
5811 return f->buf[f->buf_index++];
5814 int64_t qemu_ftell(QEMUFile *f)
5816 return f->buf_offset - f->buf_size + f->buf_index;
5819 int64_t qemu_fseek(QEMUFile *f, int64_t pos, int whence)
5821 if (whence == SEEK_SET) {
5822 /* nothing to do */
5823 } else if (whence == SEEK_CUR) {
5824 pos += qemu_ftell(f);
5825 } else {
5826 /* SEEK_END not supported */
5827 return -1;
5829 if (f->is_writable) {
5830 qemu_fflush(f);
5831 f->buf_offset = pos;
5832 } else {
5833 f->buf_offset = pos;
5834 f->buf_index = 0;
5835 f->buf_size = 0;
5837 return pos;
5840 void qemu_put_be16(QEMUFile *f, unsigned int v)
5842 qemu_put_byte(f, v >> 8);
5843 qemu_put_byte(f, v);
5846 void qemu_put_be32(QEMUFile *f, unsigned int v)
5848 qemu_put_byte(f, v >> 24);
5849 qemu_put_byte(f, v >> 16);
5850 qemu_put_byte(f, v >> 8);
5851 qemu_put_byte(f, v);
5854 void qemu_put_be64(QEMUFile *f, uint64_t v)
5856 qemu_put_be32(f, v >> 32);
5857 qemu_put_be32(f, v);
5860 unsigned int qemu_get_be16(QEMUFile *f)
5862 unsigned int v;
5863 v = qemu_get_byte(f) << 8;
5864 v |= qemu_get_byte(f);
5865 return v;
5868 unsigned int qemu_get_be32(QEMUFile *f)
5870 unsigned int v;
5871 v = qemu_get_byte(f) << 24;
5872 v |= qemu_get_byte(f) << 16;
5873 v |= qemu_get_byte(f) << 8;
5874 v |= qemu_get_byte(f);
5875 return v;
5878 uint64_t qemu_get_be64(QEMUFile *f)
5880 uint64_t v;
5881 v = (uint64_t)qemu_get_be32(f) << 32;
5882 v |= qemu_get_be32(f);
5883 return v;
5886 typedef struct SaveStateEntry {
5887 char idstr[256];
5888 int instance_id;
5889 int version_id;
5890 SaveStateHandler *save_state;
5891 LoadStateHandler *load_state;
5892 void *opaque;
5893 struct SaveStateEntry *next;
5894 } SaveStateEntry;
5896 static SaveStateEntry *first_se;
5898 int register_savevm(const char *idstr,
5899 int instance_id,
5900 int version_id,
5901 SaveStateHandler *save_state,
5902 LoadStateHandler *load_state,
5903 void *opaque)
5905 SaveStateEntry *se, **pse;
5907 se = qemu_malloc(sizeof(SaveStateEntry));
5908 if (!se)
5909 return -1;
5910 pstrcpy(se->idstr, sizeof(se->idstr), idstr);
5911 se->instance_id = instance_id;
5912 se->version_id = version_id;
5913 se->save_state = save_state;
5914 se->load_state = load_state;
5915 se->opaque = opaque;
5916 se->next = NULL;
5918 /* add at the end of list */
5919 pse = &first_se;
5920 while (*pse != NULL)
5921 pse = &(*pse)->next;
5922 *pse = se;
5923 return 0;
5926 #define QEMU_VM_FILE_MAGIC 0x5145564d
5927 #define QEMU_VM_FILE_VERSION 0x00000002
5929 static int qemu_savevm_state(QEMUFile *f)
5931 SaveStateEntry *se;
5932 int len, ret;
5933 int64_t cur_pos, len_pos, total_len_pos;
5935 qemu_put_be32(f, QEMU_VM_FILE_MAGIC);
5936 qemu_put_be32(f, QEMU_VM_FILE_VERSION);
5937 total_len_pos = qemu_ftell(f);
5938 qemu_put_be64(f, 0); /* total size */
5940 for(se = first_se; se != NULL; se = se->next) {
5941 /* ID string */
5942 len = strlen(se->idstr);
5943 qemu_put_byte(f, len);
5944 qemu_put_buffer(f, (uint8_t *)se->idstr, len);
5946 qemu_put_be32(f, se->instance_id);
5947 qemu_put_be32(f, se->version_id);
5949 /* record size: filled later */
5950 len_pos = qemu_ftell(f);
5951 qemu_put_be32(f, 0);
5952 se->save_state(f, se->opaque);
5954 /* fill record size */
5955 cur_pos = qemu_ftell(f);
5956 len = cur_pos - len_pos - 4;
5957 qemu_fseek(f, len_pos, SEEK_SET);
5958 qemu_put_be32(f, len);
5959 qemu_fseek(f, cur_pos, SEEK_SET);
5961 cur_pos = qemu_ftell(f);
5962 qemu_fseek(f, total_len_pos, SEEK_SET);
5963 qemu_put_be64(f, cur_pos - total_len_pos - 8);
5964 qemu_fseek(f, cur_pos, SEEK_SET);
5966 ret = 0;
5967 return ret;
5970 static SaveStateEntry *find_se(const char *idstr, int instance_id)
5972 SaveStateEntry *se;
5974 for(se = first_se; se != NULL; se = se->next) {
5975 if (!strcmp(se->idstr, idstr) &&
5976 instance_id == se->instance_id)
5977 return se;
5979 return NULL;
5982 static int qemu_loadvm_state(QEMUFile *f)
5984 SaveStateEntry *se;
5985 int len, ret, instance_id, record_len, version_id;
5986 int64_t total_len, end_pos, cur_pos;
5987 unsigned int v;
5988 char idstr[256];
5990 v = qemu_get_be32(f);
5991 if (v != QEMU_VM_FILE_MAGIC)
5992 goto fail;
5993 v = qemu_get_be32(f);
5994 if (v != QEMU_VM_FILE_VERSION) {
5995 fail:
5996 ret = -1;
5997 goto the_end;
5999 total_len = qemu_get_be64(f);
6000 end_pos = total_len + qemu_ftell(f);
6001 for(;;) {
6002 if (qemu_ftell(f) >= end_pos)
6003 break;
6004 len = qemu_get_byte(f);
6005 qemu_get_buffer(f, (uint8_t *)idstr, len);
6006 idstr[len] = '\0';
6007 instance_id = qemu_get_be32(f);
6008 version_id = qemu_get_be32(f);
6009 record_len = qemu_get_be32(f);
6010 #if 0
6011 printf("idstr=%s instance=0x%x version=%d len=%d\n",
6012 idstr, instance_id, version_id, record_len);
6013 #endif
6014 cur_pos = qemu_ftell(f);
6015 se = find_se(idstr, instance_id);
6016 if (!se) {
6017 fprintf(stderr, "qemu: warning: instance 0x%x of device '%s' not present in current VM\n",
6018 instance_id, idstr);
6019 } else {
6020 ret = se->load_state(f, se->opaque, version_id);
6021 if (ret < 0) {
6022 fprintf(stderr, "qemu: warning: error while loading state for instance 0x%x of device '%s'\n",
6023 instance_id, idstr);
6026 /* always seek to exact end of record */
6027 qemu_fseek(f, cur_pos + record_len, SEEK_SET);
6029 ret = 0;
6030 the_end:
6031 return ret;
6034 /* device can contain snapshots */
6035 static int bdrv_can_snapshot(BlockDriverState *bs)
6037 return (bs &&
6038 !bdrv_is_removable(bs) &&
6039 !bdrv_is_read_only(bs));
6042 /* device must be snapshots in order to have a reliable snapshot */
6043 static int bdrv_has_snapshot(BlockDriverState *bs)
6045 return (bs &&
6046 !bdrv_is_removable(bs) &&
6047 !bdrv_is_read_only(bs));
6050 static BlockDriverState *get_bs_snapshots(void)
6052 BlockDriverState *bs;
6053 int i;
6055 if (bs_snapshots)
6056 return bs_snapshots;
6057 for(i = 0; i <= nb_drives; i++) {
6058 bs = drives_table[i].bdrv;
6059 if (bdrv_can_snapshot(bs))
6060 goto ok;
6062 return NULL;
6064 bs_snapshots = bs;
6065 return bs;
6068 static int bdrv_snapshot_find(BlockDriverState *bs, QEMUSnapshotInfo *sn_info,
6069 const char *name)
6071 QEMUSnapshotInfo *sn_tab, *sn;
6072 int nb_sns, i, ret;
6074 ret = -ENOENT;
6075 nb_sns = bdrv_snapshot_list(bs, &sn_tab);
6076 if (nb_sns < 0)
6077 return ret;
6078 for(i = 0; i < nb_sns; i++) {
6079 sn = &sn_tab[i];
6080 if (!strcmp(sn->id_str, name) || !strcmp(sn->name, name)) {
6081 *sn_info = *sn;
6082 ret = 0;
6083 break;
6086 qemu_free(sn_tab);
6087 return ret;
6090 void do_savevm(const char *name)
6092 BlockDriverState *bs, *bs1;
6093 QEMUSnapshotInfo sn1, *sn = &sn1, old_sn1, *old_sn = &old_sn1;
6094 int must_delete, ret, i;
6095 BlockDriverInfo bdi1, *bdi = &bdi1;
6096 QEMUFile *f;
6097 int saved_vm_running;
6098 #ifdef _WIN32
6099 struct _timeb tb;
6100 #else
6101 struct timeval tv;
6102 #endif
6104 bs = get_bs_snapshots();
6105 if (!bs) {
6106 term_printf("No block device can accept snapshots\n");
6107 return;
6110 /* ??? Should this occur after vm_stop? */
6111 qemu_aio_flush();
6113 saved_vm_running = vm_running;
6114 vm_stop(0);
6116 must_delete = 0;
6117 if (name) {
6118 ret = bdrv_snapshot_find(bs, old_sn, name);
6119 if (ret >= 0) {
6120 must_delete = 1;
6123 memset(sn, 0, sizeof(*sn));
6124 if (must_delete) {
6125 pstrcpy(sn->name, sizeof(sn->name), old_sn->name);
6126 pstrcpy(sn->id_str, sizeof(sn->id_str), old_sn->id_str);
6127 } else {
6128 if (name)
6129 pstrcpy(sn->name, sizeof(sn->name), name);
6132 /* fill auxiliary fields */
6133 #ifdef _WIN32
6134 _ftime(&tb);
6135 sn->date_sec = tb.time;
6136 sn->date_nsec = tb.millitm * 1000000;
6137 #else
6138 gettimeofday(&tv, NULL);
6139 sn->date_sec = tv.tv_sec;
6140 sn->date_nsec = tv.tv_usec * 1000;
6141 #endif
6142 sn->vm_clock_nsec = qemu_get_clock(vm_clock);
6144 if (bdrv_get_info(bs, bdi) < 0 || bdi->vm_state_offset <= 0) {
6145 term_printf("Device %s does not support VM state snapshots\n",
6146 bdrv_get_device_name(bs));
6147 goto the_end;
6150 /* save the VM state */
6151 f = qemu_fopen_bdrv(bs, bdi->vm_state_offset, 1);
6152 if (!f) {
6153 term_printf("Could not open VM state file\n");
6154 goto the_end;
6156 ret = qemu_savevm_state(f);
6157 sn->vm_state_size = qemu_ftell(f);
6158 qemu_fclose(f);
6159 if (ret < 0) {
6160 term_printf("Error %d while writing VM\n", ret);
6161 goto the_end;
6164 /* create the snapshots */
6166 for(i = 0; i < nb_drives; i++) {
6167 bs1 = drives_table[i].bdrv;
6168 if (bdrv_has_snapshot(bs1)) {
6169 if (must_delete) {
6170 ret = bdrv_snapshot_delete(bs1, old_sn->id_str);
6171 if (ret < 0) {
6172 term_printf("Error while deleting snapshot on '%s'\n",
6173 bdrv_get_device_name(bs1));
6176 ret = bdrv_snapshot_create(bs1, sn);
6177 if (ret < 0) {
6178 term_printf("Error while creating snapshot on '%s'\n",
6179 bdrv_get_device_name(bs1));
6184 the_end:
6185 if (saved_vm_running)
6186 vm_start();
6189 void do_loadvm(const char *name)
6191 BlockDriverState *bs, *bs1;
6192 BlockDriverInfo bdi1, *bdi = &bdi1;
6193 QEMUFile *f;
6194 int i, ret;
6195 int saved_vm_running;
6197 bs = get_bs_snapshots();
6198 if (!bs) {
6199 term_printf("No block device supports snapshots\n");
6200 return;
6203 /* Flush all IO requests so they don't interfere with the new state. */
6204 qemu_aio_flush();
6206 saved_vm_running = vm_running;
6207 vm_stop(0);
6209 for(i = 0; i <= nb_drives; i++) {
6210 bs1 = drives_table[i].bdrv;
6211 if (bdrv_has_snapshot(bs1)) {
6212 ret = bdrv_snapshot_goto(bs1, name);
6213 if (ret < 0) {
6214 if (bs != bs1)
6215 term_printf("Warning: ");
6216 switch(ret) {
6217 case -ENOTSUP:
6218 term_printf("Snapshots not supported on device '%s'\n",
6219 bdrv_get_device_name(bs1));
6220 break;
6221 case -ENOENT:
6222 term_printf("Could not find snapshot '%s' on device '%s'\n",
6223 name, bdrv_get_device_name(bs1));
6224 break;
6225 default:
6226 term_printf("Error %d while activating snapshot on '%s'\n",
6227 ret, bdrv_get_device_name(bs1));
6228 break;
6230 /* fatal on snapshot block device */
6231 if (bs == bs1)
6232 goto the_end;
6237 if (bdrv_get_info(bs, bdi) < 0 || bdi->vm_state_offset <= 0) {
6238 term_printf("Device %s does not support VM state snapshots\n",
6239 bdrv_get_device_name(bs));
6240 return;
6243 /* restore the VM state */
6244 f = qemu_fopen_bdrv(bs, bdi->vm_state_offset, 0);
6245 if (!f) {
6246 term_printf("Could not open VM state file\n");
6247 goto the_end;
6249 ret = qemu_loadvm_state(f);
6250 qemu_fclose(f);
6251 if (ret < 0) {
6252 term_printf("Error %d while loading VM state\n", ret);
6254 the_end:
6255 if (saved_vm_running)
6256 vm_start();
6259 void do_delvm(const char *name)
6261 BlockDriverState *bs, *bs1;
6262 int i, ret;
6264 bs = get_bs_snapshots();
6265 if (!bs) {
6266 term_printf("No block device supports snapshots\n");
6267 return;
6270 for(i = 0; i <= nb_drives; i++) {
6271 bs1 = drives_table[i].bdrv;
6272 if (bdrv_has_snapshot(bs1)) {
6273 ret = bdrv_snapshot_delete(bs1, name);
6274 if (ret < 0) {
6275 if (ret == -ENOTSUP)
6276 term_printf("Snapshots not supported on device '%s'\n",
6277 bdrv_get_device_name(bs1));
6278 else
6279 term_printf("Error %d while deleting snapshot on '%s'\n",
6280 ret, bdrv_get_device_name(bs1));
6286 void do_info_snapshots(void)
6288 BlockDriverState *bs, *bs1;
6289 QEMUSnapshotInfo *sn_tab, *sn;
6290 int nb_sns, i;
6291 char buf[256];
6293 bs = get_bs_snapshots();
6294 if (!bs) {
6295 term_printf("No available block device supports snapshots\n");
6296 return;
6298 term_printf("Snapshot devices:");
6299 for(i = 0; i <= nb_drives; i++) {
6300 bs1 = drives_table[i].bdrv;
6301 if (bdrv_has_snapshot(bs1)) {
6302 if (bs == bs1)
6303 term_printf(" %s", bdrv_get_device_name(bs1));
6306 term_printf("\n");
6308 nb_sns = bdrv_snapshot_list(bs, &sn_tab);
6309 if (nb_sns < 0) {
6310 term_printf("bdrv_snapshot_list: error %d\n", nb_sns);
6311 return;
6313 term_printf("Snapshot list (from %s):\n", bdrv_get_device_name(bs));
6314 term_printf("%s\n", bdrv_snapshot_dump(buf, sizeof(buf), NULL));
6315 for(i = 0; i < nb_sns; i++) {
6316 sn = &sn_tab[i];
6317 term_printf("%s\n", bdrv_snapshot_dump(buf, sizeof(buf), sn));
6319 qemu_free(sn_tab);
6322 /***********************************************************/
6323 /* cpu save/restore */
6325 #if defined(TARGET_I386)
6327 static void cpu_put_seg(QEMUFile *f, SegmentCache *dt)
6329 qemu_put_be32(f, dt->selector);
6330 qemu_put_betl(f, dt->base);
6331 qemu_put_be32(f, dt->limit);
6332 qemu_put_be32(f, dt->flags);
6335 static void cpu_get_seg(QEMUFile *f, SegmentCache *dt)
6337 dt->selector = qemu_get_be32(f);
6338 dt->base = qemu_get_betl(f);
6339 dt->limit = qemu_get_be32(f);
6340 dt->flags = qemu_get_be32(f);
6343 void cpu_save(QEMUFile *f, void *opaque)
6345 CPUState *env = opaque;
6346 uint16_t fptag, fpus, fpuc, fpregs_format;
6347 uint32_t hflags;
6348 int i;
6350 for(i = 0; i < CPU_NB_REGS; i++)
6351 qemu_put_betls(f, &env->regs[i]);
6352 qemu_put_betls(f, &env->eip);
6353 qemu_put_betls(f, &env->eflags);
6354 hflags = env->hflags; /* XXX: suppress most of the redundant hflags */
6355 qemu_put_be32s(f, &hflags);
6357 /* FPU */
6358 fpuc = env->fpuc;
6359 fpus = (env->fpus & ~0x3800) | (env->fpstt & 0x7) << 11;
6360 fptag = 0;
6361 for(i = 0; i < 8; i++) {
6362 fptag |= ((!env->fptags[i]) << i);
6365 qemu_put_be16s(f, &fpuc);
6366 qemu_put_be16s(f, &fpus);
6367 qemu_put_be16s(f, &fptag);
6369 #ifdef USE_X86LDOUBLE
6370 fpregs_format = 0;
6371 #else
6372 fpregs_format = 1;
6373 #endif
6374 qemu_put_be16s(f, &fpregs_format);
6376 for(i = 0; i < 8; i++) {
6377 #ifdef USE_X86LDOUBLE
6379 uint64_t mant;
6380 uint16_t exp;
6381 /* we save the real CPU data (in case of MMX usage only 'mant'
6382 contains the MMX register */
6383 cpu_get_fp80(&mant, &exp, env->fpregs[i].d);
6384 qemu_put_be64(f, mant);
6385 qemu_put_be16(f, exp);
6387 #else
6388 /* if we use doubles for float emulation, we save the doubles to
6389 avoid losing information in case of MMX usage. It can give
6390 problems if the image is restored on a CPU where long
6391 doubles are used instead. */
6392 qemu_put_be64(f, env->fpregs[i].mmx.MMX_Q(0));
6393 #endif
6396 for(i = 0; i < 6; i++)
6397 cpu_put_seg(f, &env->segs[i]);
6398 cpu_put_seg(f, &env->ldt);
6399 cpu_put_seg(f, &env->tr);
6400 cpu_put_seg(f, &env->gdt);
6401 cpu_put_seg(f, &env->idt);
6403 qemu_put_be32s(f, &env->sysenter_cs);
6404 qemu_put_be32s(f, &env->sysenter_esp);
6405 qemu_put_be32s(f, &env->sysenter_eip);
6407 qemu_put_betls(f, &env->cr[0]);
6408 qemu_put_betls(f, &env->cr[2]);
6409 qemu_put_betls(f, &env->cr[3]);
6410 qemu_put_betls(f, &env->cr[4]);
6412 for(i = 0; i < 8; i++)
6413 qemu_put_betls(f, &env->dr[i]);
6415 /* MMU */
6416 qemu_put_be32s(f, &env->a20_mask);
6418 /* XMM */
6419 qemu_put_be32s(f, &env->mxcsr);
6420 for(i = 0; i < CPU_NB_REGS; i++) {
6421 qemu_put_be64s(f, &env->xmm_regs[i].XMM_Q(0));
6422 qemu_put_be64s(f, &env->xmm_regs[i].XMM_Q(1));
6425 #ifdef TARGET_X86_64
6426 qemu_put_be64s(f, &env->efer);
6427 qemu_put_be64s(f, &env->star);
6428 qemu_put_be64s(f, &env->lstar);
6429 qemu_put_be64s(f, &env->cstar);
6430 qemu_put_be64s(f, &env->fmask);
6431 qemu_put_be64s(f, &env->kernelgsbase);
6432 #endif
6433 qemu_put_be32s(f, &env->smbase);
6436 #ifdef USE_X86LDOUBLE
6437 /* XXX: add that in a FPU generic layer */
6438 union x86_longdouble {
6439 uint64_t mant;
6440 uint16_t exp;
6443 #define MANTD1(fp) (fp & ((1LL << 52) - 1))
6444 #define EXPBIAS1 1023
6445 #define EXPD1(fp) ((fp >> 52) & 0x7FF)
6446 #define SIGND1(fp) ((fp >> 32) & 0x80000000)
6448 static void fp64_to_fp80(union x86_longdouble *p, uint64_t temp)
6450 int e;
6451 /* mantissa */
6452 p->mant = (MANTD1(temp) << 11) | (1LL << 63);
6453 /* exponent + sign */
6454 e = EXPD1(temp) - EXPBIAS1 + 16383;
6455 e |= SIGND1(temp) >> 16;
6456 p->exp = e;
6458 #endif
6460 int cpu_load(QEMUFile *f, void *opaque, int version_id)
6462 CPUState *env = opaque;
6463 int i, guess_mmx;
6464 uint32_t hflags;
6465 uint16_t fpus, fpuc, fptag, fpregs_format;
6467 if (version_id != 3 && version_id != 4)
6468 return -EINVAL;
6469 for(i = 0; i < CPU_NB_REGS; i++)
6470 qemu_get_betls(f, &env->regs[i]);
6471 qemu_get_betls(f, &env->eip);
6472 qemu_get_betls(f, &env->eflags);
6473 qemu_get_be32s(f, &hflags);
6475 qemu_get_be16s(f, &fpuc);
6476 qemu_get_be16s(f, &fpus);
6477 qemu_get_be16s(f, &fptag);
6478 qemu_get_be16s(f, &fpregs_format);
6480 /* NOTE: we cannot always restore the FPU state if the image come
6481 from a host with a different 'USE_X86LDOUBLE' define. We guess
6482 if we are in an MMX state to restore correctly in that case. */
6483 guess_mmx = ((fptag == 0xff) && (fpus & 0x3800) == 0);
6484 for(i = 0; i < 8; i++) {
6485 uint64_t mant;
6486 uint16_t exp;
6488 switch(fpregs_format) {
6489 case 0:
6490 mant = qemu_get_be64(f);
6491 exp = qemu_get_be16(f);
6492 #ifdef USE_X86LDOUBLE
6493 env->fpregs[i].d = cpu_set_fp80(mant, exp);
6494 #else
6495 /* difficult case */
6496 if (guess_mmx)
6497 env->fpregs[i].mmx.MMX_Q(0) = mant;
6498 else
6499 env->fpregs[i].d = cpu_set_fp80(mant, exp);
6500 #endif
6501 break;
6502 case 1:
6503 mant = qemu_get_be64(f);
6504 #ifdef USE_X86LDOUBLE
6506 union x86_longdouble *p;
6507 /* difficult case */
6508 p = (void *)&env->fpregs[i];
6509 if (guess_mmx) {
6510 p->mant = mant;
6511 p->exp = 0xffff;
6512 } else {
6513 fp64_to_fp80(p, mant);
6516 #else
6517 env->fpregs[i].mmx.MMX_Q(0) = mant;
6518 #endif
6519 break;
6520 default:
6521 return -EINVAL;
6525 env->fpuc = fpuc;
6526 /* XXX: restore FPU round state */
6527 env->fpstt = (fpus >> 11) & 7;
6528 env->fpus = fpus & ~0x3800;
6529 fptag ^= 0xff;
6530 for(i = 0; i < 8; i++) {
6531 env->fptags[i] = (fptag >> i) & 1;
6534 for(i = 0; i < 6; i++)
6535 cpu_get_seg(f, &env->segs[i]);
6536 cpu_get_seg(f, &env->ldt);
6537 cpu_get_seg(f, &env->tr);
6538 cpu_get_seg(f, &env->gdt);
6539 cpu_get_seg(f, &env->idt);
6541 qemu_get_be32s(f, &env->sysenter_cs);
6542 qemu_get_be32s(f, &env->sysenter_esp);
6543 qemu_get_be32s(f, &env->sysenter_eip);
6545 qemu_get_betls(f, &env->cr[0]);
6546 qemu_get_betls(f, &env->cr[2]);
6547 qemu_get_betls(f, &env->cr[3]);
6548 qemu_get_betls(f, &env->cr[4]);
6550 for(i = 0; i < 8; i++)
6551 qemu_get_betls(f, &env->dr[i]);
6553 /* MMU */
6554 qemu_get_be32s(f, &env->a20_mask);
6556 qemu_get_be32s(f, &env->mxcsr);
6557 for(i = 0; i < CPU_NB_REGS; i++) {
6558 qemu_get_be64s(f, &env->xmm_regs[i].XMM_Q(0));
6559 qemu_get_be64s(f, &env->xmm_regs[i].XMM_Q(1));
6562 #ifdef TARGET_X86_64
6563 qemu_get_be64s(f, &env->efer);
6564 qemu_get_be64s(f, &env->star);
6565 qemu_get_be64s(f, &env->lstar);
6566 qemu_get_be64s(f, &env->cstar);
6567 qemu_get_be64s(f, &env->fmask);
6568 qemu_get_be64s(f, &env->kernelgsbase);
6569 #endif
6570 if (version_id >= 4)
6571 qemu_get_be32s(f, &env->smbase);
6573 /* XXX: compute hflags from scratch, except for CPL and IIF */
6574 env->hflags = hflags;
6575 tlb_flush(env, 1);
6576 return 0;
6579 #elif defined(TARGET_PPC)
6580 void cpu_save(QEMUFile *f, void *opaque)
6584 int cpu_load(QEMUFile *f, void *opaque, int version_id)
6586 return 0;
6589 #elif defined(TARGET_MIPS)
6590 void cpu_save(QEMUFile *f, void *opaque)
6594 int cpu_load(QEMUFile *f, void *opaque, int version_id)
6596 return 0;
6599 #elif defined(TARGET_SPARC)
6600 void cpu_save(QEMUFile *f, void *opaque)
6602 CPUState *env = opaque;
6603 int i;
6604 uint32_t tmp;
6606 for(i = 0; i < 8; i++)
6607 qemu_put_betls(f, &env->gregs[i]);
6608 for(i = 0; i < NWINDOWS * 16; i++)
6609 qemu_put_betls(f, &env->regbase[i]);
6611 /* FPU */
6612 for(i = 0; i < TARGET_FPREGS; i++) {
6613 union {
6614 float32 f;
6615 uint32_t i;
6616 } u;
6617 u.f = env->fpr[i];
6618 qemu_put_be32(f, u.i);
6621 qemu_put_betls(f, &env->pc);
6622 qemu_put_betls(f, &env->npc);
6623 qemu_put_betls(f, &env->y);
6624 tmp = GET_PSR(env);
6625 qemu_put_be32(f, tmp);
6626 qemu_put_betls(f, &env->fsr);
6627 qemu_put_betls(f, &env->tbr);
6628 #ifndef TARGET_SPARC64
6629 qemu_put_be32s(f, &env->wim);
6630 /* MMU */
6631 for(i = 0; i < 16; i++)
6632 qemu_put_be32s(f, &env->mmuregs[i]);
6633 #endif
6636 int cpu_load(QEMUFile *f, void *opaque, int version_id)
6638 CPUState *env = opaque;
6639 int i;
6640 uint32_t tmp;
6642 for(i = 0; i < 8; i++)
6643 qemu_get_betls(f, &env->gregs[i]);
6644 for(i = 0; i < NWINDOWS * 16; i++)
6645 qemu_get_betls(f, &env->regbase[i]);
6647 /* FPU */
6648 for(i = 0; i < TARGET_FPREGS; i++) {
6649 union {
6650 float32 f;
6651 uint32_t i;
6652 } u;
6653 u.i = qemu_get_be32(f);
6654 env->fpr[i] = u.f;
6657 qemu_get_betls(f, &env->pc);
6658 qemu_get_betls(f, &env->npc);
6659 qemu_get_betls(f, &env->y);
6660 tmp = qemu_get_be32(f);
6661 env->cwp = 0; /* needed to ensure that the wrapping registers are
6662 correctly updated */
6663 PUT_PSR(env, tmp);
6664 qemu_get_betls(f, &env->fsr);
6665 qemu_get_betls(f, &env->tbr);
6666 #ifndef TARGET_SPARC64
6667 qemu_get_be32s(f, &env->wim);
6668 /* MMU */
6669 for(i = 0; i < 16; i++)
6670 qemu_get_be32s(f, &env->mmuregs[i]);
6671 #endif
6672 tlb_flush(env, 1);
6673 return 0;
6676 #elif defined(TARGET_ARM)
6678 void cpu_save(QEMUFile *f, void *opaque)
6680 int i;
6681 CPUARMState *env = (CPUARMState *)opaque;
6683 for (i = 0; i < 16; i++) {
6684 qemu_put_be32(f, env->regs[i]);
6686 qemu_put_be32(f, cpsr_read(env));
6687 qemu_put_be32(f, env->spsr);
6688 for (i = 0; i < 6; i++) {
6689 qemu_put_be32(f, env->banked_spsr[i]);
6690 qemu_put_be32(f, env->banked_r13[i]);
6691 qemu_put_be32(f, env->banked_r14[i]);
6693 for (i = 0; i < 5; i++) {
6694 qemu_put_be32(f, env->usr_regs[i]);
6695 qemu_put_be32(f, env->fiq_regs[i]);
6697 qemu_put_be32(f, env->cp15.c0_cpuid);
6698 qemu_put_be32(f, env->cp15.c0_cachetype);
6699 qemu_put_be32(f, env->cp15.c1_sys);
6700 qemu_put_be32(f, env->cp15.c1_coproc);
6701 qemu_put_be32(f, env->cp15.c1_xscaleauxcr);
6702 qemu_put_be32(f, env->cp15.c2_base0);
6703 qemu_put_be32(f, env->cp15.c2_base1);
6704 qemu_put_be32(f, env->cp15.c2_mask);
6705 qemu_put_be32(f, env->cp15.c2_data);
6706 qemu_put_be32(f, env->cp15.c2_insn);
6707 qemu_put_be32(f, env->cp15.c3);
6708 qemu_put_be32(f, env->cp15.c5_insn);
6709 qemu_put_be32(f, env->cp15.c5_data);
6710 for (i = 0; i < 8; i++) {
6711 qemu_put_be32(f, env->cp15.c6_region[i]);
6713 qemu_put_be32(f, env->cp15.c6_insn);
6714 qemu_put_be32(f, env->cp15.c6_data);
6715 qemu_put_be32(f, env->cp15.c9_insn);
6716 qemu_put_be32(f, env->cp15.c9_data);
6717 qemu_put_be32(f, env->cp15.c13_fcse);
6718 qemu_put_be32(f, env->cp15.c13_context);
6719 qemu_put_be32(f, env->cp15.c13_tls1);
6720 qemu_put_be32(f, env->cp15.c13_tls2);
6721 qemu_put_be32(f, env->cp15.c13_tls3);
6722 qemu_put_be32(f, env->cp15.c15_cpar);
6724 qemu_put_be32(f, env->features);
6726 if (arm_feature(env, ARM_FEATURE_VFP)) {
6727 for (i = 0; i < 16; i++) {
6728 CPU_DoubleU u;
6729 u.d = env->vfp.regs[i];
6730 qemu_put_be32(f, u.l.upper);
6731 qemu_put_be32(f, u.l.lower);
6733 for (i = 0; i < 16; i++) {
6734 qemu_put_be32(f, env->vfp.xregs[i]);
6737 /* TODO: Should use proper FPSCR access functions. */
6738 qemu_put_be32(f, env->vfp.vec_len);
6739 qemu_put_be32(f, env->vfp.vec_stride);
6741 if (arm_feature(env, ARM_FEATURE_VFP3)) {
6742 for (i = 16; i < 32; i++) {
6743 CPU_DoubleU u;
6744 u.d = env->vfp.regs[i];
6745 qemu_put_be32(f, u.l.upper);
6746 qemu_put_be32(f, u.l.lower);
6751 if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
6752 for (i = 0; i < 16; i++) {
6753 qemu_put_be64(f, env->iwmmxt.regs[i]);
6755 for (i = 0; i < 16; i++) {
6756 qemu_put_be32(f, env->iwmmxt.cregs[i]);
6760 if (arm_feature(env, ARM_FEATURE_M)) {
6761 qemu_put_be32(f, env->v7m.other_sp);
6762 qemu_put_be32(f, env->v7m.vecbase);
6763 qemu_put_be32(f, env->v7m.basepri);
6764 qemu_put_be32(f, env->v7m.control);
6765 qemu_put_be32(f, env->v7m.current_sp);
6766 qemu_put_be32(f, env->v7m.exception);
6770 int cpu_load(QEMUFile *f, void *opaque, int version_id)
6772 CPUARMState *env = (CPUARMState *)opaque;
6773 int i;
6775 if (version_id != ARM_CPU_SAVE_VERSION)
6776 return -EINVAL;
6778 for (i = 0; i < 16; i++) {
6779 env->regs[i] = qemu_get_be32(f);
6781 cpsr_write(env, qemu_get_be32(f), 0xffffffff);
6782 env->spsr = qemu_get_be32(f);
6783 for (i = 0; i < 6; i++) {
6784 env->banked_spsr[i] = qemu_get_be32(f);
6785 env->banked_r13[i] = qemu_get_be32(f);
6786 env->banked_r14[i] = qemu_get_be32(f);
6788 for (i = 0; i < 5; i++) {
6789 env->usr_regs[i] = qemu_get_be32(f);
6790 env->fiq_regs[i] = qemu_get_be32(f);
6792 env->cp15.c0_cpuid = qemu_get_be32(f);
6793 env->cp15.c0_cachetype = qemu_get_be32(f);
6794 env->cp15.c1_sys = qemu_get_be32(f);
6795 env->cp15.c1_coproc = qemu_get_be32(f);
6796 env->cp15.c1_xscaleauxcr = qemu_get_be32(f);
6797 env->cp15.c2_base0 = qemu_get_be32(f);
6798 env->cp15.c2_base1 = qemu_get_be32(f);
6799 env->cp15.c2_mask = qemu_get_be32(f);
6800 env->cp15.c2_data = qemu_get_be32(f);
6801 env->cp15.c2_insn = qemu_get_be32(f);
6802 env->cp15.c3 = qemu_get_be32(f);
6803 env->cp15.c5_insn = qemu_get_be32(f);
6804 env->cp15.c5_data = qemu_get_be32(f);
6805 for (i = 0; i < 8; i++) {
6806 env->cp15.c6_region[i] = qemu_get_be32(f);
6808 env->cp15.c6_insn = qemu_get_be32(f);
6809 env->cp15.c6_data = qemu_get_be32(f);
6810 env->cp15.c9_insn = qemu_get_be32(f);
6811 env->cp15.c9_data = qemu_get_be32(f);
6812 env->cp15.c13_fcse = qemu_get_be32(f);
6813 env->cp15.c13_context = qemu_get_be32(f);
6814 env->cp15.c13_tls1 = qemu_get_be32(f);
6815 env->cp15.c13_tls2 = qemu_get_be32(f);
6816 env->cp15.c13_tls3 = qemu_get_be32(f);
6817 env->cp15.c15_cpar = qemu_get_be32(f);
6819 env->features = qemu_get_be32(f);
6821 if (arm_feature(env, ARM_FEATURE_VFP)) {
6822 for (i = 0; i < 16; i++) {
6823 CPU_DoubleU u;
6824 u.l.upper = qemu_get_be32(f);
6825 u.l.lower = qemu_get_be32(f);
6826 env->vfp.regs[i] = u.d;
6828 for (i = 0; i < 16; i++) {
6829 env->vfp.xregs[i] = qemu_get_be32(f);
6832 /* TODO: Should use proper FPSCR access functions. */
6833 env->vfp.vec_len = qemu_get_be32(f);
6834 env->vfp.vec_stride = qemu_get_be32(f);
6836 if (arm_feature(env, ARM_FEATURE_VFP3)) {
6837 for (i = 0; i < 16; i++) {
6838 CPU_DoubleU u;
6839 u.l.upper = qemu_get_be32(f);
6840 u.l.lower = qemu_get_be32(f);
6841 env->vfp.regs[i] = u.d;
6846 if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
6847 for (i = 0; i < 16; i++) {
6848 env->iwmmxt.regs[i] = qemu_get_be64(f);
6850 for (i = 0; i < 16; i++) {
6851 env->iwmmxt.cregs[i] = qemu_get_be32(f);
6855 if (arm_feature(env, ARM_FEATURE_M)) {
6856 env->v7m.other_sp = qemu_get_be32(f);
6857 env->v7m.vecbase = qemu_get_be32(f);
6858 env->v7m.basepri = qemu_get_be32(f);
6859 env->v7m.control = qemu_get_be32(f);
6860 env->v7m.current_sp = qemu_get_be32(f);
6861 env->v7m.exception = qemu_get_be32(f);
6864 return 0;
6867 #else
6869 //#warning No CPU save/restore functions
6871 #endif
6873 /***********************************************************/
6874 /* ram save/restore */
6876 static int ram_get_page(QEMUFile *f, uint8_t *buf, int len)
6878 int v;
6880 v = qemu_get_byte(f);
6881 switch(v) {
6882 case 0:
6883 if (qemu_get_buffer(f, buf, len) != len)
6884 return -EIO;
6885 break;
6886 case 1:
6887 v = qemu_get_byte(f);
6888 memset(buf, v, len);
6889 break;
6890 default:
6891 return -EINVAL;
6893 return 0;
6896 static int ram_load_v1(QEMUFile *f, void *opaque)
6898 int ret;
6899 ram_addr_t i;
6901 if (qemu_get_be32(f) != phys_ram_size)
6902 return -EINVAL;
6903 for(i = 0; i < phys_ram_size; i+= TARGET_PAGE_SIZE) {
6904 ret = ram_get_page(f, phys_ram_base + i, TARGET_PAGE_SIZE);
6905 if (ret)
6906 return ret;
6908 return 0;
6911 #define BDRV_HASH_BLOCK_SIZE 1024
6912 #define IOBUF_SIZE 4096
6913 #define RAM_CBLOCK_MAGIC 0xfabe
6915 typedef struct RamCompressState {
6916 z_stream zstream;
6917 QEMUFile *f;
6918 uint8_t buf[IOBUF_SIZE];
6919 } RamCompressState;
6921 static int ram_compress_open(RamCompressState *s, QEMUFile *f)
6923 int ret;
6924 memset(s, 0, sizeof(*s));
6925 s->f = f;
6926 ret = deflateInit2(&s->zstream, 1,
6927 Z_DEFLATED, 15,
6928 9, Z_DEFAULT_STRATEGY);
6929 if (ret != Z_OK)
6930 return -1;
6931 s->zstream.avail_out = IOBUF_SIZE;
6932 s->zstream.next_out = s->buf;
6933 return 0;
6936 static void ram_put_cblock(RamCompressState *s, const uint8_t *buf, int len)
6938 qemu_put_be16(s->f, RAM_CBLOCK_MAGIC);
6939 qemu_put_be16(s->f, len);
6940 qemu_put_buffer(s->f, buf, len);
6943 static int ram_compress_buf(RamCompressState *s, const uint8_t *buf, int len)
6945 int ret;
6947 s->zstream.avail_in = len;
6948 s->zstream.next_in = (uint8_t *)buf;
6949 while (s->zstream.avail_in > 0) {
6950 ret = deflate(&s->zstream, Z_NO_FLUSH);
6951 if (ret != Z_OK)
6952 return -1;
6953 if (s->zstream.avail_out == 0) {
6954 ram_put_cblock(s, s->buf, IOBUF_SIZE);
6955 s->zstream.avail_out = IOBUF_SIZE;
6956 s->zstream.next_out = s->buf;
6959 return 0;
6962 static void ram_compress_close(RamCompressState *s)
6964 int len, ret;
6966 /* compress last bytes */
6967 for(;;) {
6968 ret = deflate(&s->zstream, Z_FINISH);
6969 if (ret == Z_OK || ret == Z_STREAM_END) {
6970 len = IOBUF_SIZE - s->zstream.avail_out;
6971 if (len > 0) {
6972 ram_put_cblock(s, s->buf, len);
6974 s->zstream.avail_out = IOBUF_SIZE;
6975 s->zstream.next_out = s->buf;
6976 if (ret == Z_STREAM_END)
6977 break;
6978 } else {
6979 goto fail;
6982 fail:
6983 deflateEnd(&s->zstream);
6986 typedef struct RamDecompressState {
6987 z_stream zstream;
6988 QEMUFile *f;
6989 uint8_t buf[IOBUF_SIZE];
6990 } RamDecompressState;
6992 static int ram_decompress_open(RamDecompressState *s, QEMUFile *f)
6994 int ret;
6995 memset(s, 0, sizeof(*s));
6996 s->f = f;
6997 ret = inflateInit(&s->zstream);
6998 if (ret != Z_OK)
6999 return -1;
7000 return 0;
7003 static int ram_decompress_buf(RamDecompressState *s, uint8_t *buf, int len)
7005 int ret, clen;
7007 s->zstream.avail_out = len;
7008 s->zstream.next_out = buf;
7009 while (s->zstream.avail_out > 0) {
7010 if (s->zstream.avail_in == 0) {
7011 if (qemu_get_be16(s->f) != RAM_CBLOCK_MAGIC)
7012 return -1;
7013 clen = qemu_get_be16(s->f);
7014 if (clen > IOBUF_SIZE)
7015 return -1;
7016 qemu_get_buffer(s->f, s->buf, clen);
7017 s->zstream.avail_in = clen;
7018 s->zstream.next_in = s->buf;
7020 ret = inflate(&s->zstream, Z_PARTIAL_FLUSH);
7021 if (ret != Z_OK && ret != Z_STREAM_END) {
7022 return -1;
7025 return 0;
7028 static void ram_decompress_close(RamDecompressState *s)
7030 inflateEnd(&s->zstream);
7033 static void ram_save(QEMUFile *f, void *opaque)
7035 ram_addr_t i;
7036 RamCompressState s1, *s = &s1;
7037 uint8_t buf[10];
7039 qemu_put_be32(f, phys_ram_size);
7040 if (ram_compress_open(s, f) < 0)
7041 return;
7042 for(i = 0; i < phys_ram_size; i+= BDRV_HASH_BLOCK_SIZE) {
7043 #if 0
7044 if (tight_savevm_enabled) {
7045 int64_t sector_num;
7046 int j;
7048 /* find if the memory block is available on a virtual
7049 block device */
7050 sector_num = -1;
7051 for(j = 0; j < nb_drives; j++) {
7052 sector_num = bdrv_hash_find(drives_table[j].bdrv,
7053 phys_ram_base + i,
7054 BDRV_HASH_BLOCK_SIZE);
7055 if (sector_num >= 0)
7056 break;
7058 if (j == nb_drives)
7059 goto normal_compress;
7060 buf[0] = 1;
7061 buf[1] = j;
7062 cpu_to_be64wu((uint64_t *)(buf + 2), sector_num);
7063 ram_compress_buf(s, buf, 10);
7064 } else
7065 #endif
7067 // normal_compress:
7068 buf[0] = 0;
7069 ram_compress_buf(s, buf, 1);
7070 ram_compress_buf(s, phys_ram_base + i, BDRV_HASH_BLOCK_SIZE);
7073 ram_compress_close(s);
7076 static int ram_load(QEMUFile *f, void *opaque, int version_id)
7078 RamDecompressState s1, *s = &s1;
7079 uint8_t buf[10];
7080 ram_addr_t i;
7082 if (version_id == 1)
7083 return ram_load_v1(f, opaque);
7084 if (version_id != 2)
7085 return -EINVAL;
7086 if (qemu_get_be32(f) != phys_ram_size)
7087 return -EINVAL;
7088 if (ram_decompress_open(s, f) < 0)
7089 return -EINVAL;
7090 for(i = 0; i < phys_ram_size; i+= BDRV_HASH_BLOCK_SIZE) {
7091 if (ram_decompress_buf(s, buf, 1) < 0) {
7092 fprintf(stderr, "Error while reading ram block header\n");
7093 goto error;
7095 if (buf[0] == 0) {
7096 if (ram_decompress_buf(s, phys_ram_base + i, BDRV_HASH_BLOCK_SIZE) < 0) {
7097 fprintf(stderr, "Error while reading ram block address=0x%08" PRIx64, (uint64_t)i);
7098 goto error;
7100 } else
7101 #if 0
7102 if (buf[0] == 1) {
7103 int bs_index;
7104 int64_t sector_num;
7106 ram_decompress_buf(s, buf + 1, 9);
7107 bs_index = buf[1];
7108 sector_num = be64_to_cpupu((const uint64_t *)(buf + 2));
7109 if (bs_index >= nb_drives) {
7110 fprintf(stderr, "Invalid block device index %d\n", bs_index);
7111 goto error;
7113 if (bdrv_read(drives_table[bs_index].bdrv, sector_num,
7114 phys_ram_base + i,
7115 BDRV_HASH_BLOCK_SIZE / 512) < 0) {
7116 fprintf(stderr, "Error while reading sector %d:%" PRId64 "\n",
7117 bs_index, sector_num);
7118 goto error;
7120 } else
7121 #endif
7123 error:
7124 printf("Error block header\n");
7125 return -EINVAL;
7128 ram_decompress_close(s);
7129 return 0;
7132 /***********************************************************/
7133 /* bottom halves (can be seen as timers which expire ASAP) */
7135 struct QEMUBH {
7136 QEMUBHFunc *cb;
7137 void *opaque;
7138 int scheduled;
7139 QEMUBH *next;
7142 static QEMUBH *first_bh = NULL;
7144 QEMUBH *qemu_bh_new(QEMUBHFunc *cb, void *opaque)
7146 QEMUBH *bh;
7147 bh = qemu_mallocz(sizeof(QEMUBH));
7148 if (!bh)
7149 return NULL;
7150 bh->cb = cb;
7151 bh->opaque = opaque;
7152 return bh;
7155 int qemu_bh_poll(void)
7157 QEMUBH *bh, **pbh;
7158 int ret;
7160 ret = 0;
7161 for(;;) {
7162 pbh = &first_bh;
7163 bh = *pbh;
7164 if (!bh)
7165 break;
7166 ret = 1;
7167 *pbh = bh->next;
7168 bh->scheduled = 0;
7169 bh->cb(bh->opaque);
7171 return ret;
7174 void qemu_bh_schedule(QEMUBH *bh)
7176 CPUState *env = cpu_single_env;
7177 if (bh->scheduled)
7178 return;
7179 bh->scheduled = 1;
7180 bh->next = first_bh;
7181 first_bh = bh;
7183 /* stop the currently executing CPU to execute the BH ASAP */
7184 if (env) {
7185 cpu_interrupt(env, CPU_INTERRUPT_EXIT);
7189 void qemu_bh_cancel(QEMUBH *bh)
7191 QEMUBH **pbh;
7192 if (bh->scheduled) {
7193 pbh = &first_bh;
7194 while (*pbh != bh)
7195 pbh = &(*pbh)->next;
7196 *pbh = bh->next;
7197 bh->scheduled = 0;
7201 void qemu_bh_delete(QEMUBH *bh)
7203 qemu_bh_cancel(bh);
7204 qemu_free(bh);
7207 /***********************************************************/
7208 /* machine registration */
7210 QEMUMachine *first_machine = NULL;
7212 int qemu_register_machine(QEMUMachine *m)
7214 QEMUMachine **pm;
7215 pm = &first_machine;
7216 while (*pm != NULL)
7217 pm = &(*pm)->next;
7218 m->next = NULL;
7219 *pm = m;
7220 return 0;
7223 static QEMUMachine *find_machine(const char *name)
7225 QEMUMachine *m;
7227 for(m = first_machine; m != NULL; m = m->next) {
7228 if (!strcmp(m->name, name))
7229 return m;
7231 return NULL;
7234 /***********************************************************/
7235 /* main execution loop */
7237 static void gui_update(void *opaque)
7239 DisplayState *ds = opaque;
7240 ds->dpy_refresh(ds);
7241 qemu_mod_timer(ds->gui_timer,
7242 (ds->gui_timer_interval ?
7243 ds->gui_timer_interval :
7244 GUI_REFRESH_INTERVAL)
7245 + qemu_get_clock(rt_clock));
7248 struct vm_change_state_entry {
7249 VMChangeStateHandler *cb;
7250 void *opaque;
7251 LIST_ENTRY (vm_change_state_entry) entries;
7254 static LIST_HEAD(vm_change_state_head, vm_change_state_entry) vm_change_state_head;
7256 VMChangeStateEntry *qemu_add_vm_change_state_handler(VMChangeStateHandler *cb,
7257 void *opaque)
7259 VMChangeStateEntry *e;
7261 e = qemu_mallocz(sizeof (*e));
7262 if (!e)
7263 return NULL;
7265 e->cb = cb;
7266 e->opaque = opaque;
7267 LIST_INSERT_HEAD(&vm_change_state_head, e, entries);
7268 return e;
7271 void qemu_del_vm_change_state_handler(VMChangeStateEntry *e)
7273 LIST_REMOVE (e, entries);
7274 qemu_free (e);
7277 static void vm_state_notify(int running)
7279 VMChangeStateEntry *e;
7281 for (e = vm_change_state_head.lh_first; e; e = e->entries.le_next) {
7282 e->cb(e->opaque, running);
7286 /* XXX: support several handlers */
7287 static VMStopHandler *vm_stop_cb;
7288 static void *vm_stop_opaque;
7290 int qemu_add_vm_stop_handler(VMStopHandler *cb, void *opaque)
7292 vm_stop_cb = cb;
7293 vm_stop_opaque = opaque;
7294 return 0;
7297 void qemu_del_vm_stop_handler(VMStopHandler *cb, void *opaque)
7299 vm_stop_cb = NULL;
7302 void vm_start(void)
7304 if (!vm_running) {
7305 cpu_enable_ticks();
7306 vm_running = 1;
7307 vm_state_notify(1);
7308 qemu_rearm_alarm_timer(alarm_timer);
7312 void vm_stop(int reason)
7314 if (vm_running) {
7315 cpu_disable_ticks();
7316 vm_running = 0;
7317 if (reason != 0) {
7318 if (vm_stop_cb) {
7319 vm_stop_cb(vm_stop_opaque, reason);
7322 vm_state_notify(0);
7326 /* reset/shutdown handler */
7328 typedef struct QEMUResetEntry {
7329 QEMUResetHandler *func;
7330 void *opaque;
7331 struct QEMUResetEntry *next;
7332 } QEMUResetEntry;
7334 static QEMUResetEntry *first_reset_entry;
7335 static int reset_requested;
7336 static int shutdown_requested;
7337 static int powerdown_requested;
7339 int qemu_shutdown_requested(void)
7341 int r = shutdown_requested;
7342 shutdown_requested = 0;
7343 return r;
7346 int qemu_reset_requested(void)
7348 int r = reset_requested;
7349 reset_requested = 0;
7350 return r;
7353 int qemu_powerdown_requested(void)
7355 int r = powerdown_requested;
7356 powerdown_requested = 0;
7357 return r;
7360 void qemu_register_reset(QEMUResetHandler *func, void *opaque)
7362 QEMUResetEntry **pre, *re;
7364 pre = &first_reset_entry;
7365 while (*pre != NULL)
7366 pre = &(*pre)->next;
7367 re = qemu_mallocz(sizeof(QEMUResetEntry));
7368 re->func = func;
7369 re->opaque = opaque;
7370 re->next = NULL;
7371 *pre = re;
7374 void qemu_system_reset(void)
7376 QEMUResetEntry *re;
7378 /* reset all devices */
7379 for(re = first_reset_entry; re != NULL; re = re->next) {
7380 re->func(re->opaque);
7384 void qemu_system_reset_request(void)
7386 if (no_reboot) {
7387 shutdown_requested = 1;
7388 } else {
7389 reset_requested = 1;
7391 if (cpu_single_env)
7392 cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
7395 void qemu_system_shutdown_request(void)
7397 shutdown_requested = 1;
7398 if (cpu_single_env)
7399 cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
7402 void qemu_system_powerdown_request(void)
7404 powerdown_requested = 1;
7405 if (cpu_single_env)
7406 cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
7409 void main_loop_wait(int timeout)
7411 IOHandlerRecord *ioh;
7412 fd_set rfds, wfds, xfds;
7413 int ret, nfds;
7414 #ifdef _WIN32
7415 int ret2, i;
7416 #endif
7417 struct timeval tv;
7418 PollingEntry *pe;
7421 /* XXX: need to suppress polling by better using win32 events */
7422 ret = 0;
7423 for(pe = first_polling_entry; pe != NULL; pe = pe->next) {
7424 ret |= pe->func(pe->opaque);
7426 #ifdef _WIN32
7427 if (ret == 0) {
7428 int err;
7429 WaitObjects *w = &wait_objects;
7431 ret = WaitForMultipleObjects(w->num, w->events, FALSE, timeout);
7432 if (WAIT_OBJECT_0 + 0 <= ret && ret <= WAIT_OBJECT_0 + w->num - 1) {
7433 if (w->func[ret - WAIT_OBJECT_0])
7434 w->func[ret - WAIT_OBJECT_0](w->opaque[ret - WAIT_OBJECT_0]);
7436 /* Check for additional signaled events */
7437 for(i = (ret - WAIT_OBJECT_0 + 1); i < w->num; i++) {
7439 /* Check if event is signaled */
7440 ret2 = WaitForSingleObject(w->events[i], 0);
7441 if(ret2 == WAIT_OBJECT_0) {
7442 if (w->func[i])
7443 w->func[i](w->opaque[i]);
7444 } else if (ret2 == WAIT_TIMEOUT) {
7445 } else {
7446 err = GetLastError();
7447 fprintf(stderr, "WaitForSingleObject error %d %d\n", i, err);
7450 } else if (ret == WAIT_TIMEOUT) {
7451 } else {
7452 err = GetLastError();
7453 fprintf(stderr, "WaitForMultipleObjects error %d %d\n", ret, err);
7456 #endif
7457 /* poll any events */
7458 /* XXX: separate device handlers from system ones */
7459 nfds = -1;
7460 FD_ZERO(&rfds);
7461 FD_ZERO(&wfds);
7462 FD_ZERO(&xfds);
7463 for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
7464 if (ioh->deleted)
7465 continue;
7466 if (ioh->fd_read &&
7467 (!ioh->fd_read_poll ||
7468 ioh->fd_read_poll(ioh->opaque) != 0)) {
7469 FD_SET(ioh->fd, &rfds);
7470 if (ioh->fd > nfds)
7471 nfds = ioh->fd;
7473 if (ioh->fd_write) {
7474 FD_SET(ioh->fd, &wfds);
7475 if (ioh->fd > nfds)
7476 nfds = ioh->fd;
7480 tv.tv_sec = 0;
7481 #ifdef _WIN32
7482 tv.tv_usec = 0;
7483 #else
7484 tv.tv_usec = timeout * 1000;
7485 #endif
7486 #if defined(CONFIG_SLIRP)
7487 if (slirp_inited) {
7488 slirp_select_fill(&nfds, &rfds, &wfds, &xfds);
7490 #endif
7491 ret = select(nfds + 1, &rfds, &wfds, &xfds, &tv);
7492 if (ret > 0) {
7493 IOHandlerRecord **pioh;
7495 for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
7496 if (!ioh->deleted && ioh->fd_read && FD_ISSET(ioh->fd, &rfds)) {
7497 ioh->fd_read(ioh->opaque);
7499 if (!ioh->deleted && ioh->fd_write && FD_ISSET(ioh->fd, &wfds)) {
7500 ioh->fd_write(ioh->opaque);
7504 /* remove deleted IO handlers */
7505 pioh = &first_io_handler;
7506 while (*pioh) {
7507 ioh = *pioh;
7508 if (ioh->deleted) {
7509 *pioh = ioh->next;
7510 qemu_free(ioh);
7511 } else
7512 pioh = &ioh->next;
7515 #if defined(CONFIG_SLIRP)
7516 if (slirp_inited) {
7517 if (ret < 0) {
7518 FD_ZERO(&rfds);
7519 FD_ZERO(&wfds);
7520 FD_ZERO(&xfds);
7522 slirp_select_poll(&rfds, &wfds, &xfds);
7524 #endif
7525 qemu_aio_poll();
7527 if (vm_running) {
7528 qemu_run_timers(&active_timers[QEMU_TIMER_VIRTUAL],
7529 qemu_get_clock(vm_clock));
7530 /* run dma transfers, if any */
7531 DMA_run();
7534 /* real time timers */
7535 qemu_run_timers(&active_timers[QEMU_TIMER_REALTIME],
7536 qemu_get_clock(rt_clock));
7538 if (alarm_timer->flags & ALARM_FLAG_EXPIRED) {
7539 alarm_timer->flags &= ~(ALARM_FLAG_EXPIRED);
7540 qemu_rearm_alarm_timer(alarm_timer);
7543 /* Check bottom-halves last in case any of the earlier events triggered
7544 them. */
7545 qemu_bh_poll();
7549 static int main_loop(void)
7551 int ret, timeout;
7552 #ifdef CONFIG_PROFILER
7553 int64_t ti;
7554 #endif
7555 CPUState *env;
7557 cur_cpu = first_cpu;
7558 next_cpu = cur_cpu->next_cpu ?: first_cpu;
7559 for(;;) {
7560 if (vm_running) {
7562 for(;;) {
7563 /* get next cpu */
7564 env = next_cpu;
7565 #ifdef CONFIG_PROFILER
7566 ti = profile_getclock();
7567 #endif
7568 ret = cpu_exec(env);
7569 #ifdef CONFIG_PROFILER
7570 qemu_time += profile_getclock() - ti;
7571 #endif
7572 next_cpu = env->next_cpu ?: first_cpu;
7573 if (event_pending && likely(ret != EXCP_DEBUG)) {
7574 ret = EXCP_INTERRUPT;
7575 event_pending = 0;
7576 break;
7578 if (ret == EXCP_HLT) {
7579 /* Give the next CPU a chance to run. */
7580 cur_cpu = env;
7581 continue;
7583 if (ret != EXCP_HALTED)
7584 break;
7585 /* all CPUs are halted ? */
7586 if (env == cur_cpu)
7587 break;
7589 cur_cpu = env;
7591 if (shutdown_requested) {
7592 ret = EXCP_INTERRUPT;
7593 if (no_shutdown) {
7594 vm_stop(0);
7595 no_shutdown = 0;
7597 else
7598 break;
7600 if (reset_requested) {
7601 reset_requested = 0;
7602 qemu_system_reset();
7603 ret = EXCP_INTERRUPT;
7605 if (powerdown_requested) {
7606 powerdown_requested = 0;
7607 qemu_system_powerdown();
7608 ret = EXCP_INTERRUPT;
7610 if (unlikely(ret == EXCP_DEBUG)) {
7611 vm_stop(EXCP_DEBUG);
7613 /* If all cpus are halted then wait until the next IRQ */
7614 /* XXX: use timeout computed from timers */
7615 if (ret == EXCP_HALTED)
7616 timeout = 10;
7617 else
7618 timeout = 0;
7619 } else {
7620 timeout = 10;
7622 #ifdef CONFIG_PROFILER
7623 ti = profile_getclock();
7624 #endif
7625 main_loop_wait(timeout);
7626 #ifdef CONFIG_PROFILER
7627 dev_time += profile_getclock() - ti;
7628 #endif
7630 cpu_disable_ticks();
7631 return ret;
7634 static void help(int exitcode)
7636 printf("QEMU PC emulator version " QEMU_VERSION ", Copyright (c) 2003-2008 Fabrice Bellard\n"
7637 "usage: %s [options] [disk_image]\n"
7638 "\n"
7639 "'disk_image' is a raw hard image image for IDE hard disk 0\n"
7640 "\n"
7641 "Standard options:\n"
7642 "-M machine select emulated machine (-M ? for list)\n"
7643 "-cpu cpu select CPU (-cpu ? for list)\n"
7644 "-fda/-fdb file use 'file' as floppy disk 0/1 image\n"
7645 "-hda/-hdb file use 'file' as IDE hard disk 0/1 image\n"
7646 "-hdc/-hdd file use 'file' as IDE hard disk 2/3 image\n"
7647 "-cdrom file use 'file' as IDE cdrom image (cdrom is ide1 master)\n"
7648 "-drive [file=file][,if=type][,bus=n][,unit=m][,media=d][,index=i]\n"
7649 " [,cyls=c,heads=h,secs=s[,trans=t]][,snapshot=on|off]\n"
7650 " [,cache=on|off][,format=f]\n"
7651 " use 'file' as a drive image\n"
7652 "-mtdblock file use 'file' as on-board Flash memory image\n"
7653 "-sd file use 'file' as SecureDigital card image\n"
7654 "-pflash file use 'file' as a parallel flash image\n"
7655 "-boot [a|c|d|n] boot on floppy (a), hard disk (c), CD-ROM (d), or network (n)\n"
7656 "-snapshot write to temporary files instead of disk image files\n"
7657 #ifdef CONFIG_SDL
7658 "-no-frame open SDL window without a frame and window decorations\n"
7659 "-alt-grab use Ctrl-Alt-Shift to grab mouse (instead of Ctrl-Alt)\n"
7660 "-no-quit disable SDL window close capability\n"
7661 #endif
7662 #ifdef TARGET_I386
7663 "-no-fd-bootchk disable boot signature checking for floppy disks\n"
7664 #endif
7665 "-m megs set virtual RAM size to megs MB [default=%d]\n"
7666 "-smp n set the number of CPUs to 'n' [default=1]\n"
7667 "-nographic disable graphical output and redirect serial I/Os to console\n"
7668 "-portrait rotate graphical output 90 deg left (only PXA LCD)\n"
7669 #ifndef _WIN32
7670 "-k language use keyboard layout (for example \"fr\" for French)\n"
7671 #endif
7672 #ifdef HAS_AUDIO
7673 "-audio-help print list of audio drivers and their options\n"
7674 "-soundhw c1,... enable audio support\n"
7675 " and only specified sound cards (comma separated list)\n"
7676 " use -soundhw ? to get the list of supported cards\n"
7677 " use -soundhw all to enable all of them\n"
7678 #endif
7679 "-localtime set the real time clock to local time [default=utc]\n"
7680 "-full-screen start in full screen\n"
7681 #ifdef TARGET_I386
7682 "-win2k-hack use it when installing Windows 2000 to avoid a disk full bug\n"
7683 #endif
7684 "-usb enable the USB driver (will be the default soon)\n"
7685 "-usbdevice name add the host or guest USB device 'name'\n"
7686 #if defined(TARGET_PPC) || defined(TARGET_SPARC)
7687 "-g WxH[xDEPTH] Set the initial graphical resolution and depth\n"
7688 #endif
7689 "-name string set the name of the guest\n"
7690 "\n"
7691 "Network options:\n"
7692 "-net nic[,vlan=n][,macaddr=addr][,model=type]\n"
7693 " create a new Network Interface Card and connect it to VLAN 'n'\n"
7694 #ifdef CONFIG_SLIRP
7695 "-net user[,vlan=n][,hostname=host]\n"
7696 " connect the user mode network stack to VLAN 'n' and send\n"
7697 " hostname 'host' to DHCP clients\n"
7698 #endif
7699 #ifdef _WIN32
7700 "-net tap[,vlan=n],ifname=name\n"
7701 " connect the host TAP network interface to VLAN 'n'\n"
7702 #else
7703 "-net tap[,vlan=n][,fd=h][,ifname=name][,script=file][,downscript=dfile]\n"
7704 " connect the host TAP network interface to VLAN 'n' and use the\n"
7705 " network scripts 'file' (default=%s)\n"
7706 " and 'dfile' (default=%s);\n"
7707 " use '[down]script=no' to disable script execution;\n"
7708 " use 'fd=h' to connect to an already opened TAP interface\n"
7709 #endif
7710 "-net socket[,vlan=n][,fd=h][,listen=[host]:port][,connect=host:port]\n"
7711 " connect the vlan 'n' to another VLAN using a socket connection\n"
7712 "-net socket[,vlan=n][,fd=h][,mcast=maddr:port]\n"
7713 " connect the vlan 'n' to multicast maddr and port\n"
7714 "-net none use it alone to have zero network devices; if no -net option\n"
7715 " is provided, the default is '-net nic -net user'\n"
7716 "\n"
7717 #ifdef CONFIG_SLIRP
7718 "-tftp dir allow tftp access to files in dir [-net user]\n"
7719 "-bootp file advertise file in BOOTP replies\n"
7720 #ifndef _WIN32
7721 "-smb dir allow SMB access to files in 'dir' [-net user]\n"
7722 #endif
7723 "-redir [tcp|udp]:host-port:[guest-host]:guest-port\n"
7724 " redirect TCP or UDP connections from host to guest [-net user]\n"
7725 #endif
7726 "\n"
7727 "Linux boot specific:\n"
7728 "-kernel bzImage use 'bzImage' as kernel image\n"
7729 "-append cmdline use 'cmdline' as kernel command line\n"
7730 "-initrd file use 'file' as initial ram disk\n"
7731 "\n"
7732 "Debug/Expert options:\n"
7733 "-monitor dev redirect the monitor to char device 'dev'\n"
7734 "-serial dev redirect the serial port to char device 'dev'\n"
7735 "-parallel dev redirect the parallel port to char device 'dev'\n"
7736 "-pidfile file Write PID to 'file'\n"
7737 "-S freeze CPU at startup (use 'c' to start execution)\n"
7738 "-s wait gdb connection to port\n"
7739 "-p port set gdb connection port [default=%s]\n"
7740 "-d item1,... output log to %s (use -d ? for a list of log items)\n"
7741 "-hdachs c,h,s[,t] force hard disk 0 physical geometry and the optional BIOS\n"
7742 " translation (t=none or lba) (usually qemu can guess them)\n"
7743 "-L path set the directory for the BIOS, VGA BIOS and keymaps\n"
7744 #ifdef USE_KQEMU
7745 "-kernel-kqemu enable KQEMU full virtualization (default is user mode only)\n"
7746 "-no-kqemu disable KQEMU kernel module usage\n"
7747 #endif
7748 #ifdef TARGET_I386
7749 "-std-vga simulate a standard VGA card with VESA Bochs Extensions\n"
7750 " (default is CL-GD5446 PCI VGA)\n"
7751 "-no-acpi disable ACPI\n"
7752 #endif
7753 #ifdef CONFIG_CURSES
7754 "-curses use a curses/ncurses interface instead of SDL\n"
7755 #endif
7756 "-no-reboot exit instead of rebooting\n"
7757 "-no-shutdown stop before shutdown\n"
7758 "-loadvm file start right away with a saved state (loadvm in monitor)\n"
7759 "-vnc display start a VNC server on display\n"
7760 #ifndef _WIN32
7761 "-daemonize daemonize QEMU after initializing\n"
7762 #endif
7763 "-option-rom rom load a file, rom, into the option ROM space\n"
7764 #ifdef TARGET_SPARC
7765 "-prom-env variable=value set OpenBIOS nvram variables\n"
7766 #endif
7767 "-clock force the use of the given methods for timer alarm.\n"
7768 " To see what timers are available use -clock ?\n"
7769 "-startdate select initial date of the clock\n"
7770 "\n"
7771 "During emulation, the following keys are useful:\n"
7772 "ctrl-alt-f toggle full screen\n"
7773 "ctrl-alt-n switch to virtual console 'n'\n"
7774 "ctrl-alt toggle mouse and keyboard grab\n"
7775 "\n"
7776 "When using -nographic, press 'ctrl-a h' to get some help.\n"
7778 "qemu",
7779 DEFAULT_RAM_SIZE,
7780 #ifndef _WIN32
7781 DEFAULT_NETWORK_SCRIPT,
7782 DEFAULT_NETWORK_DOWN_SCRIPT,
7783 #endif
7784 DEFAULT_GDBSTUB_PORT,
7785 "/tmp/qemu.log");
7786 exit(exitcode);
7789 #define HAS_ARG 0x0001
7791 enum {
7792 QEMU_OPTION_h,
7794 QEMU_OPTION_M,
7795 QEMU_OPTION_cpu,
7796 QEMU_OPTION_fda,
7797 QEMU_OPTION_fdb,
7798 QEMU_OPTION_hda,
7799 QEMU_OPTION_hdb,
7800 QEMU_OPTION_hdc,
7801 QEMU_OPTION_hdd,
7802 QEMU_OPTION_drive,
7803 QEMU_OPTION_cdrom,
7804 QEMU_OPTION_mtdblock,
7805 QEMU_OPTION_sd,
7806 QEMU_OPTION_pflash,
7807 QEMU_OPTION_boot,
7808 QEMU_OPTION_snapshot,
7809 #ifdef TARGET_I386
7810 QEMU_OPTION_no_fd_bootchk,
7811 #endif
7812 QEMU_OPTION_m,
7813 QEMU_OPTION_nographic,
7814 QEMU_OPTION_portrait,
7815 #ifdef HAS_AUDIO
7816 QEMU_OPTION_audio_help,
7817 QEMU_OPTION_soundhw,
7818 #endif
7820 QEMU_OPTION_net,
7821 QEMU_OPTION_tftp,
7822 QEMU_OPTION_bootp,
7823 QEMU_OPTION_smb,
7824 QEMU_OPTION_redir,
7826 QEMU_OPTION_kernel,
7827 QEMU_OPTION_append,
7828 QEMU_OPTION_initrd,
7830 QEMU_OPTION_S,
7831 QEMU_OPTION_s,
7832 QEMU_OPTION_p,
7833 QEMU_OPTION_d,
7834 QEMU_OPTION_hdachs,
7835 QEMU_OPTION_L,
7836 QEMU_OPTION_bios,
7837 QEMU_OPTION_no_code_copy,
7838 QEMU_OPTION_k,
7839 QEMU_OPTION_localtime,
7840 QEMU_OPTION_cirrusvga,
7841 QEMU_OPTION_vmsvga,
7842 QEMU_OPTION_g,
7843 QEMU_OPTION_std_vga,
7844 QEMU_OPTION_echr,
7845 QEMU_OPTION_monitor,
7846 QEMU_OPTION_serial,
7847 QEMU_OPTION_parallel,
7848 QEMU_OPTION_loadvm,
7849 QEMU_OPTION_full_screen,
7850 QEMU_OPTION_no_frame,
7851 QEMU_OPTION_alt_grab,
7852 QEMU_OPTION_no_quit,
7853 QEMU_OPTION_pidfile,
7854 QEMU_OPTION_no_kqemu,
7855 QEMU_OPTION_kernel_kqemu,
7856 QEMU_OPTION_win2k_hack,
7857 QEMU_OPTION_usb,
7858 QEMU_OPTION_usbdevice,
7859 QEMU_OPTION_smp,
7860 QEMU_OPTION_vnc,
7861 QEMU_OPTION_no_acpi,
7862 QEMU_OPTION_curses,
7863 QEMU_OPTION_no_reboot,
7864 QEMU_OPTION_no_shutdown,
7865 QEMU_OPTION_show_cursor,
7866 QEMU_OPTION_daemonize,
7867 QEMU_OPTION_option_rom,
7868 QEMU_OPTION_semihosting,
7869 QEMU_OPTION_name,
7870 QEMU_OPTION_prom_env,
7871 QEMU_OPTION_old_param,
7872 QEMU_OPTION_clock,
7873 QEMU_OPTION_startdate,
7876 typedef struct QEMUOption {
7877 const char *name;
7878 int flags;
7879 int index;
7880 } QEMUOption;
7882 const QEMUOption qemu_options[] = {
7883 { "h", 0, QEMU_OPTION_h },
7884 { "help", 0, QEMU_OPTION_h },
7886 { "M", HAS_ARG, QEMU_OPTION_M },
7887 { "cpu", HAS_ARG, QEMU_OPTION_cpu },
7888 { "fda", HAS_ARG, QEMU_OPTION_fda },
7889 { "fdb", HAS_ARG, QEMU_OPTION_fdb },
7890 { "hda", HAS_ARG, QEMU_OPTION_hda },
7891 { "hdb", HAS_ARG, QEMU_OPTION_hdb },
7892 { "hdc", HAS_ARG, QEMU_OPTION_hdc },
7893 { "hdd", HAS_ARG, QEMU_OPTION_hdd },
7894 { "drive", HAS_ARG, QEMU_OPTION_drive },
7895 { "cdrom", HAS_ARG, QEMU_OPTION_cdrom },
7896 { "mtdblock", HAS_ARG, QEMU_OPTION_mtdblock },
7897 { "sd", HAS_ARG, QEMU_OPTION_sd },
7898 { "pflash", HAS_ARG, QEMU_OPTION_pflash },
7899 { "boot", HAS_ARG, QEMU_OPTION_boot },
7900 { "snapshot", 0, QEMU_OPTION_snapshot },
7901 #ifdef TARGET_I386
7902 { "no-fd-bootchk", 0, QEMU_OPTION_no_fd_bootchk },
7903 #endif
7904 { "m", HAS_ARG, QEMU_OPTION_m },
7905 { "nographic", 0, QEMU_OPTION_nographic },
7906 { "portrait", 0, QEMU_OPTION_portrait },
7907 { "k", HAS_ARG, QEMU_OPTION_k },
7908 #ifdef HAS_AUDIO
7909 { "audio-help", 0, QEMU_OPTION_audio_help },
7910 { "soundhw", HAS_ARG, QEMU_OPTION_soundhw },
7911 #endif
7913 { "net", HAS_ARG, QEMU_OPTION_net},
7914 #ifdef CONFIG_SLIRP
7915 { "tftp", HAS_ARG, QEMU_OPTION_tftp },
7916 { "bootp", HAS_ARG, QEMU_OPTION_bootp },
7917 #ifndef _WIN32
7918 { "smb", HAS_ARG, QEMU_OPTION_smb },
7919 #endif
7920 { "redir", HAS_ARG, QEMU_OPTION_redir },
7921 #endif
7923 { "kernel", HAS_ARG, QEMU_OPTION_kernel },
7924 { "append", HAS_ARG, QEMU_OPTION_append },
7925 { "initrd", HAS_ARG, QEMU_OPTION_initrd },
7927 { "S", 0, QEMU_OPTION_S },
7928 { "s", 0, QEMU_OPTION_s },
7929 { "p", HAS_ARG, QEMU_OPTION_p },
7930 { "d", HAS_ARG, QEMU_OPTION_d },
7931 { "hdachs", HAS_ARG, QEMU_OPTION_hdachs },
7932 { "L", HAS_ARG, QEMU_OPTION_L },
7933 { "bios", HAS_ARG, QEMU_OPTION_bios },
7934 { "no-code-copy", 0, QEMU_OPTION_no_code_copy },
7935 #ifdef USE_KQEMU
7936 { "no-kqemu", 0, QEMU_OPTION_no_kqemu },
7937 { "kernel-kqemu", 0, QEMU_OPTION_kernel_kqemu },
7938 #endif
7939 #if defined(TARGET_PPC) || defined(TARGET_SPARC)
7940 { "g", 1, QEMU_OPTION_g },
7941 #endif
7942 { "localtime", 0, QEMU_OPTION_localtime },
7943 { "std-vga", 0, QEMU_OPTION_std_vga },
7944 { "echr", HAS_ARG, QEMU_OPTION_echr },
7945 { "monitor", HAS_ARG, QEMU_OPTION_monitor },
7946 { "serial", HAS_ARG, QEMU_OPTION_serial },
7947 { "parallel", HAS_ARG, QEMU_OPTION_parallel },
7948 { "loadvm", HAS_ARG, QEMU_OPTION_loadvm },
7949 { "full-screen", 0, QEMU_OPTION_full_screen },
7950 #ifdef CONFIG_SDL
7951 { "no-frame", 0, QEMU_OPTION_no_frame },
7952 { "alt-grab", 0, QEMU_OPTION_alt_grab },
7953 { "no-quit", 0, QEMU_OPTION_no_quit },
7954 #endif
7955 { "pidfile", HAS_ARG, QEMU_OPTION_pidfile },
7956 { "win2k-hack", 0, QEMU_OPTION_win2k_hack },
7957 { "usbdevice", HAS_ARG, QEMU_OPTION_usbdevice },
7958 { "smp", HAS_ARG, QEMU_OPTION_smp },
7959 { "vnc", HAS_ARG, QEMU_OPTION_vnc },
7960 #ifdef CONFIG_CURSES
7961 { "curses", 0, QEMU_OPTION_curses },
7962 #endif
7964 /* temporary options */
7965 { "usb", 0, QEMU_OPTION_usb },
7966 { "cirrusvga", 0, QEMU_OPTION_cirrusvga },
7967 { "vmwarevga", 0, QEMU_OPTION_vmsvga },
7968 { "no-acpi", 0, QEMU_OPTION_no_acpi },
7969 { "no-reboot", 0, QEMU_OPTION_no_reboot },
7970 { "no-shutdown", 0, QEMU_OPTION_no_shutdown },
7971 { "show-cursor", 0, QEMU_OPTION_show_cursor },
7972 { "daemonize", 0, QEMU_OPTION_daemonize },
7973 { "option-rom", HAS_ARG, QEMU_OPTION_option_rom },
7974 #if defined(TARGET_ARM) || defined(TARGET_M68K)
7975 { "semihosting", 0, QEMU_OPTION_semihosting },
7976 #endif
7977 { "name", HAS_ARG, QEMU_OPTION_name },
7978 #if defined(TARGET_SPARC)
7979 { "prom-env", HAS_ARG, QEMU_OPTION_prom_env },
7980 #endif
7981 #if defined(TARGET_ARM)
7982 { "old-param", 0, QEMU_OPTION_old_param },
7983 #endif
7984 { "clock", HAS_ARG, QEMU_OPTION_clock },
7985 { "startdate", HAS_ARG, QEMU_OPTION_startdate },
7986 { NULL },
7989 /* password input */
7991 int qemu_key_check(BlockDriverState *bs, const char *name)
7993 char password[256];
7994 int i;
7996 if (!bdrv_is_encrypted(bs))
7997 return 0;
7999 term_printf("%s is encrypted.\n", name);
8000 for(i = 0; i < 3; i++) {
8001 monitor_readline("Password: ", 1, password, sizeof(password));
8002 if (bdrv_set_key(bs, password) == 0)
8003 return 0;
8004 term_printf("invalid password\n");
8006 return -EPERM;
8009 static BlockDriverState *get_bdrv(int index)
8011 if (index > nb_drives)
8012 return NULL;
8013 return drives_table[index].bdrv;
8016 static void read_passwords(void)
8018 BlockDriverState *bs;
8019 int i;
8021 for(i = 0; i < 6; i++) {
8022 bs = get_bdrv(i);
8023 if (bs)
8024 qemu_key_check(bs, bdrv_get_device_name(bs));
8028 /* XXX: currently we cannot use simultaneously different CPUs */
8029 static void register_machines(void)
8031 #if defined(TARGET_I386)
8032 qemu_register_machine(&pc_machine);
8033 qemu_register_machine(&isapc_machine);
8034 #elif defined(TARGET_PPC)
8035 qemu_register_machine(&heathrow_machine);
8036 qemu_register_machine(&core99_machine);
8037 qemu_register_machine(&prep_machine);
8038 qemu_register_machine(&ref405ep_machine);
8039 qemu_register_machine(&taihu_machine);
8040 #elif defined(TARGET_MIPS)
8041 qemu_register_machine(&mips_machine);
8042 qemu_register_machine(&mips_magnum_machine);
8043 qemu_register_machine(&mips_malta_machine);
8044 qemu_register_machine(&mips_pica61_machine);
8045 qemu_register_machine(&mips_mipssim_machine);
8046 #elif defined(TARGET_SPARC)
8047 #ifdef TARGET_SPARC64
8048 qemu_register_machine(&sun4u_machine);
8049 #else
8050 qemu_register_machine(&ss5_machine);
8051 qemu_register_machine(&ss10_machine);
8052 qemu_register_machine(&ss600mp_machine);
8053 qemu_register_machine(&ss20_machine);
8054 qemu_register_machine(&ss2_machine);
8055 qemu_register_machine(&voyager_machine);
8056 qemu_register_machine(&ss_lx_machine);
8057 qemu_register_machine(&ss4_machine);
8058 qemu_register_machine(&scls_machine);
8059 qemu_register_machine(&sbook_machine);
8060 qemu_register_machine(&ss1000_machine);
8061 qemu_register_machine(&ss2000_machine);
8062 #endif
8063 #elif defined(TARGET_ARM)
8064 qemu_register_machine(&integratorcp_machine);
8065 qemu_register_machine(&versatilepb_machine);
8066 qemu_register_machine(&versatileab_machine);
8067 qemu_register_machine(&realview_machine);
8068 qemu_register_machine(&akitapda_machine);
8069 qemu_register_machine(&spitzpda_machine);
8070 qemu_register_machine(&borzoipda_machine);
8071 qemu_register_machine(&terrierpda_machine);
8072 qemu_register_machine(&palmte_machine);
8073 qemu_register_machine(&n800_machine);
8074 qemu_register_machine(&lm3s811evb_machine);
8075 qemu_register_machine(&lm3s6965evb_machine);
8076 qemu_register_machine(&connex_machine);
8077 qemu_register_machine(&verdex_machine);
8078 qemu_register_machine(&mainstone2_machine);
8079 qemu_register_machine(&musicpal_machine);
8080 #elif defined(TARGET_SH4)
8081 qemu_register_machine(&shix_machine);
8082 qemu_register_machine(&r2d_machine);
8083 #elif defined(TARGET_ALPHA)
8084 /* XXX: TODO */
8085 #elif defined(TARGET_M68K)
8086 qemu_register_machine(&mcf5208evb_machine);
8087 qemu_register_machine(&an5206_machine);
8088 qemu_register_machine(&dummy_m68k_machine);
8089 #elif defined(TARGET_CRIS)
8090 qemu_register_machine(&bareetraxfs_machine);
8091 #else
8092 #error unsupported CPU
8093 #endif
8096 #ifdef HAS_AUDIO
8097 struct soundhw soundhw[] = {
8098 #ifdef HAS_AUDIO_CHOICE
8099 #if defined(TARGET_I386) || defined(TARGET_MIPS)
8101 "pcspk",
8102 "PC speaker",
8105 { .init_isa = pcspk_audio_init }
8107 #endif
8109 "sb16",
8110 "Creative Sound Blaster 16",
8113 { .init_isa = SB16_init }
8116 #ifdef CONFIG_ADLIB
8118 "adlib",
8119 #ifdef HAS_YMF262
8120 "Yamaha YMF262 (OPL3)",
8121 #else
8122 "Yamaha YM3812 (OPL2)",
8123 #endif
8126 { .init_isa = Adlib_init }
8128 #endif
8130 #ifdef CONFIG_GUS
8132 "gus",
8133 "Gravis Ultrasound GF1",
8136 { .init_isa = GUS_init }
8138 #endif
8140 #ifdef CONFIG_AC97
8142 "ac97",
8143 "Intel 82801AA AC97 Audio",
8146 { .init_pci = ac97_init }
8148 #endif
8151 "es1370",
8152 "ENSONIQ AudioPCI ES1370",
8155 { .init_pci = es1370_init }
8157 #endif
8159 { NULL, NULL, 0, 0, { NULL } }
8162 static void select_soundhw (const char *optarg)
8164 struct soundhw *c;
8166 if (*optarg == '?') {
8167 show_valid_cards:
8169 printf ("Valid sound card names (comma separated):\n");
8170 for (c = soundhw; c->name; ++c) {
8171 printf ("%-11s %s\n", c->name, c->descr);
8173 printf ("\n-soundhw all will enable all of the above\n");
8174 exit (*optarg != '?');
8176 else {
8177 size_t l;
8178 const char *p;
8179 char *e;
8180 int bad_card = 0;
8182 if (!strcmp (optarg, "all")) {
8183 for (c = soundhw; c->name; ++c) {
8184 c->enabled = 1;
8186 return;
8189 p = optarg;
8190 while (*p) {
8191 e = strchr (p, ',');
8192 l = !e ? strlen (p) : (size_t) (e - p);
8194 for (c = soundhw; c->name; ++c) {
8195 if (!strncmp (c->name, p, l)) {
8196 c->enabled = 1;
8197 break;
8201 if (!c->name) {
8202 if (l > 80) {
8203 fprintf (stderr,
8204 "Unknown sound card name (too big to show)\n");
8206 else {
8207 fprintf (stderr, "Unknown sound card name `%.*s'\n",
8208 (int) l, p);
8210 bad_card = 1;
8212 p += l + (e != NULL);
8215 if (bad_card)
8216 goto show_valid_cards;
8219 #endif
8221 #ifdef _WIN32
8222 static BOOL WINAPI qemu_ctrl_handler(DWORD type)
8224 exit(STATUS_CONTROL_C_EXIT);
8225 return TRUE;
8227 #endif
8229 #define MAX_NET_CLIENTS 32
8231 int main(int argc, char **argv)
8233 #ifdef CONFIG_GDBSTUB
8234 int use_gdbstub;
8235 const char *gdbstub_port;
8236 #endif
8237 uint32_t boot_devices_bitmap = 0;
8238 int i;
8239 int snapshot, linux_boot, net_boot;
8240 const char *initrd_filename;
8241 const char *kernel_filename, *kernel_cmdline;
8242 const char *boot_devices = "";
8243 DisplayState *ds = &display_state;
8244 int cyls, heads, secs, translation;
8245 const char *net_clients[MAX_NET_CLIENTS];
8246 int nb_net_clients;
8247 int hda_index;
8248 int optind;
8249 const char *r, *optarg;
8250 CharDriverState *monitor_hd;
8251 const char *monitor_device;
8252 const char *serial_devices[MAX_SERIAL_PORTS];
8253 int serial_device_index;
8254 const char *parallel_devices[MAX_PARALLEL_PORTS];
8255 int parallel_device_index;
8256 const char *loadvm = NULL;
8257 QEMUMachine *machine;
8258 const char *cpu_model;
8259 const char *usb_devices[MAX_USB_CMDLINE];
8260 int usb_devices_index;
8261 int fds[2];
8262 const char *pid_file = NULL;
8263 VLANState *vlan;
8265 LIST_INIT (&vm_change_state_head);
8266 #ifndef _WIN32
8268 struct sigaction act;
8269 sigfillset(&act.sa_mask);
8270 act.sa_flags = 0;
8271 act.sa_handler = SIG_IGN;
8272 sigaction(SIGPIPE, &act, NULL);
8274 #else
8275 SetConsoleCtrlHandler(qemu_ctrl_handler, TRUE);
8276 /* Note: cpu_interrupt() is currently not SMP safe, so we force
8277 QEMU to run on a single CPU */
8279 HANDLE h;
8280 DWORD mask, smask;
8281 int i;
8282 h = GetCurrentProcess();
8283 if (GetProcessAffinityMask(h, &mask, &smask)) {
8284 for(i = 0; i < 32; i++) {
8285 if (mask & (1 << i))
8286 break;
8288 if (i != 32) {
8289 mask = 1 << i;
8290 SetProcessAffinityMask(h, mask);
8294 #endif
8296 register_machines();
8297 machine = first_machine;
8298 cpu_model = NULL;
8299 initrd_filename = NULL;
8300 ram_size = 0;
8301 vga_ram_size = VGA_RAM_SIZE;
8302 #ifdef CONFIG_GDBSTUB
8303 use_gdbstub = 0;
8304 gdbstub_port = DEFAULT_GDBSTUB_PORT;
8305 #endif
8306 snapshot = 0;
8307 nographic = 0;
8308 curses = 0;
8309 kernel_filename = NULL;
8310 kernel_cmdline = "";
8311 cyls = heads = secs = 0;
8312 translation = BIOS_ATA_TRANSLATION_AUTO;
8313 monitor_device = "vc:800x600";
8315 serial_devices[0] = "vc:80Cx24C";
8316 for(i = 1; i < MAX_SERIAL_PORTS; i++)
8317 serial_devices[i] = NULL;
8318 serial_device_index = 0;
8320 parallel_devices[0] = "vc:640x480";
8321 for(i = 1; i < MAX_PARALLEL_PORTS; i++)
8322 parallel_devices[i] = NULL;
8323 parallel_device_index = 0;
8325 usb_devices_index = 0;
8327 nb_net_clients = 0;
8328 nb_drives = 0;
8329 nb_drives_opt = 0;
8330 hda_index = -1;
8332 nb_nics = 0;
8333 /* default mac address of the first network interface */
8335 optind = 1;
8336 for(;;) {
8337 if (optind >= argc)
8338 break;
8339 r = argv[optind];
8340 if (r[0] != '-') {
8341 hda_index = drive_add(argv[optind++], HD_ALIAS, 0);
8342 } else {
8343 const QEMUOption *popt;
8345 optind++;
8346 /* Treat --foo the same as -foo. */
8347 if (r[1] == '-')
8348 r++;
8349 popt = qemu_options;
8350 for(;;) {
8351 if (!popt->name) {
8352 fprintf(stderr, "%s: invalid option -- '%s'\n",
8353 argv[0], r);
8354 exit(1);
8356 if (!strcmp(popt->name, r + 1))
8357 break;
8358 popt++;
8360 if (popt->flags & HAS_ARG) {
8361 if (optind >= argc) {
8362 fprintf(stderr, "%s: option '%s' requires an argument\n",
8363 argv[0], r);
8364 exit(1);
8366 optarg = argv[optind++];
8367 } else {
8368 optarg = NULL;
8371 switch(popt->index) {
8372 case QEMU_OPTION_M:
8373 machine = find_machine(optarg);
8374 if (!machine) {
8375 QEMUMachine *m;
8376 printf("Supported machines are:\n");
8377 for(m = first_machine; m != NULL; m = m->next) {
8378 printf("%-10s %s%s\n",
8379 m->name, m->desc,
8380 m == first_machine ? " (default)" : "");
8382 exit(*optarg != '?');
8384 break;
8385 case QEMU_OPTION_cpu:
8386 /* hw initialization will check this */
8387 if (*optarg == '?') {
8388 /* XXX: implement xxx_cpu_list for targets that still miss it */
8389 #if defined(cpu_list)
8390 cpu_list(stdout, &fprintf);
8391 #endif
8392 exit(0);
8393 } else {
8394 cpu_model = optarg;
8396 break;
8397 case QEMU_OPTION_initrd:
8398 initrd_filename = optarg;
8399 break;
8400 case QEMU_OPTION_hda:
8401 if (cyls == 0)
8402 hda_index = drive_add(optarg, HD_ALIAS, 0);
8403 else
8404 hda_index = drive_add(optarg, HD_ALIAS
8405 ",cyls=%d,heads=%d,secs=%d%s",
8406 0, cyls, heads, secs,
8407 translation == BIOS_ATA_TRANSLATION_LBA ?
8408 ",trans=lba" :
8409 translation == BIOS_ATA_TRANSLATION_NONE ?
8410 ",trans=none" : "");
8411 break;
8412 case QEMU_OPTION_hdb:
8413 case QEMU_OPTION_hdc:
8414 case QEMU_OPTION_hdd:
8415 drive_add(optarg, HD_ALIAS, popt->index - QEMU_OPTION_hda);
8416 break;
8417 case QEMU_OPTION_drive:
8418 drive_add(NULL, "%s", optarg);
8419 break;
8420 case QEMU_OPTION_mtdblock:
8421 drive_add(optarg, MTD_ALIAS);
8422 break;
8423 case QEMU_OPTION_sd:
8424 drive_add(optarg, SD_ALIAS);
8425 break;
8426 case QEMU_OPTION_pflash:
8427 drive_add(optarg, PFLASH_ALIAS);
8428 break;
8429 case QEMU_OPTION_snapshot:
8430 snapshot = 1;
8431 break;
8432 case QEMU_OPTION_hdachs:
8434 const char *p;
8435 p = optarg;
8436 cyls = strtol(p, (char **)&p, 0);
8437 if (cyls < 1 || cyls > 16383)
8438 goto chs_fail;
8439 if (*p != ',')
8440 goto chs_fail;
8441 p++;
8442 heads = strtol(p, (char **)&p, 0);
8443 if (heads < 1 || heads > 16)
8444 goto chs_fail;
8445 if (*p != ',')
8446 goto chs_fail;
8447 p++;
8448 secs = strtol(p, (char **)&p, 0);
8449 if (secs < 1 || secs > 63)
8450 goto chs_fail;
8451 if (*p == ',') {
8452 p++;
8453 if (!strcmp(p, "none"))
8454 translation = BIOS_ATA_TRANSLATION_NONE;
8455 else if (!strcmp(p, "lba"))
8456 translation = BIOS_ATA_TRANSLATION_LBA;
8457 else if (!strcmp(p, "auto"))
8458 translation = BIOS_ATA_TRANSLATION_AUTO;
8459 else
8460 goto chs_fail;
8461 } else if (*p != '\0') {
8462 chs_fail:
8463 fprintf(stderr, "qemu: invalid physical CHS format\n");
8464 exit(1);
8466 if (hda_index != -1)
8467 snprintf(drives_opt[hda_index].opt,
8468 sizeof(drives_opt[hda_index].opt),
8469 HD_ALIAS ",cyls=%d,heads=%d,secs=%d%s",
8470 0, cyls, heads, secs,
8471 translation == BIOS_ATA_TRANSLATION_LBA ?
8472 ",trans=lba" :
8473 translation == BIOS_ATA_TRANSLATION_NONE ?
8474 ",trans=none" : "");
8476 break;
8477 case QEMU_OPTION_nographic:
8478 serial_devices[0] = "stdio";
8479 parallel_devices[0] = "null";
8480 monitor_device = "stdio";
8481 nographic = 1;
8482 break;
8483 #ifdef CONFIG_CURSES
8484 case QEMU_OPTION_curses:
8485 curses = 1;
8486 break;
8487 #endif
8488 case QEMU_OPTION_portrait:
8489 graphic_rotate = 1;
8490 break;
8491 case QEMU_OPTION_kernel:
8492 kernel_filename = optarg;
8493 break;
8494 case QEMU_OPTION_append:
8495 kernel_cmdline = optarg;
8496 break;
8497 case QEMU_OPTION_cdrom:
8498 drive_add(optarg, CDROM_ALIAS);
8499 break;
8500 case QEMU_OPTION_boot:
8501 boot_devices = optarg;
8502 /* We just do some generic consistency checks */
8504 /* Could easily be extended to 64 devices if needed */
8505 const char *p;
8507 boot_devices_bitmap = 0;
8508 for (p = boot_devices; *p != '\0'; p++) {
8509 /* Allowed boot devices are:
8510 * a b : floppy disk drives
8511 * c ... f : IDE disk drives
8512 * g ... m : machine implementation dependant drives
8513 * n ... p : network devices
8514 * It's up to each machine implementation to check
8515 * if the given boot devices match the actual hardware
8516 * implementation and firmware features.
8518 if (*p < 'a' || *p > 'q') {
8519 fprintf(stderr, "Invalid boot device '%c'\n", *p);
8520 exit(1);
8522 if (boot_devices_bitmap & (1 << (*p - 'a'))) {
8523 fprintf(stderr,
8524 "Boot device '%c' was given twice\n",*p);
8525 exit(1);
8527 boot_devices_bitmap |= 1 << (*p - 'a');
8530 break;
8531 case QEMU_OPTION_fda:
8532 case QEMU_OPTION_fdb:
8533 drive_add(optarg, FD_ALIAS, popt->index - QEMU_OPTION_fda);
8534 break;
8535 #ifdef TARGET_I386
8536 case QEMU_OPTION_no_fd_bootchk:
8537 fd_bootchk = 0;
8538 break;
8539 #endif
8540 case QEMU_OPTION_no_code_copy:
8541 code_copy_enabled = 0;
8542 break;
8543 case QEMU_OPTION_net:
8544 if (nb_net_clients >= MAX_NET_CLIENTS) {
8545 fprintf(stderr, "qemu: too many network clients\n");
8546 exit(1);
8548 net_clients[nb_net_clients] = optarg;
8549 nb_net_clients++;
8550 break;
8551 #ifdef CONFIG_SLIRP
8552 case QEMU_OPTION_tftp:
8553 tftp_prefix = optarg;
8554 break;
8555 case QEMU_OPTION_bootp:
8556 bootp_filename = optarg;
8557 break;
8558 #ifndef _WIN32
8559 case QEMU_OPTION_smb:
8560 net_slirp_smb(optarg);
8561 break;
8562 #endif
8563 case QEMU_OPTION_redir:
8564 net_slirp_redir(optarg);
8565 break;
8566 #endif
8567 #ifdef HAS_AUDIO
8568 case QEMU_OPTION_audio_help:
8569 AUD_help ();
8570 exit (0);
8571 break;
8572 case QEMU_OPTION_soundhw:
8573 select_soundhw (optarg);
8574 break;
8575 #endif
8576 case QEMU_OPTION_h:
8577 help(0);
8578 break;
8579 case QEMU_OPTION_m: {
8580 uint64_t value;
8581 char *ptr;
8583 value = strtoul(optarg, &ptr, 10);
8584 switch (*ptr) {
8585 case 0: case 'M': case 'm':
8586 value <<= 20;
8587 break;
8588 case 'G': case 'g':
8589 value <<= 30;
8590 break;
8591 default:
8592 fprintf(stderr, "qemu: invalid ram size: %s\n", optarg);
8593 exit(1);
8596 /* On 32-bit hosts, QEMU is limited by virtual address space */
8597 if (value > (2047 << 20)
8598 #ifndef USE_KQEMU
8599 && HOST_LONG_BITS == 32
8600 #endif
8602 fprintf(stderr, "qemu: at most 2047 MB RAM can be simulated\n");
8603 exit(1);
8605 if (value != (uint64_t)(ram_addr_t)value) {
8606 fprintf(stderr, "qemu: ram size too large\n");
8607 exit(1);
8609 ram_size = value;
8610 break;
8612 case QEMU_OPTION_d:
8614 int mask;
8615 CPULogItem *item;
8617 mask = cpu_str_to_log_mask(optarg);
8618 if (!mask) {
8619 printf("Log items (comma separated):\n");
8620 for(item = cpu_log_items; item->mask != 0; item++) {
8621 printf("%-10s %s\n", item->name, item->help);
8623 exit(1);
8625 cpu_set_log(mask);
8627 break;
8628 #ifdef CONFIG_GDBSTUB
8629 case QEMU_OPTION_s:
8630 use_gdbstub = 1;
8631 break;
8632 case QEMU_OPTION_p:
8633 gdbstub_port = optarg;
8634 break;
8635 #endif
8636 case QEMU_OPTION_L:
8637 bios_dir = optarg;
8638 break;
8639 case QEMU_OPTION_bios:
8640 bios_name = optarg;
8641 break;
8642 case QEMU_OPTION_S:
8643 autostart = 0;
8644 break;
8645 case QEMU_OPTION_k:
8646 keyboard_layout = optarg;
8647 break;
8648 case QEMU_OPTION_localtime:
8649 rtc_utc = 0;
8650 break;
8651 case QEMU_OPTION_cirrusvga:
8652 cirrus_vga_enabled = 1;
8653 vmsvga_enabled = 0;
8654 break;
8655 case QEMU_OPTION_vmsvga:
8656 cirrus_vga_enabled = 0;
8657 vmsvga_enabled = 1;
8658 break;
8659 case QEMU_OPTION_std_vga:
8660 cirrus_vga_enabled = 0;
8661 vmsvga_enabled = 0;
8662 break;
8663 case QEMU_OPTION_g:
8665 const char *p;
8666 int w, h, depth;
8667 p = optarg;
8668 w = strtol(p, (char **)&p, 10);
8669 if (w <= 0) {
8670 graphic_error:
8671 fprintf(stderr, "qemu: invalid resolution or depth\n");
8672 exit(1);
8674 if (*p != 'x')
8675 goto graphic_error;
8676 p++;
8677 h = strtol(p, (char **)&p, 10);
8678 if (h <= 0)
8679 goto graphic_error;
8680 if (*p == 'x') {
8681 p++;
8682 depth = strtol(p, (char **)&p, 10);
8683 if (depth != 8 && depth != 15 && depth != 16 &&
8684 depth != 24 && depth != 32)
8685 goto graphic_error;
8686 } else if (*p == '\0') {
8687 depth = graphic_depth;
8688 } else {
8689 goto graphic_error;
8692 graphic_width = w;
8693 graphic_height = h;
8694 graphic_depth = depth;
8696 break;
8697 case QEMU_OPTION_echr:
8699 char *r;
8700 term_escape_char = strtol(optarg, &r, 0);
8701 if (r == optarg)
8702 printf("Bad argument to echr\n");
8703 break;
8705 case QEMU_OPTION_monitor:
8706 monitor_device = optarg;
8707 break;
8708 case QEMU_OPTION_serial:
8709 if (serial_device_index >= MAX_SERIAL_PORTS) {
8710 fprintf(stderr, "qemu: too many serial ports\n");
8711 exit(1);
8713 serial_devices[serial_device_index] = optarg;
8714 serial_device_index++;
8715 break;
8716 case QEMU_OPTION_parallel:
8717 if (parallel_device_index >= MAX_PARALLEL_PORTS) {
8718 fprintf(stderr, "qemu: too many parallel ports\n");
8719 exit(1);
8721 parallel_devices[parallel_device_index] = optarg;
8722 parallel_device_index++;
8723 break;
8724 case QEMU_OPTION_loadvm:
8725 loadvm = optarg;
8726 break;
8727 case QEMU_OPTION_full_screen:
8728 full_screen = 1;
8729 break;
8730 #ifdef CONFIG_SDL
8731 case QEMU_OPTION_no_frame:
8732 no_frame = 1;
8733 break;
8734 case QEMU_OPTION_alt_grab:
8735 alt_grab = 1;
8736 break;
8737 case QEMU_OPTION_no_quit:
8738 no_quit = 1;
8739 break;
8740 #endif
8741 case QEMU_OPTION_pidfile:
8742 pid_file = optarg;
8743 break;
8744 #ifdef TARGET_I386
8745 case QEMU_OPTION_win2k_hack:
8746 win2k_install_hack = 1;
8747 break;
8748 #endif
8749 #ifdef USE_KQEMU
8750 case QEMU_OPTION_no_kqemu:
8751 kqemu_allowed = 0;
8752 break;
8753 case QEMU_OPTION_kernel_kqemu:
8754 kqemu_allowed = 2;
8755 break;
8756 #endif
8757 case QEMU_OPTION_usb:
8758 usb_enabled = 1;
8759 break;
8760 case QEMU_OPTION_usbdevice:
8761 usb_enabled = 1;
8762 if (usb_devices_index >= MAX_USB_CMDLINE) {
8763 fprintf(stderr, "Too many USB devices\n");
8764 exit(1);
8766 usb_devices[usb_devices_index] = optarg;
8767 usb_devices_index++;
8768 break;
8769 case QEMU_OPTION_smp:
8770 smp_cpus = atoi(optarg);
8771 if (smp_cpus < 1 || smp_cpus > MAX_CPUS) {
8772 fprintf(stderr, "Invalid number of CPUs\n");
8773 exit(1);
8775 break;
8776 case QEMU_OPTION_vnc:
8777 vnc_display = optarg;
8778 break;
8779 case QEMU_OPTION_no_acpi:
8780 acpi_enabled = 0;
8781 break;
8782 case QEMU_OPTION_no_reboot:
8783 no_reboot = 1;
8784 break;
8785 case QEMU_OPTION_no_shutdown:
8786 no_shutdown = 1;
8787 break;
8788 case QEMU_OPTION_show_cursor:
8789 cursor_hide = 0;
8790 break;
8791 case QEMU_OPTION_daemonize:
8792 daemonize = 1;
8793 break;
8794 case QEMU_OPTION_option_rom:
8795 if (nb_option_roms >= MAX_OPTION_ROMS) {
8796 fprintf(stderr, "Too many option ROMs\n");
8797 exit(1);
8799 option_rom[nb_option_roms] = optarg;
8800 nb_option_roms++;
8801 break;
8802 case QEMU_OPTION_semihosting:
8803 semihosting_enabled = 1;
8804 break;
8805 case QEMU_OPTION_name:
8806 qemu_name = optarg;
8807 break;
8808 #ifdef TARGET_SPARC
8809 case QEMU_OPTION_prom_env:
8810 if (nb_prom_envs >= MAX_PROM_ENVS) {
8811 fprintf(stderr, "Too many prom variables\n");
8812 exit(1);
8814 prom_envs[nb_prom_envs] = optarg;
8815 nb_prom_envs++;
8816 break;
8817 #endif
8818 #ifdef TARGET_ARM
8819 case QEMU_OPTION_old_param:
8820 old_param = 1;
8821 break;
8822 #endif
8823 case QEMU_OPTION_clock:
8824 configure_alarms(optarg);
8825 break;
8826 case QEMU_OPTION_startdate:
8828 struct tm tm;
8829 time_t rtc_start_date;
8830 if (!strcmp(optarg, "now")) {
8831 rtc_date_offset = -1;
8832 } else {
8833 if (sscanf(optarg, "%d-%d-%dT%d:%d:%d",
8834 &tm.tm_year,
8835 &tm.tm_mon,
8836 &tm.tm_mday,
8837 &tm.tm_hour,
8838 &tm.tm_min,
8839 &tm.tm_sec) == 6) {
8840 /* OK */
8841 } else if (sscanf(optarg, "%d-%d-%d",
8842 &tm.tm_year,
8843 &tm.tm_mon,
8844 &tm.tm_mday) == 3) {
8845 tm.tm_hour = 0;
8846 tm.tm_min = 0;
8847 tm.tm_sec = 0;
8848 } else {
8849 goto date_fail;
8851 tm.tm_year -= 1900;
8852 tm.tm_mon--;
8853 rtc_start_date = mktimegm(&tm);
8854 if (rtc_start_date == -1) {
8855 date_fail:
8856 fprintf(stderr, "Invalid date format. Valid format are:\n"
8857 "'now' or '2006-06-17T16:01:21' or '2006-06-17'\n");
8858 exit(1);
8860 rtc_date_offset = time(NULL) - rtc_start_date;
8863 break;
8868 #ifndef _WIN32
8869 if (daemonize && !nographic && vnc_display == NULL) {
8870 fprintf(stderr, "Can only daemonize if using -nographic or -vnc\n");
8871 daemonize = 0;
8874 if (daemonize) {
8875 pid_t pid;
8877 if (pipe(fds) == -1)
8878 exit(1);
8880 pid = fork();
8881 if (pid > 0) {
8882 uint8_t status;
8883 ssize_t len;
8885 close(fds[1]);
8887 again:
8888 len = read(fds[0], &status, 1);
8889 if (len == -1 && (errno == EINTR))
8890 goto again;
8892 if (len != 1)
8893 exit(1);
8894 else if (status == 1) {
8895 fprintf(stderr, "Could not acquire pidfile\n");
8896 exit(1);
8897 } else
8898 exit(0);
8899 } else if (pid < 0)
8900 exit(1);
8902 setsid();
8904 pid = fork();
8905 if (pid > 0)
8906 exit(0);
8907 else if (pid < 0)
8908 exit(1);
8910 umask(027);
8911 chdir("/");
8913 signal(SIGTSTP, SIG_IGN);
8914 signal(SIGTTOU, SIG_IGN);
8915 signal(SIGTTIN, SIG_IGN);
8917 #endif
8919 if (pid_file && qemu_create_pidfile(pid_file) != 0) {
8920 if (daemonize) {
8921 uint8_t status = 1;
8922 write(fds[1], &status, 1);
8923 } else
8924 fprintf(stderr, "Could not acquire pid file\n");
8925 exit(1);
8928 #ifdef USE_KQEMU
8929 if (smp_cpus > 1)
8930 kqemu_allowed = 0;
8931 #endif
8932 linux_boot = (kernel_filename != NULL);
8933 net_boot = (boot_devices_bitmap >> ('n' - 'a')) & 0xF;
8935 /* XXX: this should not be: some embedded targets just have flash */
8936 if (!linux_boot && net_boot == 0 &&
8937 nb_drives_opt == 0)
8938 help(1);
8940 /* boot to floppy or the default cd if no hard disk defined yet */
8941 if (!boot_devices[0]) {
8942 boot_devices = "cad";
8944 setvbuf(stdout, NULL, _IOLBF, 0);
8946 init_timers();
8947 init_timer_alarm();
8948 qemu_aio_init();
8950 #ifdef _WIN32
8951 socket_init();
8952 #endif
8954 /* init network clients */
8955 if (nb_net_clients == 0) {
8956 /* if no clients, we use a default config */
8957 net_clients[0] = "nic";
8958 net_clients[1] = "user";
8959 nb_net_clients = 2;
8962 for(i = 0;i < nb_net_clients; i++) {
8963 if (net_client_init(net_clients[i]) < 0)
8964 exit(1);
8966 for(vlan = first_vlan; vlan != NULL; vlan = vlan->next) {
8967 if (vlan->nb_guest_devs == 0 && vlan->nb_host_devs == 0)
8968 continue;
8969 if (vlan->nb_guest_devs == 0) {
8970 fprintf(stderr, "Invalid vlan (%d) with no nics\n", vlan->id);
8971 exit(1);
8973 if (vlan->nb_host_devs == 0)
8974 fprintf(stderr,
8975 "Warning: vlan %d is not connected to host network\n",
8976 vlan->id);
8979 #ifdef TARGET_I386
8980 /* XXX: this should be moved in the PC machine instantiation code */
8981 if (net_boot != 0) {
8982 int netroms = 0;
8983 for (i = 0; i < nb_nics && i < 4; i++) {
8984 const char *model = nd_table[i].model;
8985 char buf[1024];
8986 if (net_boot & (1 << i)) {
8987 if (model == NULL)
8988 model = "ne2k_pci";
8989 snprintf(buf, sizeof(buf), "%s/pxe-%s.bin", bios_dir, model);
8990 if (get_image_size(buf) > 0) {
8991 if (nb_option_roms >= MAX_OPTION_ROMS) {
8992 fprintf(stderr, "Too many option ROMs\n");
8993 exit(1);
8995 option_rom[nb_option_roms] = strdup(buf);
8996 nb_option_roms++;
8997 netroms++;
9001 if (netroms == 0) {
9002 fprintf(stderr, "No valid PXE rom found for network device\n");
9003 exit(1);
9006 #endif
9008 /* init the memory */
9009 phys_ram_size = machine->ram_require & ~RAMSIZE_FIXED;
9011 if (machine->ram_require & RAMSIZE_FIXED) {
9012 if (ram_size > 0) {
9013 if (ram_size < phys_ram_size) {
9014 fprintf(stderr, "Machine `%s' requires %llu bytes of memory\n",
9015 machine->name, (unsigned long long) phys_ram_size);
9016 exit(-1);
9019 phys_ram_size = ram_size;
9020 } else
9021 ram_size = phys_ram_size;
9022 } else {
9023 if (ram_size == 0)
9024 ram_size = DEFAULT_RAM_SIZE * 1024 * 1024;
9026 phys_ram_size += ram_size;
9029 phys_ram_base = qemu_vmalloc(phys_ram_size);
9030 if (!phys_ram_base) {
9031 fprintf(stderr, "Could not allocate physical memory\n");
9032 exit(1);
9035 bdrv_init();
9037 /* we always create the cdrom drive, even if no disk is there */
9039 if (nb_drives_opt < MAX_DRIVES)
9040 drive_add(NULL, CDROM_ALIAS);
9042 /* we always create at least one floppy */
9044 if (nb_drives_opt < MAX_DRIVES)
9045 drive_add(NULL, FD_ALIAS, 0);
9047 /* we always create one sd slot, even if no card is in it */
9049 if (nb_drives_opt < MAX_DRIVES)
9050 drive_add(NULL, SD_ALIAS);
9052 /* open the virtual block devices */
9054 for(i = 0; i < nb_drives_opt; i++)
9055 if (drive_init(&drives_opt[i], snapshot, machine) == -1)
9056 exit(1);
9058 register_savevm("timer", 0, 2, timer_save, timer_load, NULL);
9059 register_savevm("ram", 0, 2, ram_save, ram_load, NULL);
9061 init_ioports();
9063 /* terminal init */
9064 memset(&display_state, 0, sizeof(display_state));
9065 if (nographic) {
9066 if (curses) {
9067 fprintf(stderr, "fatal: -nographic can't be used with -curses\n");
9068 exit(1);
9070 /* nearly nothing to do */
9071 dumb_display_init(ds);
9072 } else if (vnc_display != NULL) {
9073 vnc_display_init(ds);
9074 if (vnc_display_open(ds, vnc_display) < 0)
9075 exit(1);
9076 } else
9077 #if defined(CONFIG_CURSES)
9078 if (curses) {
9079 curses_display_init(ds, full_screen);
9080 } else
9081 #endif
9083 #if defined(CONFIG_SDL)
9084 sdl_display_init(ds, full_screen, no_frame);
9085 #elif defined(CONFIG_COCOA)
9086 cocoa_display_init(ds, full_screen);
9087 #else
9088 dumb_display_init(ds);
9089 #endif
9092 /* Maintain compatibility with multiple stdio monitors */
9093 if (!strcmp(monitor_device,"stdio")) {
9094 for (i = 0; i < MAX_SERIAL_PORTS; i++) {
9095 const char *devname = serial_devices[i];
9096 if (devname && !strcmp(devname,"mon:stdio")) {
9097 monitor_device = NULL;
9098 break;
9099 } else if (devname && !strcmp(devname,"stdio")) {
9100 monitor_device = NULL;
9101 serial_devices[i] = "mon:stdio";
9102 break;
9106 if (monitor_device) {
9107 monitor_hd = qemu_chr_open(monitor_device);
9108 if (!monitor_hd) {
9109 fprintf(stderr, "qemu: could not open monitor device '%s'\n", monitor_device);
9110 exit(1);
9112 monitor_init(monitor_hd, !nographic);
9115 for(i = 0; i < MAX_SERIAL_PORTS; i++) {
9116 const char *devname = serial_devices[i];
9117 if (devname && strcmp(devname, "none")) {
9118 serial_hds[i] = qemu_chr_open(devname);
9119 if (!serial_hds[i]) {
9120 fprintf(stderr, "qemu: could not open serial device '%s'\n",
9121 devname);
9122 exit(1);
9124 if (strstart(devname, "vc", 0))
9125 qemu_chr_printf(serial_hds[i], "serial%d console\r\n", i);
9129 for(i = 0; i < MAX_PARALLEL_PORTS; i++) {
9130 const char *devname = parallel_devices[i];
9131 if (devname && strcmp(devname, "none")) {
9132 parallel_hds[i] = qemu_chr_open(devname);
9133 if (!parallel_hds[i]) {
9134 fprintf(stderr, "qemu: could not open parallel device '%s'\n",
9135 devname);
9136 exit(1);
9138 if (strstart(devname, "vc", 0))
9139 qemu_chr_printf(parallel_hds[i], "parallel%d console\r\n", i);
9143 machine->init(ram_size, vga_ram_size, boot_devices, ds,
9144 kernel_filename, kernel_cmdline, initrd_filename, cpu_model);
9146 /* init USB devices */
9147 if (usb_enabled) {
9148 for(i = 0; i < usb_devices_index; i++) {
9149 if (usb_device_add(usb_devices[i]) < 0) {
9150 fprintf(stderr, "Warning: could not add USB device %s\n",
9151 usb_devices[i]);
9156 if (display_state.dpy_refresh) {
9157 display_state.gui_timer = qemu_new_timer(rt_clock, gui_update, &display_state);
9158 qemu_mod_timer(display_state.gui_timer, qemu_get_clock(rt_clock));
9161 #ifdef CONFIG_GDBSTUB
9162 if (use_gdbstub) {
9163 /* XXX: use standard host:port notation and modify options
9164 accordingly. */
9165 if (gdbserver_start(gdbstub_port) < 0) {
9166 fprintf(stderr, "qemu: could not open gdbstub device on port '%s'\n",
9167 gdbstub_port);
9168 exit(1);
9171 #endif
9173 if (loadvm)
9174 do_loadvm(loadvm);
9177 /* XXX: simplify init */
9178 read_passwords();
9179 if (autostart) {
9180 vm_start();
9184 if (daemonize) {
9185 uint8_t status = 0;
9186 ssize_t len;
9187 int fd;
9189 again1:
9190 len = write(fds[1], &status, 1);
9191 if (len == -1 && (errno == EINTR))
9192 goto again1;
9194 if (len != 1)
9195 exit(1);
9197 TFR(fd = open("/dev/null", O_RDWR));
9198 if (fd == -1)
9199 exit(1);
9201 dup2(fd, 0);
9202 dup2(fd, 1);
9203 dup2(fd, 2);
9205 close(fd);
9208 main_loop();
9209 quit_timers();
9211 #if !defined(_WIN32)
9212 /* close network clients */
9213 for(vlan = first_vlan; vlan != NULL; vlan = vlan->next) {
9214 VLANClientState *vc;
9216 for(vc = vlan->first_client; vc != NULL; vc = vc->next) {
9217 if (vc->fd_read == tap_receive) {
9218 char ifname[64];
9219 TAPState *s = vc->opaque;
9221 if (sscanf(vc->info_str, "tap: ifname=%63s ", ifname) == 1 &&
9222 s->down_script[0])
9223 launch_script(s->down_script, ifname, s->fd);
9227 #endif
9228 return 0;