2 #include "host-utils.h"
4 #if !defined(CONFIG_USER_ONLY)
5 #include "softmmu_exec.h"
6 #endif /* !defined(CONFIG_USER_ONLY) */
10 //#define DEBUG_UNALIGNED
11 //#define DEBUG_UNASSIGNED
16 #define DPRINTF_MMU(fmt, ...) \
17 do { printf("MMU: " fmt , ## __VA_ARGS__); } while (0)
19 #define DPRINTF_MMU(fmt, ...) do {} while (0)
23 #define DPRINTF_MXCC(fmt, ...) \
24 do { printf("MXCC: " fmt , ## __VA_ARGS__); } while (0)
26 #define DPRINTF_MXCC(fmt, ...) do {} while (0)
30 #define DPRINTF_ASI(fmt, ...) \
31 do { printf("ASI: " fmt , ## __VA_ARGS__); } while (0)
36 #define AM_CHECK(env1) ((env1)->pstate & PS_AM)
38 #define AM_CHECK(env1) (1)
42 #if defined(TARGET_SPARC64) && !defined(CONFIG_USER_ONLY)
43 // Calculates TSB pointer value for fault page size 8k or 64k
44 static uint64_t ultrasparc_tsb_pointer(uint64_t tsb_register
,
45 uint64_t tag_access_register
,
48 uint64_t tsb_base
= tsb_register
& ~0x1fffULL
;
49 int tsb_split
= (env
->dmmuregs
[5] & 0x1000ULL
) ? 1 : 0;
50 int tsb_size
= env
->dmmuregs
[5] & 0xf;
52 // discard lower 13 bits which hold tag access context
53 uint64_t tag_access_va
= tag_access_register
& ~0x1fffULL
;
56 uint64_t tsb_base_mask
= ~0x1fffULL
;
57 uint64_t va
= tag_access_va
;
59 // move va bits to correct position
60 if (page_size
== 8*1024) {
62 } else if (page_size
== 64*1024) {
67 tsb_base_mask
<<= tsb_size
;
70 // calculate tsb_base mask and adjust va if split is in use
72 if (page_size
== 8*1024) {
73 va
&= ~(1ULL << (13 + tsb_size
));
74 } else if (page_size
== 64*1024) {
75 va
|= (1ULL << (13 + tsb_size
));
80 return ((tsb_base
& tsb_base_mask
) | (va
& ~tsb_base_mask
)) & ~0xfULL
;
83 // Calculates tag target register value by reordering bits
84 // in tag access register
85 static uint64_t ultrasparc_tag_target(uint64_t tag_access_register
)
87 return ((tag_access_register
& 0x1fff) << 48) | (tag_access_register
>> 22);
92 static inline void address_mask(CPUState
*env1
, target_ulong
*addr
)
96 *addr
&= 0xffffffffULL
;
100 static void raise_exception(int tt
)
102 env
->exception_index
= tt
;
106 void HELPER(raise_exception
)(int tt
)
111 static inline void set_cwp(int new_cwp
)
113 cpu_set_cwp(env
, new_cwp
);
116 void helper_check_align(target_ulong addr
, uint32_t align
)
119 #ifdef DEBUG_UNALIGNED
120 printf("Unaligned access to 0x" TARGET_FMT_lx
" from 0x" TARGET_FMT_lx
121 "\n", addr
, env
->pc
);
123 raise_exception(TT_UNALIGNED
);
127 #define F_HELPER(name, p) void helper_f##name##p(void)
129 #define F_BINOP(name) \
130 float32 helper_f ## name ## s (float32 src1, float32 src2) \
132 return float32_ ## name (src1, src2, &env->fp_status); \
136 DT0 = float64_ ## name (DT0, DT1, &env->fp_status); \
140 QT0 = float128_ ## name (QT0, QT1, &env->fp_status); \
149 void helper_fsmuld(float32 src1
, float32 src2
)
151 DT0
= float64_mul(float32_to_float64(src1
, &env
->fp_status
),
152 float32_to_float64(src2
, &env
->fp_status
),
156 void helper_fdmulq(void)
158 QT0
= float128_mul(float64_to_float128(DT0
, &env
->fp_status
),
159 float64_to_float128(DT1
, &env
->fp_status
),
163 float32
helper_fnegs(float32 src
)
165 return float32_chs(src
);
168 #ifdef TARGET_SPARC64
171 DT0
= float64_chs(DT1
);
176 QT0
= float128_chs(QT1
);
180 /* Integer to float conversion. */
181 float32
helper_fitos(int32_t src
)
183 return int32_to_float32(src
, &env
->fp_status
);
186 void helper_fitod(int32_t src
)
188 DT0
= int32_to_float64(src
, &env
->fp_status
);
191 void helper_fitoq(int32_t src
)
193 QT0
= int32_to_float128(src
, &env
->fp_status
);
196 #ifdef TARGET_SPARC64
197 float32
helper_fxtos(void)
199 return int64_to_float32(*((int64_t *)&DT1
), &env
->fp_status
);
204 DT0
= int64_to_float64(*((int64_t *)&DT1
), &env
->fp_status
);
209 QT0
= int64_to_float128(*((int64_t *)&DT1
), &env
->fp_status
);
214 /* floating point conversion */
215 float32
helper_fdtos(void)
217 return float64_to_float32(DT1
, &env
->fp_status
);
220 void helper_fstod(float32 src
)
222 DT0
= float32_to_float64(src
, &env
->fp_status
);
225 float32
helper_fqtos(void)
227 return float128_to_float32(QT1
, &env
->fp_status
);
230 void helper_fstoq(float32 src
)
232 QT0
= float32_to_float128(src
, &env
->fp_status
);
235 void helper_fqtod(void)
237 DT0
= float128_to_float64(QT1
, &env
->fp_status
);
240 void helper_fdtoq(void)
242 QT0
= float64_to_float128(DT1
, &env
->fp_status
);
245 /* Float to integer conversion. */
246 int32_t helper_fstoi(float32 src
)
248 return float32_to_int32_round_to_zero(src
, &env
->fp_status
);
251 int32_t helper_fdtoi(void)
253 return float64_to_int32_round_to_zero(DT1
, &env
->fp_status
);
256 int32_t helper_fqtoi(void)
258 return float128_to_int32_round_to_zero(QT1
, &env
->fp_status
);
261 #ifdef TARGET_SPARC64
262 void helper_fstox(float32 src
)
264 *((int64_t *)&DT0
) = float32_to_int64_round_to_zero(src
, &env
->fp_status
);
267 void helper_fdtox(void)
269 *((int64_t *)&DT0
) = float64_to_int64_round_to_zero(DT1
, &env
->fp_status
);
272 void helper_fqtox(void)
274 *((int64_t *)&DT0
) = float128_to_int64_round_to_zero(QT1
, &env
->fp_status
);
277 void helper_faligndata(void)
281 tmp
= (*((uint64_t *)&DT0
)) << ((env
->gsr
& 7) * 8);
282 /* on many architectures a shift of 64 does nothing */
283 if ((env
->gsr
& 7) != 0) {
284 tmp
|= (*((uint64_t *)&DT1
)) >> (64 - (env
->gsr
& 7) * 8);
286 *((uint64_t *)&DT0
) = tmp
;
289 #ifdef WORDS_BIGENDIAN
290 #define VIS_B64(n) b[7 - (n)]
291 #define VIS_W64(n) w[3 - (n)]
292 #define VIS_SW64(n) sw[3 - (n)]
293 #define VIS_L64(n) l[1 - (n)]
294 #define VIS_B32(n) b[3 - (n)]
295 #define VIS_W32(n) w[1 - (n)]
297 #define VIS_B64(n) b[n]
298 #define VIS_W64(n) w[n]
299 #define VIS_SW64(n) sw[n]
300 #define VIS_L64(n) l[n]
301 #define VIS_B32(n) b[n]
302 #define VIS_W32(n) w[n]
320 void helper_fpmerge(void)
327 // Reverse calculation order to handle overlap
328 d
.VIS_B64(7) = s
.VIS_B64(3);
329 d
.VIS_B64(6) = d
.VIS_B64(3);
330 d
.VIS_B64(5) = s
.VIS_B64(2);
331 d
.VIS_B64(4) = d
.VIS_B64(2);
332 d
.VIS_B64(3) = s
.VIS_B64(1);
333 d
.VIS_B64(2) = d
.VIS_B64(1);
334 d
.VIS_B64(1) = s
.VIS_B64(0);
335 //d.VIS_B64(0) = d.VIS_B64(0);
340 void helper_fmul8x16(void)
349 tmp = (int32_t)d.VIS_SW64(r) * (int32_t)s.VIS_B64(r); \
350 if ((tmp & 0xff) > 0x7f) \
352 d.VIS_W64(r) = tmp >> 8;
363 void helper_fmul8x16al(void)
372 tmp = (int32_t)d.VIS_SW64(1) * (int32_t)s.VIS_B64(r); \
373 if ((tmp & 0xff) > 0x7f) \
375 d.VIS_W64(r) = tmp >> 8;
386 void helper_fmul8x16au(void)
395 tmp = (int32_t)d.VIS_SW64(0) * (int32_t)s.VIS_B64(r); \
396 if ((tmp & 0xff) > 0x7f) \
398 d.VIS_W64(r) = tmp >> 8;
409 void helper_fmul8sux16(void)
418 tmp = (int32_t)d.VIS_SW64(r) * ((int32_t)s.VIS_SW64(r) >> 8); \
419 if ((tmp & 0xff) > 0x7f) \
421 d.VIS_W64(r) = tmp >> 8;
432 void helper_fmul8ulx16(void)
441 tmp = (int32_t)d.VIS_SW64(r) * ((uint32_t)s.VIS_B64(r * 2)); \
442 if ((tmp & 0xff) > 0x7f) \
444 d.VIS_W64(r) = tmp >> 8;
455 void helper_fmuld8sux16(void)
464 tmp = (int32_t)d.VIS_SW64(r) * ((int32_t)s.VIS_SW64(r) >> 8); \
465 if ((tmp & 0xff) > 0x7f) \
469 // Reverse calculation order to handle overlap
477 void helper_fmuld8ulx16(void)
486 tmp = (int32_t)d.VIS_SW64(r) * ((uint32_t)s.VIS_B64(r * 2)); \
487 if ((tmp & 0xff) > 0x7f) \
491 // Reverse calculation order to handle overlap
499 void helper_fexpand(void)
504 s
.l
= (uint32_t)(*(uint64_t *)&DT0
& 0xffffffff);
506 d
.VIS_W64(0) = s
.VIS_B32(0) << 4;
507 d
.VIS_W64(1) = s
.VIS_B32(1) << 4;
508 d
.VIS_W64(2) = s
.VIS_B32(2) << 4;
509 d
.VIS_W64(3) = s
.VIS_B32(3) << 4;
514 #define VIS_HELPER(name, F) \
515 void name##16(void) \
522 d.VIS_W64(0) = F(d.VIS_W64(0), s.VIS_W64(0)); \
523 d.VIS_W64(1) = F(d.VIS_W64(1), s.VIS_W64(1)); \
524 d.VIS_W64(2) = F(d.VIS_W64(2), s.VIS_W64(2)); \
525 d.VIS_W64(3) = F(d.VIS_W64(3), s.VIS_W64(3)); \
530 uint32_t name##16s(uint32_t src1, uint32_t src2) \
537 d.VIS_W32(0) = F(d.VIS_W32(0), s.VIS_W32(0)); \
538 d.VIS_W32(1) = F(d.VIS_W32(1), s.VIS_W32(1)); \
543 void name##32(void) \
550 d.VIS_L64(0) = F(d.VIS_L64(0), s.VIS_L64(0)); \
551 d.VIS_L64(1) = F(d.VIS_L64(1), s.VIS_L64(1)); \
556 uint32_t name##32s(uint32_t src1, uint32_t src2) \
568 #define FADD(a, b) ((a) + (b))
569 #define FSUB(a, b) ((a) - (b))
570 VIS_HELPER(helper_fpadd
, FADD
)
571 VIS_HELPER(helper_fpsub
, FSUB
)
573 #define VIS_CMPHELPER(name, F) \
574 void name##16(void) \
581 d.VIS_W64(0) = F(d.VIS_W64(0), s.VIS_W64(0))? 1: 0; \
582 d.VIS_W64(0) |= F(d.VIS_W64(1), s.VIS_W64(1))? 2: 0; \
583 d.VIS_W64(0) |= F(d.VIS_W64(2), s.VIS_W64(2))? 4: 0; \
584 d.VIS_W64(0) |= F(d.VIS_W64(3), s.VIS_W64(3))? 8: 0; \
589 void name##32(void) \
596 d.VIS_L64(0) = F(d.VIS_L64(0), s.VIS_L64(0))? 1: 0; \
597 d.VIS_L64(0) |= F(d.VIS_L64(1), s.VIS_L64(1))? 2: 0; \
602 #define FCMPGT(a, b) ((a) > (b))
603 #define FCMPEQ(a, b) ((a) == (b))
604 #define FCMPLE(a, b) ((a) <= (b))
605 #define FCMPNE(a, b) ((a) != (b))
607 VIS_CMPHELPER(helper_fcmpgt
, FCMPGT
)
608 VIS_CMPHELPER(helper_fcmpeq
, FCMPEQ
)
609 VIS_CMPHELPER(helper_fcmple
, FCMPLE
)
610 VIS_CMPHELPER(helper_fcmpne
, FCMPNE
)
613 void helper_check_ieee_exceptions(void)
617 status
= get_float_exception_flags(&env
->fp_status
);
619 /* Copy IEEE 754 flags into FSR */
620 if (status
& float_flag_invalid
)
622 if (status
& float_flag_overflow
)
624 if (status
& float_flag_underflow
)
626 if (status
& float_flag_divbyzero
)
628 if (status
& float_flag_inexact
)
631 if ((env
->fsr
& FSR_CEXC_MASK
) & ((env
->fsr
& FSR_TEM_MASK
) >> 23)) {
632 /* Unmasked exception, generate a trap */
633 env
->fsr
|= FSR_FTT_IEEE_EXCP
;
634 raise_exception(TT_FP_EXCP
);
636 /* Accumulate exceptions */
637 env
->fsr
|= (env
->fsr
& FSR_CEXC_MASK
) << 5;
642 void helper_clear_float_exceptions(void)
644 set_float_exception_flags(0, &env
->fp_status
);
647 float32
helper_fabss(float32 src
)
649 return float32_abs(src
);
652 #ifdef TARGET_SPARC64
653 void helper_fabsd(void)
655 DT0
= float64_abs(DT1
);
658 void helper_fabsq(void)
660 QT0
= float128_abs(QT1
);
664 float32
helper_fsqrts(float32 src
)
666 return float32_sqrt(src
, &env
->fp_status
);
669 void helper_fsqrtd(void)
671 DT0
= float64_sqrt(DT1
, &env
->fp_status
);
674 void helper_fsqrtq(void)
676 QT0
= float128_sqrt(QT1
, &env
->fp_status
);
679 #define GEN_FCMP(name, size, reg1, reg2, FS, TRAP) \
680 void glue(helper_, name) (void) \
682 target_ulong new_fsr; \
684 env->fsr &= ~((FSR_FCC1 | FSR_FCC0) << FS); \
685 switch (glue(size, _compare) (reg1, reg2, &env->fp_status)) { \
686 case float_relation_unordered: \
687 new_fsr = (FSR_FCC1 | FSR_FCC0) << FS; \
688 if ((env->fsr & FSR_NVM) || TRAP) { \
689 env->fsr |= new_fsr; \
690 env->fsr |= FSR_NVC; \
691 env->fsr |= FSR_FTT_IEEE_EXCP; \
692 raise_exception(TT_FP_EXCP); \
694 env->fsr |= FSR_NVA; \
697 case float_relation_less: \
698 new_fsr = FSR_FCC0 << FS; \
700 case float_relation_greater: \
701 new_fsr = FSR_FCC1 << FS; \
707 env->fsr |= new_fsr; \
709 #define GEN_FCMPS(name, size, FS, TRAP) \
710 void glue(helper_, name)(float32 src1, float32 src2) \
712 target_ulong new_fsr; \
714 env->fsr &= ~((FSR_FCC1 | FSR_FCC0) << FS); \
715 switch (glue(size, _compare) (src1, src2, &env->fp_status)) { \
716 case float_relation_unordered: \
717 new_fsr = (FSR_FCC1 | FSR_FCC0) << FS; \
718 if ((env->fsr & FSR_NVM) || TRAP) { \
719 env->fsr |= new_fsr; \
720 env->fsr |= FSR_NVC; \
721 env->fsr |= FSR_FTT_IEEE_EXCP; \
722 raise_exception(TT_FP_EXCP); \
724 env->fsr |= FSR_NVA; \
727 case float_relation_less: \
728 new_fsr = FSR_FCC0 << FS; \
730 case float_relation_greater: \
731 new_fsr = FSR_FCC1 << FS; \
737 env->fsr |= new_fsr; \
740 GEN_FCMPS(fcmps
, float32
, 0, 0);
741 GEN_FCMP(fcmpd
, float64
, DT0
, DT1
, 0, 0);
743 GEN_FCMPS(fcmpes
, float32
, 0, 1);
744 GEN_FCMP(fcmped
, float64
, DT0
, DT1
, 0, 1);
746 GEN_FCMP(fcmpq
, float128
, QT0
, QT1
, 0, 0);
747 GEN_FCMP(fcmpeq
, float128
, QT0
, QT1
, 0, 1);
749 static uint32_t compute_all_flags(void)
751 return env
->psr
& PSR_ICC
;
754 static uint32_t compute_C_flags(void)
756 return env
->psr
& PSR_CARRY
;
759 static inline uint32_t get_NZ_icc(target_ulong dst
)
763 if (!(dst
& 0xffffffffULL
))
765 if ((int32_t) (dst
& 0xffffffffULL
) < 0)
770 #ifdef TARGET_SPARC64
771 static uint32_t compute_all_flags_xcc(void)
773 return env
->xcc
& PSR_ICC
;
776 static uint32_t compute_C_flags_xcc(void)
778 return env
->xcc
& PSR_CARRY
;
781 static inline uint32_t get_NZ_xcc(target_ulong dst
)
787 if ((int64_t)dst
< 0)
793 static inline uint32_t get_V_div_icc(target_ulong src2
)
802 static uint32_t compute_all_div(void)
806 ret
= get_NZ_icc(CC_DST
);
807 ret
|= get_V_div_icc(CC_SRC2
);
811 static uint32_t compute_C_div(void)
816 static inline uint32_t get_C_add_icc(target_ulong dst
, target_ulong src1
)
820 if ((dst
& 0xffffffffULL
) < (src1
& 0xffffffffULL
))
825 static inline uint32_t get_V_add_icc(target_ulong dst
, target_ulong src1
,
830 if (((src1
^ src2
^ -1) & (src1
^ dst
)) & (1ULL << 31))
835 static uint32_t compute_all_add(void)
839 ret
= get_NZ_icc(CC_DST
);
840 ret
|= get_C_add_icc(CC_DST
, CC_SRC
);
841 ret
|= get_V_add_icc(CC_DST
, CC_SRC
, CC_SRC2
);
845 static uint32_t compute_C_add(void)
847 return get_C_add_icc(CC_DST
, CC_SRC
);
850 #ifdef TARGET_SPARC64
851 static inline uint32_t get_C_add_xcc(target_ulong dst
, target_ulong src1
)
860 static inline uint32_t get_V_add_xcc(target_ulong dst
, target_ulong src1
,
865 if (((src1
^ src2
^ -1) & (src1
^ dst
)) & (1ULL << 63))
870 static uint32_t compute_all_add_xcc(void)
874 ret
= get_NZ_xcc(CC_DST
);
875 ret
|= get_C_add_xcc(CC_DST
, CC_SRC
);
876 ret
|= get_V_add_xcc(CC_DST
, CC_SRC
, CC_SRC2
);
880 static uint32_t compute_C_add_xcc(void)
882 return get_C_add_xcc(CC_DST
, CC_SRC
);
886 static uint32_t compute_all_addx(void)
890 ret
= get_NZ_icc(CC_DST
);
891 ret
|= get_C_add_icc(CC_DST
- CC_SRC2
, CC_SRC
);
892 ret
|= get_C_add_icc(CC_DST
, CC_SRC
);
893 ret
|= get_V_add_icc(CC_DST
, CC_SRC
, CC_SRC2
);
897 static uint32_t compute_C_addx(void)
901 ret
= get_C_add_icc(CC_DST
- CC_SRC2
, CC_SRC
);
902 ret
|= get_C_add_icc(CC_DST
, CC_SRC
);
906 #ifdef TARGET_SPARC64
907 static uint32_t compute_all_addx_xcc(void)
911 ret
= get_NZ_xcc(CC_DST
);
912 ret
|= get_C_add_xcc(CC_DST
- CC_SRC2
, CC_SRC
);
913 ret
|= get_C_add_xcc(CC_DST
, CC_SRC
);
914 ret
|= get_V_add_xcc(CC_DST
, CC_SRC
, CC_SRC2
);
918 static uint32_t compute_C_addx_xcc(void)
922 ret
= get_C_add_xcc(CC_DST
- CC_SRC2
, CC_SRC
);
923 ret
|= get_C_add_xcc(CC_DST
, CC_SRC
);
928 static inline uint32_t get_V_tag_icc(target_ulong src1
, target_ulong src2
)
932 if ((src1
| src2
) & 0x3)
937 static uint32_t compute_all_tadd(void)
941 ret
= get_NZ_icc(CC_DST
);
942 ret
|= get_C_add_icc(CC_DST
, CC_SRC
);
943 ret
|= get_V_add_icc(CC_DST
, CC_SRC
, CC_SRC2
);
944 ret
|= get_V_tag_icc(CC_SRC
, CC_SRC2
);
948 static uint32_t compute_C_tadd(void)
950 return get_C_add_icc(CC_DST
, CC_SRC
);
953 static uint32_t compute_all_taddtv(void)
957 ret
= get_NZ_icc(CC_DST
);
958 ret
|= get_C_add_icc(CC_DST
, CC_SRC
);
962 static uint32_t compute_C_taddtv(void)
964 return get_C_add_icc(CC_DST
, CC_SRC
);
967 static inline uint32_t get_C_sub_icc(target_ulong src1
, target_ulong src2
)
971 if ((src1
& 0xffffffffULL
) < (src2
& 0xffffffffULL
))
976 static inline uint32_t get_V_sub_icc(target_ulong dst
, target_ulong src1
,
981 if (((src1
^ src2
) & (src1
^ dst
)) & (1ULL << 31))
986 static uint32_t compute_all_sub(void)
990 ret
= get_NZ_icc(CC_DST
);
991 ret
|= get_C_sub_icc(CC_SRC
, CC_SRC2
);
992 ret
|= get_V_sub_icc(CC_DST
, CC_SRC
, CC_SRC2
);
996 static uint32_t compute_C_sub(void)
998 return get_C_sub_icc(CC_SRC
, CC_SRC2
);
1001 #ifdef TARGET_SPARC64
1002 static inline uint32_t get_C_sub_xcc(target_ulong src1
, target_ulong src2
)
1011 static inline uint32_t get_V_sub_xcc(target_ulong dst
, target_ulong src1
,
1016 if (((src1
^ src2
) & (src1
^ dst
)) & (1ULL << 63))
1021 static uint32_t compute_all_sub_xcc(void)
1025 ret
= get_NZ_xcc(CC_DST
);
1026 ret
|= get_C_sub_xcc(CC_SRC
, CC_SRC2
);
1027 ret
|= get_V_sub_xcc(CC_DST
, CC_SRC
, CC_SRC2
);
1031 static uint32_t compute_C_sub_xcc(void)
1033 return get_C_sub_xcc(CC_SRC
, CC_SRC2
);
1037 static uint32_t compute_all_subx(void)
1041 ret
= get_NZ_icc(CC_DST
);
1042 ret
|= get_C_sub_icc(CC_DST
- CC_SRC2
, CC_SRC
);
1043 ret
|= get_C_sub_icc(CC_DST
, CC_SRC2
);
1044 ret
|= get_V_sub_icc(CC_DST
, CC_SRC
, CC_SRC2
);
1048 static uint32_t compute_C_subx(void)
1052 ret
= get_C_sub_icc(CC_DST
- CC_SRC2
, CC_SRC
);
1053 ret
|= get_C_sub_icc(CC_DST
, CC_SRC2
);
1057 #ifdef TARGET_SPARC64
1058 static uint32_t compute_all_subx_xcc(void)
1062 ret
= get_NZ_xcc(CC_DST
);
1063 ret
|= get_C_sub_xcc(CC_DST
- CC_SRC2
, CC_SRC
);
1064 ret
|= get_C_sub_xcc(CC_DST
, CC_SRC2
);
1065 ret
|= get_V_sub_xcc(CC_DST
, CC_SRC
, CC_SRC2
);
1069 static uint32_t compute_C_subx_xcc(void)
1073 ret
= get_C_sub_xcc(CC_DST
- CC_SRC2
, CC_SRC
);
1074 ret
|= get_C_sub_xcc(CC_DST
, CC_SRC2
);
1079 static uint32_t compute_all_tsub(void)
1083 ret
= get_NZ_icc(CC_DST
);
1084 ret
|= get_C_sub_icc(CC_DST
, CC_SRC
);
1085 ret
|= get_V_sub_icc(CC_DST
, CC_SRC
, CC_SRC2
);
1086 ret
|= get_V_tag_icc(CC_SRC
, CC_SRC2
);
1090 static uint32_t compute_C_tsub(void)
1092 return get_C_sub_icc(CC_DST
, CC_SRC
);
1095 static uint32_t compute_all_tsubtv(void)
1099 ret
= get_NZ_icc(CC_DST
);
1100 ret
|= get_C_sub_icc(CC_DST
, CC_SRC
);
1104 static uint32_t compute_C_tsubtv(void)
1106 return get_C_sub_icc(CC_DST
, CC_SRC
);
1109 static uint32_t compute_all_logic(void)
1111 return get_NZ_icc(CC_DST
);
1114 static uint32_t compute_C_logic(void)
1119 #ifdef TARGET_SPARC64
1120 static uint32_t compute_all_logic_xcc(void)
1122 return get_NZ_xcc(CC_DST
);
1126 typedef struct CCTable
{
1127 uint32_t (*compute_all
)(void); /* return all the flags */
1128 uint32_t (*compute_c
)(void); /* return the C flag */
1131 static const CCTable icc_table
[CC_OP_NB
] = {
1132 /* CC_OP_DYNAMIC should never happen */
1133 [CC_OP_FLAGS
] = { compute_all_flags
, compute_C_flags
},
1134 [CC_OP_DIV
] = { compute_all_div
, compute_C_div
},
1135 [CC_OP_ADD
] = { compute_all_add
, compute_C_add
},
1136 [CC_OP_ADDX
] = { compute_all_addx
, compute_C_addx
},
1137 [CC_OP_TADD
] = { compute_all_tadd
, compute_C_tadd
},
1138 [CC_OP_TADDTV
] = { compute_all_taddtv
, compute_C_taddtv
},
1139 [CC_OP_SUB
] = { compute_all_sub
, compute_C_sub
},
1140 [CC_OP_SUBX
] = { compute_all_subx
, compute_C_subx
},
1141 [CC_OP_TSUB
] = { compute_all_tsub
, compute_C_tsub
},
1142 [CC_OP_TSUBTV
] = { compute_all_tsubtv
, compute_C_tsubtv
},
1143 [CC_OP_LOGIC
] = { compute_all_logic
, compute_C_logic
},
1146 #ifdef TARGET_SPARC64
1147 static const CCTable xcc_table
[CC_OP_NB
] = {
1148 /* CC_OP_DYNAMIC should never happen */
1149 [CC_OP_FLAGS
] = { compute_all_flags_xcc
, compute_C_flags_xcc
},
1150 [CC_OP_DIV
] = { compute_all_logic_xcc
, compute_C_logic
},
1151 [CC_OP_ADD
] = { compute_all_add_xcc
, compute_C_add_xcc
},
1152 [CC_OP_ADDX
] = { compute_all_addx_xcc
, compute_C_addx_xcc
},
1153 [CC_OP_TADD
] = { compute_all_add_xcc
, compute_C_add_xcc
},
1154 [CC_OP_TADDTV
] = { compute_all_add_xcc
, compute_C_add_xcc
},
1155 [CC_OP_SUB
] = { compute_all_sub_xcc
, compute_C_sub_xcc
},
1156 [CC_OP_SUBX
] = { compute_all_subx_xcc
, compute_C_subx_xcc
},
1157 [CC_OP_TSUB
] = { compute_all_sub_xcc
, compute_C_sub_xcc
},
1158 [CC_OP_TSUBTV
] = { compute_all_sub_xcc
, compute_C_sub_xcc
},
1159 [CC_OP_LOGIC
] = { compute_all_logic_xcc
, compute_C_logic
},
1163 void helper_compute_psr(void)
1167 new_psr
= icc_table
[CC_OP
].compute_all();
1169 #ifdef TARGET_SPARC64
1170 new_psr
= xcc_table
[CC_OP
].compute_all();
1173 CC_OP
= CC_OP_FLAGS
;
1176 uint32_t helper_compute_C_icc(void)
1180 ret
= icc_table
[CC_OP
].compute_c() >> PSR_CARRY_SHIFT
;
1184 #ifdef TARGET_SPARC64
1185 GEN_FCMPS(fcmps_fcc1
, float32
, 22, 0);
1186 GEN_FCMP(fcmpd_fcc1
, float64
, DT0
, DT1
, 22, 0);
1187 GEN_FCMP(fcmpq_fcc1
, float128
, QT0
, QT1
, 22, 0);
1189 GEN_FCMPS(fcmps_fcc2
, float32
, 24, 0);
1190 GEN_FCMP(fcmpd_fcc2
, float64
, DT0
, DT1
, 24, 0);
1191 GEN_FCMP(fcmpq_fcc2
, float128
, QT0
, QT1
, 24, 0);
1193 GEN_FCMPS(fcmps_fcc3
, float32
, 26, 0);
1194 GEN_FCMP(fcmpd_fcc3
, float64
, DT0
, DT1
, 26, 0);
1195 GEN_FCMP(fcmpq_fcc3
, float128
, QT0
, QT1
, 26, 0);
1197 GEN_FCMPS(fcmpes_fcc1
, float32
, 22, 1);
1198 GEN_FCMP(fcmped_fcc1
, float64
, DT0
, DT1
, 22, 1);
1199 GEN_FCMP(fcmpeq_fcc1
, float128
, QT0
, QT1
, 22, 1);
1201 GEN_FCMPS(fcmpes_fcc2
, float32
, 24, 1);
1202 GEN_FCMP(fcmped_fcc2
, float64
, DT0
, DT1
, 24, 1);
1203 GEN_FCMP(fcmpeq_fcc2
, float128
, QT0
, QT1
, 24, 1);
1205 GEN_FCMPS(fcmpes_fcc3
, float32
, 26, 1);
1206 GEN_FCMP(fcmped_fcc3
, float64
, DT0
, DT1
, 26, 1);
1207 GEN_FCMP(fcmpeq_fcc3
, float128
, QT0
, QT1
, 26, 1);
1211 #if !defined(TARGET_SPARC64) && !defined(CONFIG_USER_ONLY) && \
1213 static void dump_mxcc(CPUState
*env
)
1215 printf("mxccdata: %016" PRIx64
" %016" PRIx64
" %016" PRIx64
" %016" PRIx64
1217 env
->mxccdata
[0], env
->mxccdata
[1],
1218 env
->mxccdata
[2], env
->mxccdata
[3]);
1219 printf("mxccregs: %016" PRIx64
" %016" PRIx64
" %016" PRIx64
" %016" PRIx64
1221 " %016" PRIx64
" %016" PRIx64
" %016" PRIx64
" %016" PRIx64
1223 env
->mxccregs
[0], env
->mxccregs
[1],
1224 env
->mxccregs
[2], env
->mxccregs
[3],
1225 env
->mxccregs
[4], env
->mxccregs
[5],
1226 env
->mxccregs
[6], env
->mxccregs
[7]);
1230 #if (defined(TARGET_SPARC64) || !defined(CONFIG_USER_ONLY)) \
1231 && defined(DEBUG_ASI)
1232 static void dump_asi(const char *txt
, target_ulong addr
, int asi
, int size
,
1238 DPRINTF_ASI("%s "TARGET_FMT_lx
" asi 0x%02x = %02" PRIx64
"\n", txt
,
1239 addr
, asi
, r1
& 0xff);
1242 DPRINTF_ASI("%s "TARGET_FMT_lx
" asi 0x%02x = %04" PRIx64
"\n", txt
,
1243 addr
, asi
, r1
& 0xffff);
1246 DPRINTF_ASI("%s "TARGET_FMT_lx
" asi 0x%02x = %08" PRIx64
"\n", txt
,
1247 addr
, asi
, r1
& 0xffffffff);
1250 DPRINTF_ASI("%s "TARGET_FMT_lx
" asi 0x%02x = %016" PRIx64
"\n", txt
,
1257 #ifndef TARGET_SPARC64
1258 #ifndef CONFIG_USER_ONLY
1259 uint64_t helper_ld_asi(target_ulong addr
, int asi
, int size
, int sign
)
1262 #if defined(DEBUG_MXCC) || defined(DEBUG_ASI)
1263 uint32_t last_addr
= addr
;
1266 helper_check_align(addr
, size
- 1);
1268 case 2: /* SuperSparc MXCC registers */
1270 case 0x01c00a00: /* MXCC control register */
1272 ret
= env
->mxccregs
[3];
1274 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr
,
1277 case 0x01c00a04: /* MXCC control register */
1279 ret
= env
->mxccregs
[3];
1281 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr
,
1284 case 0x01c00c00: /* Module reset register */
1286 ret
= env
->mxccregs
[5];
1287 // should we do something here?
1289 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr
,
1292 case 0x01c00f00: /* MBus port address register */
1294 ret
= env
->mxccregs
[7];
1296 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr
,
1300 DPRINTF_MXCC("%08x: unimplemented address, size: %d\n", addr
,
1304 DPRINTF_MXCC("asi = %d, size = %d, sign = %d, "
1305 "addr = %08x -> ret = %" PRIx64
","
1306 "addr = %08x\n", asi
, size
, sign
, last_addr
, ret
, addr
);
1311 case 3: /* MMU probe */
1315 mmulev
= (addr
>> 8) & 15;
1319 ret
= mmu_probe(env
, addr
, mmulev
);
1320 DPRINTF_MMU("mmu_probe: 0x%08x (lev %d) -> 0x%08" PRIx64
"\n",
1324 case 4: /* read MMU regs */
1326 int reg
= (addr
>> 8) & 0x1f;
1328 ret
= env
->mmuregs
[reg
];
1329 if (reg
== 3) /* Fault status cleared on read */
1330 env
->mmuregs
[3] = 0;
1331 else if (reg
== 0x13) /* Fault status read */
1332 ret
= env
->mmuregs
[3];
1333 else if (reg
== 0x14) /* Fault address read */
1334 ret
= env
->mmuregs
[4];
1335 DPRINTF_MMU("mmu_read: reg[%d] = 0x%08" PRIx64
"\n", reg
, ret
);
1338 case 5: // Turbosparc ITLB Diagnostic
1339 case 6: // Turbosparc DTLB Diagnostic
1340 case 7: // Turbosparc IOTLB Diagnostic
1342 case 9: /* Supervisor code access */
1345 ret
= ldub_code(addr
);
1348 ret
= lduw_code(addr
);
1352 ret
= ldl_code(addr
);
1355 ret
= ldq_code(addr
);
1359 case 0xa: /* User data access */
1362 ret
= ldub_user(addr
);
1365 ret
= lduw_user(addr
);
1369 ret
= ldl_user(addr
);
1372 ret
= ldq_user(addr
);
1376 case 0xb: /* Supervisor data access */
1379 ret
= ldub_kernel(addr
);
1382 ret
= lduw_kernel(addr
);
1386 ret
= ldl_kernel(addr
);
1389 ret
= ldq_kernel(addr
);
1393 case 0xc: /* I-cache tag */
1394 case 0xd: /* I-cache data */
1395 case 0xe: /* D-cache tag */
1396 case 0xf: /* D-cache data */
1398 case 0x20: /* MMU passthrough */
1401 ret
= ldub_phys(addr
);
1404 ret
= lduw_phys(addr
);
1408 ret
= ldl_phys(addr
);
1411 ret
= ldq_phys(addr
);
1415 case 0x21 ... 0x2f: /* MMU passthrough, 0x100000000 to 0xfffffffff */
1418 ret
= ldub_phys((target_phys_addr_t
)addr
1419 | ((target_phys_addr_t
)(asi
& 0xf) << 32));
1422 ret
= lduw_phys((target_phys_addr_t
)addr
1423 | ((target_phys_addr_t
)(asi
& 0xf) << 32));
1427 ret
= ldl_phys((target_phys_addr_t
)addr
1428 | ((target_phys_addr_t
)(asi
& 0xf) << 32));
1431 ret
= ldq_phys((target_phys_addr_t
)addr
1432 | ((target_phys_addr_t
)(asi
& 0xf) << 32));
1436 case 0x30: // Turbosparc secondary cache diagnostic
1437 case 0x31: // Turbosparc RAM snoop
1438 case 0x32: // Turbosparc page table descriptor diagnostic
1439 case 0x39: /* data cache diagnostic register */
1442 case 0x38: /* SuperSPARC MMU Breakpoint Control Registers */
1444 int reg
= (addr
>> 8) & 3;
1447 case 0: /* Breakpoint Value (Addr) */
1448 ret
= env
->mmubpregs
[reg
];
1450 case 1: /* Breakpoint Mask */
1451 ret
= env
->mmubpregs
[reg
];
1453 case 2: /* Breakpoint Control */
1454 ret
= env
->mmubpregs
[reg
];
1456 case 3: /* Breakpoint Status */
1457 ret
= env
->mmubpregs
[reg
];
1458 env
->mmubpregs
[reg
] = 0ULL;
1461 DPRINTF_MMU("read breakpoint reg[%d] 0x%016" PRIx64
"\n", reg
,
1465 case 8: /* User code access, XXX */
1467 do_unassigned_access(addr
, 0, 0, asi
, size
);
1477 ret
= (int16_t) ret
;
1480 ret
= (int32_t) ret
;
1487 dump_asi("read ", last_addr
, asi
, size
, ret
);
1492 void helper_st_asi(target_ulong addr
, uint64_t val
, int asi
, int size
)
1494 helper_check_align(addr
, size
- 1);
1496 case 2: /* SuperSparc MXCC registers */
1498 case 0x01c00000: /* MXCC stream data register 0 */
1500 env
->mxccdata
[0] = val
;
1502 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr
,
1505 case 0x01c00008: /* MXCC stream data register 1 */
1507 env
->mxccdata
[1] = val
;
1509 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr
,
1512 case 0x01c00010: /* MXCC stream data register 2 */
1514 env
->mxccdata
[2] = val
;
1516 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr
,
1519 case 0x01c00018: /* MXCC stream data register 3 */
1521 env
->mxccdata
[3] = val
;
1523 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr
,
1526 case 0x01c00100: /* MXCC stream source */
1528 env
->mxccregs
[0] = val
;
1530 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr
,
1532 env
->mxccdata
[0] = ldq_phys((env
->mxccregs
[0] & 0xffffffffULL
) +
1534 env
->mxccdata
[1] = ldq_phys((env
->mxccregs
[0] & 0xffffffffULL
) +
1536 env
->mxccdata
[2] = ldq_phys((env
->mxccregs
[0] & 0xffffffffULL
) +
1538 env
->mxccdata
[3] = ldq_phys((env
->mxccregs
[0] & 0xffffffffULL
) +
1541 case 0x01c00200: /* MXCC stream destination */
1543 env
->mxccregs
[1] = val
;
1545 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr
,
1547 stq_phys((env
->mxccregs
[1] & 0xffffffffULL
) + 0,
1549 stq_phys((env
->mxccregs
[1] & 0xffffffffULL
) + 8,
1551 stq_phys((env
->mxccregs
[1] & 0xffffffffULL
) + 16,
1553 stq_phys((env
->mxccregs
[1] & 0xffffffffULL
) + 24,
1556 case 0x01c00a00: /* MXCC control register */
1558 env
->mxccregs
[3] = val
;
1560 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr
,
1563 case 0x01c00a04: /* MXCC control register */
1565 env
->mxccregs
[3] = (env
->mxccregs
[3] & 0xffffffff00000000ULL
)
1568 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr
,
1571 case 0x01c00e00: /* MXCC error register */
1572 // writing a 1 bit clears the error
1574 env
->mxccregs
[6] &= ~val
;
1576 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr
,
1579 case 0x01c00f00: /* MBus port address register */
1581 env
->mxccregs
[7] = val
;
1583 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr
,
1587 DPRINTF_MXCC("%08x: unimplemented address, size: %d\n", addr
,
1591 DPRINTF_MXCC("asi = %d, size = %d, addr = %08x, val = %" PRIx64
"\n",
1592 asi
, size
, addr
, val
);
1597 case 3: /* MMU flush */
1601 mmulev
= (addr
>> 8) & 15;
1602 DPRINTF_MMU("mmu flush level %d\n", mmulev
);
1604 case 0: // flush page
1605 tlb_flush_page(env
, addr
& 0xfffff000);
1607 case 1: // flush segment (256k)
1608 case 2: // flush region (16M)
1609 case 3: // flush context (4G)
1610 case 4: // flush entire
1621 case 4: /* write MMU regs */
1623 int reg
= (addr
>> 8) & 0x1f;
1626 oldreg
= env
->mmuregs
[reg
];
1628 case 0: // Control Register
1629 env
->mmuregs
[reg
] = (env
->mmuregs
[reg
] & 0xff000000) |
1631 // Mappings generated during no-fault mode or MMU
1632 // disabled mode are invalid in normal mode
1633 if ((oldreg
& (MMU_E
| MMU_NF
| env
->def
->mmu_bm
)) !=
1634 (env
->mmuregs
[reg
] & (MMU_E
| MMU_NF
| env
->def
->mmu_bm
)))
1637 case 1: // Context Table Pointer Register
1638 env
->mmuregs
[reg
] = val
& env
->def
->mmu_ctpr_mask
;
1640 case 2: // Context Register
1641 env
->mmuregs
[reg
] = val
& env
->def
->mmu_cxr_mask
;
1642 if (oldreg
!= env
->mmuregs
[reg
]) {
1643 /* we flush when the MMU context changes because
1644 QEMU has no MMU context support */
1648 case 3: // Synchronous Fault Status Register with Clear
1649 case 4: // Synchronous Fault Address Register
1651 case 0x10: // TLB Replacement Control Register
1652 env
->mmuregs
[reg
] = val
& env
->def
->mmu_trcr_mask
;
1654 case 0x13: // Synchronous Fault Status Register with Read and Clear
1655 env
->mmuregs
[3] = val
& env
->def
->mmu_sfsr_mask
;
1657 case 0x14: // Synchronous Fault Address Register
1658 env
->mmuregs
[4] = val
;
1661 env
->mmuregs
[reg
] = val
;
1664 if (oldreg
!= env
->mmuregs
[reg
]) {
1665 DPRINTF_MMU("mmu change reg[%d]: 0x%08x -> 0x%08x\n",
1666 reg
, oldreg
, env
->mmuregs
[reg
]);
1673 case 5: // Turbosparc ITLB Diagnostic
1674 case 6: // Turbosparc DTLB Diagnostic
1675 case 7: // Turbosparc IOTLB Diagnostic
1677 case 0xa: /* User data access */
1680 stb_user(addr
, val
);
1683 stw_user(addr
, val
);
1687 stl_user(addr
, val
);
1690 stq_user(addr
, val
);
1694 case 0xb: /* Supervisor data access */
1697 stb_kernel(addr
, val
);
1700 stw_kernel(addr
, val
);
1704 stl_kernel(addr
, val
);
1707 stq_kernel(addr
, val
);
1711 case 0xc: /* I-cache tag */
1712 case 0xd: /* I-cache data */
1713 case 0xe: /* D-cache tag */
1714 case 0xf: /* D-cache data */
1715 case 0x10: /* I/D-cache flush page */
1716 case 0x11: /* I/D-cache flush segment */
1717 case 0x12: /* I/D-cache flush region */
1718 case 0x13: /* I/D-cache flush context */
1719 case 0x14: /* I/D-cache flush user */
1721 case 0x17: /* Block copy, sta access */
1727 uint32_t src
= val
& ~3, dst
= addr
& ~3, temp
;
1729 for (i
= 0; i
< 32; i
+= 4, src
+= 4, dst
+= 4) {
1730 temp
= ldl_kernel(src
);
1731 stl_kernel(dst
, temp
);
1735 case 0x1f: /* Block fill, stda access */
1738 // fill 32 bytes with val
1740 uint32_t dst
= addr
& 7;
1742 for (i
= 0; i
< 32; i
+= 8, dst
+= 8)
1743 stq_kernel(dst
, val
);
1746 case 0x20: /* MMU passthrough */
1750 stb_phys(addr
, val
);
1753 stw_phys(addr
, val
);
1757 stl_phys(addr
, val
);
1760 stq_phys(addr
, val
);
1765 case 0x21 ... 0x2f: /* MMU passthrough, 0x100000000 to 0xfffffffff */
1769 stb_phys((target_phys_addr_t
)addr
1770 | ((target_phys_addr_t
)(asi
& 0xf) << 32), val
);
1773 stw_phys((target_phys_addr_t
)addr
1774 | ((target_phys_addr_t
)(asi
& 0xf) << 32), val
);
1778 stl_phys((target_phys_addr_t
)addr
1779 | ((target_phys_addr_t
)(asi
& 0xf) << 32), val
);
1782 stq_phys((target_phys_addr_t
)addr
1783 | ((target_phys_addr_t
)(asi
& 0xf) << 32), val
);
1788 case 0x30: // store buffer tags or Turbosparc secondary cache diagnostic
1789 case 0x31: // store buffer data, Ross RT620 I-cache flush or
1790 // Turbosparc snoop RAM
1791 case 0x32: // store buffer control or Turbosparc page table
1792 // descriptor diagnostic
1793 case 0x36: /* I-cache flash clear */
1794 case 0x37: /* D-cache flash clear */
1795 case 0x4c: /* breakpoint action */
1797 case 0x38: /* SuperSPARC MMU Breakpoint Control Registers*/
1799 int reg
= (addr
>> 8) & 3;
1802 case 0: /* Breakpoint Value (Addr) */
1803 env
->mmubpregs
[reg
] = (val
& 0xfffffffffULL
);
1805 case 1: /* Breakpoint Mask */
1806 env
->mmubpregs
[reg
] = (val
& 0xfffffffffULL
);
1808 case 2: /* Breakpoint Control */
1809 env
->mmubpregs
[reg
] = (val
& 0x7fULL
);
1811 case 3: /* Breakpoint Status */
1812 env
->mmubpregs
[reg
] = (val
& 0xfULL
);
1815 DPRINTF_MMU("write breakpoint reg[%d] 0x%016x\n", reg
,
1819 case 8: /* User code access, XXX */
1820 case 9: /* Supervisor code access, XXX */
1822 do_unassigned_access(addr
, 1, 0, asi
, size
);
1826 dump_asi("write", addr
, asi
, size
, val
);
1830 #endif /* CONFIG_USER_ONLY */
1831 #else /* TARGET_SPARC64 */
1833 #ifdef CONFIG_USER_ONLY
1834 uint64_t helper_ld_asi(target_ulong addr
, int asi
, int size
, int sign
)
1837 #if defined(DEBUG_ASI)
1838 target_ulong last_addr
= addr
;
1842 raise_exception(TT_PRIV_ACT
);
1844 helper_check_align(addr
, size
- 1);
1845 address_mask(env
, &addr
);
1848 case 0x82: // Primary no-fault
1849 case 0x8a: // Primary no-fault LE
1850 if (page_check_range(addr
, size
, PAGE_READ
) == -1) {
1852 dump_asi("read ", last_addr
, asi
, size
, ret
);
1857 case 0x80: // Primary
1858 case 0x88: // Primary LE
1862 ret
= ldub_raw(addr
);
1865 ret
= lduw_raw(addr
);
1868 ret
= ldl_raw(addr
);
1872 ret
= ldq_raw(addr
);
1877 case 0x83: // Secondary no-fault
1878 case 0x8b: // Secondary no-fault LE
1879 if (page_check_range(addr
, size
, PAGE_READ
) == -1) {
1881 dump_asi("read ", last_addr
, asi
, size
, ret
);
1886 case 0x81: // Secondary
1887 case 0x89: // Secondary LE
1894 /* Convert from little endian */
1896 case 0x88: // Primary LE
1897 case 0x89: // Secondary LE
1898 case 0x8a: // Primary no-fault LE
1899 case 0x8b: // Secondary no-fault LE
1917 /* Convert to signed number */
1924 ret
= (int16_t) ret
;
1927 ret
= (int32_t) ret
;
1934 dump_asi("read ", last_addr
, asi
, size
, ret
);
1939 void helper_st_asi(target_ulong addr
, target_ulong val
, int asi
, int size
)
1942 dump_asi("write", addr
, asi
, size
, val
);
1945 raise_exception(TT_PRIV_ACT
);
1947 helper_check_align(addr
, size
- 1);
1948 address_mask(env
, &addr
);
1950 /* Convert to little endian */
1952 case 0x88: // Primary LE
1953 case 0x89: // Secondary LE
1972 case 0x80: // Primary
1973 case 0x88: // Primary LE
1992 case 0x81: // Secondary
1993 case 0x89: // Secondary LE
1997 case 0x82: // Primary no-fault, RO
1998 case 0x83: // Secondary no-fault, RO
1999 case 0x8a: // Primary no-fault LE, RO
2000 case 0x8b: // Secondary no-fault LE, RO
2002 do_unassigned_access(addr
, 1, 0, 1, size
);
2007 #else /* CONFIG_USER_ONLY */
2009 uint64_t helper_ld_asi(target_ulong addr
, int asi
, int size
, int sign
)
2012 #if defined(DEBUG_ASI)
2013 target_ulong last_addr
= addr
;
2016 if ((asi
< 0x80 && (env
->pstate
& PS_PRIV
) == 0)
2017 || ((env
->def
->features
& CPU_FEATURE_HYPV
)
2018 && asi
>= 0x30 && asi
< 0x80
2019 && !(env
->hpstate
& HS_PRIV
)))
2020 raise_exception(TT_PRIV_ACT
);
2022 helper_check_align(addr
, size
- 1);
2024 case 0x82: // Primary no-fault
2025 case 0x8a: // Primary no-fault LE
2026 if (cpu_get_phys_page_debug(env
, addr
) == -1ULL) {
2028 dump_asi("read ", last_addr
, asi
, size
, ret
);
2033 case 0x10: // As if user primary
2034 case 0x18: // As if user primary LE
2035 case 0x80: // Primary
2036 case 0x88: // Primary LE
2037 case 0xe2: // UA2007 Primary block init
2038 case 0xe3: // UA2007 Secondary block init
2039 if ((asi
& 0x80) && (env
->pstate
& PS_PRIV
)) {
2040 if ((env
->def
->features
& CPU_FEATURE_HYPV
)
2041 && env
->hpstate
& HS_PRIV
) {
2044 ret
= ldub_hypv(addr
);
2047 ret
= lduw_hypv(addr
);
2050 ret
= ldl_hypv(addr
);
2054 ret
= ldq_hypv(addr
);
2060 ret
= ldub_kernel(addr
);
2063 ret
= lduw_kernel(addr
);
2066 ret
= ldl_kernel(addr
);
2070 ret
= ldq_kernel(addr
);
2077 ret
= ldub_user(addr
);
2080 ret
= lduw_user(addr
);
2083 ret
= ldl_user(addr
);
2087 ret
= ldq_user(addr
);
2092 case 0x14: // Bypass
2093 case 0x15: // Bypass, non-cacheable
2094 case 0x1c: // Bypass LE
2095 case 0x1d: // Bypass, non-cacheable LE
2099 ret
= ldub_phys(addr
);
2102 ret
= lduw_phys(addr
);
2105 ret
= ldl_phys(addr
);
2109 ret
= ldq_phys(addr
);
2114 case 0x24: // Nucleus quad LDD 128 bit atomic
2115 case 0x2c: // Nucleus quad LDD 128 bit atomic LE
2116 // Only ldda allowed
2117 raise_exception(TT_ILL_INSN
);
2119 case 0x83: // Secondary no-fault
2120 case 0x8b: // Secondary no-fault LE
2121 if (cpu_get_phys_page_debug(env
, addr
) == -1ULL) {
2123 dump_asi("read ", last_addr
, asi
, size
, ret
);
2128 case 0x04: // Nucleus
2129 case 0x0c: // Nucleus Little Endian (LE)
2130 case 0x11: // As if user secondary
2131 case 0x19: // As if user secondary LE
2132 case 0x4a: // UPA config
2133 case 0x81: // Secondary
2134 case 0x89: // Secondary LE
2140 case 0x50: // I-MMU regs
2142 int reg
= (addr
>> 3) & 0xf;
2145 // I-TSB Tag Target register
2146 ret
= ultrasparc_tag_target(env
->immuregs
[6]);
2148 ret
= env
->immuregs
[reg
];
2153 case 0x51: // I-MMU 8k TSB pointer
2155 // env->immuregs[5] holds I-MMU TSB register value
2156 // env->immuregs[6] holds I-MMU Tag Access register value
2157 ret
= ultrasparc_tsb_pointer(env
->immuregs
[5], env
->immuregs
[6],
2161 case 0x52: // I-MMU 64k TSB pointer
2163 // env->immuregs[5] holds I-MMU TSB register value
2164 // env->immuregs[6] holds I-MMU Tag Access register value
2165 ret
= ultrasparc_tsb_pointer(env
->immuregs
[5], env
->immuregs
[6],
2169 case 0x55: // I-MMU data access
2171 int reg
= (addr
>> 3) & 0x3f;
2173 ret
= env
->itlb_tte
[reg
];
2176 case 0x56: // I-MMU tag read
2178 int reg
= (addr
>> 3) & 0x3f;
2180 ret
= env
->itlb_tag
[reg
];
2183 case 0x58: // D-MMU regs
2185 int reg
= (addr
>> 3) & 0xf;
2188 // D-TSB Tag Target register
2189 ret
= ultrasparc_tag_target(env
->dmmuregs
[6]);
2191 ret
= env
->dmmuregs
[reg
];
2195 case 0x59: // D-MMU 8k TSB pointer
2197 // env->dmmuregs[5] holds D-MMU TSB register value
2198 // env->dmmuregs[6] holds D-MMU Tag Access register value
2199 ret
= ultrasparc_tsb_pointer(env
->dmmuregs
[5], env
->dmmuregs
[6],
2203 case 0x5a: // D-MMU 64k TSB pointer
2205 // env->dmmuregs[5] holds D-MMU TSB register value
2206 // env->dmmuregs[6] holds D-MMU Tag Access register value
2207 ret
= ultrasparc_tsb_pointer(env
->dmmuregs
[5], env
->dmmuregs
[6],
2211 case 0x5d: // D-MMU data access
2213 int reg
= (addr
>> 3) & 0x3f;
2215 ret
= env
->dtlb_tte
[reg
];
2218 case 0x5e: // D-MMU tag read
2220 int reg
= (addr
>> 3) & 0x3f;
2222 ret
= env
->dtlb_tag
[reg
];
2225 case 0x46: // D-cache data
2226 case 0x47: // D-cache tag access
2227 case 0x4b: // E-cache error enable
2228 case 0x4c: // E-cache asynchronous fault status
2229 case 0x4d: // E-cache asynchronous fault address
2230 case 0x4e: // E-cache tag data
2231 case 0x66: // I-cache instruction access
2232 case 0x67: // I-cache tag access
2233 case 0x6e: // I-cache predecode
2234 case 0x6f: // I-cache LRU etc.
2235 case 0x76: // E-cache tag
2236 case 0x7e: // E-cache tag
2238 case 0x5b: // D-MMU data pointer
2239 case 0x48: // Interrupt dispatch, RO
2240 case 0x49: // Interrupt data receive
2241 case 0x7f: // Incoming interrupt vector, RO
2244 case 0x54: // I-MMU data in, WO
2245 case 0x57: // I-MMU demap, WO
2246 case 0x5c: // D-MMU data in, WO
2247 case 0x5f: // D-MMU demap, WO
2248 case 0x77: // Interrupt vector, WO
2250 do_unassigned_access(addr
, 0, 0, 1, size
);
2255 /* Convert from little endian */
2257 case 0x0c: // Nucleus Little Endian (LE)
2258 case 0x18: // As if user primary LE
2259 case 0x19: // As if user secondary LE
2260 case 0x1c: // Bypass LE
2261 case 0x1d: // Bypass, non-cacheable LE
2262 case 0x88: // Primary LE
2263 case 0x89: // Secondary LE
2264 case 0x8a: // Primary no-fault LE
2265 case 0x8b: // Secondary no-fault LE
2283 /* Convert to signed number */
2290 ret
= (int16_t) ret
;
2293 ret
= (int32_t) ret
;
2300 dump_asi("read ", last_addr
, asi
, size
, ret
);
2305 void helper_st_asi(target_ulong addr
, target_ulong val
, int asi
, int size
)
2308 dump_asi("write", addr
, asi
, size
, val
);
2310 if ((asi
< 0x80 && (env
->pstate
& PS_PRIV
) == 0)
2311 || ((env
->def
->features
& CPU_FEATURE_HYPV
)
2312 && asi
>= 0x30 && asi
< 0x80
2313 && !(env
->hpstate
& HS_PRIV
)))
2314 raise_exception(TT_PRIV_ACT
);
2316 helper_check_align(addr
, size
- 1);
2317 /* Convert to little endian */
2319 case 0x0c: // Nucleus Little Endian (LE)
2320 case 0x18: // As if user primary LE
2321 case 0x19: // As if user secondary LE
2322 case 0x1c: // Bypass LE
2323 case 0x1d: // Bypass, non-cacheable LE
2324 case 0x88: // Primary LE
2325 case 0x89: // Secondary LE
2344 case 0x10: // As if user primary
2345 case 0x18: // As if user primary LE
2346 case 0x80: // Primary
2347 case 0x88: // Primary LE
2348 case 0xe2: // UA2007 Primary block init
2349 case 0xe3: // UA2007 Secondary block init
2350 if ((asi
& 0x80) && (env
->pstate
& PS_PRIV
)) {
2351 if ((env
->def
->features
& CPU_FEATURE_HYPV
)
2352 && env
->hpstate
& HS_PRIV
) {
2355 stb_hypv(addr
, val
);
2358 stw_hypv(addr
, val
);
2361 stl_hypv(addr
, val
);
2365 stq_hypv(addr
, val
);
2371 stb_kernel(addr
, val
);
2374 stw_kernel(addr
, val
);
2377 stl_kernel(addr
, val
);
2381 stq_kernel(addr
, val
);
2388 stb_user(addr
, val
);
2391 stw_user(addr
, val
);
2394 stl_user(addr
, val
);
2398 stq_user(addr
, val
);
2403 case 0x14: // Bypass
2404 case 0x15: // Bypass, non-cacheable
2405 case 0x1c: // Bypass LE
2406 case 0x1d: // Bypass, non-cacheable LE
2410 stb_phys(addr
, val
);
2413 stw_phys(addr
, val
);
2416 stl_phys(addr
, val
);
2420 stq_phys(addr
, val
);
2425 case 0x24: // Nucleus quad LDD 128 bit atomic
2426 case 0x2c: // Nucleus quad LDD 128 bit atomic LE
2427 // Only ldda allowed
2428 raise_exception(TT_ILL_INSN
);
2430 case 0x04: // Nucleus
2431 case 0x0c: // Nucleus Little Endian (LE)
2432 case 0x11: // As if user secondary
2433 case 0x19: // As if user secondary LE
2434 case 0x4a: // UPA config
2435 case 0x81: // Secondary
2436 case 0x89: // Secondary LE
2444 env
->lsu
= val
& (DMMU_E
| IMMU_E
);
2445 // Mappings generated during D/I MMU disabled mode are
2446 // invalid in normal mode
2447 if (oldreg
!= env
->lsu
) {
2448 DPRINTF_MMU("LSU change: 0x%" PRIx64
" -> 0x%" PRIx64
"\n",
2457 case 0x50: // I-MMU regs
2459 int reg
= (addr
>> 3) & 0xf;
2462 oldreg
= env
->immuregs
[reg
];
2467 case 1: // Not in I-MMU
2474 val
= 0; // Clear SFSR
2476 case 5: // TSB access
2477 case 6: // Tag access
2481 env
->immuregs
[reg
] = val
;
2482 if (oldreg
!= env
->immuregs
[reg
]) {
2483 DPRINTF_MMU("mmu change reg[%d]: 0x%08" PRIx64
" -> 0x%08"
2484 PRIx64
"\n", reg
, oldreg
, env
->immuregs
[reg
]);
2491 case 0x54: // I-MMU data in
2495 // Try finding an invalid entry
2496 for (i
= 0; i
< 64; i
++) {
2497 if ((env
->itlb_tte
[i
] & 0x8000000000000000ULL
) == 0) {
2498 env
->itlb_tag
[i
] = env
->immuregs
[6];
2499 env
->itlb_tte
[i
] = val
;
2503 // Try finding an unlocked entry
2504 for (i
= 0; i
< 64; i
++) {
2505 if ((env
->itlb_tte
[i
] & 0x40) == 0) {
2506 env
->itlb_tag
[i
] = env
->immuregs
[6];
2507 env
->itlb_tte
[i
] = val
;
2514 case 0x55: // I-MMU data access
2518 unsigned int i
= (addr
>> 3) & 0x3f;
2520 env
->itlb_tag
[i
] = env
->immuregs
[6];
2521 env
->itlb_tte
[i
] = val
;
2524 case 0x57: // I-MMU demap
2528 for (i
= 0; i
< 64; i
++) {
2529 if ((env
->itlb_tte
[i
] & 0x8000000000000000ULL
) != 0) {
2530 target_ulong mask
= 0xffffffffffffe000ULL
;
2532 mask
<<= 3 * ((env
->itlb_tte
[i
] >> 61) & 3);
2533 if ((val
& mask
) == (env
->itlb_tag
[i
] & mask
)) {
2534 env
->itlb_tag
[i
] = 0;
2535 env
->itlb_tte
[i
] = 0;
2542 case 0x58: // D-MMU regs
2544 int reg
= (addr
>> 3) & 0xf;
2547 oldreg
= env
->dmmuregs
[reg
];
2553 if ((val
& 1) == 0) {
2554 val
= 0; // Clear SFSR, Fault address
2555 env
->dmmuregs
[4] = 0;
2557 env
->dmmuregs
[reg
] = val
;
2559 case 1: // Primary context
2560 case 2: // Secondary context
2561 case 5: // TSB access
2562 case 6: // Tag access
2563 case 7: // Virtual Watchpoint
2564 case 8: // Physical Watchpoint
2568 env
->dmmuregs
[reg
] = val
;
2569 if (oldreg
!= env
->dmmuregs
[reg
]) {
2570 DPRINTF_MMU("mmu change reg[%d]: 0x%08" PRIx64
" -> 0x%08"
2571 PRIx64
"\n", reg
, oldreg
, env
->dmmuregs
[reg
]);
2578 case 0x5c: // D-MMU data in
2582 // Try finding an invalid entry
2583 for (i
= 0; i
< 64; i
++) {
2584 if ((env
->dtlb_tte
[i
] & 0x8000000000000000ULL
) == 0) {
2585 env
->dtlb_tag
[i
] = env
->dmmuregs
[6];
2586 env
->dtlb_tte
[i
] = val
;
2590 // Try finding an unlocked entry
2591 for (i
= 0; i
< 64; i
++) {
2592 if ((env
->dtlb_tte
[i
] & 0x40) == 0) {
2593 env
->dtlb_tag
[i
] = env
->dmmuregs
[6];
2594 env
->dtlb_tte
[i
] = val
;
2601 case 0x5d: // D-MMU data access
2603 unsigned int i
= (addr
>> 3) & 0x3f;
2605 env
->dtlb_tag
[i
] = env
->dmmuregs
[6];
2606 env
->dtlb_tte
[i
] = val
;
2609 case 0x5f: // D-MMU demap
2613 for (i
= 0; i
< 64; i
++) {
2614 if ((env
->dtlb_tte
[i
] & 0x8000000000000000ULL
) != 0) {
2615 target_ulong mask
= 0xffffffffffffe000ULL
;
2617 mask
<<= 3 * ((env
->dtlb_tte
[i
] >> 61) & 3);
2618 if ((val
& mask
) == (env
->dtlb_tag
[i
] & mask
)) {
2619 env
->dtlb_tag
[i
] = 0;
2620 env
->dtlb_tte
[i
] = 0;
2627 case 0x49: // Interrupt data receive
2630 case 0x46: // D-cache data
2631 case 0x47: // D-cache tag access
2632 case 0x4b: // E-cache error enable
2633 case 0x4c: // E-cache asynchronous fault status
2634 case 0x4d: // E-cache asynchronous fault address
2635 case 0x4e: // E-cache tag data
2636 case 0x66: // I-cache instruction access
2637 case 0x67: // I-cache tag access
2638 case 0x6e: // I-cache predecode
2639 case 0x6f: // I-cache LRU etc.
2640 case 0x76: // E-cache tag
2641 case 0x7e: // E-cache tag
2643 case 0x51: // I-MMU 8k TSB pointer, RO
2644 case 0x52: // I-MMU 64k TSB pointer, RO
2645 case 0x56: // I-MMU tag read, RO
2646 case 0x59: // D-MMU 8k TSB pointer, RO
2647 case 0x5a: // D-MMU 64k TSB pointer, RO
2648 case 0x5b: // D-MMU data pointer, RO
2649 case 0x5e: // D-MMU tag read, RO
2650 case 0x48: // Interrupt dispatch, RO
2651 case 0x7f: // Incoming interrupt vector, RO
2652 case 0x82: // Primary no-fault, RO
2653 case 0x83: // Secondary no-fault, RO
2654 case 0x8a: // Primary no-fault LE, RO
2655 case 0x8b: // Secondary no-fault LE, RO
2657 do_unassigned_access(addr
, 1, 0, 1, size
);
2661 #endif /* CONFIG_USER_ONLY */
2663 void helper_ldda_asi(target_ulong addr
, int asi
, int rd
)
2665 if ((asi
< 0x80 && (env
->pstate
& PS_PRIV
) == 0)
2666 || ((env
->def
->features
& CPU_FEATURE_HYPV
)
2667 && asi
>= 0x30 && asi
< 0x80
2668 && !(env
->hpstate
& HS_PRIV
)))
2669 raise_exception(TT_PRIV_ACT
);
2672 case 0x24: // Nucleus quad LDD 128 bit atomic
2673 case 0x2c: // Nucleus quad LDD 128 bit atomic LE
2674 helper_check_align(addr
, 0xf);
2676 env
->gregs
[1] = ldq_kernel(addr
+ 8);
2678 bswap64s(&env
->gregs
[1]);
2679 } else if (rd
< 8) {
2680 env
->gregs
[rd
] = ldq_kernel(addr
);
2681 env
->gregs
[rd
+ 1] = ldq_kernel(addr
+ 8);
2683 bswap64s(&env
->gregs
[rd
]);
2684 bswap64s(&env
->gregs
[rd
+ 1]);
2687 env
->regwptr
[rd
] = ldq_kernel(addr
);
2688 env
->regwptr
[rd
+ 1] = ldq_kernel(addr
+ 8);
2690 bswap64s(&env
->regwptr
[rd
]);
2691 bswap64s(&env
->regwptr
[rd
+ 1]);
2696 helper_check_align(addr
, 0x3);
2698 env
->gregs
[1] = helper_ld_asi(addr
+ 4, asi
, 4, 0);
2700 env
->gregs
[rd
] = helper_ld_asi(addr
, asi
, 4, 0);
2701 env
->gregs
[rd
+ 1] = helper_ld_asi(addr
+ 4, asi
, 4, 0);
2703 env
->regwptr
[rd
] = helper_ld_asi(addr
, asi
, 4, 0);
2704 env
->regwptr
[rd
+ 1] = helper_ld_asi(addr
+ 4, asi
, 4, 0);
2710 void helper_ldf_asi(target_ulong addr
, int asi
, int size
, int rd
)
2715 helper_check_align(addr
, 3);
2717 case 0xf0: // Block load primary
2718 case 0xf1: // Block load secondary
2719 case 0xf8: // Block load primary LE
2720 case 0xf9: // Block load secondary LE
2722 raise_exception(TT_ILL_INSN
);
2725 helper_check_align(addr
, 0x3f);
2726 for (i
= 0; i
< 16; i
++) {
2727 *(uint32_t *)&env
->fpr
[rd
++] = helper_ld_asi(addr
, asi
& 0x8f, 4,
2737 val
= helper_ld_asi(addr
, asi
, size
, 0);
2741 *((uint32_t *)&env
->fpr
[rd
]) = val
;
2744 *((int64_t *)&DT0
) = val
;
2752 void helper_stf_asi(target_ulong addr
, int asi
, int size
, int rd
)
2755 target_ulong val
= 0;
2757 helper_check_align(addr
, 3);
2759 case 0xe0: // UA2007 Block commit store primary (cache flush)
2760 case 0xe1: // UA2007 Block commit store secondary (cache flush)
2761 case 0xf0: // Block store primary
2762 case 0xf1: // Block store secondary
2763 case 0xf8: // Block store primary LE
2764 case 0xf9: // Block store secondary LE
2766 raise_exception(TT_ILL_INSN
);
2769 helper_check_align(addr
, 0x3f);
2770 for (i
= 0; i
< 16; i
++) {
2771 val
= *(uint32_t *)&env
->fpr
[rd
++];
2772 helper_st_asi(addr
, val
, asi
& 0x8f, 4);
2784 val
= *((uint32_t *)&env
->fpr
[rd
]);
2787 val
= *((int64_t *)&DT0
);
2793 helper_st_asi(addr
, val
, asi
, size
);
2796 target_ulong
helper_cas_asi(target_ulong addr
, target_ulong val1
,
2797 target_ulong val2
, uint32_t asi
)
2801 val2
&= 0xffffffffUL
;
2802 ret
= helper_ld_asi(addr
, asi
, 4, 0);
2803 ret
&= 0xffffffffUL
;
2805 helper_st_asi(addr
, val1
& 0xffffffffUL
, asi
, 4);
2809 target_ulong
helper_casx_asi(target_ulong addr
, target_ulong val1
,
2810 target_ulong val2
, uint32_t asi
)
2814 ret
= helper_ld_asi(addr
, asi
, 8, 0);
2816 helper_st_asi(addr
, val1
, asi
, 8);
2819 #endif /* TARGET_SPARC64 */
2821 #ifndef TARGET_SPARC64
2822 void helper_rett(void)
2826 if (env
->psret
== 1)
2827 raise_exception(TT_ILL_INSN
);
2830 cwp
= cpu_cwp_inc(env
, env
->cwp
+ 1) ;
2831 if (env
->wim
& (1 << cwp
)) {
2832 raise_exception(TT_WIN_UNF
);
2835 env
->psrs
= env
->psrps
;
2839 target_ulong
helper_udiv(target_ulong a
, target_ulong b
)
2844 x0
= (a
& 0xffffffff) | ((int64_t) (env
->y
) << 32);
2848 raise_exception(TT_DIV_ZERO
);
2852 if (x0
> 0xffffffff) {
2861 target_ulong
helper_sdiv(target_ulong a
, target_ulong b
)
2866 x0
= (a
& 0xffffffff) | ((int64_t) (env
->y
) << 32);
2870 raise_exception(TT_DIV_ZERO
);
2874 if ((int32_t) x0
!= x0
) {
2876 return x0
< 0? 0x80000000: 0x7fffffff;
2883 void helper_stdf(target_ulong addr
, int mem_idx
)
2885 helper_check_align(addr
, 7);
2886 #if !defined(CONFIG_USER_ONLY)
2889 stfq_user(addr
, DT0
);
2892 stfq_kernel(addr
, DT0
);
2894 #ifdef TARGET_SPARC64
2896 stfq_hypv(addr
, DT0
);
2903 address_mask(env
, &addr
);
2904 stfq_raw(addr
, DT0
);
2908 void helper_lddf(target_ulong addr
, int mem_idx
)
2910 helper_check_align(addr
, 7);
2911 #if !defined(CONFIG_USER_ONLY)
2914 DT0
= ldfq_user(addr
);
2917 DT0
= ldfq_kernel(addr
);
2919 #ifdef TARGET_SPARC64
2921 DT0
= ldfq_hypv(addr
);
2928 address_mask(env
, &addr
);
2929 DT0
= ldfq_raw(addr
);
2933 void helper_ldqf(target_ulong addr
, int mem_idx
)
2935 // XXX add 128 bit load
2938 helper_check_align(addr
, 7);
2939 #if !defined(CONFIG_USER_ONLY)
2942 u
.ll
.upper
= ldq_user(addr
);
2943 u
.ll
.lower
= ldq_user(addr
+ 8);
2947 u
.ll
.upper
= ldq_kernel(addr
);
2948 u
.ll
.lower
= ldq_kernel(addr
+ 8);
2951 #ifdef TARGET_SPARC64
2953 u
.ll
.upper
= ldq_hypv(addr
);
2954 u
.ll
.lower
= ldq_hypv(addr
+ 8);
2962 address_mask(env
, &addr
);
2963 u
.ll
.upper
= ldq_raw(addr
);
2964 u
.ll
.lower
= ldq_raw((addr
+ 8) & 0xffffffffULL
);
2969 void helper_stqf(target_ulong addr
, int mem_idx
)
2971 // XXX add 128 bit store
2974 helper_check_align(addr
, 7);
2975 #if !defined(CONFIG_USER_ONLY)
2979 stq_user(addr
, u
.ll
.upper
);
2980 stq_user(addr
+ 8, u
.ll
.lower
);
2984 stq_kernel(addr
, u
.ll
.upper
);
2985 stq_kernel(addr
+ 8, u
.ll
.lower
);
2987 #ifdef TARGET_SPARC64
2990 stq_hypv(addr
, u
.ll
.upper
);
2991 stq_hypv(addr
+ 8, u
.ll
.lower
);
2999 address_mask(env
, &addr
);
3000 stq_raw(addr
, u
.ll
.upper
);
3001 stq_raw((addr
+ 8) & 0xffffffffULL
, u
.ll
.lower
);
3005 static inline void set_fsr(void)
3009 switch (env
->fsr
& FSR_RD_MASK
) {
3010 case FSR_RD_NEAREST
:
3011 rnd_mode
= float_round_nearest_even
;
3015 rnd_mode
= float_round_to_zero
;
3018 rnd_mode
= float_round_up
;
3021 rnd_mode
= float_round_down
;
3024 set_float_rounding_mode(rnd_mode
, &env
->fp_status
);
3027 void helper_ldfsr(uint32_t new_fsr
)
3029 env
->fsr
= (new_fsr
& FSR_LDFSR_MASK
) | (env
->fsr
& FSR_LDFSR_OLDMASK
);
3033 #ifdef TARGET_SPARC64
3034 void helper_ldxfsr(uint64_t new_fsr
)
3036 env
->fsr
= (new_fsr
& FSR_LDXFSR_MASK
) | (env
->fsr
& FSR_LDXFSR_OLDMASK
);
3041 void helper_debug(void)
3043 env
->exception_index
= EXCP_DEBUG
;
3047 #ifndef TARGET_SPARC64
3048 /* XXX: use another pointer for %iN registers to avoid slow wrapping
3050 void helper_save(void)
3054 cwp
= cpu_cwp_dec(env
, env
->cwp
- 1);
3055 if (env
->wim
& (1 << cwp
)) {
3056 raise_exception(TT_WIN_OVF
);
3061 void helper_restore(void)
3065 cwp
= cpu_cwp_inc(env
, env
->cwp
+ 1);
3066 if (env
->wim
& (1 << cwp
)) {
3067 raise_exception(TT_WIN_UNF
);
3072 void helper_wrpsr(target_ulong new_psr
)
3074 if ((new_psr
& PSR_CWP
) >= env
->nwindows
)
3075 raise_exception(TT_ILL_INSN
);
3077 PUT_PSR(env
, new_psr
);
3080 target_ulong
helper_rdpsr(void)
3082 return GET_PSR(env
);
3086 /* XXX: use another pointer for %iN registers to avoid slow wrapping
3088 void helper_save(void)
3092 cwp
= cpu_cwp_dec(env
, env
->cwp
- 1);
3093 if (env
->cansave
== 0) {
3094 raise_exception(TT_SPILL
| (env
->otherwin
!= 0 ?
3095 (TT_WOTHER
| ((env
->wstate
& 0x38) >> 1)):
3096 ((env
->wstate
& 0x7) << 2)));
3098 if (env
->cleanwin
- env
->canrestore
== 0) {
3099 // XXX Clean windows without trap
3100 raise_exception(TT_CLRWIN
);
3109 void helper_restore(void)
3113 cwp
= cpu_cwp_inc(env
, env
->cwp
+ 1);
3114 if (env
->canrestore
== 0) {
3115 raise_exception(TT_FILL
| (env
->otherwin
!= 0 ?
3116 (TT_WOTHER
| ((env
->wstate
& 0x38) >> 1)):
3117 ((env
->wstate
& 0x7) << 2)));
3125 void helper_flushw(void)
3127 if (env
->cansave
!= env
->nwindows
- 2) {
3128 raise_exception(TT_SPILL
| (env
->otherwin
!= 0 ?
3129 (TT_WOTHER
| ((env
->wstate
& 0x38) >> 1)):
3130 ((env
->wstate
& 0x7) << 2)));
3134 void helper_saved(void)
3137 if (env
->otherwin
== 0)
3143 void helper_restored(void)
3146 if (env
->cleanwin
< env
->nwindows
- 1)
3148 if (env
->otherwin
== 0)
3154 target_ulong
helper_rdccr(void)
3156 return GET_CCR(env
);
3159 void helper_wrccr(target_ulong new_ccr
)
3161 PUT_CCR(env
, new_ccr
);
3164 // CWP handling is reversed in V9, but we still use the V8 register
3166 target_ulong
helper_rdcwp(void)
3168 return GET_CWP64(env
);
3171 void helper_wrcwp(target_ulong new_cwp
)
3173 PUT_CWP64(env
, new_cwp
);
3176 // This function uses non-native bit order
3177 #define GET_FIELD(X, FROM, TO) \
3178 ((X) >> (63 - (TO)) & ((1ULL << ((TO) - (FROM) + 1)) - 1))
3180 // This function uses the order in the manuals, i.e. bit 0 is 2^0
3181 #define GET_FIELD_SP(X, FROM, TO) \
3182 GET_FIELD(X, 63 - (TO), 63 - (FROM))
3184 target_ulong
helper_array8(target_ulong pixel_addr
, target_ulong cubesize
)
3186 return (GET_FIELD_SP(pixel_addr
, 60, 63) << (17 + 2 * cubesize
)) |
3187 (GET_FIELD_SP(pixel_addr
, 39, 39 + cubesize
- 1) << (17 + cubesize
)) |
3188 (GET_FIELD_SP(pixel_addr
, 17 + cubesize
- 1, 17) << 17) |
3189 (GET_FIELD_SP(pixel_addr
, 56, 59) << 13) |
3190 (GET_FIELD_SP(pixel_addr
, 35, 38) << 9) |
3191 (GET_FIELD_SP(pixel_addr
, 13, 16) << 5) |
3192 (((pixel_addr
>> 55) & 1) << 4) |
3193 (GET_FIELD_SP(pixel_addr
, 33, 34) << 2) |
3194 GET_FIELD_SP(pixel_addr
, 11, 12);
3197 target_ulong
helper_alignaddr(target_ulong addr
, target_ulong offset
)
3201 tmp
= addr
+ offset
;
3203 env
->gsr
|= tmp
& 7ULL;
3207 target_ulong
helper_popc(target_ulong val
)
3209 return ctpop64(val
);
3212 static inline uint64_t *get_gregset(uint64_t pstate
)
3227 static inline void change_pstate(uint64_t new_pstate
)
3229 uint64_t pstate_regs
, new_pstate_regs
;
3230 uint64_t *src
, *dst
;
3232 if (env
->def
->features
& CPU_FEATURE_GL
) {
3233 // PS_AG is not implemented in this case
3234 new_pstate
&= ~PS_AG
;
3237 pstate_regs
= env
->pstate
& 0xc01;
3238 new_pstate_regs
= new_pstate
& 0xc01;
3240 if (new_pstate_regs
!= pstate_regs
) {
3241 // Switch global register bank
3242 src
= get_gregset(new_pstate_regs
);
3243 dst
= get_gregset(pstate_regs
);
3244 memcpy32(dst
, env
->gregs
);
3245 memcpy32(env
->gregs
, src
);
3247 env
->pstate
= new_pstate
;
3250 void helper_wrpstate(target_ulong new_state
)
3252 change_pstate(new_state
& 0xf3f);
3255 void helper_done(void)
3257 env
->pc
= env
->tsptr
->tpc
;
3258 env
->npc
= env
->tsptr
->tnpc
+ 4;
3259 PUT_CCR(env
, env
->tsptr
->tstate
>> 32);
3260 env
->asi
= (env
->tsptr
->tstate
>> 24) & 0xff;
3261 change_pstate((env
->tsptr
->tstate
>> 8) & 0xf3f);
3262 PUT_CWP64(env
, env
->tsptr
->tstate
& 0xff);
3264 env
->tsptr
= &env
->ts
[env
->tl
& MAXTL_MASK
];
3267 void helper_retry(void)
3269 env
->pc
= env
->tsptr
->tpc
;
3270 env
->npc
= env
->tsptr
->tnpc
;
3271 PUT_CCR(env
, env
->tsptr
->tstate
>> 32);
3272 env
->asi
= (env
->tsptr
->tstate
>> 24) & 0xff;
3273 change_pstate((env
->tsptr
->tstate
>> 8) & 0xf3f);
3274 PUT_CWP64(env
, env
->tsptr
->tstate
& 0xff);
3276 env
->tsptr
= &env
->ts
[env
->tl
& MAXTL_MASK
];
3279 void helper_set_softint(uint64_t value
)
3281 env
->softint
|= (uint32_t)value
;
3284 void helper_clear_softint(uint64_t value
)
3286 env
->softint
&= (uint32_t)~value
;
3289 void helper_write_softint(uint64_t value
)
3291 env
->softint
= (uint32_t)value
;
3295 void helper_flush(target_ulong addr
)
3298 tb_invalidate_page_range(addr
, addr
+ 8);
3301 #ifdef TARGET_SPARC64
3303 static const char * const excp_names
[0x80] = {
3304 [TT_TFAULT
] = "Instruction Access Fault",
3305 [TT_TMISS
] = "Instruction Access MMU Miss",
3306 [TT_CODE_ACCESS
] = "Instruction Access Error",
3307 [TT_ILL_INSN
] = "Illegal Instruction",
3308 [TT_PRIV_INSN
] = "Privileged Instruction",
3309 [TT_NFPU_INSN
] = "FPU Disabled",
3310 [TT_FP_EXCP
] = "FPU Exception",
3311 [TT_TOVF
] = "Tag Overflow",
3312 [TT_CLRWIN
] = "Clean Windows",
3313 [TT_DIV_ZERO
] = "Division By Zero",
3314 [TT_DFAULT
] = "Data Access Fault",
3315 [TT_DMISS
] = "Data Access MMU Miss",
3316 [TT_DATA_ACCESS
] = "Data Access Error",
3317 [TT_DPROT
] = "Data Protection Error",
3318 [TT_UNALIGNED
] = "Unaligned Memory Access",
3319 [TT_PRIV_ACT
] = "Privileged Action",
3320 [TT_EXTINT
| 0x1] = "External Interrupt 1",
3321 [TT_EXTINT
| 0x2] = "External Interrupt 2",
3322 [TT_EXTINT
| 0x3] = "External Interrupt 3",
3323 [TT_EXTINT
| 0x4] = "External Interrupt 4",
3324 [TT_EXTINT
| 0x5] = "External Interrupt 5",
3325 [TT_EXTINT
| 0x6] = "External Interrupt 6",
3326 [TT_EXTINT
| 0x7] = "External Interrupt 7",
3327 [TT_EXTINT
| 0x8] = "External Interrupt 8",
3328 [TT_EXTINT
| 0x9] = "External Interrupt 9",
3329 [TT_EXTINT
| 0xa] = "External Interrupt 10",
3330 [TT_EXTINT
| 0xb] = "External Interrupt 11",
3331 [TT_EXTINT
| 0xc] = "External Interrupt 12",
3332 [TT_EXTINT
| 0xd] = "External Interrupt 13",
3333 [TT_EXTINT
| 0xe] = "External Interrupt 14",
3334 [TT_EXTINT
| 0xf] = "External Interrupt 15",
3338 void do_interrupt(CPUState
*env
)
3340 int intno
= env
->exception_index
;
3343 if (qemu_loglevel_mask(CPU_LOG_INT
)) {
3347 if (intno
< 0 || intno
>= 0x180)
3349 else if (intno
>= 0x100)
3350 name
= "Trap Instruction";
3351 else if (intno
>= 0xc0)
3352 name
= "Window Fill";
3353 else if (intno
>= 0x80)
3354 name
= "Window Spill";
3356 name
= excp_names
[intno
];
3361 qemu_log("%6d: %s (v=%04x) pc=%016" PRIx64
" npc=%016" PRIx64
3362 " SP=%016" PRIx64
"\n",
3365 env
->npc
, env
->regwptr
[6]);
3366 log_cpu_state(env
, 0);
3373 ptr
= (uint8_t *)env
->pc
;
3374 for(i
= 0; i
< 16; i
++) {
3375 qemu_log(" %02x", ldub(ptr
+ i
));
3383 #if !defined(CONFIG_USER_ONLY)
3384 if (env
->tl
>= env
->maxtl
) {
3385 cpu_abort(env
, "Trap 0x%04x while trap level (%d) >= MAXTL (%d),"
3386 " Error state", env
->exception_index
, env
->tl
, env
->maxtl
);
3390 if (env
->tl
< env
->maxtl
- 1) {
3393 env
->pstate
|= PS_RED
;
3394 if (env
->tl
< env
->maxtl
)
3397 env
->tsptr
= &env
->ts
[env
->tl
& MAXTL_MASK
];
3398 env
->tsptr
->tstate
= ((uint64_t)GET_CCR(env
) << 32) |
3399 ((env
->asi
& 0xff) << 24) | ((env
->pstate
& 0xf3f) << 8) |
3401 env
->tsptr
->tpc
= env
->pc
;
3402 env
->tsptr
->tnpc
= env
->npc
;
3403 env
->tsptr
->tt
= intno
;
3407 change_pstate(PS_PEF
| PS_PRIV
| PS_IG
);
3414 change_pstate(PS_PEF
| PS_PRIV
| PS_MG
);
3417 change_pstate(PS_PEF
| PS_PRIV
| PS_AG
);
3421 if (intno
== TT_CLRWIN
)
3422 cpu_set_cwp(env
, cpu_cwp_dec(env
, env
->cwp
- 1));
3423 else if ((intno
& 0x1c0) == TT_SPILL
)
3424 cpu_set_cwp(env
, cpu_cwp_dec(env
, env
->cwp
- env
->cansave
- 2));
3425 else if ((intno
& 0x1c0) == TT_FILL
)
3426 cpu_set_cwp(env
, cpu_cwp_inc(env
, env
->cwp
+ 1));
3427 env
->tbr
&= ~0x7fffULL
;
3428 env
->tbr
|= ((env
->tl
> 1) ? 1 << 14 : 0) | (intno
<< 5);
3430 env
->npc
= env
->pc
+ 4;
3431 env
->exception_index
= 0;
3435 static const char * const excp_names
[0x80] = {
3436 [TT_TFAULT
] = "Instruction Access Fault",
3437 [TT_ILL_INSN
] = "Illegal Instruction",
3438 [TT_PRIV_INSN
] = "Privileged Instruction",
3439 [TT_NFPU_INSN
] = "FPU Disabled",
3440 [TT_WIN_OVF
] = "Window Overflow",
3441 [TT_WIN_UNF
] = "Window Underflow",
3442 [TT_UNALIGNED
] = "Unaligned Memory Access",
3443 [TT_FP_EXCP
] = "FPU Exception",
3444 [TT_DFAULT
] = "Data Access Fault",
3445 [TT_TOVF
] = "Tag Overflow",
3446 [TT_EXTINT
| 0x1] = "External Interrupt 1",
3447 [TT_EXTINT
| 0x2] = "External Interrupt 2",
3448 [TT_EXTINT
| 0x3] = "External Interrupt 3",
3449 [TT_EXTINT
| 0x4] = "External Interrupt 4",
3450 [TT_EXTINT
| 0x5] = "External Interrupt 5",
3451 [TT_EXTINT
| 0x6] = "External Interrupt 6",
3452 [TT_EXTINT
| 0x7] = "External Interrupt 7",
3453 [TT_EXTINT
| 0x8] = "External Interrupt 8",
3454 [TT_EXTINT
| 0x9] = "External Interrupt 9",
3455 [TT_EXTINT
| 0xa] = "External Interrupt 10",
3456 [TT_EXTINT
| 0xb] = "External Interrupt 11",
3457 [TT_EXTINT
| 0xc] = "External Interrupt 12",
3458 [TT_EXTINT
| 0xd] = "External Interrupt 13",
3459 [TT_EXTINT
| 0xe] = "External Interrupt 14",
3460 [TT_EXTINT
| 0xf] = "External Interrupt 15",
3461 [TT_TOVF
] = "Tag Overflow",
3462 [TT_CODE_ACCESS
] = "Instruction Access Error",
3463 [TT_DATA_ACCESS
] = "Data Access Error",
3464 [TT_DIV_ZERO
] = "Division By Zero",
3465 [TT_NCP_INSN
] = "Coprocessor Disabled",
3469 void do_interrupt(CPUState
*env
)
3471 int cwp
, intno
= env
->exception_index
;
3474 if (qemu_loglevel_mask(CPU_LOG_INT
)) {
3478 if (intno
< 0 || intno
>= 0x100)
3480 else if (intno
>= 0x80)
3481 name
= "Trap Instruction";
3483 name
= excp_names
[intno
];
3488 qemu_log("%6d: %s (v=%02x) pc=%08x npc=%08x SP=%08x\n",
3491 env
->npc
, env
->regwptr
[6]);
3492 log_cpu_state(env
, 0);
3499 ptr
= (uint8_t *)env
->pc
;
3500 for(i
= 0; i
< 16; i
++) {
3501 qemu_log(" %02x", ldub(ptr
+ i
));
3509 #if !defined(CONFIG_USER_ONLY)
3510 if (env
->psret
== 0) {
3511 cpu_abort(env
, "Trap 0x%02x while interrupts disabled, Error state",
3512 env
->exception_index
);
3517 cwp
= cpu_cwp_dec(env
, env
->cwp
- 1);
3518 cpu_set_cwp(env
, cwp
);
3519 env
->regwptr
[9] = env
->pc
;
3520 env
->regwptr
[10] = env
->npc
;
3521 env
->psrps
= env
->psrs
;
3523 env
->tbr
= (env
->tbr
& TBR_BASE_MASK
) | (intno
<< 4);
3525 env
->npc
= env
->pc
+ 4;
3526 env
->exception_index
= 0;
3530 #if !defined(CONFIG_USER_ONLY)
3532 static void do_unaligned_access(target_ulong addr
, int is_write
, int is_user
,
3535 #define MMUSUFFIX _mmu
3536 #define ALIGNED_ONLY
3539 #include "softmmu_template.h"
3542 #include "softmmu_template.h"
3545 #include "softmmu_template.h"
3548 #include "softmmu_template.h"
3550 /* XXX: make it generic ? */
3551 static void cpu_restore_state2(void *retaddr
)
3553 TranslationBlock
*tb
;
3557 /* now we have a real cpu fault */
3558 pc
= (unsigned long)retaddr
;
3559 tb
= tb_find_pc(pc
);
3561 /* the PC is inside the translated code. It means that we have
3562 a virtual CPU fault */
3563 cpu_restore_state(tb
, env
, pc
, (void *)(long)env
->cond
);
3568 static void do_unaligned_access(target_ulong addr
, int is_write
, int is_user
,
3571 #ifdef DEBUG_UNALIGNED
3572 printf("Unaligned access to 0x" TARGET_FMT_lx
" from 0x" TARGET_FMT_lx
3573 "\n", addr
, env
->pc
);
3575 cpu_restore_state2(retaddr
);
3576 raise_exception(TT_UNALIGNED
);
3579 /* try to fill the TLB and return an exception if error. If retaddr is
3580 NULL, it means that the function was called in C code (i.e. not
3581 from generated code or from helper.c) */
3582 /* XXX: fix it to restore all registers */
3583 void tlb_fill(target_ulong addr
, int is_write
, int mmu_idx
, void *retaddr
)
3586 CPUState
*saved_env
;
3588 /* XXX: hack to restore env in all cases, even if not called from
3591 env
= cpu_single_env
;
3593 ret
= cpu_sparc_handle_mmu_fault(env
, addr
, is_write
, mmu_idx
, 1);
3595 cpu_restore_state2(retaddr
);
3603 #ifndef TARGET_SPARC64
3604 void do_unassigned_access(target_phys_addr_t addr
, int is_write
, int is_exec
,
3605 int is_asi
, int size
)
3607 CPUState
*saved_env
;
3609 /* XXX: hack to restore env in all cases, even if not called from
3612 env
= cpu_single_env
;
3613 #ifdef DEBUG_UNASSIGNED
3615 printf("Unassigned mem %s access of %d byte%s to " TARGET_FMT_plx
3616 " asi 0x%02x from " TARGET_FMT_lx
"\n",
3617 is_exec
? "exec" : is_write
? "write" : "read", size
,
3618 size
== 1 ? "" : "s", addr
, is_asi
, env
->pc
);
3620 printf("Unassigned mem %s access of %d byte%s to " TARGET_FMT_plx
3621 " from " TARGET_FMT_lx
"\n",
3622 is_exec
? "exec" : is_write
? "write" : "read", size
,
3623 size
== 1 ? "" : "s", addr
, env
->pc
);
3625 if (env
->mmuregs
[3]) /* Fault status register */
3626 env
->mmuregs
[3] = 1; /* overflow (not read before another fault) */
3628 env
->mmuregs
[3] |= 1 << 16;
3630 env
->mmuregs
[3] |= 1 << 5;
3632 env
->mmuregs
[3] |= 1 << 6;
3634 env
->mmuregs
[3] |= 1 << 7;
3635 env
->mmuregs
[3] |= (5 << 2) | 2;
3636 env
->mmuregs
[4] = addr
; /* Fault address register */
3637 if ((env
->mmuregs
[0] & MMU_E
) && !(env
->mmuregs
[0] & MMU_NF
)) {
3639 raise_exception(TT_CODE_ACCESS
);
3641 raise_exception(TT_DATA_ACCESS
);
3646 void do_unassigned_access(target_phys_addr_t addr
, int is_write
, int is_exec
,
3647 int is_asi
, int size
)
3649 #ifdef DEBUG_UNASSIGNED
3650 CPUState
*saved_env
;
3652 /* XXX: hack to restore env in all cases, even if not called from
3655 env
= cpu_single_env
;
3656 printf("Unassigned mem access to " TARGET_FMT_plx
" from " TARGET_FMT_lx
3657 "\n", addr
, env
->pc
);
3661 raise_exception(TT_CODE_ACCESS
);
3663 raise_exception(TT_DATA_ACCESS
);
3667 #ifdef TARGET_SPARC64
3668 void helper_tick_set_count(void *opaque
, uint64_t count
)
3670 #if !defined(CONFIG_USER_ONLY)
3671 cpu_tick_set_count(opaque
, count
);
3675 uint64_t helper_tick_get_count(void *opaque
)
3677 #if !defined(CONFIG_USER_ONLY)
3678 return cpu_tick_get_count(opaque
);
3684 void helper_tick_set_limit(void *opaque
, uint64_t limit
)
3686 #if !defined(CONFIG_USER_ONLY)
3687 cpu_tick_set_limit(opaque
, limit
);