kvm userspace: ksm support
[qemu-kvm/fedora.git] / target-sparc / op_helper.c
blob739ed9abd223c4e798c623d3d41ae66c7427a176
1 #include "exec.h"
2 #include "host-utils.h"
3 #include "helper.h"
4 #if !defined(CONFIG_USER_ONLY)
5 #include "softmmu_exec.h"
6 #endif /* !defined(CONFIG_USER_ONLY) */
8 //#define DEBUG_MMU
9 //#define DEBUG_MXCC
10 //#define DEBUG_UNALIGNED
11 //#define DEBUG_UNASSIGNED
12 //#define DEBUG_ASI
13 //#define DEBUG_PCALL
15 #ifdef DEBUG_MMU
16 #define DPRINTF_MMU(fmt, ...) \
17 do { printf("MMU: " fmt , ## __VA_ARGS__); } while (0)
18 #else
19 #define DPRINTF_MMU(fmt, ...) do {} while (0)
20 #endif
22 #ifdef DEBUG_MXCC
23 #define DPRINTF_MXCC(fmt, ...) \
24 do { printf("MXCC: " fmt , ## __VA_ARGS__); } while (0)
25 #else
26 #define DPRINTF_MXCC(fmt, ...) do {} while (0)
27 #endif
29 #ifdef DEBUG_ASI
30 #define DPRINTF_ASI(fmt, ...) \
31 do { printf("ASI: " fmt , ## __VA_ARGS__); } while (0)
32 #endif
34 #ifdef TARGET_SPARC64
35 #ifndef TARGET_ABI32
36 #define AM_CHECK(env1) ((env1)->pstate & PS_AM)
37 #else
38 #define AM_CHECK(env1) (1)
39 #endif
40 #endif
42 #if defined(TARGET_SPARC64) && !defined(CONFIG_USER_ONLY)
43 // Calculates TSB pointer value for fault page size 8k or 64k
44 static uint64_t ultrasparc_tsb_pointer(uint64_t tsb_register,
45 uint64_t tag_access_register,
46 int page_size)
48 uint64_t tsb_base = tsb_register & ~0x1fffULL;
49 int tsb_split = (env->dmmuregs[5] & 0x1000ULL) ? 1 : 0;
50 int tsb_size = env->dmmuregs[5] & 0xf;
52 // discard lower 13 bits which hold tag access context
53 uint64_t tag_access_va = tag_access_register & ~0x1fffULL;
55 // now reorder bits
56 uint64_t tsb_base_mask = ~0x1fffULL;
57 uint64_t va = tag_access_va;
59 // move va bits to correct position
60 if (page_size == 8*1024) {
61 va >>= 9;
62 } else if (page_size == 64*1024) {
63 va >>= 12;
66 if (tsb_size) {
67 tsb_base_mask <<= tsb_size;
70 // calculate tsb_base mask and adjust va if split is in use
71 if (tsb_split) {
72 if (page_size == 8*1024) {
73 va &= ~(1ULL << (13 + tsb_size));
74 } else if (page_size == 64*1024) {
75 va |= (1ULL << (13 + tsb_size));
77 tsb_base_mask <<= 1;
80 return ((tsb_base & tsb_base_mask) | (va & ~tsb_base_mask)) & ~0xfULL;
83 // Calculates tag target register value by reordering bits
84 // in tag access register
85 static uint64_t ultrasparc_tag_target(uint64_t tag_access_register)
87 return ((tag_access_register & 0x1fff) << 48) | (tag_access_register >> 22);
90 #endif
92 static inline void address_mask(CPUState *env1, target_ulong *addr)
94 #ifdef TARGET_SPARC64
95 if (AM_CHECK(env1))
96 *addr &= 0xffffffffULL;
97 #endif
100 static void raise_exception(int tt)
102 env->exception_index = tt;
103 cpu_loop_exit();
106 void HELPER(raise_exception)(int tt)
108 raise_exception(tt);
111 static inline void set_cwp(int new_cwp)
113 cpu_set_cwp(env, new_cwp);
116 void helper_check_align(target_ulong addr, uint32_t align)
118 if (addr & align) {
119 #ifdef DEBUG_UNALIGNED
120 printf("Unaligned access to 0x" TARGET_FMT_lx " from 0x" TARGET_FMT_lx
121 "\n", addr, env->pc);
122 #endif
123 raise_exception(TT_UNALIGNED);
127 #define F_HELPER(name, p) void helper_f##name##p(void)
129 #define F_BINOP(name) \
130 float32 helper_f ## name ## s (float32 src1, float32 src2) \
132 return float32_ ## name (src1, src2, &env->fp_status); \
134 F_HELPER(name, d) \
136 DT0 = float64_ ## name (DT0, DT1, &env->fp_status); \
138 F_HELPER(name, q) \
140 QT0 = float128_ ## name (QT0, QT1, &env->fp_status); \
143 F_BINOP(add);
144 F_BINOP(sub);
145 F_BINOP(mul);
146 F_BINOP(div);
147 #undef F_BINOP
149 void helper_fsmuld(float32 src1, float32 src2)
151 DT0 = float64_mul(float32_to_float64(src1, &env->fp_status),
152 float32_to_float64(src2, &env->fp_status),
153 &env->fp_status);
156 void helper_fdmulq(void)
158 QT0 = float128_mul(float64_to_float128(DT0, &env->fp_status),
159 float64_to_float128(DT1, &env->fp_status),
160 &env->fp_status);
163 float32 helper_fnegs(float32 src)
165 return float32_chs(src);
168 #ifdef TARGET_SPARC64
169 F_HELPER(neg, d)
171 DT0 = float64_chs(DT1);
174 F_HELPER(neg, q)
176 QT0 = float128_chs(QT1);
178 #endif
180 /* Integer to float conversion. */
181 float32 helper_fitos(int32_t src)
183 return int32_to_float32(src, &env->fp_status);
186 void helper_fitod(int32_t src)
188 DT0 = int32_to_float64(src, &env->fp_status);
191 void helper_fitoq(int32_t src)
193 QT0 = int32_to_float128(src, &env->fp_status);
196 #ifdef TARGET_SPARC64
197 float32 helper_fxtos(void)
199 return int64_to_float32(*((int64_t *)&DT1), &env->fp_status);
202 F_HELPER(xto, d)
204 DT0 = int64_to_float64(*((int64_t *)&DT1), &env->fp_status);
207 F_HELPER(xto, q)
209 QT0 = int64_to_float128(*((int64_t *)&DT1), &env->fp_status);
211 #endif
212 #undef F_HELPER
214 /* floating point conversion */
215 float32 helper_fdtos(void)
217 return float64_to_float32(DT1, &env->fp_status);
220 void helper_fstod(float32 src)
222 DT0 = float32_to_float64(src, &env->fp_status);
225 float32 helper_fqtos(void)
227 return float128_to_float32(QT1, &env->fp_status);
230 void helper_fstoq(float32 src)
232 QT0 = float32_to_float128(src, &env->fp_status);
235 void helper_fqtod(void)
237 DT0 = float128_to_float64(QT1, &env->fp_status);
240 void helper_fdtoq(void)
242 QT0 = float64_to_float128(DT1, &env->fp_status);
245 /* Float to integer conversion. */
246 int32_t helper_fstoi(float32 src)
248 return float32_to_int32_round_to_zero(src, &env->fp_status);
251 int32_t helper_fdtoi(void)
253 return float64_to_int32_round_to_zero(DT1, &env->fp_status);
256 int32_t helper_fqtoi(void)
258 return float128_to_int32_round_to_zero(QT1, &env->fp_status);
261 #ifdef TARGET_SPARC64
262 void helper_fstox(float32 src)
264 *((int64_t *)&DT0) = float32_to_int64_round_to_zero(src, &env->fp_status);
267 void helper_fdtox(void)
269 *((int64_t *)&DT0) = float64_to_int64_round_to_zero(DT1, &env->fp_status);
272 void helper_fqtox(void)
274 *((int64_t *)&DT0) = float128_to_int64_round_to_zero(QT1, &env->fp_status);
277 void helper_faligndata(void)
279 uint64_t tmp;
281 tmp = (*((uint64_t *)&DT0)) << ((env->gsr & 7) * 8);
282 /* on many architectures a shift of 64 does nothing */
283 if ((env->gsr & 7) != 0) {
284 tmp |= (*((uint64_t *)&DT1)) >> (64 - (env->gsr & 7) * 8);
286 *((uint64_t *)&DT0) = tmp;
289 #ifdef WORDS_BIGENDIAN
290 #define VIS_B64(n) b[7 - (n)]
291 #define VIS_W64(n) w[3 - (n)]
292 #define VIS_SW64(n) sw[3 - (n)]
293 #define VIS_L64(n) l[1 - (n)]
294 #define VIS_B32(n) b[3 - (n)]
295 #define VIS_W32(n) w[1 - (n)]
296 #else
297 #define VIS_B64(n) b[n]
298 #define VIS_W64(n) w[n]
299 #define VIS_SW64(n) sw[n]
300 #define VIS_L64(n) l[n]
301 #define VIS_B32(n) b[n]
302 #define VIS_W32(n) w[n]
303 #endif
305 typedef union {
306 uint8_t b[8];
307 uint16_t w[4];
308 int16_t sw[4];
309 uint32_t l[2];
310 float64 d;
311 } vis64;
313 typedef union {
314 uint8_t b[4];
315 uint16_t w[2];
316 uint32_t l;
317 float32 f;
318 } vis32;
320 void helper_fpmerge(void)
322 vis64 s, d;
324 s.d = DT0;
325 d.d = DT1;
327 // Reverse calculation order to handle overlap
328 d.VIS_B64(7) = s.VIS_B64(3);
329 d.VIS_B64(6) = d.VIS_B64(3);
330 d.VIS_B64(5) = s.VIS_B64(2);
331 d.VIS_B64(4) = d.VIS_B64(2);
332 d.VIS_B64(3) = s.VIS_B64(1);
333 d.VIS_B64(2) = d.VIS_B64(1);
334 d.VIS_B64(1) = s.VIS_B64(0);
335 //d.VIS_B64(0) = d.VIS_B64(0);
337 DT0 = d.d;
340 void helper_fmul8x16(void)
342 vis64 s, d;
343 uint32_t tmp;
345 s.d = DT0;
346 d.d = DT1;
348 #define PMUL(r) \
349 tmp = (int32_t)d.VIS_SW64(r) * (int32_t)s.VIS_B64(r); \
350 if ((tmp & 0xff) > 0x7f) \
351 tmp += 0x100; \
352 d.VIS_W64(r) = tmp >> 8;
354 PMUL(0);
355 PMUL(1);
356 PMUL(2);
357 PMUL(3);
358 #undef PMUL
360 DT0 = d.d;
363 void helper_fmul8x16al(void)
365 vis64 s, d;
366 uint32_t tmp;
368 s.d = DT0;
369 d.d = DT1;
371 #define PMUL(r) \
372 tmp = (int32_t)d.VIS_SW64(1) * (int32_t)s.VIS_B64(r); \
373 if ((tmp & 0xff) > 0x7f) \
374 tmp += 0x100; \
375 d.VIS_W64(r) = tmp >> 8;
377 PMUL(0);
378 PMUL(1);
379 PMUL(2);
380 PMUL(3);
381 #undef PMUL
383 DT0 = d.d;
386 void helper_fmul8x16au(void)
388 vis64 s, d;
389 uint32_t tmp;
391 s.d = DT0;
392 d.d = DT1;
394 #define PMUL(r) \
395 tmp = (int32_t)d.VIS_SW64(0) * (int32_t)s.VIS_B64(r); \
396 if ((tmp & 0xff) > 0x7f) \
397 tmp += 0x100; \
398 d.VIS_W64(r) = tmp >> 8;
400 PMUL(0);
401 PMUL(1);
402 PMUL(2);
403 PMUL(3);
404 #undef PMUL
406 DT0 = d.d;
409 void helper_fmul8sux16(void)
411 vis64 s, d;
412 uint32_t tmp;
414 s.d = DT0;
415 d.d = DT1;
417 #define PMUL(r) \
418 tmp = (int32_t)d.VIS_SW64(r) * ((int32_t)s.VIS_SW64(r) >> 8); \
419 if ((tmp & 0xff) > 0x7f) \
420 tmp += 0x100; \
421 d.VIS_W64(r) = tmp >> 8;
423 PMUL(0);
424 PMUL(1);
425 PMUL(2);
426 PMUL(3);
427 #undef PMUL
429 DT0 = d.d;
432 void helper_fmul8ulx16(void)
434 vis64 s, d;
435 uint32_t tmp;
437 s.d = DT0;
438 d.d = DT1;
440 #define PMUL(r) \
441 tmp = (int32_t)d.VIS_SW64(r) * ((uint32_t)s.VIS_B64(r * 2)); \
442 if ((tmp & 0xff) > 0x7f) \
443 tmp += 0x100; \
444 d.VIS_W64(r) = tmp >> 8;
446 PMUL(0);
447 PMUL(1);
448 PMUL(2);
449 PMUL(3);
450 #undef PMUL
452 DT0 = d.d;
455 void helper_fmuld8sux16(void)
457 vis64 s, d;
458 uint32_t tmp;
460 s.d = DT0;
461 d.d = DT1;
463 #define PMUL(r) \
464 tmp = (int32_t)d.VIS_SW64(r) * ((int32_t)s.VIS_SW64(r) >> 8); \
465 if ((tmp & 0xff) > 0x7f) \
466 tmp += 0x100; \
467 d.VIS_L64(r) = tmp;
469 // Reverse calculation order to handle overlap
470 PMUL(1);
471 PMUL(0);
472 #undef PMUL
474 DT0 = d.d;
477 void helper_fmuld8ulx16(void)
479 vis64 s, d;
480 uint32_t tmp;
482 s.d = DT0;
483 d.d = DT1;
485 #define PMUL(r) \
486 tmp = (int32_t)d.VIS_SW64(r) * ((uint32_t)s.VIS_B64(r * 2)); \
487 if ((tmp & 0xff) > 0x7f) \
488 tmp += 0x100; \
489 d.VIS_L64(r) = tmp;
491 // Reverse calculation order to handle overlap
492 PMUL(1);
493 PMUL(0);
494 #undef PMUL
496 DT0 = d.d;
499 void helper_fexpand(void)
501 vis32 s;
502 vis64 d;
504 s.l = (uint32_t)(*(uint64_t *)&DT0 & 0xffffffff);
505 d.d = DT1;
506 d.VIS_W64(0) = s.VIS_B32(0) << 4;
507 d.VIS_W64(1) = s.VIS_B32(1) << 4;
508 d.VIS_W64(2) = s.VIS_B32(2) << 4;
509 d.VIS_W64(3) = s.VIS_B32(3) << 4;
511 DT0 = d.d;
514 #define VIS_HELPER(name, F) \
515 void name##16(void) \
517 vis64 s, d; \
519 s.d = DT0; \
520 d.d = DT1; \
522 d.VIS_W64(0) = F(d.VIS_W64(0), s.VIS_W64(0)); \
523 d.VIS_W64(1) = F(d.VIS_W64(1), s.VIS_W64(1)); \
524 d.VIS_W64(2) = F(d.VIS_W64(2), s.VIS_W64(2)); \
525 d.VIS_W64(3) = F(d.VIS_W64(3), s.VIS_W64(3)); \
527 DT0 = d.d; \
530 uint32_t name##16s(uint32_t src1, uint32_t src2) \
532 vis32 s, d; \
534 s.l = src1; \
535 d.l = src2; \
537 d.VIS_W32(0) = F(d.VIS_W32(0), s.VIS_W32(0)); \
538 d.VIS_W32(1) = F(d.VIS_W32(1), s.VIS_W32(1)); \
540 return d.l; \
543 void name##32(void) \
545 vis64 s, d; \
547 s.d = DT0; \
548 d.d = DT1; \
550 d.VIS_L64(0) = F(d.VIS_L64(0), s.VIS_L64(0)); \
551 d.VIS_L64(1) = F(d.VIS_L64(1), s.VIS_L64(1)); \
553 DT0 = d.d; \
556 uint32_t name##32s(uint32_t src1, uint32_t src2) \
558 vis32 s, d; \
560 s.l = src1; \
561 d.l = src2; \
563 d.l = F(d.l, s.l); \
565 return d.l; \
568 #define FADD(a, b) ((a) + (b))
569 #define FSUB(a, b) ((a) - (b))
570 VIS_HELPER(helper_fpadd, FADD)
571 VIS_HELPER(helper_fpsub, FSUB)
573 #define VIS_CMPHELPER(name, F) \
574 void name##16(void) \
576 vis64 s, d; \
578 s.d = DT0; \
579 d.d = DT1; \
581 d.VIS_W64(0) = F(d.VIS_W64(0), s.VIS_W64(0))? 1: 0; \
582 d.VIS_W64(0) |= F(d.VIS_W64(1), s.VIS_W64(1))? 2: 0; \
583 d.VIS_W64(0) |= F(d.VIS_W64(2), s.VIS_W64(2))? 4: 0; \
584 d.VIS_W64(0) |= F(d.VIS_W64(3), s.VIS_W64(3))? 8: 0; \
586 DT0 = d.d; \
589 void name##32(void) \
591 vis64 s, d; \
593 s.d = DT0; \
594 d.d = DT1; \
596 d.VIS_L64(0) = F(d.VIS_L64(0), s.VIS_L64(0))? 1: 0; \
597 d.VIS_L64(0) |= F(d.VIS_L64(1), s.VIS_L64(1))? 2: 0; \
599 DT0 = d.d; \
602 #define FCMPGT(a, b) ((a) > (b))
603 #define FCMPEQ(a, b) ((a) == (b))
604 #define FCMPLE(a, b) ((a) <= (b))
605 #define FCMPNE(a, b) ((a) != (b))
607 VIS_CMPHELPER(helper_fcmpgt, FCMPGT)
608 VIS_CMPHELPER(helper_fcmpeq, FCMPEQ)
609 VIS_CMPHELPER(helper_fcmple, FCMPLE)
610 VIS_CMPHELPER(helper_fcmpne, FCMPNE)
611 #endif
613 void helper_check_ieee_exceptions(void)
615 target_ulong status;
617 status = get_float_exception_flags(&env->fp_status);
618 if (status) {
619 /* Copy IEEE 754 flags into FSR */
620 if (status & float_flag_invalid)
621 env->fsr |= FSR_NVC;
622 if (status & float_flag_overflow)
623 env->fsr |= FSR_OFC;
624 if (status & float_flag_underflow)
625 env->fsr |= FSR_UFC;
626 if (status & float_flag_divbyzero)
627 env->fsr |= FSR_DZC;
628 if (status & float_flag_inexact)
629 env->fsr |= FSR_NXC;
631 if ((env->fsr & FSR_CEXC_MASK) & ((env->fsr & FSR_TEM_MASK) >> 23)) {
632 /* Unmasked exception, generate a trap */
633 env->fsr |= FSR_FTT_IEEE_EXCP;
634 raise_exception(TT_FP_EXCP);
635 } else {
636 /* Accumulate exceptions */
637 env->fsr |= (env->fsr & FSR_CEXC_MASK) << 5;
642 void helper_clear_float_exceptions(void)
644 set_float_exception_flags(0, &env->fp_status);
647 float32 helper_fabss(float32 src)
649 return float32_abs(src);
652 #ifdef TARGET_SPARC64
653 void helper_fabsd(void)
655 DT0 = float64_abs(DT1);
658 void helper_fabsq(void)
660 QT0 = float128_abs(QT1);
662 #endif
664 float32 helper_fsqrts(float32 src)
666 return float32_sqrt(src, &env->fp_status);
669 void helper_fsqrtd(void)
671 DT0 = float64_sqrt(DT1, &env->fp_status);
674 void helper_fsqrtq(void)
676 QT0 = float128_sqrt(QT1, &env->fp_status);
679 #define GEN_FCMP(name, size, reg1, reg2, FS, TRAP) \
680 void glue(helper_, name) (void) \
682 target_ulong new_fsr; \
684 env->fsr &= ~((FSR_FCC1 | FSR_FCC0) << FS); \
685 switch (glue(size, _compare) (reg1, reg2, &env->fp_status)) { \
686 case float_relation_unordered: \
687 new_fsr = (FSR_FCC1 | FSR_FCC0) << FS; \
688 if ((env->fsr & FSR_NVM) || TRAP) { \
689 env->fsr |= new_fsr; \
690 env->fsr |= FSR_NVC; \
691 env->fsr |= FSR_FTT_IEEE_EXCP; \
692 raise_exception(TT_FP_EXCP); \
693 } else { \
694 env->fsr |= FSR_NVA; \
696 break; \
697 case float_relation_less: \
698 new_fsr = FSR_FCC0 << FS; \
699 break; \
700 case float_relation_greater: \
701 new_fsr = FSR_FCC1 << FS; \
702 break; \
703 default: \
704 new_fsr = 0; \
705 break; \
707 env->fsr |= new_fsr; \
709 #define GEN_FCMPS(name, size, FS, TRAP) \
710 void glue(helper_, name)(float32 src1, float32 src2) \
712 target_ulong new_fsr; \
714 env->fsr &= ~((FSR_FCC1 | FSR_FCC0) << FS); \
715 switch (glue(size, _compare) (src1, src2, &env->fp_status)) { \
716 case float_relation_unordered: \
717 new_fsr = (FSR_FCC1 | FSR_FCC0) << FS; \
718 if ((env->fsr & FSR_NVM) || TRAP) { \
719 env->fsr |= new_fsr; \
720 env->fsr |= FSR_NVC; \
721 env->fsr |= FSR_FTT_IEEE_EXCP; \
722 raise_exception(TT_FP_EXCP); \
723 } else { \
724 env->fsr |= FSR_NVA; \
726 break; \
727 case float_relation_less: \
728 new_fsr = FSR_FCC0 << FS; \
729 break; \
730 case float_relation_greater: \
731 new_fsr = FSR_FCC1 << FS; \
732 break; \
733 default: \
734 new_fsr = 0; \
735 break; \
737 env->fsr |= new_fsr; \
740 GEN_FCMPS(fcmps, float32, 0, 0);
741 GEN_FCMP(fcmpd, float64, DT0, DT1, 0, 0);
743 GEN_FCMPS(fcmpes, float32, 0, 1);
744 GEN_FCMP(fcmped, float64, DT0, DT1, 0, 1);
746 GEN_FCMP(fcmpq, float128, QT0, QT1, 0, 0);
747 GEN_FCMP(fcmpeq, float128, QT0, QT1, 0, 1);
749 static uint32_t compute_all_flags(void)
751 return env->psr & PSR_ICC;
754 static uint32_t compute_C_flags(void)
756 return env->psr & PSR_CARRY;
759 static inline uint32_t get_NZ_icc(target_ulong dst)
761 uint32_t ret = 0;
763 if (!(dst & 0xffffffffULL))
764 ret |= PSR_ZERO;
765 if ((int32_t) (dst & 0xffffffffULL) < 0)
766 ret |= PSR_NEG;
767 return ret;
770 #ifdef TARGET_SPARC64
771 static uint32_t compute_all_flags_xcc(void)
773 return env->xcc & PSR_ICC;
776 static uint32_t compute_C_flags_xcc(void)
778 return env->xcc & PSR_CARRY;
781 static inline uint32_t get_NZ_xcc(target_ulong dst)
783 uint32_t ret = 0;
785 if (!dst)
786 ret |= PSR_ZERO;
787 if ((int64_t)dst < 0)
788 ret |= PSR_NEG;
789 return ret;
791 #endif
793 static inline uint32_t get_V_div_icc(target_ulong src2)
795 uint32_t ret = 0;
797 if (src2 != 0)
798 ret |= PSR_OVF;
799 return ret;
802 static uint32_t compute_all_div(void)
804 uint32_t ret;
806 ret = get_NZ_icc(CC_DST);
807 ret |= get_V_div_icc(CC_SRC2);
808 return ret;
811 static uint32_t compute_C_div(void)
813 return 0;
816 static inline uint32_t get_C_add_icc(target_ulong dst, target_ulong src1)
818 uint32_t ret = 0;
820 if ((dst & 0xffffffffULL) < (src1 & 0xffffffffULL))
821 ret |= PSR_CARRY;
822 return ret;
825 static inline uint32_t get_V_add_icc(target_ulong dst, target_ulong src1,
826 target_ulong src2)
828 uint32_t ret = 0;
830 if (((src1 ^ src2 ^ -1) & (src1 ^ dst)) & (1ULL << 31))
831 ret |= PSR_OVF;
832 return ret;
835 static uint32_t compute_all_add(void)
837 uint32_t ret;
839 ret = get_NZ_icc(CC_DST);
840 ret |= get_C_add_icc(CC_DST, CC_SRC);
841 ret |= get_V_add_icc(CC_DST, CC_SRC, CC_SRC2);
842 return ret;
845 static uint32_t compute_C_add(void)
847 return get_C_add_icc(CC_DST, CC_SRC);
850 #ifdef TARGET_SPARC64
851 static inline uint32_t get_C_add_xcc(target_ulong dst, target_ulong src1)
853 uint32_t ret = 0;
855 if (dst < src1)
856 ret |= PSR_CARRY;
857 return ret;
860 static inline uint32_t get_V_add_xcc(target_ulong dst, target_ulong src1,
861 target_ulong src2)
863 uint32_t ret = 0;
865 if (((src1 ^ src2 ^ -1) & (src1 ^ dst)) & (1ULL << 63))
866 ret |= PSR_OVF;
867 return ret;
870 static uint32_t compute_all_add_xcc(void)
872 uint32_t ret;
874 ret = get_NZ_xcc(CC_DST);
875 ret |= get_C_add_xcc(CC_DST, CC_SRC);
876 ret |= get_V_add_xcc(CC_DST, CC_SRC, CC_SRC2);
877 return ret;
880 static uint32_t compute_C_add_xcc(void)
882 return get_C_add_xcc(CC_DST, CC_SRC);
884 #endif
886 static uint32_t compute_all_addx(void)
888 uint32_t ret;
890 ret = get_NZ_icc(CC_DST);
891 ret |= get_C_add_icc(CC_DST - CC_SRC2, CC_SRC);
892 ret |= get_C_add_icc(CC_DST, CC_SRC);
893 ret |= get_V_add_icc(CC_DST, CC_SRC, CC_SRC2);
894 return ret;
897 static uint32_t compute_C_addx(void)
899 uint32_t ret;
901 ret = get_C_add_icc(CC_DST - CC_SRC2, CC_SRC);
902 ret |= get_C_add_icc(CC_DST, CC_SRC);
903 return ret;
906 #ifdef TARGET_SPARC64
907 static uint32_t compute_all_addx_xcc(void)
909 uint32_t ret;
911 ret = get_NZ_xcc(CC_DST);
912 ret |= get_C_add_xcc(CC_DST - CC_SRC2, CC_SRC);
913 ret |= get_C_add_xcc(CC_DST, CC_SRC);
914 ret |= get_V_add_xcc(CC_DST, CC_SRC, CC_SRC2);
915 return ret;
918 static uint32_t compute_C_addx_xcc(void)
920 uint32_t ret;
922 ret = get_C_add_xcc(CC_DST - CC_SRC2, CC_SRC);
923 ret |= get_C_add_xcc(CC_DST, CC_SRC);
924 return ret;
926 #endif
928 static inline uint32_t get_V_tag_icc(target_ulong src1, target_ulong src2)
930 uint32_t ret = 0;
932 if ((src1 | src2) & 0x3)
933 ret |= PSR_OVF;
934 return ret;
937 static uint32_t compute_all_tadd(void)
939 uint32_t ret;
941 ret = get_NZ_icc(CC_DST);
942 ret |= get_C_add_icc(CC_DST, CC_SRC);
943 ret |= get_V_add_icc(CC_DST, CC_SRC, CC_SRC2);
944 ret |= get_V_tag_icc(CC_SRC, CC_SRC2);
945 return ret;
948 static uint32_t compute_C_tadd(void)
950 return get_C_add_icc(CC_DST, CC_SRC);
953 static uint32_t compute_all_taddtv(void)
955 uint32_t ret;
957 ret = get_NZ_icc(CC_DST);
958 ret |= get_C_add_icc(CC_DST, CC_SRC);
959 return ret;
962 static uint32_t compute_C_taddtv(void)
964 return get_C_add_icc(CC_DST, CC_SRC);
967 static inline uint32_t get_C_sub_icc(target_ulong src1, target_ulong src2)
969 uint32_t ret = 0;
971 if ((src1 & 0xffffffffULL) < (src2 & 0xffffffffULL))
972 ret |= PSR_CARRY;
973 return ret;
976 static inline uint32_t get_V_sub_icc(target_ulong dst, target_ulong src1,
977 target_ulong src2)
979 uint32_t ret = 0;
981 if (((src1 ^ src2) & (src1 ^ dst)) & (1ULL << 31))
982 ret |= PSR_OVF;
983 return ret;
986 static uint32_t compute_all_sub(void)
988 uint32_t ret;
990 ret = get_NZ_icc(CC_DST);
991 ret |= get_C_sub_icc(CC_SRC, CC_SRC2);
992 ret |= get_V_sub_icc(CC_DST, CC_SRC, CC_SRC2);
993 return ret;
996 static uint32_t compute_C_sub(void)
998 return get_C_sub_icc(CC_SRC, CC_SRC2);
1001 #ifdef TARGET_SPARC64
1002 static inline uint32_t get_C_sub_xcc(target_ulong src1, target_ulong src2)
1004 uint32_t ret = 0;
1006 if (src1 < src2)
1007 ret |= PSR_CARRY;
1008 return ret;
1011 static inline uint32_t get_V_sub_xcc(target_ulong dst, target_ulong src1,
1012 target_ulong src2)
1014 uint32_t ret = 0;
1016 if (((src1 ^ src2) & (src1 ^ dst)) & (1ULL << 63))
1017 ret |= PSR_OVF;
1018 return ret;
1021 static uint32_t compute_all_sub_xcc(void)
1023 uint32_t ret;
1025 ret = get_NZ_xcc(CC_DST);
1026 ret |= get_C_sub_xcc(CC_SRC, CC_SRC2);
1027 ret |= get_V_sub_xcc(CC_DST, CC_SRC, CC_SRC2);
1028 return ret;
1031 static uint32_t compute_C_sub_xcc(void)
1033 return get_C_sub_xcc(CC_SRC, CC_SRC2);
1035 #endif
1037 static uint32_t compute_all_subx(void)
1039 uint32_t ret;
1041 ret = get_NZ_icc(CC_DST);
1042 ret |= get_C_sub_icc(CC_DST - CC_SRC2, CC_SRC);
1043 ret |= get_C_sub_icc(CC_DST, CC_SRC2);
1044 ret |= get_V_sub_icc(CC_DST, CC_SRC, CC_SRC2);
1045 return ret;
1048 static uint32_t compute_C_subx(void)
1050 uint32_t ret;
1052 ret = get_C_sub_icc(CC_DST - CC_SRC2, CC_SRC);
1053 ret |= get_C_sub_icc(CC_DST, CC_SRC2);
1054 return ret;
1057 #ifdef TARGET_SPARC64
1058 static uint32_t compute_all_subx_xcc(void)
1060 uint32_t ret;
1062 ret = get_NZ_xcc(CC_DST);
1063 ret |= get_C_sub_xcc(CC_DST - CC_SRC2, CC_SRC);
1064 ret |= get_C_sub_xcc(CC_DST, CC_SRC2);
1065 ret |= get_V_sub_xcc(CC_DST, CC_SRC, CC_SRC2);
1066 return ret;
1069 static uint32_t compute_C_subx_xcc(void)
1071 uint32_t ret;
1073 ret = get_C_sub_xcc(CC_DST - CC_SRC2, CC_SRC);
1074 ret |= get_C_sub_xcc(CC_DST, CC_SRC2);
1075 return ret;
1077 #endif
1079 static uint32_t compute_all_tsub(void)
1081 uint32_t ret;
1083 ret = get_NZ_icc(CC_DST);
1084 ret |= get_C_sub_icc(CC_DST, CC_SRC);
1085 ret |= get_V_sub_icc(CC_DST, CC_SRC, CC_SRC2);
1086 ret |= get_V_tag_icc(CC_SRC, CC_SRC2);
1087 return ret;
1090 static uint32_t compute_C_tsub(void)
1092 return get_C_sub_icc(CC_DST, CC_SRC);
1095 static uint32_t compute_all_tsubtv(void)
1097 uint32_t ret;
1099 ret = get_NZ_icc(CC_DST);
1100 ret |= get_C_sub_icc(CC_DST, CC_SRC);
1101 return ret;
1104 static uint32_t compute_C_tsubtv(void)
1106 return get_C_sub_icc(CC_DST, CC_SRC);
1109 static uint32_t compute_all_logic(void)
1111 return get_NZ_icc(CC_DST);
1114 static uint32_t compute_C_logic(void)
1116 return 0;
1119 #ifdef TARGET_SPARC64
1120 static uint32_t compute_all_logic_xcc(void)
1122 return get_NZ_xcc(CC_DST);
1124 #endif
1126 typedef struct CCTable {
1127 uint32_t (*compute_all)(void); /* return all the flags */
1128 uint32_t (*compute_c)(void); /* return the C flag */
1129 } CCTable;
1131 static const CCTable icc_table[CC_OP_NB] = {
1132 /* CC_OP_DYNAMIC should never happen */
1133 [CC_OP_FLAGS] = { compute_all_flags, compute_C_flags },
1134 [CC_OP_DIV] = { compute_all_div, compute_C_div },
1135 [CC_OP_ADD] = { compute_all_add, compute_C_add },
1136 [CC_OP_ADDX] = { compute_all_addx, compute_C_addx },
1137 [CC_OP_TADD] = { compute_all_tadd, compute_C_tadd },
1138 [CC_OP_TADDTV] = { compute_all_taddtv, compute_C_taddtv },
1139 [CC_OP_SUB] = { compute_all_sub, compute_C_sub },
1140 [CC_OP_SUBX] = { compute_all_subx, compute_C_subx },
1141 [CC_OP_TSUB] = { compute_all_tsub, compute_C_tsub },
1142 [CC_OP_TSUBTV] = { compute_all_tsubtv, compute_C_tsubtv },
1143 [CC_OP_LOGIC] = { compute_all_logic, compute_C_logic },
1146 #ifdef TARGET_SPARC64
1147 static const CCTable xcc_table[CC_OP_NB] = {
1148 /* CC_OP_DYNAMIC should never happen */
1149 [CC_OP_FLAGS] = { compute_all_flags_xcc, compute_C_flags_xcc },
1150 [CC_OP_DIV] = { compute_all_logic_xcc, compute_C_logic },
1151 [CC_OP_ADD] = { compute_all_add_xcc, compute_C_add_xcc },
1152 [CC_OP_ADDX] = { compute_all_addx_xcc, compute_C_addx_xcc },
1153 [CC_OP_TADD] = { compute_all_add_xcc, compute_C_add_xcc },
1154 [CC_OP_TADDTV] = { compute_all_add_xcc, compute_C_add_xcc },
1155 [CC_OP_SUB] = { compute_all_sub_xcc, compute_C_sub_xcc },
1156 [CC_OP_SUBX] = { compute_all_subx_xcc, compute_C_subx_xcc },
1157 [CC_OP_TSUB] = { compute_all_sub_xcc, compute_C_sub_xcc },
1158 [CC_OP_TSUBTV] = { compute_all_sub_xcc, compute_C_sub_xcc },
1159 [CC_OP_LOGIC] = { compute_all_logic_xcc, compute_C_logic },
1161 #endif
1163 void helper_compute_psr(void)
1165 uint32_t new_psr;
1167 new_psr = icc_table[CC_OP].compute_all();
1168 env->psr = new_psr;
1169 #ifdef TARGET_SPARC64
1170 new_psr = xcc_table[CC_OP].compute_all();
1171 env->xcc = new_psr;
1172 #endif
1173 CC_OP = CC_OP_FLAGS;
1176 uint32_t helper_compute_C_icc(void)
1178 uint32_t ret;
1180 ret = icc_table[CC_OP].compute_c() >> PSR_CARRY_SHIFT;
1181 return ret;
1184 #ifdef TARGET_SPARC64
1185 GEN_FCMPS(fcmps_fcc1, float32, 22, 0);
1186 GEN_FCMP(fcmpd_fcc1, float64, DT0, DT1, 22, 0);
1187 GEN_FCMP(fcmpq_fcc1, float128, QT0, QT1, 22, 0);
1189 GEN_FCMPS(fcmps_fcc2, float32, 24, 0);
1190 GEN_FCMP(fcmpd_fcc2, float64, DT0, DT1, 24, 0);
1191 GEN_FCMP(fcmpq_fcc2, float128, QT0, QT1, 24, 0);
1193 GEN_FCMPS(fcmps_fcc3, float32, 26, 0);
1194 GEN_FCMP(fcmpd_fcc3, float64, DT0, DT1, 26, 0);
1195 GEN_FCMP(fcmpq_fcc3, float128, QT0, QT1, 26, 0);
1197 GEN_FCMPS(fcmpes_fcc1, float32, 22, 1);
1198 GEN_FCMP(fcmped_fcc1, float64, DT0, DT1, 22, 1);
1199 GEN_FCMP(fcmpeq_fcc1, float128, QT0, QT1, 22, 1);
1201 GEN_FCMPS(fcmpes_fcc2, float32, 24, 1);
1202 GEN_FCMP(fcmped_fcc2, float64, DT0, DT1, 24, 1);
1203 GEN_FCMP(fcmpeq_fcc2, float128, QT0, QT1, 24, 1);
1205 GEN_FCMPS(fcmpes_fcc3, float32, 26, 1);
1206 GEN_FCMP(fcmped_fcc3, float64, DT0, DT1, 26, 1);
1207 GEN_FCMP(fcmpeq_fcc3, float128, QT0, QT1, 26, 1);
1208 #endif
1209 #undef GEN_FCMPS
1211 #if !defined(TARGET_SPARC64) && !defined(CONFIG_USER_ONLY) && \
1212 defined(DEBUG_MXCC)
1213 static void dump_mxcc(CPUState *env)
1215 printf("mxccdata: %016" PRIx64 " %016" PRIx64 " %016" PRIx64 " %016" PRIx64
1216 "\n",
1217 env->mxccdata[0], env->mxccdata[1],
1218 env->mxccdata[2], env->mxccdata[3]);
1219 printf("mxccregs: %016" PRIx64 " %016" PRIx64 " %016" PRIx64 " %016" PRIx64
1220 "\n"
1221 " %016" PRIx64 " %016" PRIx64 " %016" PRIx64 " %016" PRIx64
1222 "\n",
1223 env->mxccregs[0], env->mxccregs[1],
1224 env->mxccregs[2], env->mxccregs[3],
1225 env->mxccregs[4], env->mxccregs[5],
1226 env->mxccregs[6], env->mxccregs[7]);
1228 #endif
1230 #if (defined(TARGET_SPARC64) || !defined(CONFIG_USER_ONLY)) \
1231 && defined(DEBUG_ASI)
1232 static void dump_asi(const char *txt, target_ulong addr, int asi, int size,
1233 uint64_t r1)
1235 switch (size)
1237 case 1:
1238 DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %02" PRIx64 "\n", txt,
1239 addr, asi, r1 & 0xff);
1240 break;
1241 case 2:
1242 DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %04" PRIx64 "\n", txt,
1243 addr, asi, r1 & 0xffff);
1244 break;
1245 case 4:
1246 DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %08" PRIx64 "\n", txt,
1247 addr, asi, r1 & 0xffffffff);
1248 break;
1249 case 8:
1250 DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %016" PRIx64 "\n", txt,
1251 addr, asi, r1);
1252 break;
1255 #endif
1257 #ifndef TARGET_SPARC64
1258 #ifndef CONFIG_USER_ONLY
1259 uint64_t helper_ld_asi(target_ulong addr, int asi, int size, int sign)
1261 uint64_t ret = 0;
1262 #if defined(DEBUG_MXCC) || defined(DEBUG_ASI)
1263 uint32_t last_addr = addr;
1264 #endif
1266 helper_check_align(addr, size - 1);
1267 switch (asi) {
1268 case 2: /* SuperSparc MXCC registers */
1269 switch (addr) {
1270 case 0x01c00a00: /* MXCC control register */
1271 if (size == 8)
1272 ret = env->mxccregs[3];
1273 else
1274 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1275 size);
1276 break;
1277 case 0x01c00a04: /* MXCC control register */
1278 if (size == 4)
1279 ret = env->mxccregs[3];
1280 else
1281 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1282 size);
1283 break;
1284 case 0x01c00c00: /* Module reset register */
1285 if (size == 8) {
1286 ret = env->mxccregs[5];
1287 // should we do something here?
1288 } else
1289 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1290 size);
1291 break;
1292 case 0x01c00f00: /* MBus port address register */
1293 if (size == 8)
1294 ret = env->mxccregs[7];
1295 else
1296 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1297 size);
1298 break;
1299 default:
1300 DPRINTF_MXCC("%08x: unimplemented address, size: %d\n", addr,
1301 size);
1302 break;
1304 DPRINTF_MXCC("asi = %d, size = %d, sign = %d, "
1305 "addr = %08x -> ret = %" PRIx64 ","
1306 "addr = %08x\n", asi, size, sign, last_addr, ret, addr);
1307 #ifdef DEBUG_MXCC
1308 dump_mxcc(env);
1309 #endif
1310 break;
1311 case 3: /* MMU probe */
1313 int mmulev;
1315 mmulev = (addr >> 8) & 15;
1316 if (mmulev > 4)
1317 ret = 0;
1318 else
1319 ret = mmu_probe(env, addr, mmulev);
1320 DPRINTF_MMU("mmu_probe: 0x%08x (lev %d) -> 0x%08" PRIx64 "\n",
1321 addr, mmulev, ret);
1323 break;
1324 case 4: /* read MMU regs */
1326 int reg = (addr >> 8) & 0x1f;
1328 ret = env->mmuregs[reg];
1329 if (reg == 3) /* Fault status cleared on read */
1330 env->mmuregs[3] = 0;
1331 else if (reg == 0x13) /* Fault status read */
1332 ret = env->mmuregs[3];
1333 else if (reg == 0x14) /* Fault address read */
1334 ret = env->mmuregs[4];
1335 DPRINTF_MMU("mmu_read: reg[%d] = 0x%08" PRIx64 "\n", reg, ret);
1337 break;
1338 case 5: // Turbosparc ITLB Diagnostic
1339 case 6: // Turbosparc DTLB Diagnostic
1340 case 7: // Turbosparc IOTLB Diagnostic
1341 break;
1342 case 9: /* Supervisor code access */
1343 switch(size) {
1344 case 1:
1345 ret = ldub_code(addr);
1346 break;
1347 case 2:
1348 ret = lduw_code(addr);
1349 break;
1350 default:
1351 case 4:
1352 ret = ldl_code(addr);
1353 break;
1354 case 8:
1355 ret = ldq_code(addr);
1356 break;
1358 break;
1359 case 0xa: /* User data access */
1360 switch(size) {
1361 case 1:
1362 ret = ldub_user(addr);
1363 break;
1364 case 2:
1365 ret = lduw_user(addr);
1366 break;
1367 default:
1368 case 4:
1369 ret = ldl_user(addr);
1370 break;
1371 case 8:
1372 ret = ldq_user(addr);
1373 break;
1375 break;
1376 case 0xb: /* Supervisor data access */
1377 switch(size) {
1378 case 1:
1379 ret = ldub_kernel(addr);
1380 break;
1381 case 2:
1382 ret = lduw_kernel(addr);
1383 break;
1384 default:
1385 case 4:
1386 ret = ldl_kernel(addr);
1387 break;
1388 case 8:
1389 ret = ldq_kernel(addr);
1390 break;
1392 break;
1393 case 0xc: /* I-cache tag */
1394 case 0xd: /* I-cache data */
1395 case 0xe: /* D-cache tag */
1396 case 0xf: /* D-cache data */
1397 break;
1398 case 0x20: /* MMU passthrough */
1399 switch(size) {
1400 case 1:
1401 ret = ldub_phys(addr);
1402 break;
1403 case 2:
1404 ret = lduw_phys(addr);
1405 break;
1406 default:
1407 case 4:
1408 ret = ldl_phys(addr);
1409 break;
1410 case 8:
1411 ret = ldq_phys(addr);
1412 break;
1414 break;
1415 case 0x21 ... 0x2f: /* MMU passthrough, 0x100000000 to 0xfffffffff */
1416 switch(size) {
1417 case 1:
1418 ret = ldub_phys((target_phys_addr_t)addr
1419 | ((target_phys_addr_t)(asi & 0xf) << 32));
1420 break;
1421 case 2:
1422 ret = lduw_phys((target_phys_addr_t)addr
1423 | ((target_phys_addr_t)(asi & 0xf) << 32));
1424 break;
1425 default:
1426 case 4:
1427 ret = ldl_phys((target_phys_addr_t)addr
1428 | ((target_phys_addr_t)(asi & 0xf) << 32));
1429 break;
1430 case 8:
1431 ret = ldq_phys((target_phys_addr_t)addr
1432 | ((target_phys_addr_t)(asi & 0xf) << 32));
1433 break;
1435 break;
1436 case 0x30: // Turbosparc secondary cache diagnostic
1437 case 0x31: // Turbosparc RAM snoop
1438 case 0x32: // Turbosparc page table descriptor diagnostic
1439 case 0x39: /* data cache diagnostic register */
1440 ret = 0;
1441 break;
1442 case 0x38: /* SuperSPARC MMU Breakpoint Control Registers */
1444 int reg = (addr >> 8) & 3;
1446 switch(reg) {
1447 case 0: /* Breakpoint Value (Addr) */
1448 ret = env->mmubpregs[reg];
1449 break;
1450 case 1: /* Breakpoint Mask */
1451 ret = env->mmubpregs[reg];
1452 break;
1453 case 2: /* Breakpoint Control */
1454 ret = env->mmubpregs[reg];
1455 break;
1456 case 3: /* Breakpoint Status */
1457 ret = env->mmubpregs[reg];
1458 env->mmubpregs[reg] = 0ULL;
1459 break;
1461 DPRINTF_MMU("read breakpoint reg[%d] 0x%016" PRIx64 "\n", reg,
1462 ret);
1464 break;
1465 case 8: /* User code access, XXX */
1466 default:
1467 do_unassigned_access(addr, 0, 0, asi, size);
1468 ret = 0;
1469 break;
1471 if (sign) {
1472 switch(size) {
1473 case 1:
1474 ret = (int8_t) ret;
1475 break;
1476 case 2:
1477 ret = (int16_t) ret;
1478 break;
1479 case 4:
1480 ret = (int32_t) ret;
1481 break;
1482 default:
1483 break;
1486 #ifdef DEBUG_ASI
1487 dump_asi("read ", last_addr, asi, size, ret);
1488 #endif
1489 return ret;
1492 void helper_st_asi(target_ulong addr, uint64_t val, int asi, int size)
1494 helper_check_align(addr, size - 1);
1495 switch(asi) {
1496 case 2: /* SuperSparc MXCC registers */
1497 switch (addr) {
1498 case 0x01c00000: /* MXCC stream data register 0 */
1499 if (size == 8)
1500 env->mxccdata[0] = val;
1501 else
1502 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1503 size);
1504 break;
1505 case 0x01c00008: /* MXCC stream data register 1 */
1506 if (size == 8)
1507 env->mxccdata[1] = val;
1508 else
1509 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1510 size);
1511 break;
1512 case 0x01c00010: /* MXCC stream data register 2 */
1513 if (size == 8)
1514 env->mxccdata[2] = val;
1515 else
1516 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1517 size);
1518 break;
1519 case 0x01c00018: /* MXCC stream data register 3 */
1520 if (size == 8)
1521 env->mxccdata[3] = val;
1522 else
1523 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1524 size);
1525 break;
1526 case 0x01c00100: /* MXCC stream source */
1527 if (size == 8)
1528 env->mxccregs[0] = val;
1529 else
1530 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1531 size);
1532 env->mxccdata[0] = ldq_phys((env->mxccregs[0] & 0xffffffffULL) +
1534 env->mxccdata[1] = ldq_phys((env->mxccregs[0] & 0xffffffffULL) +
1536 env->mxccdata[2] = ldq_phys((env->mxccregs[0] & 0xffffffffULL) +
1537 16);
1538 env->mxccdata[3] = ldq_phys((env->mxccregs[0] & 0xffffffffULL) +
1539 24);
1540 break;
1541 case 0x01c00200: /* MXCC stream destination */
1542 if (size == 8)
1543 env->mxccregs[1] = val;
1544 else
1545 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1546 size);
1547 stq_phys((env->mxccregs[1] & 0xffffffffULL) + 0,
1548 env->mxccdata[0]);
1549 stq_phys((env->mxccregs[1] & 0xffffffffULL) + 8,
1550 env->mxccdata[1]);
1551 stq_phys((env->mxccregs[1] & 0xffffffffULL) + 16,
1552 env->mxccdata[2]);
1553 stq_phys((env->mxccregs[1] & 0xffffffffULL) + 24,
1554 env->mxccdata[3]);
1555 break;
1556 case 0x01c00a00: /* MXCC control register */
1557 if (size == 8)
1558 env->mxccregs[3] = val;
1559 else
1560 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1561 size);
1562 break;
1563 case 0x01c00a04: /* MXCC control register */
1564 if (size == 4)
1565 env->mxccregs[3] = (env->mxccregs[3] & 0xffffffff00000000ULL)
1566 | val;
1567 else
1568 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1569 size);
1570 break;
1571 case 0x01c00e00: /* MXCC error register */
1572 // writing a 1 bit clears the error
1573 if (size == 8)
1574 env->mxccregs[6] &= ~val;
1575 else
1576 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1577 size);
1578 break;
1579 case 0x01c00f00: /* MBus port address register */
1580 if (size == 8)
1581 env->mxccregs[7] = val;
1582 else
1583 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1584 size);
1585 break;
1586 default:
1587 DPRINTF_MXCC("%08x: unimplemented address, size: %d\n", addr,
1588 size);
1589 break;
1591 DPRINTF_MXCC("asi = %d, size = %d, addr = %08x, val = %" PRIx64 "\n",
1592 asi, size, addr, val);
1593 #ifdef DEBUG_MXCC
1594 dump_mxcc(env);
1595 #endif
1596 break;
1597 case 3: /* MMU flush */
1599 int mmulev;
1601 mmulev = (addr >> 8) & 15;
1602 DPRINTF_MMU("mmu flush level %d\n", mmulev);
1603 switch (mmulev) {
1604 case 0: // flush page
1605 tlb_flush_page(env, addr & 0xfffff000);
1606 break;
1607 case 1: // flush segment (256k)
1608 case 2: // flush region (16M)
1609 case 3: // flush context (4G)
1610 case 4: // flush entire
1611 tlb_flush(env, 1);
1612 break;
1613 default:
1614 break;
1616 #ifdef DEBUG_MMU
1617 dump_mmu(env);
1618 #endif
1620 break;
1621 case 4: /* write MMU regs */
1623 int reg = (addr >> 8) & 0x1f;
1624 uint32_t oldreg;
1626 oldreg = env->mmuregs[reg];
1627 switch(reg) {
1628 case 0: // Control Register
1629 env->mmuregs[reg] = (env->mmuregs[reg] & 0xff000000) |
1630 (val & 0x00ffffff);
1631 // Mappings generated during no-fault mode or MMU
1632 // disabled mode are invalid in normal mode
1633 if ((oldreg & (MMU_E | MMU_NF | env->def->mmu_bm)) !=
1634 (env->mmuregs[reg] & (MMU_E | MMU_NF | env->def->mmu_bm)))
1635 tlb_flush(env, 1);
1636 break;
1637 case 1: // Context Table Pointer Register
1638 env->mmuregs[reg] = val & env->def->mmu_ctpr_mask;
1639 break;
1640 case 2: // Context Register
1641 env->mmuregs[reg] = val & env->def->mmu_cxr_mask;
1642 if (oldreg != env->mmuregs[reg]) {
1643 /* we flush when the MMU context changes because
1644 QEMU has no MMU context support */
1645 tlb_flush(env, 1);
1647 break;
1648 case 3: // Synchronous Fault Status Register with Clear
1649 case 4: // Synchronous Fault Address Register
1650 break;
1651 case 0x10: // TLB Replacement Control Register
1652 env->mmuregs[reg] = val & env->def->mmu_trcr_mask;
1653 break;
1654 case 0x13: // Synchronous Fault Status Register with Read and Clear
1655 env->mmuregs[3] = val & env->def->mmu_sfsr_mask;
1656 break;
1657 case 0x14: // Synchronous Fault Address Register
1658 env->mmuregs[4] = val;
1659 break;
1660 default:
1661 env->mmuregs[reg] = val;
1662 break;
1664 if (oldreg != env->mmuregs[reg]) {
1665 DPRINTF_MMU("mmu change reg[%d]: 0x%08x -> 0x%08x\n",
1666 reg, oldreg, env->mmuregs[reg]);
1668 #ifdef DEBUG_MMU
1669 dump_mmu(env);
1670 #endif
1672 break;
1673 case 5: // Turbosparc ITLB Diagnostic
1674 case 6: // Turbosparc DTLB Diagnostic
1675 case 7: // Turbosparc IOTLB Diagnostic
1676 break;
1677 case 0xa: /* User data access */
1678 switch(size) {
1679 case 1:
1680 stb_user(addr, val);
1681 break;
1682 case 2:
1683 stw_user(addr, val);
1684 break;
1685 default:
1686 case 4:
1687 stl_user(addr, val);
1688 break;
1689 case 8:
1690 stq_user(addr, val);
1691 break;
1693 break;
1694 case 0xb: /* Supervisor data access */
1695 switch(size) {
1696 case 1:
1697 stb_kernel(addr, val);
1698 break;
1699 case 2:
1700 stw_kernel(addr, val);
1701 break;
1702 default:
1703 case 4:
1704 stl_kernel(addr, val);
1705 break;
1706 case 8:
1707 stq_kernel(addr, val);
1708 break;
1710 break;
1711 case 0xc: /* I-cache tag */
1712 case 0xd: /* I-cache data */
1713 case 0xe: /* D-cache tag */
1714 case 0xf: /* D-cache data */
1715 case 0x10: /* I/D-cache flush page */
1716 case 0x11: /* I/D-cache flush segment */
1717 case 0x12: /* I/D-cache flush region */
1718 case 0x13: /* I/D-cache flush context */
1719 case 0x14: /* I/D-cache flush user */
1720 break;
1721 case 0x17: /* Block copy, sta access */
1723 // val = src
1724 // addr = dst
1725 // copy 32 bytes
1726 unsigned int i;
1727 uint32_t src = val & ~3, dst = addr & ~3, temp;
1729 for (i = 0; i < 32; i += 4, src += 4, dst += 4) {
1730 temp = ldl_kernel(src);
1731 stl_kernel(dst, temp);
1734 break;
1735 case 0x1f: /* Block fill, stda access */
1737 // addr = dst
1738 // fill 32 bytes with val
1739 unsigned int i;
1740 uint32_t dst = addr & 7;
1742 for (i = 0; i < 32; i += 8, dst += 8)
1743 stq_kernel(dst, val);
1745 break;
1746 case 0x20: /* MMU passthrough */
1748 switch(size) {
1749 case 1:
1750 stb_phys(addr, val);
1751 break;
1752 case 2:
1753 stw_phys(addr, val);
1754 break;
1755 case 4:
1756 default:
1757 stl_phys(addr, val);
1758 break;
1759 case 8:
1760 stq_phys(addr, val);
1761 break;
1764 break;
1765 case 0x21 ... 0x2f: /* MMU passthrough, 0x100000000 to 0xfffffffff */
1767 switch(size) {
1768 case 1:
1769 stb_phys((target_phys_addr_t)addr
1770 | ((target_phys_addr_t)(asi & 0xf) << 32), val);
1771 break;
1772 case 2:
1773 stw_phys((target_phys_addr_t)addr
1774 | ((target_phys_addr_t)(asi & 0xf) << 32), val);
1775 break;
1776 case 4:
1777 default:
1778 stl_phys((target_phys_addr_t)addr
1779 | ((target_phys_addr_t)(asi & 0xf) << 32), val);
1780 break;
1781 case 8:
1782 stq_phys((target_phys_addr_t)addr
1783 | ((target_phys_addr_t)(asi & 0xf) << 32), val);
1784 break;
1787 break;
1788 case 0x30: // store buffer tags or Turbosparc secondary cache diagnostic
1789 case 0x31: // store buffer data, Ross RT620 I-cache flush or
1790 // Turbosparc snoop RAM
1791 case 0x32: // store buffer control or Turbosparc page table
1792 // descriptor diagnostic
1793 case 0x36: /* I-cache flash clear */
1794 case 0x37: /* D-cache flash clear */
1795 case 0x4c: /* breakpoint action */
1796 break;
1797 case 0x38: /* SuperSPARC MMU Breakpoint Control Registers*/
1799 int reg = (addr >> 8) & 3;
1801 switch(reg) {
1802 case 0: /* Breakpoint Value (Addr) */
1803 env->mmubpregs[reg] = (val & 0xfffffffffULL);
1804 break;
1805 case 1: /* Breakpoint Mask */
1806 env->mmubpregs[reg] = (val & 0xfffffffffULL);
1807 break;
1808 case 2: /* Breakpoint Control */
1809 env->mmubpregs[reg] = (val & 0x7fULL);
1810 break;
1811 case 3: /* Breakpoint Status */
1812 env->mmubpregs[reg] = (val & 0xfULL);
1813 break;
1815 DPRINTF_MMU("write breakpoint reg[%d] 0x%016x\n", reg,
1816 env->mmuregs[reg]);
1818 break;
1819 case 8: /* User code access, XXX */
1820 case 9: /* Supervisor code access, XXX */
1821 default:
1822 do_unassigned_access(addr, 1, 0, asi, size);
1823 break;
1825 #ifdef DEBUG_ASI
1826 dump_asi("write", addr, asi, size, val);
1827 #endif
1830 #endif /* CONFIG_USER_ONLY */
1831 #else /* TARGET_SPARC64 */
1833 #ifdef CONFIG_USER_ONLY
1834 uint64_t helper_ld_asi(target_ulong addr, int asi, int size, int sign)
1836 uint64_t ret = 0;
1837 #if defined(DEBUG_ASI)
1838 target_ulong last_addr = addr;
1839 #endif
1841 if (asi < 0x80)
1842 raise_exception(TT_PRIV_ACT);
1844 helper_check_align(addr, size - 1);
1845 address_mask(env, &addr);
1847 switch (asi) {
1848 case 0x82: // Primary no-fault
1849 case 0x8a: // Primary no-fault LE
1850 if (page_check_range(addr, size, PAGE_READ) == -1) {
1851 #ifdef DEBUG_ASI
1852 dump_asi("read ", last_addr, asi, size, ret);
1853 #endif
1854 return 0;
1856 // Fall through
1857 case 0x80: // Primary
1858 case 0x88: // Primary LE
1860 switch(size) {
1861 case 1:
1862 ret = ldub_raw(addr);
1863 break;
1864 case 2:
1865 ret = lduw_raw(addr);
1866 break;
1867 case 4:
1868 ret = ldl_raw(addr);
1869 break;
1870 default:
1871 case 8:
1872 ret = ldq_raw(addr);
1873 break;
1876 break;
1877 case 0x83: // Secondary no-fault
1878 case 0x8b: // Secondary no-fault LE
1879 if (page_check_range(addr, size, PAGE_READ) == -1) {
1880 #ifdef DEBUG_ASI
1881 dump_asi("read ", last_addr, asi, size, ret);
1882 #endif
1883 return 0;
1885 // Fall through
1886 case 0x81: // Secondary
1887 case 0x89: // Secondary LE
1888 // XXX
1889 break;
1890 default:
1891 break;
1894 /* Convert from little endian */
1895 switch (asi) {
1896 case 0x88: // Primary LE
1897 case 0x89: // Secondary LE
1898 case 0x8a: // Primary no-fault LE
1899 case 0x8b: // Secondary no-fault LE
1900 switch(size) {
1901 case 2:
1902 ret = bswap16(ret);
1903 break;
1904 case 4:
1905 ret = bswap32(ret);
1906 break;
1907 case 8:
1908 ret = bswap64(ret);
1909 break;
1910 default:
1911 break;
1913 default:
1914 break;
1917 /* Convert to signed number */
1918 if (sign) {
1919 switch(size) {
1920 case 1:
1921 ret = (int8_t) ret;
1922 break;
1923 case 2:
1924 ret = (int16_t) ret;
1925 break;
1926 case 4:
1927 ret = (int32_t) ret;
1928 break;
1929 default:
1930 break;
1933 #ifdef DEBUG_ASI
1934 dump_asi("read ", last_addr, asi, size, ret);
1935 #endif
1936 return ret;
1939 void helper_st_asi(target_ulong addr, target_ulong val, int asi, int size)
1941 #ifdef DEBUG_ASI
1942 dump_asi("write", addr, asi, size, val);
1943 #endif
1944 if (asi < 0x80)
1945 raise_exception(TT_PRIV_ACT);
1947 helper_check_align(addr, size - 1);
1948 address_mask(env, &addr);
1950 /* Convert to little endian */
1951 switch (asi) {
1952 case 0x88: // Primary LE
1953 case 0x89: // Secondary LE
1954 switch(size) {
1955 case 2:
1956 val = bswap16(val);
1957 break;
1958 case 4:
1959 val = bswap32(val);
1960 break;
1961 case 8:
1962 val = bswap64(val);
1963 break;
1964 default:
1965 break;
1967 default:
1968 break;
1971 switch(asi) {
1972 case 0x80: // Primary
1973 case 0x88: // Primary LE
1975 switch(size) {
1976 case 1:
1977 stb_raw(addr, val);
1978 break;
1979 case 2:
1980 stw_raw(addr, val);
1981 break;
1982 case 4:
1983 stl_raw(addr, val);
1984 break;
1985 case 8:
1986 default:
1987 stq_raw(addr, val);
1988 break;
1991 break;
1992 case 0x81: // Secondary
1993 case 0x89: // Secondary LE
1994 // XXX
1995 return;
1997 case 0x82: // Primary no-fault, RO
1998 case 0x83: // Secondary no-fault, RO
1999 case 0x8a: // Primary no-fault LE, RO
2000 case 0x8b: // Secondary no-fault LE, RO
2001 default:
2002 do_unassigned_access(addr, 1, 0, 1, size);
2003 return;
2007 #else /* CONFIG_USER_ONLY */
2009 uint64_t helper_ld_asi(target_ulong addr, int asi, int size, int sign)
2011 uint64_t ret = 0;
2012 #if defined(DEBUG_ASI)
2013 target_ulong last_addr = addr;
2014 #endif
2016 if ((asi < 0x80 && (env->pstate & PS_PRIV) == 0)
2017 || ((env->def->features & CPU_FEATURE_HYPV)
2018 && asi >= 0x30 && asi < 0x80
2019 && !(env->hpstate & HS_PRIV)))
2020 raise_exception(TT_PRIV_ACT);
2022 helper_check_align(addr, size - 1);
2023 switch (asi) {
2024 case 0x82: // Primary no-fault
2025 case 0x8a: // Primary no-fault LE
2026 if (cpu_get_phys_page_debug(env, addr) == -1ULL) {
2027 #ifdef DEBUG_ASI
2028 dump_asi("read ", last_addr, asi, size, ret);
2029 #endif
2030 return 0;
2032 // Fall through
2033 case 0x10: // As if user primary
2034 case 0x18: // As if user primary LE
2035 case 0x80: // Primary
2036 case 0x88: // Primary LE
2037 case 0xe2: // UA2007 Primary block init
2038 case 0xe3: // UA2007 Secondary block init
2039 if ((asi & 0x80) && (env->pstate & PS_PRIV)) {
2040 if ((env->def->features & CPU_FEATURE_HYPV)
2041 && env->hpstate & HS_PRIV) {
2042 switch(size) {
2043 case 1:
2044 ret = ldub_hypv(addr);
2045 break;
2046 case 2:
2047 ret = lduw_hypv(addr);
2048 break;
2049 case 4:
2050 ret = ldl_hypv(addr);
2051 break;
2052 default:
2053 case 8:
2054 ret = ldq_hypv(addr);
2055 break;
2057 } else {
2058 switch(size) {
2059 case 1:
2060 ret = ldub_kernel(addr);
2061 break;
2062 case 2:
2063 ret = lduw_kernel(addr);
2064 break;
2065 case 4:
2066 ret = ldl_kernel(addr);
2067 break;
2068 default:
2069 case 8:
2070 ret = ldq_kernel(addr);
2071 break;
2074 } else {
2075 switch(size) {
2076 case 1:
2077 ret = ldub_user(addr);
2078 break;
2079 case 2:
2080 ret = lduw_user(addr);
2081 break;
2082 case 4:
2083 ret = ldl_user(addr);
2084 break;
2085 default:
2086 case 8:
2087 ret = ldq_user(addr);
2088 break;
2091 break;
2092 case 0x14: // Bypass
2093 case 0x15: // Bypass, non-cacheable
2094 case 0x1c: // Bypass LE
2095 case 0x1d: // Bypass, non-cacheable LE
2097 switch(size) {
2098 case 1:
2099 ret = ldub_phys(addr);
2100 break;
2101 case 2:
2102 ret = lduw_phys(addr);
2103 break;
2104 case 4:
2105 ret = ldl_phys(addr);
2106 break;
2107 default:
2108 case 8:
2109 ret = ldq_phys(addr);
2110 break;
2112 break;
2114 case 0x24: // Nucleus quad LDD 128 bit atomic
2115 case 0x2c: // Nucleus quad LDD 128 bit atomic LE
2116 // Only ldda allowed
2117 raise_exception(TT_ILL_INSN);
2118 return 0;
2119 case 0x83: // Secondary no-fault
2120 case 0x8b: // Secondary no-fault LE
2121 if (cpu_get_phys_page_debug(env, addr) == -1ULL) {
2122 #ifdef DEBUG_ASI
2123 dump_asi("read ", last_addr, asi, size, ret);
2124 #endif
2125 return 0;
2127 // Fall through
2128 case 0x04: // Nucleus
2129 case 0x0c: // Nucleus Little Endian (LE)
2130 case 0x11: // As if user secondary
2131 case 0x19: // As if user secondary LE
2132 case 0x4a: // UPA config
2133 case 0x81: // Secondary
2134 case 0x89: // Secondary LE
2135 // XXX
2136 break;
2137 case 0x45: // LSU
2138 ret = env->lsu;
2139 break;
2140 case 0x50: // I-MMU regs
2142 int reg = (addr >> 3) & 0xf;
2144 if (reg == 0) {
2145 // I-TSB Tag Target register
2146 ret = ultrasparc_tag_target(env->immuregs[6]);
2147 } else {
2148 ret = env->immuregs[reg];
2151 break;
2153 case 0x51: // I-MMU 8k TSB pointer
2155 // env->immuregs[5] holds I-MMU TSB register value
2156 // env->immuregs[6] holds I-MMU Tag Access register value
2157 ret = ultrasparc_tsb_pointer(env->immuregs[5], env->immuregs[6],
2158 8*1024);
2159 break;
2161 case 0x52: // I-MMU 64k TSB pointer
2163 // env->immuregs[5] holds I-MMU TSB register value
2164 // env->immuregs[6] holds I-MMU Tag Access register value
2165 ret = ultrasparc_tsb_pointer(env->immuregs[5], env->immuregs[6],
2166 64*1024);
2167 break;
2169 case 0x55: // I-MMU data access
2171 int reg = (addr >> 3) & 0x3f;
2173 ret = env->itlb_tte[reg];
2174 break;
2176 case 0x56: // I-MMU tag read
2178 int reg = (addr >> 3) & 0x3f;
2180 ret = env->itlb_tag[reg];
2181 break;
2183 case 0x58: // D-MMU regs
2185 int reg = (addr >> 3) & 0xf;
2187 if (reg == 0) {
2188 // D-TSB Tag Target register
2189 ret = ultrasparc_tag_target(env->dmmuregs[6]);
2190 } else {
2191 ret = env->dmmuregs[reg];
2193 break;
2195 case 0x59: // D-MMU 8k TSB pointer
2197 // env->dmmuregs[5] holds D-MMU TSB register value
2198 // env->dmmuregs[6] holds D-MMU Tag Access register value
2199 ret = ultrasparc_tsb_pointer(env->dmmuregs[5], env->dmmuregs[6],
2200 8*1024);
2201 break;
2203 case 0x5a: // D-MMU 64k TSB pointer
2205 // env->dmmuregs[5] holds D-MMU TSB register value
2206 // env->dmmuregs[6] holds D-MMU Tag Access register value
2207 ret = ultrasparc_tsb_pointer(env->dmmuregs[5], env->dmmuregs[6],
2208 64*1024);
2209 break;
2211 case 0x5d: // D-MMU data access
2213 int reg = (addr >> 3) & 0x3f;
2215 ret = env->dtlb_tte[reg];
2216 break;
2218 case 0x5e: // D-MMU tag read
2220 int reg = (addr >> 3) & 0x3f;
2222 ret = env->dtlb_tag[reg];
2223 break;
2225 case 0x46: // D-cache data
2226 case 0x47: // D-cache tag access
2227 case 0x4b: // E-cache error enable
2228 case 0x4c: // E-cache asynchronous fault status
2229 case 0x4d: // E-cache asynchronous fault address
2230 case 0x4e: // E-cache tag data
2231 case 0x66: // I-cache instruction access
2232 case 0x67: // I-cache tag access
2233 case 0x6e: // I-cache predecode
2234 case 0x6f: // I-cache LRU etc.
2235 case 0x76: // E-cache tag
2236 case 0x7e: // E-cache tag
2237 break;
2238 case 0x5b: // D-MMU data pointer
2239 case 0x48: // Interrupt dispatch, RO
2240 case 0x49: // Interrupt data receive
2241 case 0x7f: // Incoming interrupt vector, RO
2242 // XXX
2243 break;
2244 case 0x54: // I-MMU data in, WO
2245 case 0x57: // I-MMU demap, WO
2246 case 0x5c: // D-MMU data in, WO
2247 case 0x5f: // D-MMU demap, WO
2248 case 0x77: // Interrupt vector, WO
2249 default:
2250 do_unassigned_access(addr, 0, 0, 1, size);
2251 ret = 0;
2252 break;
2255 /* Convert from little endian */
2256 switch (asi) {
2257 case 0x0c: // Nucleus Little Endian (LE)
2258 case 0x18: // As if user primary LE
2259 case 0x19: // As if user secondary LE
2260 case 0x1c: // Bypass LE
2261 case 0x1d: // Bypass, non-cacheable LE
2262 case 0x88: // Primary LE
2263 case 0x89: // Secondary LE
2264 case 0x8a: // Primary no-fault LE
2265 case 0x8b: // Secondary no-fault LE
2266 switch(size) {
2267 case 2:
2268 ret = bswap16(ret);
2269 break;
2270 case 4:
2271 ret = bswap32(ret);
2272 break;
2273 case 8:
2274 ret = bswap64(ret);
2275 break;
2276 default:
2277 break;
2279 default:
2280 break;
2283 /* Convert to signed number */
2284 if (sign) {
2285 switch(size) {
2286 case 1:
2287 ret = (int8_t) ret;
2288 break;
2289 case 2:
2290 ret = (int16_t) ret;
2291 break;
2292 case 4:
2293 ret = (int32_t) ret;
2294 break;
2295 default:
2296 break;
2299 #ifdef DEBUG_ASI
2300 dump_asi("read ", last_addr, asi, size, ret);
2301 #endif
2302 return ret;
2305 void helper_st_asi(target_ulong addr, target_ulong val, int asi, int size)
2307 #ifdef DEBUG_ASI
2308 dump_asi("write", addr, asi, size, val);
2309 #endif
2310 if ((asi < 0x80 && (env->pstate & PS_PRIV) == 0)
2311 || ((env->def->features & CPU_FEATURE_HYPV)
2312 && asi >= 0x30 && asi < 0x80
2313 && !(env->hpstate & HS_PRIV)))
2314 raise_exception(TT_PRIV_ACT);
2316 helper_check_align(addr, size - 1);
2317 /* Convert to little endian */
2318 switch (asi) {
2319 case 0x0c: // Nucleus Little Endian (LE)
2320 case 0x18: // As if user primary LE
2321 case 0x19: // As if user secondary LE
2322 case 0x1c: // Bypass LE
2323 case 0x1d: // Bypass, non-cacheable LE
2324 case 0x88: // Primary LE
2325 case 0x89: // Secondary LE
2326 switch(size) {
2327 case 2:
2328 val = bswap16(val);
2329 break;
2330 case 4:
2331 val = bswap32(val);
2332 break;
2333 case 8:
2334 val = bswap64(val);
2335 break;
2336 default:
2337 break;
2339 default:
2340 break;
2343 switch(asi) {
2344 case 0x10: // As if user primary
2345 case 0x18: // As if user primary LE
2346 case 0x80: // Primary
2347 case 0x88: // Primary LE
2348 case 0xe2: // UA2007 Primary block init
2349 case 0xe3: // UA2007 Secondary block init
2350 if ((asi & 0x80) && (env->pstate & PS_PRIV)) {
2351 if ((env->def->features & CPU_FEATURE_HYPV)
2352 && env->hpstate & HS_PRIV) {
2353 switch(size) {
2354 case 1:
2355 stb_hypv(addr, val);
2356 break;
2357 case 2:
2358 stw_hypv(addr, val);
2359 break;
2360 case 4:
2361 stl_hypv(addr, val);
2362 break;
2363 case 8:
2364 default:
2365 stq_hypv(addr, val);
2366 break;
2368 } else {
2369 switch(size) {
2370 case 1:
2371 stb_kernel(addr, val);
2372 break;
2373 case 2:
2374 stw_kernel(addr, val);
2375 break;
2376 case 4:
2377 stl_kernel(addr, val);
2378 break;
2379 case 8:
2380 default:
2381 stq_kernel(addr, val);
2382 break;
2385 } else {
2386 switch(size) {
2387 case 1:
2388 stb_user(addr, val);
2389 break;
2390 case 2:
2391 stw_user(addr, val);
2392 break;
2393 case 4:
2394 stl_user(addr, val);
2395 break;
2396 case 8:
2397 default:
2398 stq_user(addr, val);
2399 break;
2402 break;
2403 case 0x14: // Bypass
2404 case 0x15: // Bypass, non-cacheable
2405 case 0x1c: // Bypass LE
2406 case 0x1d: // Bypass, non-cacheable LE
2408 switch(size) {
2409 case 1:
2410 stb_phys(addr, val);
2411 break;
2412 case 2:
2413 stw_phys(addr, val);
2414 break;
2415 case 4:
2416 stl_phys(addr, val);
2417 break;
2418 case 8:
2419 default:
2420 stq_phys(addr, val);
2421 break;
2424 return;
2425 case 0x24: // Nucleus quad LDD 128 bit atomic
2426 case 0x2c: // Nucleus quad LDD 128 bit atomic LE
2427 // Only ldda allowed
2428 raise_exception(TT_ILL_INSN);
2429 return;
2430 case 0x04: // Nucleus
2431 case 0x0c: // Nucleus Little Endian (LE)
2432 case 0x11: // As if user secondary
2433 case 0x19: // As if user secondary LE
2434 case 0x4a: // UPA config
2435 case 0x81: // Secondary
2436 case 0x89: // Secondary LE
2437 // XXX
2438 return;
2439 case 0x45: // LSU
2441 uint64_t oldreg;
2443 oldreg = env->lsu;
2444 env->lsu = val & (DMMU_E | IMMU_E);
2445 // Mappings generated during D/I MMU disabled mode are
2446 // invalid in normal mode
2447 if (oldreg != env->lsu) {
2448 DPRINTF_MMU("LSU change: 0x%" PRIx64 " -> 0x%" PRIx64 "\n",
2449 oldreg, env->lsu);
2450 #ifdef DEBUG_MMU
2451 dump_mmu(env);
2452 #endif
2453 tlb_flush(env, 1);
2455 return;
2457 case 0x50: // I-MMU regs
2459 int reg = (addr >> 3) & 0xf;
2460 uint64_t oldreg;
2462 oldreg = env->immuregs[reg];
2463 switch(reg) {
2464 case 0: // RO
2465 case 4:
2466 return;
2467 case 1: // Not in I-MMU
2468 case 2:
2469 case 7:
2470 case 8:
2471 return;
2472 case 3: // SFSR
2473 if ((val & 1) == 0)
2474 val = 0; // Clear SFSR
2475 break;
2476 case 5: // TSB access
2477 case 6: // Tag access
2478 default:
2479 break;
2481 env->immuregs[reg] = val;
2482 if (oldreg != env->immuregs[reg]) {
2483 DPRINTF_MMU("mmu change reg[%d]: 0x%08" PRIx64 " -> 0x%08"
2484 PRIx64 "\n", reg, oldreg, env->immuregs[reg]);
2486 #ifdef DEBUG_MMU
2487 dump_mmu(env);
2488 #endif
2489 return;
2491 case 0x54: // I-MMU data in
2493 unsigned int i;
2495 // Try finding an invalid entry
2496 for (i = 0; i < 64; i++) {
2497 if ((env->itlb_tte[i] & 0x8000000000000000ULL) == 0) {
2498 env->itlb_tag[i] = env->immuregs[6];
2499 env->itlb_tte[i] = val;
2500 return;
2503 // Try finding an unlocked entry
2504 for (i = 0; i < 64; i++) {
2505 if ((env->itlb_tte[i] & 0x40) == 0) {
2506 env->itlb_tag[i] = env->immuregs[6];
2507 env->itlb_tte[i] = val;
2508 return;
2511 // error state?
2512 return;
2514 case 0x55: // I-MMU data access
2516 // TODO: auto demap
2518 unsigned int i = (addr >> 3) & 0x3f;
2520 env->itlb_tag[i] = env->immuregs[6];
2521 env->itlb_tte[i] = val;
2522 return;
2524 case 0x57: // I-MMU demap
2526 unsigned int i;
2528 for (i = 0; i < 64; i++) {
2529 if ((env->itlb_tte[i] & 0x8000000000000000ULL) != 0) {
2530 target_ulong mask = 0xffffffffffffe000ULL;
2532 mask <<= 3 * ((env->itlb_tte[i] >> 61) & 3);
2533 if ((val & mask) == (env->itlb_tag[i] & mask)) {
2534 env->itlb_tag[i] = 0;
2535 env->itlb_tte[i] = 0;
2537 return;
2541 return;
2542 case 0x58: // D-MMU regs
2544 int reg = (addr >> 3) & 0xf;
2545 uint64_t oldreg;
2547 oldreg = env->dmmuregs[reg];
2548 switch(reg) {
2549 case 0: // RO
2550 case 4:
2551 return;
2552 case 3: // SFSR
2553 if ((val & 1) == 0) {
2554 val = 0; // Clear SFSR, Fault address
2555 env->dmmuregs[4] = 0;
2557 env->dmmuregs[reg] = val;
2558 break;
2559 case 1: // Primary context
2560 case 2: // Secondary context
2561 case 5: // TSB access
2562 case 6: // Tag access
2563 case 7: // Virtual Watchpoint
2564 case 8: // Physical Watchpoint
2565 default:
2566 break;
2568 env->dmmuregs[reg] = val;
2569 if (oldreg != env->dmmuregs[reg]) {
2570 DPRINTF_MMU("mmu change reg[%d]: 0x%08" PRIx64 " -> 0x%08"
2571 PRIx64 "\n", reg, oldreg, env->dmmuregs[reg]);
2573 #ifdef DEBUG_MMU
2574 dump_mmu(env);
2575 #endif
2576 return;
2578 case 0x5c: // D-MMU data in
2580 unsigned int i;
2582 // Try finding an invalid entry
2583 for (i = 0; i < 64; i++) {
2584 if ((env->dtlb_tte[i] & 0x8000000000000000ULL) == 0) {
2585 env->dtlb_tag[i] = env->dmmuregs[6];
2586 env->dtlb_tte[i] = val;
2587 return;
2590 // Try finding an unlocked entry
2591 for (i = 0; i < 64; i++) {
2592 if ((env->dtlb_tte[i] & 0x40) == 0) {
2593 env->dtlb_tag[i] = env->dmmuregs[6];
2594 env->dtlb_tte[i] = val;
2595 return;
2598 // error state?
2599 return;
2601 case 0x5d: // D-MMU data access
2603 unsigned int i = (addr >> 3) & 0x3f;
2605 env->dtlb_tag[i] = env->dmmuregs[6];
2606 env->dtlb_tte[i] = val;
2607 return;
2609 case 0x5f: // D-MMU demap
2611 unsigned int i;
2613 for (i = 0; i < 64; i++) {
2614 if ((env->dtlb_tte[i] & 0x8000000000000000ULL) != 0) {
2615 target_ulong mask = 0xffffffffffffe000ULL;
2617 mask <<= 3 * ((env->dtlb_tte[i] >> 61) & 3);
2618 if ((val & mask) == (env->dtlb_tag[i] & mask)) {
2619 env->dtlb_tag[i] = 0;
2620 env->dtlb_tte[i] = 0;
2622 return;
2626 return;
2627 case 0x49: // Interrupt data receive
2628 // XXX
2629 return;
2630 case 0x46: // D-cache data
2631 case 0x47: // D-cache tag access
2632 case 0x4b: // E-cache error enable
2633 case 0x4c: // E-cache asynchronous fault status
2634 case 0x4d: // E-cache asynchronous fault address
2635 case 0x4e: // E-cache tag data
2636 case 0x66: // I-cache instruction access
2637 case 0x67: // I-cache tag access
2638 case 0x6e: // I-cache predecode
2639 case 0x6f: // I-cache LRU etc.
2640 case 0x76: // E-cache tag
2641 case 0x7e: // E-cache tag
2642 return;
2643 case 0x51: // I-MMU 8k TSB pointer, RO
2644 case 0x52: // I-MMU 64k TSB pointer, RO
2645 case 0x56: // I-MMU tag read, RO
2646 case 0x59: // D-MMU 8k TSB pointer, RO
2647 case 0x5a: // D-MMU 64k TSB pointer, RO
2648 case 0x5b: // D-MMU data pointer, RO
2649 case 0x5e: // D-MMU tag read, RO
2650 case 0x48: // Interrupt dispatch, RO
2651 case 0x7f: // Incoming interrupt vector, RO
2652 case 0x82: // Primary no-fault, RO
2653 case 0x83: // Secondary no-fault, RO
2654 case 0x8a: // Primary no-fault LE, RO
2655 case 0x8b: // Secondary no-fault LE, RO
2656 default:
2657 do_unassigned_access(addr, 1, 0, 1, size);
2658 return;
2661 #endif /* CONFIG_USER_ONLY */
2663 void helper_ldda_asi(target_ulong addr, int asi, int rd)
2665 if ((asi < 0x80 && (env->pstate & PS_PRIV) == 0)
2666 || ((env->def->features & CPU_FEATURE_HYPV)
2667 && asi >= 0x30 && asi < 0x80
2668 && !(env->hpstate & HS_PRIV)))
2669 raise_exception(TT_PRIV_ACT);
2671 switch (asi) {
2672 case 0x24: // Nucleus quad LDD 128 bit atomic
2673 case 0x2c: // Nucleus quad LDD 128 bit atomic LE
2674 helper_check_align(addr, 0xf);
2675 if (rd == 0) {
2676 env->gregs[1] = ldq_kernel(addr + 8);
2677 if (asi == 0x2c)
2678 bswap64s(&env->gregs[1]);
2679 } else if (rd < 8) {
2680 env->gregs[rd] = ldq_kernel(addr);
2681 env->gregs[rd + 1] = ldq_kernel(addr + 8);
2682 if (asi == 0x2c) {
2683 bswap64s(&env->gregs[rd]);
2684 bswap64s(&env->gregs[rd + 1]);
2686 } else {
2687 env->regwptr[rd] = ldq_kernel(addr);
2688 env->regwptr[rd + 1] = ldq_kernel(addr + 8);
2689 if (asi == 0x2c) {
2690 bswap64s(&env->regwptr[rd]);
2691 bswap64s(&env->regwptr[rd + 1]);
2694 break;
2695 default:
2696 helper_check_align(addr, 0x3);
2697 if (rd == 0)
2698 env->gregs[1] = helper_ld_asi(addr + 4, asi, 4, 0);
2699 else if (rd < 8) {
2700 env->gregs[rd] = helper_ld_asi(addr, asi, 4, 0);
2701 env->gregs[rd + 1] = helper_ld_asi(addr + 4, asi, 4, 0);
2702 } else {
2703 env->regwptr[rd] = helper_ld_asi(addr, asi, 4, 0);
2704 env->regwptr[rd + 1] = helper_ld_asi(addr + 4, asi, 4, 0);
2706 break;
2710 void helper_ldf_asi(target_ulong addr, int asi, int size, int rd)
2712 unsigned int i;
2713 target_ulong val;
2715 helper_check_align(addr, 3);
2716 switch (asi) {
2717 case 0xf0: // Block load primary
2718 case 0xf1: // Block load secondary
2719 case 0xf8: // Block load primary LE
2720 case 0xf9: // Block load secondary LE
2721 if (rd & 7) {
2722 raise_exception(TT_ILL_INSN);
2723 return;
2725 helper_check_align(addr, 0x3f);
2726 for (i = 0; i < 16; i++) {
2727 *(uint32_t *)&env->fpr[rd++] = helper_ld_asi(addr, asi & 0x8f, 4,
2729 addr += 4;
2732 return;
2733 default:
2734 break;
2737 val = helper_ld_asi(addr, asi, size, 0);
2738 switch(size) {
2739 default:
2740 case 4:
2741 *((uint32_t *)&env->fpr[rd]) = val;
2742 break;
2743 case 8:
2744 *((int64_t *)&DT0) = val;
2745 break;
2746 case 16:
2747 // XXX
2748 break;
2752 void helper_stf_asi(target_ulong addr, int asi, int size, int rd)
2754 unsigned int i;
2755 target_ulong val = 0;
2757 helper_check_align(addr, 3);
2758 switch (asi) {
2759 case 0xe0: // UA2007 Block commit store primary (cache flush)
2760 case 0xe1: // UA2007 Block commit store secondary (cache flush)
2761 case 0xf0: // Block store primary
2762 case 0xf1: // Block store secondary
2763 case 0xf8: // Block store primary LE
2764 case 0xf9: // Block store secondary LE
2765 if (rd & 7) {
2766 raise_exception(TT_ILL_INSN);
2767 return;
2769 helper_check_align(addr, 0x3f);
2770 for (i = 0; i < 16; i++) {
2771 val = *(uint32_t *)&env->fpr[rd++];
2772 helper_st_asi(addr, val, asi & 0x8f, 4);
2773 addr += 4;
2776 return;
2777 default:
2778 break;
2781 switch(size) {
2782 default:
2783 case 4:
2784 val = *((uint32_t *)&env->fpr[rd]);
2785 break;
2786 case 8:
2787 val = *((int64_t *)&DT0);
2788 break;
2789 case 16:
2790 // XXX
2791 break;
2793 helper_st_asi(addr, val, asi, size);
2796 target_ulong helper_cas_asi(target_ulong addr, target_ulong val1,
2797 target_ulong val2, uint32_t asi)
2799 target_ulong ret;
2801 val2 &= 0xffffffffUL;
2802 ret = helper_ld_asi(addr, asi, 4, 0);
2803 ret &= 0xffffffffUL;
2804 if (val2 == ret)
2805 helper_st_asi(addr, val1 & 0xffffffffUL, asi, 4);
2806 return ret;
2809 target_ulong helper_casx_asi(target_ulong addr, target_ulong val1,
2810 target_ulong val2, uint32_t asi)
2812 target_ulong ret;
2814 ret = helper_ld_asi(addr, asi, 8, 0);
2815 if (val2 == ret)
2816 helper_st_asi(addr, val1, asi, 8);
2817 return ret;
2819 #endif /* TARGET_SPARC64 */
2821 #ifndef TARGET_SPARC64
2822 void helper_rett(void)
2824 unsigned int cwp;
2826 if (env->psret == 1)
2827 raise_exception(TT_ILL_INSN);
2829 env->psret = 1;
2830 cwp = cpu_cwp_inc(env, env->cwp + 1) ;
2831 if (env->wim & (1 << cwp)) {
2832 raise_exception(TT_WIN_UNF);
2834 set_cwp(cwp);
2835 env->psrs = env->psrps;
2837 #endif
2839 target_ulong helper_udiv(target_ulong a, target_ulong b)
2841 uint64_t x0;
2842 uint32_t x1;
2844 x0 = (a & 0xffffffff) | ((int64_t) (env->y) << 32);
2845 x1 = b;
2847 if (x1 == 0) {
2848 raise_exception(TT_DIV_ZERO);
2851 x0 = x0 / x1;
2852 if (x0 > 0xffffffff) {
2853 env->cc_src2 = 1;
2854 return 0xffffffff;
2855 } else {
2856 env->cc_src2 = 0;
2857 return x0;
2861 target_ulong helper_sdiv(target_ulong a, target_ulong b)
2863 int64_t x0;
2864 int32_t x1;
2866 x0 = (a & 0xffffffff) | ((int64_t) (env->y) << 32);
2867 x1 = b;
2869 if (x1 == 0) {
2870 raise_exception(TT_DIV_ZERO);
2873 x0 = x0 / x1;
2874 if ((int32_t) x0 != x0) {
2875 env->cc_src2 = 1;
2876 return x0 < 0? 0x80000000: 0x7fffffff;
2877 } else {
2878 env->cc_src2 = 0;
2879 return x0;
2883 void helper_stdf(target_ulong addr, int mem_idx)
2885 helper_check_align(addr, 7);
2886 #if !defined(CONFIG_USER_ONLY)
2887 switch (mem_idx) {
2888 case 0:
2889 stfq_user(addr, DT0);
2890 break;
2891 case 1:
2892 stfq_kernel(addr, DT0);
2893 break;
2894 #ifdef TARGET_SPARC64
2895 case 2:
2896 stfq_hypv(addr, DT0);
2897 break;
2898 #endif
2899 default:
2900 break;
2902 #else
2903 address_mask(env, &addr);
2904 stfq_raw(addr, DT0);
2905 #endif
2908 void helper_lddf(target_ulong addr, int mem_idx)
2910 helper_check_align(addr, 7);
2911 #if !defined(CONFIG_USER_ONLY)
2912 switch (mem_idx) {
2913 case 0:
2914 DT0 = ldfq_user(addr);
2915 break;
2916 case 1:
2917 DT0 = ldfq_kernel(addr);
2918 break;
2919 #ifdef TARGET_SPARC64
2920 case 2:
2921 DT0 = ldfq_hypv(addr);
2922 break;
2923 #endif
2924 default:
2925 break;
2927 #else
2928 address_mask(env, &addr);
2929 DT0 = ldfq_raw(addr);
2930 #endif
2933 void helper_ldqf(target_ulong addr, int mem_idx)
2935 // XXX add 128 bit load
2936 CPU_QuadU u;
2938 helper_check_align(addr, 7);
2939 #if !defined(CONFIG_USER_ONLY)
2940 switch (mem_idx) {
2941 case 0:
2942 u.ll.upper = ldq_user(addr);
2943 u.ll.lower = ldq_user(addr + 8);
2944 QT0 = u.q;
2945 break;
2946 case 1:
2947 u.ll.upper = ldq_kernel(addr);
2948 u.ll.lower = ldq_kernel(addr + 8);
2949 QT0 = u.q;
2950 break;
2951 #ifdef TARGET_SPARC64
2952 case 2:
2953 u.ll.upper = ldq_hypv(addr);
2954 u.ll.lower = ldq_hypv(addr + 8);
2955 QT0 = u.q;
2956 break;
2957 #endif
2958 default:
2959 break;
2961 #else
2962 address_mask(env, &addr);
2963 u.ll.upper = ldq_raw(addr);
2964 u.ll.lower = ldq_raw((addr + 8) & 0xffffffffULL);
2965 QT0 = u.q;
2966 #endif
2969 void helper_stqf(target_ulong addr, int mem_idx)
2971 // XXX add 128 bit store
2972 CPU_QuadU u;
2974 helper_check_align(addr, 7);
2975 #if !defined(CONFIG_USER_ONLY)
2976 switch (mem_idx) {
2977 case 0:
2978 u.q = QT0;
2979 stq_user(addr, u.ll.upper);
2980 stq_user(addr + 8, u.ll.lower);
2981 break;
2982 case 1:
2983 u.q = QT0;
2984 stq_kernel(addr, u.ll.upper);
2985 stq_kernel(addr + 8, u.ll.lower);
2986 break;
2987 #ifdef TARGET_SPARC64
2988 case 2:
2989 u.q = QT0;
2990 stq_hypv(addr, u.ll.upper);
2991 stq_hypv(addr + 8, u.ll.lower);
2992 break;
2993 #endif
2994 default:
2995 break;
2997 #else
2998 u.q = QT0;
2999 address_mask(env, &addr);
3000 stq_raw(addr, u.ll.upper);
3001 stq_raw((addr + 8) & 0xffffffffULL, u.ll.lower);
3002 #endif
3005 static inline void set_fsr(void)
3007 int rnd_mode;
3009 switch (env->fsr & FSR_RD_MASK) {
3010 case FSR_RD_NEAREST:
3011 rnd_mode = float_round_nearest_even;
3012 break;
3013 default:
3014 case FSR_RD_ZERO:
3015 rnd_mode = float_round_to_zero;
3016 break;
3017 case FSR_RD_POS:
3018 rnd_mode = float_round_up;
3019 break;
3020 case FSR_RD_NEG:
3021 rnd_mode = float_round_down;
3022 break;
3024 set_float_rounding_mode(rnd_mode, &env->fp_status);
3027 void helper_ldfsr(uint32_t new_fsr)
3029 env->fsr = (new_fsr & FSR_LDFSR_MASK) | (env->fsr & FSR_LDFSR_OLDMASK);
3030 set_fsr();
3033 #ifdef TARGET_SPARC64
3034 void helper_ldxfsr(uint64_t new_fsr)
3036 env->fsr = (new_fsr & FSR_LDXFSR_MASK) | (env->fsr & FSR_LDXFSR_OLDMASK);
3037 set_fsr();
3039 #endif
3041 void helper_debug(void)
3043 env->exception_index = EXCP_DEBUG;
3044 cpu_loop_exit();
3047 #ifndef TARGET_SPARC64
3048 /* XXX: use another pointer for %iN registers to avoid slow wrapping
3049 handling ? */
3050 void helper_save(void)
3052 uint32_t cwp;
3054 cwp = cpu_cwp_dec(env, env->cwp - 1);
3055 if (env->wim & (1 << cwp)) {
3056 raise_exception(TT_WIN_OVF);
3058 set_cwp(cwp);
3061 void helper_restore(void)
3063 uint32_t cwp;
3065 cwp = cpu_cwp_inc(env, env->cwp + 1);
3066 if (env->wim & (1 << cwp)) {
3067 raise_exception(TT_WIN_UNF);
3069 set_cwp(cwp);
3072 void helper_wrpsr(target_ulong new_psr)
3074 if ((new_psr & PSR_CWP) >= env->nwindows)
3075 raise_exception(TT_ILL_INSN);
3076 else
3077 PUT_PSR(env, new_psr);
3080 target_ulong helper_rdpsr(void)
3082 return GET_PSR(env);
3085 #else
3086 /* XXX: use another pointer for %iN registers to avoid slow wrapping
3087 handling ? */
3088 void helper_save(void)
3090 uint32_t cwp;
3092 cwp = cpu_cwp_dec(env, env->cwp - 1);
3093 if (env->cansave == 0) {
3094 raise_exception(TT_SPILL | (env->otherwin != 0 ?
3095 (TT_WOTHER | ((env->wstate & 0x38) >> 1)):
3096 ((env->wstate & 0x7) << 2)));
3097 } else {
3098 if (env->cleanwin - env->canrestore == 0) {
3099 // XXX Clean windows without trap
3100 raise_exception(TT_CLRWIN);
3101 } else {
3102 env->cansave--;
3103 env->canrestore++;
3104 set_cwp(cwp);
3109 void helper_restore(void)
3111 uint32_t cwp;
3113 cwp = cpu_cwp_inc(env, env->cwp + 1);
3114 if (env->canrestore == 0) {
3115 raise_exception(TT_FILL | (env->otherwin != 0 ?
3116 (TT_WOTHER | ((env->wstate & 0x38) >> 1)):
3117 ((env->wstate & 0x7) << 2)));
3118 } else {
3119 env->cansave++;
3120 env->canrestore--;
3121 set_cwp(cwp);
3125 void helper_flushw(void)
3127 if (env->cansave != env->nwindows - 2) {
3128 raise_exception(TT_SPILL | (env->otherwin != 0 ?
3129 (TT_WOTHER | ((env->wstate & 0x38) >> 1)):
3130 ((env->wstate & 0x7) << 2)));
3134 void helper_saved(void)
3136 env->cansave++;
3137 if (env->otherwin == 0)
3138 env->canrestore--;
3139 else
3140 env->otherwin--;
3143 void helper_restored(void)
3145 env->canrestore++;
3146 if (env->cleanwin < env->nwindows - 1)
3147 env->cleanwin++;
3148 if (env->otherwin == 0)
3149 env->cansave--;
3150 else
3151 env->otherwin--;
3154 target_ulong helper_rdccr(void)
3156 return GET_CCR(env);
3159 void helper_wrccr(target_ulong new_ccr)
3161 PUT_CCR(env, new_ccr);
3164 // CWP handling is reversed in V9, but we still use the V8 register
3165 // order.
3166 target_ulong helper_rdcwp(void)
3168 return GET_CWP64(env);
3171 void helper_wrcwp(target_ulong new_cwp)
3173 PUT_CWP64(env, new_cwp);
3176 // This function uses non-native bit order
3177 #define GET_FIELD(X, FROM, TO) \
3178 ((X) >> (63 - (TO)) & ((1ULL << ((TO) - (FROM) + 1)) - 1))
3180 // This function uses the order in the manuals, i.e. bit 0 is 2^0
3181 #define GET_FIELD_SP(X, FROM, TO) \
3182 GET_FIELD(X, 63 - (TO), 63 - (FROM))
3184 target_ulong helper_array8(target_ulong pixel_addr, target_ulong cubesize)
3186 return (GET_FIELD_SP(pixel_addr, 60, 63) << (17 + 2 * cubesize)) |
3187 (GET_FIELD_SP(pixel_addr, 39, 39 + cubesize - 1) << (17 + cubesize)) |
3188 (GET_FIELD_SP(pixel_addr, 17 + cubesize - 1, 17) << 17) |
3189 (GET_FIELD_SP(pixel_addr, 56, 59) << 13) |
3190 (GET_FIELD_SP(pixel_addr, 35, 38) << 9) |
3191 (GET_FIELD_SP(pixel_addr, 13, 16) << 5) |
3192 (((pixel_addr >> 55) & 1) << 4) |
3193 (GET_FIELD_SP(pixel_addr, 33, 34) << 2) |
3194 GET_FIELD_SP(pixel_addr, 11, 12);
3197 target_ulong helper_alignaddr(target_ulong addr, target_ulong offset)
3199 uint64_t tmp;
3201 tmp = addr + offset;
3202 env->gsr &= ~7ULL;
3203 env->gsr |= tmp & 7ULL;
3204 return tmp & ~7ULL;
3207 target_ulong helper_popc(target_ulong val)
3209 return ctpop64(val);
3212 static inline uint64_t *get_gregset(uint64_t pstate)
3214 switch (pstate) {
3215 default:
3216 case 0:
3217 return env->bgregs;
3218 case PS_AG:
3219 return env->agregs;
3220 case PS_MG:
3221 return env->mgregs;
3222 case PS_IG:
3223 return env->igregs;
3227 static inline void change_pstate(uint64_t new_pstate)
3229 uint64_t pstate_regs, new_pstate_regs;
3230 uint64_t *src, *dst;
3232 if (env->def->features & CPU_FEATURE_GL) {
3233 // PS_AG is not implemented in this case
3234 new_pstate &= ~PS_AG;
3237 pstate_regs = env->pstate & 0xc01;
3238 new_pstate_regs = new_pstate & 0xc01;
3240 if (new_pstate_regs != pstate_regs) {
3241 // Switch global register bank
3242 src = get_gregset(new_pstate_regs);
3243 dst = get_gregset(pstate_regs);
3244 memcpy32(dst, env->gregs);
3245 memcpy32(env->gregs, src);
3247 env->pstate = new_pstate;
3250 void helper_wrpstate(target_ulong new_state)
3252 change_pstate(new_state & 0xf3f);
3255 void helper_done(void)
3257 env->pc = env->tsptr->tpc;
3258 env->npc = env->tsptr->tnpc + 4;
3259 PUT_CCR(env, env->tsptr->tstate >> 32);
3260 env->asi = (env->tsptr->tstate >> 24) & 0xff;
3261 change_pstate((env->tsptr->tstate >> 8) & 0xf3f);
3262 PUT_CWP64(env, env->tsptr->tstate & 0xff);
3263 env->tl--;
3264 env->tsptr = &env->ts[env->tl & MAXTL_MASK];
3267 void helper_retry(void)
3269 env->pc = env->tsptr->tpc;
3270 env->npc = env->tsptr->tnpc;
3271 PUT_CCR(env, env->tsptr->tstate >> 32);
3272 env->asi = (env->tsptr->tstate >> 24) & 0xff;
3273 change_pstate((env->tsptr->tstate >> 8) & 0xf3f);
3274 PUT_CWP64(env, env->tsptr->tstate & 0xff);
3275 env->tl--;
3276 env->tsptr = &env->ts[env->tl & MAXTL_MASK];
3279 void helper_set_softint(uint64_t value)
3281 env->softint |= (uint32_t)value;
3284 void helper_clear_softint(uint64_t value)
3286 env->softint &= (uint32_t)~value;
3289 void helper_write_softint(uint64_t value)
3291 env->softint = (uint32_t)value;
3293 #endif
3295 void helper_flush(target_ulong addr)
3297 addr &= ~7;
3298 tb_invalidate_page_range(addr, addr + 8);
3301 #ifdef TARGET_SPARC64
3302 #ifdef DEBUG_PCALL
3303 static const char * const excp_names[0x80] = {
3304 [TT_TFAULT] = "Instruction Access Fault",
3305 [TT_TMISS] = "Instruction Access MMU Miss",
3306 [TT_CODE_ACCESS] = "Instruction Access Error",
3307 [TT_ILL_INSN] = "Illegal Instruction",
3308 [TT_PRIV_INSN] = "Privileged Instruction",
3309 [TT_NFPU_INSN] = "FPU Disabled",
3310 [TT_FP_EXCP] = "FPU Exception",
3311 [TT_TOVF] = "Tag Overflow",
3312 [TT_CLRWIN] = "Clean Windows",
3313 [TT_DIV_ZERO] = "Division By Zero",
3314 [TT_DFAULT] = "Data Access Fault",
3315 [TT_DMISS] = "Data Access MMU Miss",
3316 [TT_DATA_ACCESS] = "Data Access Error",
3317 [TT_DPROT] = "Data Protection Error",
3318 [TT_UNALIGNED] = "Unaligned Memory Access",
3319 [TT_PRIV_ACT] = "Privileged Action",
3320 [TT_EXTINT | 0x1] = "External Interrupt 1",
3321 [TT_EXTINT | 0x2] = "External Interrupt 2",
3322 [TT_EXTINT | 0x3] = "External Interrupt 3",
3323 [TT_EXTINT | 0x4] = "External Interrupt 4",
3324 [TT_EXTINT | 0x5] = "External Interrupt 5",
3325 [TT_EXTINT | 0x6] = "External Interrupt 6",
3326 [TT_EXTINT | 0x7] = "External Interrupt 7",
3327 [TT_EXTINT | 0x8] = "External Interrupt 8",
3328 [TT_EXTINT | 0x9] = "External Interrupt 9",
3329 [TT_EXTINT | 0xa] = "External Interrupt 10",
3330 [TT_EXTINT | 0xb] = "External Interrupt 11",
3331 [TT_EXTINT | 0xc] = "External Interrupt 12",
3332 [TT_EXTINT | 0xd] = "External Interrupt 13",
3333 [TT_EXTINT | 0xe] = "External Interrupt 14",
3334 [TT_EXTINT | 0xf] = "External Interrupt 15",
3336 #endif
3338 void do_interrupt(CPUState *env)
3340 int intno = env->exception_index;
3342 #ifdef DEBUG_PCALL
3343 if (qemu_loglevel_mask(CPU_LOG_INT)) {
3344 static int count;
3345 const char *name;
3347 if (intno < 0 || intno >= 0x180)
3348 name = "Unknown";
3349 else if (intno >= 0x100)
3350 name = "Trap Instruction";
3351 else if (intno >= 0xc0)
3352 name = "Window Fill";
3353 else if (intno >= 0x80)
3354 name = "Window Spill";
3355 else {
3356 name = excp_names[intno];
3357 if (!name)
3358 name = "Unknown";
3361 qemu_log("%6d: %s (v=%04x) pc=%016" PRIx64 " npc=%016" PRIx64
3362 " SP=%016" PRIx64 "\n",
3363 count, name, intno,
3364 env->pc,
3365 env->npc, env->regwptr[6]);
3366 log_cpu_state(env, 0);
3367 #if 0
3369 int i;
3370 uint8_t *ptr;
3372 qemu_log(" code=");
3373 ptr = (uint8_t *)env->pc;
3374 for(i = 0; i < 16; i++) {
3375 qemu_log(" %02x", ldub(ptr + i));
3377 qemu_log("\n");
3379 #endif
3380 count++;
3382 #endif
3383 #if !defined(CONFIG_USER_ONLY)
3384 if (env->tl >= env->maxtl) {
3385 cpu_abort(env, "Trap 0x%04x while trap level (%d) >= MAXTL (%d),"
3386 " Error state", env->exception_index, env->tl, env->maxtl);
3387 return;
3389 #endif
3390 if (env->tl < env->maxtl - 1) {
3391 env->tl++;
3392 } else {
3393 env->pstate |= PS_RED;
3394 if (env->tl < env->maxtl)
3395 env->tl++;
3397 env->tsptr = &env->ts[env->tl & MAXTL_MASK];
3398 env->tsptr->tstate = ((uint64_t)GET_CCR(env) << 32) |
3399 ((env->asi & 0xff) << 24) | ((env->pstate & 0xf3f) << 8) |
3400 GET_CWP64(env);
3401 env->tsptr->tpc = env->pc;
3402 env->tsptr->tnpc = env->npc;
3403 env->tsptr->tt = intno;
3405 switch (intno) {
3406 case TT_IVEC:
3407 change_pstate(PS_PEF | PS_PRIV | PS_IG);
3408 break;
3409 case TT_TFAULT:
3410 case TT_TMISS:
3411 case TT_DFAULT:
3412 case TT_DMISS:
3413 case TT_DPROT:
3414 change_pstate(PS_PEF | PS_PRIV | PS_MG);
3415 break;
3416 default:
3417 change_pstate(PS_PEF | PS_PRIV | PS_AG);
3418 break;
3421 if (intno == TT_CLRWIN)
3422 cpu_set_cwp(env, cpu_cwp_dec(env, env->cwp - 1));
3423 else if ((intno & 0x1c0) == TT_SPILL)
3424 cpu_set_cwp(env, cpu_cwp_dec(env, env->cwp - env->cansave - 2));
3425 else if ((intno & 0x1c0) == TT_FILL)
3426 cpu_set_cwp(env, cpu_cwp_inc(env, env->cwp + 1));
3427 env->tbr &= ~0x7fffULL;
3428 env->tbr |= ((env->tl > 1) ? 1 << 14 : 0) | (intno << 5);
3429 env->pc = env->tbr;
3430 env->npc = env->pc + 4;
3431 env->exception_index = 0;
3433 #else
3434 #ifdef DEBUG_PCALL
3435 static const char * const excp_names[0x80] = {
3436 [TT_TFAULT] = "Instruction Access Fault",
3437 [TT_ILL_INSN] = "Illegal Instruction",
3438 [TT_PRIV_INSN] = "Privileged Instruction",
3439 [TT_NFPU_INSN] = "FPU Disabled",
3440 [TT_WIN_OVF] = "Window Overflow",
3441 [TT_WIN_UNF] = "Window Underflow",
3442 [TT_UNALIGNED] = "Unaligned Memory Access",
3443 [TT_FP_EXCP] = "FPU Exception",
3444 [TT_DFAULT] = "Data Access Fault",
3445 [TT_TOVF] = "Tag Overflow",
3446 [TT_EXTINT | 0x1] = "External Interrupt 1",
3447 [TT_EXTINT | 0x2] = "External Interrupt 2",
3448 [TT_EXTINT | 0x3] = "External Interrupt 3",
3449 [TT_EXTINT | 0x4] = "External Interrupt 4",
3450 [TT_EXTINT | 0x5] = "External Interrupt 5",
3451 [TT_EXTINT | 0x6] = "External Interrupt 6",
3452 [TT_EXTINT | 0x7] = "External Interrupt 7",
3453 [TT_EXTINT | 0x8] = "External Interrupt 8",
3454 [TT_EXTINT | 0x9] = "External Interrupt 9",
3455 [TT_EXTINT | 0xa] = "External Interrupt 10",
3456 [TT_EXTINT | 0xb] = "External Interrupt 11",
3457 [TT_EXTINT | 0xc] = "External Interrupt 12",
3458 [TT_EXTINT | 0xd] = "External Interrupt 13",
3459 [TT_EXTINT | 0xe] = "External Interrupt 14",
3460 [TT_EXTINT | 0xf] = "External Interrupt 15",
3461 [TT_TOVF] = "Tag Overflow",
3462 [TT_CODE_ACCESS] = "Instruction Access Error",
3463 [TT_DATA_ACCESS] = "Data Access Error",
3464 [TT_DIV_ZERO] = "Division By Zero",
3465 [TT_NCP_INSN] = "Coprocessor Disabled",
3467 #endif
3469 void do_interrupt(CPUState *env)
3471 int cwp, intno = env->exception_index;
3473 #ifdef DEBUG_PCALL
3474 if (qemu_loglevel_mask(CPU_LOG_INT)) {
3475 static int count;
3476 const char *name;
3478 if (intno < 0 || intno >= 0x100)
3479 name = "Unknown";
3480 else if (intno >= 0x80)
3481 name = "Trap Instruction";
3482 else {
3483 name = excp_names[intno];
3484 if (!name)
3485 name = "Unknown";
3488 qemu_log("%6d: %s (v=%02x) pc=%08x npc=%08x SP=%08x\n",
3489 count, name, intno,
3490 env->pc,
3491 env->npc, env->regwptr[6]);
3492 log_cpu_state(env, 0);
3493 #if 0
3495 int i;
3496 uint8_t *ptr;
3498 qemu_log(" code=");
3499 ptr = (uint8_t *)env->pc;
3500 for(i = 0; i < 16; i++) {
3501 qemu_log(" %02x", ldub(ptr + i));
3503 qemu_log("\n");
3505 #endif
3506 count++;
3508 #endif
3509 #if !defined(CONFIG_USER_ONLY)
3510 if (env->psret == 0) {
3511 cpu_abort(env, "Trap 0x%02x while interrupts disabled, Error state",
3512 env->exception_index);
3513 return;
3515 #endif
3516 env->psret = 0;
3517 cwp = cpu_cwp_dec(env, env->cwp - 1);
3518 cpu_set_cwp(env, cwp);
3519 env->regwptr[9] = env->pc;
3520 env->regwptr[10] = env->npc;
3521 env->psrps = env->psrs;
3522 env->psrs = 1;
3523 env->tbr = (env->tbr & TBR_BASE_MASK) | (intno << 4);
3524 env->pc = env->tbr;
3525 env->npc = env->pc + 4;
3526 env->exception_index = 0;
3528 #endif
3530 #if !defined(CONFIG_USER_ONLY)
3532 static void do_unaligned_access(target_ulong addr, int is_write, int is_user,
3533 void *retaddr);
3535 #define MMUSUFFIX _mmu
3536 #define ALIGNED_ONLY
3538 #define SHIFT 0
3539 #include "softmmu_template.h"
3541 #define SHIFT 1
3542 #include "softmmu_template.h"
3544 #define SHIFT 2
3545 #include "softmmu_template.h"
3547 #define SHIFT 3
3548 #include "softmmu_template.h"
3550 /* XXX: make it generic ? */
3551 static void cpu_restore_state2(void *retaddr)
3553 TranslationBlock *tb;
3554 unsigned long pc;
3556 if (retaddr) {
3557 /* now we have a real cpu fault */
3558 pc = (unsigned long)retaddr;
3559 tb = tb_find_pc(pc);
3560 if (tb) {
3561 /* the PC is inside the translated code. It means that we have
3562 a virtual CPU fault */
3563 cpu_restore_state(tb, env, pc, (void *)(long)env->cond);
3568 static void do_unaligned_access(target_ulong addr, int is_write, int is_user,
3569 void *retaddr)
3571 #ifdef DEBUG_UNALIGNED
3572 printf("Unaligned access to 0x" TARGET_FMT_lx " from 0x" TARGET_FMT_lx
3573 "\n", addr, env->pc);
3574 #endif
3575 cpu_restore_state2(retaddr);
3576 raise_exception(TT_UNALIGNED);
3579 /* try to fill the TLB and return an exception if error. If retaddr is
3580 NULL, it means that the function was called in C code (i.e. not
3581 from generated code or from helper.c) */
3582 /* XXX: fix it to restore all registers */
3583 void tlb_fill(target_ulong addr, int is_write, int mmu_idx, void *retaddr)
3585 int ret;
3586 CPUState *saved_env;
3588 /* XXX: hack to restore env in all cases, even if not called from
3589 generated code */
3590 saved_env = env;
3591 env = cpu_single_env;
3593 ret = cpu_sparc_handle_mmu_fault(env, addr, is_write, mmu_idx, 1);
3594 if (ret) {
3595 cpu_restore_state2(retaddr);
3596 cpu_loop_exit();
3598 env = saved_env;
3601 #endif
3603 #ifndef TARGET_SPARC64
3604 void do_unassigned_access(target_phys_addr_t addr, int is_write, int is_exec,
3605 int is_asi, int size)
3607 CPUState *saved_env;
3609 /* XXX: hack to restore env in all cases, even if not called from
3610 generated code */
3611 saved_env = env;
3612 env = cpu_single_env;
3613 #ifdef DEBUG_UNASSIGNED
3614 if (is_asi)
3615 printf("Unassigned mem %s access of %d byte%s to " TARGET_FMT_plx
3616 " asi 0x%02x from " TARGET_FMT_lx "\n",
3617 is_exec ? "exec" : is_write ? "write" : "read", size,
3618 size == 1 ? "" : "s", addr, is_asi, env->pc);
3619 else
3620 printf("Unassigned mem %s access of %d byte%s to " TARGET_FMT_plx
3621 " from " TARGET_FMT_lx "\n",
3622 is_exec ? "exec" : is_write ? "write" : "read", size,
3623 size == 1 ? "" : "s", addr, env->pc);
3624 #endif
3625 if (env->mmuregs[3]) /* Fault status register */
3626 env->mmuregs[3] = 1; /* overflow (not read before another fault) */
3627 if (is_asi)
3628 env->mmuregs[3] |= 1 << 16;
3629 if (env->psrs)
3630 env->mmuregs[3] |= 1 << 5;
3631 if (is_exec)
3632 env->mmuregs[3] |= 1 << 6;
3633 if (is_write)
3634 env->mmuregs[3] |= 1 << 7;
3635 env->mmuregs[3] |= (5 << 2) | 2;
3636 env->mmuregs[4] = addr; /* Fault address register */
3637 if ((env->mmuregs[0] & MMU_E) && !(env->mmuregs[0] & MMU_NF)) {
3638 if (is_exec)
3639 raise_exception(TT_CODE_ACCESS);
3640 else
3641 raise_exception(TT_DATA_ACCESS);
3643 env = saved_env;
3645 #else
3646 void do_unassigned_access(target_phys_addr_t addr, int is_write, int is_exec,
3647 int is_asi, int size)
3649 #ifdef DEBUG_UNASSIGNED
3650 CPUState *saved_env;
3652 /* XXX: hack to restore env in all cases, even if not called from
3653 generated code */
3654 saved_env = env;
3655 env = cpu_single_env;
3656 printf("Unassigned mem access to " TARGET_FMT_plx " from " TARGET_FMT_lx
3657 "\n", addr, env->pc);
3658 env = saved_env;
3659 #endif
3660 if (is_exec)
3661 raise_exception(TT_CODE_ACCESS);
3662 else
3663 raise_exception(TT_DATA_ACCESS);
3665 #endif
3667 #ifdef TARGET_SPARC64
3668 void helper_tick_set_count(void *opaque, uint64_t count)
3670 #if !defined(CONFIG_USER_ONLY)
3671 cpu_tick_set_count(opaque, count);
3672 #endif
3675 uint64_t helper_tick_get_count(void *opaque)
3677 #if !defined(CONFIG_USER_ONLY)
3678 return cpu_tick_get_count(opaque);
3679 #else
3680 return 0;
3681 #endif
3684 void helper_tick_set_limit(void *opaque, uint64_t limit)
3686 #if !defined(CONFIG_USER_ONLY)
3687 cpu_tick_set_limit(opaque, limit);
3688 #endif
3690 #endif