2 * virtual page mapping and translated block handling
4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, write to the Free Software
18 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston MA 02110-1301 USA
24 #include <sys/types.h>
37 #include "qemu-common.h"
42 #if defined(CONFIG_USER_ONLY)
46 //#define DEBUG_TB_INVALIDATE
49 //#define DEBUG_UNASSIGNED
51 /* make various TB consistency checks */
52 //#define DEBUG_TB_CHECK
53 //#define DEBUG_TLB_CHECK
55 //#define DEBUG_IOPORT
56 //#define DEBUG_SUBPAGE
58 #if !defined(CONFIG_USER_ONLY)
59 /* TB consistency checks only implemented for usermode emulation. */
63 #define SMC_BITMAP_USE_THRESHOLD 10
65 #if defined(TARGET_SPARC64)
66 #define TARGET_PHYS_ADDR_SPACE_BITS 41
67 #elif defined(TARGET_SPARC)
68 #define TARGET_PHYS_ADDR_SPACE_BITS 36
69 #elif defined(TARGET_ALPHA)
70 #define TARGET_PHYS_ADDR_SPACE_BITS 42
71 #define TARGET_VIRT_ADDR_SPACE_BITS 42
72 #elif defined(TARGET_PPC64)
73 #define TARGET_PHYS_ADDR_SPACE_BITS 42
74 #elif defined(TARGET_X86_64) && !defined(CONFIG_KQEMU)
75 #define TARGET_PHYS_ADDR_SPACE_BITS 42
76 #elif defined(TARGET_I386) && !defined(CONFIG_KQEMU)
77 #define TARGET_PHYS_ADDR_SPACE_BITS 36
79 /* Note: for compatibility with kqemu, we use 32 bits for x86_64 */
80 #define TARGET_PHYS_ADDR_SPACE_BITS 32
83 static TranslationBlock
*tbs
;
84 int code_gen_max_blocks
;
85 TranslationBlock
*tb_phys_hash
[CODE_GEN_PHYS_HASH_SIZE
];
87 /* any access to the tbs or the page table must use this lock */
88 spinlock_t tb_lock
= SPIN_LOCK_UNLOCKED
;
90 #if defined(__arm__) || defined(__sparc_v9__)
91 /* The prologue must be reachable with a direct jump. ARM and Sparc64
92 have limited branch ranges (possibly also PPC) so place it in a
93 section close to code segment. */
94 #define code_gen_section \
95 __attribute__((__section__(".gen_code"))) \
96 __attribute__((aligned (32)))
98 /* Maximum alignment for Win32 is 16. */
99 #define code_gen_section \
100 __attribute__((aligned (16)))
102 #define code_gen_section \
103 __attribute__((aligned (32)))
106 uint8_t code_gen_prologue
[1024] code_gen_section
;
107 static uint8_t *code_gen_buffer
;
108 static unsigned long code_gen_buffer_size
;
109 /* threshold to flush the translated code buffer */
110 static unsigned long code_gen_buffer_max_size
;
111 uint8_t *code_gen_ptr
;
113 #if !defined(CONFIG_USER_ONLY)
115 uint8_t *phys_ram_dirty
;
116 static int in_migration
;
118 typedef struct RAMBlock
{
122 struct RAMBlock
*next
;
125 static RAMBlock
*ram_blocks
;
126 /* TODO: When we implement (and use) ram deallocation (e.g. for hotplug)
127 then we can no longer assume contiguous ram offsets, and external uses
128 of this variable will break. */
129 ram_addr_t last_ram_offset
;
133 /* current CPU in the current thread. It is only valid inside
135 CPUState
*cpu_single_env
;
136 /* 0 = Do not count executed instructions.
137 1 = Precise instruction counting.
138 2 = Adaptive rate instruction counting. */
140 /* Current instruction counter. While executing translated code this may
141 include some instructions that have not yet been executed. */
144 typedef struct PageDesc
{
145 /* list of TBs intersecting this ram page */
146 TranslationBlock
*first_tb
;
147 /* in order to optimize self modifying code, we count the number
148 of lookups we do to a given page to use a bitmap */
149 unsigned int code_write_count
;
150 uint8_t *code_bitmap
;
151 #if defined(CONFIG_USER_ONLY)
156 typedef struct PhysPageDesc
{
157 /* offset in host memory of the page + io_index in the low bits */
158 ram_addr_t phys_offset
;
159 ram_addr_t region_offset
;
163 #if defined(CONFIG_USER_ONLY) && defined(TARGET_VIRT_ADDR_SPACE_BITS)
164 /* XXX: this is a temporary hack for alpha target.
165 * In the future, this is to be replaced by a multi-level table
166 * to actually be able to handle the complete 64 bits address space.
168 #define L1_BITS (TARGET_VIRT_ADDR_SPACE_BITS - L2_BITS - TARGET_PAGE_BITS)
170 #define L1_BITS (32 - L2_BITS - TARGET_PAGE_BITS)
173 #define L1_SIZE (1 << L1_BITS)
174 #define L2_SIZE (1 << L2_BITS)
176 unsigned long qemu_real_host_page_size
;
177 unsigned long qemu_host_page_bits
;
178 unsigned long qemu_host_page_size
;
179 unsigned long qemu_host_page_mask
;
181 /* XXX: for system emulation, it could just be an array */
182 static PageDesc
*l1_map
[L1_SIZE
];
183 static PhysPageDesc
**l1_phys_map
;
185 #if !defined(CONFIG_USER_ONLY)
186 static void io_mem_init(void);
188 /* io memory support */
189 CPUWriteMemoryFunc
*io_mem_write
[IO_MEM_NB_ENTRIES
][4];
190 CPUReadMemoryFunc
*io_mem_read
[IO_MEM_NB_ENTRIES
][4];
191 void *io_mem_opaque
[IO_MEM_NB_ENTRIES
];
192 static char io_mem_used
[IO_MEM_NB_ENTRIES
];
193 static int io_mem_watch
;
197 static const char *logfilename
= "/tmp/qemu.log";
200 static int log_append
= 0;
203 static int tlb_flush_count
;
204 static int tb_flush_count
;
205 static int tb_phys_invalidate_count
;
207 #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
208 typedef struct subpage_t
{
209 target_phys_addr_t base
;
210 CPUReadMemoryFunc
**mem_read
[TARGET_PAGE_SIZE
][4];
211 CPUWriteMemoryFunc
**mem_write
[TARGET_PAGE_SIZE
][4];
212 void *opaque
[TARGET_PAGE_SIZE
][2][4];
213 ram_addr_t region_offset
[TARGET_PAGE_SIZE
][2][4];
217 static void map_exec(void *addr
, long size
)
220 VirtualProtect(addr
, size
,
221 PAGE_EXECUTE_READWRITE
, &old_protect
);
225 static void map_exec(void *addr
, long size
)
227 unsigned long start
, end
, page_size
;
229 page_size
= getpagesize();
230 start
= (unsigned long)addr
;
231 start
&= ~(page_size
- 1);
233 end
= (unsigned long)addr
+ size
;
234 end
+= page_size
- 1;
235 end
&= ~(page_size
- 1);
237 mprotect((void *)start
, end
- start
,
238 PROT_READ
| PROT_WRITE
| PROT_EXEC
);
242 static void page_init(void)
244 /* NOTE: we can always suppose that qemu_host_page_size >=
248 SYSTEM_INFO system_info
;
250 GetSystemInfo(&system_info
);
251 qemu_real_host_page_size
= system_info
.dwPageSize
;
254 qemu_real_host_page_size
= getpagesize();
256 if (qemu_host_page_size
== 0)
257 qemu_host_page_size
= qemu_real_host_page_size
;
258 if (qemu_host_page_size
< TARGET_PAGE_SIZE
)
259 qemu_host_page_size
= TARGET_PAGE_SIZE
;
260 qemu_host_page_bits
= 0;
261 while ((1 << qemu_host_page_bits
) < qemu_host_page_size
)
262 qemu_host_page_bits
++;
263 qemu_host_page_mask
= ~(qemu_host_page_size
- 1);
264 l1_phys_map
= qemu_vmalloc(L1_SIZE
* sizeof(void *));
265 memset(l1_phys_map
, 0, L1_SIZE
* sizeof(void *));
267 #if !defined(_WIN32) && defined(CONFIG_USER_ONLY)
269 long long startaddr
, endaddr
;
274 last_brk
= (unsigned long)sbrk(0);
275 f
= fopen("/proc/self/maps", "r");
278 n
= fscanf (f
, "%llx-%llx %*[^\n]\n", &startaddr
, &endaddr
);
280 startaddr
= MIN(startaddr
,
281 (1ULL << TARGET_PHYS_ADDR_SPACE_BITS
) - 1);
282 endaddr
= MIN(endaddr
,
283 (1ULL << TARGET_PHYS_ADDR_SPACE_BITS
) - 1);
284 page_set_flags(startaddr
& TARGET_PAGE_MASK
,
285 TARGET_PAGE_ALIGN(endaddr
),
296 static inline PageDesc
**page_l1_map(target_ulong index
)
298 #if TARGET_LONG_BITS > 32
299 /* Host memory outside guest VM. For 32-bit targets we have already
300 excluded high addresses. */
301 if (index
> ((target_ulong
)L2_SIZE
* L1_SIZE
))
304 return &l1_map
[index
>> L2_BITS
];
307 static inline PageDesc
*page_find_alloc(target_ulong index
)
310 lp
= page_l1_map(index
);
316 /* allocate if not found */
317 #if defined(CONFIG_USER_ONLY)
318 size_t len
= sizeof(PageDesc
) * L2_SIZE
;
319 /* Don't use qemu_malloc because it may recurse. */
320 p
= mmap(0, len
, PROT_READ
| PROT_WRITE
,
321 MAP_PRIVATE
| MAP_ANONYMOUS
, -1, 0);
324 unsigned long addr
= h2g(p
);
325 page_set_flags(addr
& TARGET_PAGE_MASK
,
326 TARGET_PAGE_ALIGN(addr
+ len
),
330 p
= qemu_mallocz(sizeof(PageDesc
) * L2_SIZE
);
334 return p
+ (index
& (L2_SIZE
- 1));
337 static inline PageDesc
*page_find(target_ulong index
)
340 lp
= page_l1_map(index
);
347 return p
+ (index
& (L2_SIZE
- 1));
350 static PhysPageDesc
*phys_page_find_alloc(target_phys_addr_t index
, int alloc
)
355 p
= (void **)l1_phys_map
;
356 #if TARGET_PHYS_ADDR_SPACE_BITS > 32
358 #if TARGET_PHYS_ADDR_SPACE_BITS > (32 + L1_BITS)
359 #error unsupported TARGET_PHYS_ADDR_SPACE_BITS
361 lp
= p
+ ((index
>> (L1_BITS
+ L2_BITS
)) & (L1_SIZE
- 1));
364 /* allocate if not found */
367 p
= qemu_vmalloc(sizeof(void *) * L1_SIZE
);
368 memset(p
, 0, sizeof(void *) * L1_SIZE
);
372 lp
= p
+ ((index
>> L2_BITS
) & (L1_SIZE
- 1));
376 /* allocate if not found */
379 pd
= qemu_vmalloc(sizeof(PhysPageDesc
) * L2_SIZE
);
381 for (i
= 0; i
< L2_SIZE
; i
++) {
382 pd
[i
].phys_offset
= IO_MEM_UNASSIGNED
;
383 pd
[i
].region_offset
= (index
+ i
) << TARGET_PAGE_BITS
;
386 return ((PhysPageDesc
*)pd
) + (index
& (L2_SIZE
- 1));
389 static inline PhysPageDesc
*phys_page_find(target_phys_addr_t index
)
391 return phys_page_find_alloc(index
, 0);
394 #if !defined(CONFIG_USER_ONLY)
395 static void tlb_protect_code(ram_addr_t ram_addr
);
396 static void tlb_unprotect_code_phys(CPUState
*env
, ram_addr_t ram_addr
,
398 #define mmap_lock() do { } while(0)
399 #define mmap_unlock() do { } while(0)
402 #define DEFAULT_CODE_GEN_BUFFER_SIZE (32 * 1024 * 1024)
404 #if defined(CONFIG_USER_ONLY)
405 /* Currently it is not recommended to allocate big chunks of data in
406 user mode. It will change when a dedicated libc will be used */
407 #define USE_STATIC_CODE_GEN_BUFFER
410 #ifdef USE_STATIC_CODE_GEN_BUFFER
411 static uint8_t static_code_gen_buffer
[DEFAULT_CODE_GEN_BUFFER_SIZE
];
414 static void code_gen_alloc(unsigned long tb_size
)
416 #ifdef USE_STATIC_CODE_GEN_BUFFER
417 code_gen_buffer
= static_code_gen_buffer
;
418 code_gen_buffer_size
= DEFAULT_CODE_GEN_BUFFER_SIZE
;
419 map_exec(code_gen_buffer
, code_gen_buffer_size
);
421 code_gen_buffer_size
= tb_size
;
422 if (code_gen_buffer_size
== 0) {
423 #if defined(CONFIG_USER_ONLY)
424 /* in user mode, phys_ram_size is not meaningful */
425 code_gen_buffer_size
= DEFAULT_CODE_GEN_BUFFER_SIZE
;
427 /* XXX: needs adjustments */
428 code_gen_buffer_size
= (unsigned long)(ram_size
/ 4);
431 if (code_gen_buffer_size
< MIN_CODE_GEN_BUFFER_SIZE
)
432 code_gen_buffer_size
= MIN_CODE_GEN_BUFFER_SIZE
;
433 /* The code gen buffer location may have constraints depending on
434 the host cpu and OS */
435 #if defined(__linux__)
440 flags
= MAP_PRIVATE
| MAP_ANONYMOUS
;
441 #if defined(__x86_64__)
443 /* Cannot map more than that */
444 if (code_gen_buffer_size
> (800 * 1024 * 1024))
445 code_gen_buffer_size
= (800 * 1024 * 1024);
446 #elif defined(__sparc_v9__)
447 // Map the buffer below 2G, so we can use direct calls and branches
449 start
= (void *) 0x60000000UL
;
450 if (code_gen_buffer_size
> (512 * 1024 * 1024))
451 code_gen_buffer_size
= (512 * 1024 * 1024);
452 #elif defined(__arm__)
453 /* Map the buffer below 32M, so we can use direct calls and branches */
455 start
= (void *) 0x01000000UL
;
456 if (code_gen_buffer_size
> 16 * 1024 * 1024)
457 code_gen_buffer_size
= 16 * 1024 * 1024;
459 code_gen_buffer
= mmap(start
, code_gen_buffer_size
,
460 PROT_WRITE
| PROT_READ
| PROT_EXEC
,
462 if (code_gen_buffer
== MAP_FAILED
) {
463 fprintf(stderr
, "Could not allocate dynamic translator buffer\n");
467 #elif defined(__FreeBSD__) || defined(__DragonFly__)
471 flags
= MAP_PRIVATE
| MAP_ANONYMOUS
;
472 #if defined(__x86_64__)
473 /* FreeBSD doesn't have MAP_32BIT, use MAP_FIXED and assume
474 * 0x40000000 is free */
476 addr
= (void *)0x40000000;
477 /* Cannot map more than that */
478 if (code_gen_buffer_size
> (800 * 1024 * 1024))
479 code_gen_buffer_size
= (800 * 1024 * 1024);
481 code_gen_buffer
= mmap(addr
, code_gen_buffer_size
,
482 PROT_WRITE
| PROT_READ
| PROT_EXEC
,
484 if (code_gen_buffer
== MAP_FAILED
) {
485 fprintf(stderr
, "Could not allocate dynamic translator buffer\n");
490 code_gen_buffer
= qemu_malloc(code_gen_buffer_size
);
491 map_exec(code_gen_buffer
, code_gen_buffer_size
);
493 #endif /* !USE_STATIC_CODE_GEN_BUFFER */
494 map_exec(code_gen_prologue
, sizeof(code_gen_prologue
));
495 code_gen_buffer_max_size
= code_gen_buffer_size
-
496 code_gen_max_block_size();
497 code_gen_max_blocks
= code_gen_buffer_size
/ CODE_GEN_AVG_BLOCK_SIZE
;
498 tbs
= qemu_malloc(code_gen_max_blocks
* sizeof(TranslationBlock
));
501 /* Must be called before using the QEMU cpus. 'tb_size' is the size
502 (in bytes) allocated to the translation buffer. Zero means default
504 void cpu_exec_init_all(unsigned long tb_size
)
507 code_gen_alloc(tb_size
);
508 code_gen_ptr
= code_gen_buffer
;
510 #if !defined(CONFIG_USER_ONLY)
515 #if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
517 #define CPU_COMMON_SAVE_VERSION 1
519 static void cpu_common_save(QEMUFile
*f
, void *opaque
)
521 CPUState
*env
= opaque
;
523 cpu_synchronize_state(env
, 0);
525 qemu_put_be32s(f
, &env
->halted
);
526 qemu_put_be32s(f
, &env
->interrupt_request
);
529 static int cpu_common_load(QEMUFile
*f
, void *opaque
, int version_id
)
531 CPUState
*env
= opaque
;
533 if (version_id
!= CPU_COMMON_SAVE_VERSION
)
536 qemu_get_be32s(f
, &env
->halted
);
537 qemu_get_be32s(f
, &env
->interrupt_request
);
538 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
539 version_id is increased. */
540 env
->interrupt_request
&= ~0x01;
542 cpu_synchronize_state(env
, 1);
548 CPUState
*qemu_get_cpu(int cpu
)
550 CPUState
*env
= first_cpu
;
553 if (env
->cpu_index
== cpu
)
561 void cpu_exec_init(CPUState
*env
)
566 #if defined(CONFIG_USER_ONLY)
569 env
->next_cpu
= NULL
;
572 while (*penv
!= NULL
) {
573 penv
= &(*penv
)->next_cpu
;
576 env
->cpu_index
= cpu_index
;
578 TAILQ_INIT(&env
->breakpoints
);
579 TAILQ_INIT(&env
->watchpoints
);
581 #if defined(CONFIG_USER_ONLY)
584 #if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
585 register_savevm("cpu_common", cpu_index
, CPU_COMMON_SAVE_VERSION
,
586 cpu_common_save
, cpu_common_load
, env
);
587 register_savevm("cpu", cpu_index
, CPU_SAVE_VERSION
,
588 cpu_save
, cpu_load
, env
);
592 static inline void invalidate_page_bitmap(PageDesc
*p
)
594 if (p
->code_bitmap
) {
595 qemu_free(p
->code_bitmap
);
596 p
->code_bitmap
= NULL
;
598 p
->code_write_count
= 0;
601 /* set to NULL all the 'first_tb' fields in all PageDescs */
602 static void page_flush_tb(void)
607 for(i
= 0; i
< L1_SIZE
; i
++) {
610 for(j
= 0; j
< L2_SIZE
; j
++) {
612 invalidate_page_bitmap(p
);
619 /* flush all the translation blocks */
620 /* XXX: tb_flush is currently not thread safe */
621 void tb_flush(CPUState
*env1
)
624 #if defined(DEBUG_FLUSH)
625 printf("qemu: flush code_size=%ld nb_tbs=%d avg_tb_size=%ld\n",
626 (unsigned long)(code_gen_ptr
- code_gen_buffer
),
628 ((unsigned long)(code_gen_ptr
- code_gen_buffer
)) / nb_tbs
: 0);
630 if ((unsigned long)(code_gen_ptr
- code_gen_buffer
) > code_gen_buffer_size
)
631 cpu_abort(env1
, "Internal error: code buffer overflow\n");
635 for(env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
636 memset (env
->tb_jmp_cache
, 0, TB_JMP_CACHE_SIZE
* sizeof (void *));
639 memset (tb_phys_hash
, 0, CODE_GEN_PHYS_HASH_SIZE
* sizeof (void *));
642 code_gen_ptr
= code_gen_buffer
;
643 /* XXX: flush processor icache at this point if cache flush is
648 #ifdef DEBUG_TB_CHECK
650 static void tb_invalidate_check(target_ulong address
)
652 TranslationBlock
*tb
;
654 address
&= TARGET_PAGE_MASK
;
655 for(i
= 0;i
< CODE_GEN_PHYS_HASH_SIZE
; i
++) {
656 for(tb
= tb_phys_hash
[i
]; tb
!= NULL
; tb
= tb
->phys_hash_next
) {
657 if (!(address
+ TARGET_PAGE_SIZE
<= tb
->pc
||
658 address
>= tb
->pc
+ tb
->size
)) {
659 printf("ERROR invalidate: address=%08lx PC=%08lx size=%04x\n",
660 address
, (long)tb
->pc
, tb
->size
);
666 /* verify that all the pages have correct rights for code */
667 static void tb_page_check(void)
669 TranslationBlock
*tb
;
670 int i
, flags1
, flags2
;
672 for(i
= 0;i
< CODE_GEN_PHYS_HASH_SIZE
; i
++) {
673 for(tb
= tb_phys_hash
[i
]; tb
!= NULL
; tb
= tb
->phys_hash_next
) {
674 flags1
= page_get_flags(tb
->pc
);
675 flags2
= page_get_flags(tb
->pc
+ tb
->size
- 1);
676 if ((flags1
& PAGE_WRITE
) || (flags2
& PAGE_WRITE
)) {
677 printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n",
678 (long)tb
->pc
, tb
->size
, flags1
, flags2
);
684 static void tb_jmp_check(TranslationBlock
*tb
)
686 TranslationBlock
*tb1
;
689 /* suppress any remaining jumps to this TB */
693 tb1
= (TranslationBlock
*)((long)tb1
& ~3);
696 tb1
= tb1
->jmp_next
[n1
];
698 /* check end of list */
700 printf("ERROR: jmp_list from 0x%08lx\n", (long)tb
);
706 /* invalidate one TB */
707 static inline void tb_remove(TranslationBlock
**ptb
, TranslationBlock
*tb
,
710 TranslationBlock
*tb1
;
714 *ptb
= *(TranslationBlock
**)((char *)tb1
+ next_offset
);
717 ptb
= (TranslationBlock
**)((char *)tb1
+ next_offset
);
721 static inline void tb_page_remove(TranslationBlock
**ptb
, TranslationBlock
*tb
)
723 TranslationBlock
*tb1
;
729 tb1
= (TranslationBlock
*)((long)tb1
& ~3);
731 *ptb
= tb1
->page_next
[n1
];
734 ptb
= &tb1
->page_next
[n1
];
738 static inline void tb_jmp_remove(TranslationBlock
*tb
, int n
)
740 TranslationBlock
*tb1
, **ptb
;
743 ptb
= &tb
->jmp_next
[n
];
746 /* find tb(n) in circular list */
750 tb1
= (TranslationBlock
*)((long)tb1
& ~3);
751 if (n1
== n
&& tb1
== tb
)
754 ptb
= &tb1
->jmp_first
;
756 ptb
= &tb1
->jmp_next
[n1
];
759 /* now we can suppress tb(n) from the list */
760 *ptb
= tb
->jmp_next
[n
];
762 tb
->jmp_next
[n
] = NULL
;
766 /* reset the jump entry 'n' of a TB so that it is not chained to
768 static inline void tb_reset_jump(TranslationBlock
*tb
, int n
)
770 tb_set_jmp_target(tb
, n
, (unsigned long)(tb
->tc_ptr
+ tb
->tb_next_offset
[n
]));
773 void tb_phys_invalidate(TranslationBlock
*tb
, target_ulong page_addr
)
778 target_phys_addr_t phys_pc
;
779 TranslationBlock
*tb1
, *tb2
;
781 /* remove the TB from the hash list */
782 phys_pc
= tb
->page_addr
[0] + (tb
->pc
& ~TARGET_PAGE_MASK
);
783 h
= tb_phys_hash_func(phys_pc
);
784 tb_remove(&tb_phys_hash
[h
], tb
,
785 offsetof(TranslationBlock
, phys_hash_next
));
787 /* remove the TB from the page list */
788 if (tb
->page_addr
[0] != page_addr
) {
789 p
= page_find(tb
->page_addr
[0] >> TARGET_PAGE_BITS
);
790 tb_page_remove(&p
->first_tb
, tb
);
791 invalidate_page_bitmap(p
);
793 if (tb
->page_addr
[1] != -1 && tb
->page_addr
[1] != page_addr
) {
794 p
= page_find(tb
->page_addr
[1] >> TARGET_PAGE_BITS
);
795 tb_page_remove(&p
->first_tb
, tb
);
796 invalidate_page_bitmap(p
);
799 tb_invalidated_flag
= 1;
801 /* remove the TB from the hash list */
802 h
= tb_jmp_cache_hash_func(tb
->pc
);
803 for(env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
804 if (env
->tb_jmp_cache
[h
] == tb
)
805 env
->tb_jmp_cache
[h
] = NULL
;
808 /* suppress this TB from the two jump lists */
809 tb_jmp_remove(tb
, 0);
810 tb_jmp_remove(tb
, 1);
812 /* suppress any remaining jumps to this TB */
818 tb1
= (TranslationBlock
*)((long)tb1
& ~3);
819 tb2
= tb1
->jmp_next
[n1
];
820 tb_reset_jump(tb1
, n1
);
821 tb1
->jmp_next
[n1
] = NULL
;
824 tb
->jmp_first
= (TranslationBlock
*)((long)tb
| 2); /* fail safe */
826 tb_phys_invalidate_count
++;
829 static inline void set_bits(uint8_t *tab
, int start
, int len
)
835 mask
= 0xff << (start
& 7);
836 if ((start
& ~7) == (end
& ~7)) {
838 mask
&= ~(0xff << (end
& 7));
843 start
= (start
+ 8) & ~7;
845 while (start
< end1
) {
850 mask
= ~(0xff << (end
& 7));
856 static void build_page_bitmap(PageDesc
*p
)
858 int n
, tb_start
, tb_end
;
859 TranslationBlock
*tb
;
861 p
->code_bitmap
= qemu_mallocz(TARGET_PAGE_SIZE
/ 8);
866 tb
= (TranslationBlock
*)((long)tb
& ~3);
867 /* NOTE: this is subtle as a TB may span two physical pages */
869 /* NOTE: tb_end may be after the end of the page, but
870 it is not a problem */
871 tb_start
= tb
->pc
& ~TARGET_PAGE_MASK
;
872 tb_end
= tb_start
+ tb
->size
;
873 if (tb_end
> TARGET_PAGE_SIZE
)
874 tb_end
= TARGET_PAGE_SIZE
;
877 tb_end
= ((tb
->pc
+ tb
->size
) & ~TARGET_PAGE_MASK
);
879 set_bits(p
->code_bitmap
, tb_start
, tb_end
- tb_start
);
880 tb
= tb
->page_next
[n
];
884 TranslationBlock
*tb_gen_code(CPUState
*env
,
885 target_ulong pc
, target_ulong cs_base
,
886 int flags
, int cflags
)
888 TranslationBlock
*tb
;
890 target_ulong phys_pc
, phys_page2
, virt_page2
;
893 phys_pc
= get_phys_addr_code(env
, pc
);
896 /* flush must be done */
898 /* cannot fail at this point */
900 /* Don't forget to invalidate previous TB info. */
901 tb_invalidated_flag
= 1;
903 tc_ptr
= code_gen_ptr
;
905 tb
->cs_base
= cs_base
;
908 cpu_gen_code(env
, tb
, &code_gen_size
);
909 code_gen_ptr
= (void *)(((unsigned long)code_gen_ptr
+ code_gen_size
+ CODE_GEN_ALIGN
- 1) & ~(CODE_GEN_ALIGN
- 1));
911 /* check next page if needed */
912 virt_page2
= (pc
+ tb
->size
- 1) & TARGET_PAGE_MASK
;
914 if ((pc
& TARGET_PAGE_MASK
) != virt_page2
) {
915 phys_page2
= get_phys_addr_code(env
, virt_page2
);
917 tb_link_phys(tb
, phys_pc
, phys_page2
);
921 /* invalidate all TBs which intersect with the target physical page
922 starting in range [start;end[. NOTE: start and end must refer to
923 the same physical page. 'is_cpu_write_access' should be true if called
924 from a real cpu write access: the virtual CPU will exit the current
925 TB if code is modified inside this TB. */
926 void tb_invalidate_phys_page_range(target_phys_addr_t start
, target_phys_addr_t end
,
927 int is_cpu_write_access
)
929 TranslationBlock
*tb
, *tb_next
, *saved_tb
;
930 CPUState
*env
= cpu_single_env
;
931 target_ulong tb_start
, tb_end
;
934 #ifdef TARGET_HAS_PRECISE_SMC
935 int current_tb_not_found
= is_cpu_write_access
;
936 TranslationBlock
*current_tb
= NULL
;
937 int current_tb_modified
= 0;
938 target_ulong current_pc
= 0;
939 target_ulong current_cs_base
= 0;
940 int current_flags
= 0;
941 #endif /* TARGET_HAS_PRECISE_SMC */
943 p
= page_find(start
>> TARGET_PAGE_BITS
);
946 if (!p
->code_bitmap
&&
947 ++p
->code_write_count
>= SMC_BITMAP_USE_THRESHOLD
&&
948 is_cpu_write_access
) {
949 /* build code bitmap */
950 build_page_bitmap(p
);
953 /* we remove all the TBs in the range [start, end[ */
954 /* XXX: see if in some cases it could be faster to invalidate all the code */
958 tb
= (TranslationBlock
*)((long)tb
& ~3);
959 tb_next
= tb
->page_next
[n
];
960 /* NOTE: this is subtle as a TB may span two physical pages */
962 /* NOTE: tb_end may be after the end of the page, but
963 it is not a problem */
964 tb_start
= tb
->page_addr
[0] + (tb
->pc
& ~TARGET_PAGE_MASK
);
965 tb_end
= tb_start
+ tb
->size
;
967 tb_start
= tb
->page_addr
[1];
968 tb_end
= tb_start
+ ((tb
->pc
+ tb
->size
) & ~TARGET_PAGE_MASK
);
970 if (!(tb_end
<= start
|| tb_start
>= end
)) {
971 #ifdef TARGET_HAS_PRECISE_SMC
972 if (current_tb_not_found
) {
973 current_tb_not_found
= 0;
975 if (env
->mem_io_pc
) {
976 /* now we have a real cpu fault */
977 current_tb
= tb_find_pc(env
->mem_io_pc
);
980 if (current_tb
== tb
&&
981 (current_tb
->cflags
& CF_COUNT_MASK
) != 1) {
982 /* If we are modifying the current TB, we must stop
983 its execution. We could be more precise by checking
984 that the modification is after the current PC, but it
985 would require a specialized function to partially
986 restore the CPU state */
988 current_tb_modified
= 1;
989 cpu_restore_state(current_tb
, env
,
990 env
->mem_io_pc
, NULL
);
991 cpu_get_tb_cpu_state(env
, ¤t_pc
, ¤t_cs_base
,
994 #endif /* TARGET_HAS_PRECISE_SMC */
995 /* we need to do that to handle the case where a signal
996 occurs while doing tb_phys_invalidate() */
999 saved_tb
= env
->current_tb
;
1000 env
->current_tb
= NULL
;
1002 tb_phys_invalidate(tb
, -1);
1004 env
->current_tb
= saved_tb
;
1005 if (env
->interrupt_request
&& env
->current_tb
)
1006 cpu_interrupt(env
, env
->interrupt_request
);
1011 #if !defined(CONFIG_USER_ONLY)
1012 /* if no code remaining, no need to continue to use slow writes */
1014 invalidate_page_bitmap(p
);
1015 if (is_cpu_write_access
) {
1016 tlb_unprotect_code_phys(env
, start
, env
->mem_io_vaddr
);
1020 #ifdef TARGET_HAS_PRECISE_SMC
1021 if (current_tb_modified
) {
1022 /* we generate a block containing just the instruction
1023 modifying the memory. It will ensure that it cannot modify
1025 env
->current_tb
= NULL
;
1026 tb_gen_code(env
, current_pc
, current_cs_base
, current_flags
, 1);
1027 cpu_resume_from_signal(env
, NULL
);
1032 /* len must be <= 8 and start must be a multiple of len */
1033 static inline void tb_invalidate_phys_page_fast(target_phys_addr_t start
, int len
)
1039 qemu_log("modifying code at 0x%x size=%d EIP=%x PC=%08x\n",
1040 cpu_single_env
->mem_io_vaddr
, len
,
1041 cpu_single_env
->eip
,
1042 cpu_single_env
->eip
+ (long)cpu_single_env
->segs
[R_CS
].base
);
1045 p
= page_find(start
>> TARGET_PAGE_BITS
);
1048 if (p
->code_bitmap
) {
1049 offset
= start
& ~TARGET_PAGE_MASK
;
1050 b
= p
->code_bitmap
[offset
>> 3] >> (offset
& 7);
1051 if (b
& ((1 << len
) - 1))
1055 tb_invalidate_phys_page_range(start
, start
+ len
, 1);
1059 #if !defined(CONFIG_SOFTMMU)
1060 static void tb_invalidate_phys_page(target_phys_addr_t addr
,
1061 unsigned long pc
, void *puc
)
1063 TranslationBlock
*tb
;
1066 #ifdef TARGET_HAS_PRECISE_SMC
1067 TranslationBlock
*current_tb
= NULL
;
1068 CPUState
*env
= cpu_single_env
;
1069 int current_tb_modified
= 0;
1070 target_ulong current_pc
= 0;
1071 target_ulong current_cs_base
= 0;
1072 int current_flags
= 0;
1075 addr
&= TARGET_PAGE_MASK
;
1076 p
= page_find(addr
>> TARGET_PAGE_BITS
);
1080 #ifdef TARGET_HAS_PRECISE_SMC
1081 if (tb
&& pc
!= 0) {
1082 current_tb
= tb_find_pc(pc
);
1085 while (tb
!= NULL
) {
1087 tb
= (TranslationBlock
*)((long)tb
& ~3);
1088 #ifdef TARGET_HAS_PRECISE_SMC
1089 if (current_tb
== tb
&&
1090 (current_tb
->cflags
& CF_COUNT_MASK
) != 1) {
1091 /* If we are modifying the current TB, we must stop
1092 its execution. We could be more precise by checking
1093 that the modification is after the current PC, but it
1094 would require a specialized function to partially
1095 restore the CPU state */
1097 current_tb_modified
= 1;
1098 cpu_restore_state(current_tb
, env
, pc
, puc
);
1099 cpu_get_tb_cpu_state(env
, ¤t_pc
, ¤t_cs_base
,
1102 #endif /* TARGET_HAS_PRECISE_SMC */
1103 tb_phys_invalidate(tb
, addr
);
1104 tb
= tb
->page_next
[n
];
1107 #ifdef TARGET_HAS_PRECISE_SMC
1108 if (current_tb_modified
) {
1109 /* we generate a block containing just the instruction
1110 modifying the memory. It will ensure that it cannot modify
1112 env
->current_tb
= NULL
;
1113 tb_gen_code(env
, current_pc
, current_cs_base
, current_flags
, 1);
1114 cpu_resume_from_signal(env
, puc
);
1120 /* add the tb in the target page and protect it if necessary */
1121 static inline void tb_alloc_page(TranslationBlock
*tb
,
1122 unsigned int n
, target_ulong page_addr
)
1125 TranslationBlock
*last_first_tb
;
1127 tb
->page_addr
[n
] = page_addr
;
1128 p
= page_find_alloc(page_addr
>> TARGET_PAGE_BITS
);
1129 tb
->page_next
[n
] = p
->first_tb
;
1130 last_first_tb
= p
->first_tb
;
1131 p
->first_tb
= (TranslationBlock
*)((long)tb
| n
);
1132 invalidate_page_bitmap(p
);
1134 #if defined(TARGET_HAS_SMC) || 1
1136 #if defined(CONFIG_USER_ONLY)
1137 if (p
->flags
& PAGE_WRITE
) {
1142 /* force the host page as non writable (writes will have a
1143 page fault + mprotect overhead) */
1144 page_addr
&= qemu_host_page_mask
;
1146 for(addr
= page_addr
; addr
< page_addr
+ qemu_host_page_size
;
1147 addr
+= TARGET_PAGE_SIZE
) {
1149 p2
= page_find (addr
>> TARGET_PAGE_BITS
);
1153 p2
->flags
&= ~PAGE_WRITE
;
1154 page_get_flags(addr
);
1156 mprotect(g2h(page_addr
), qemu_host_page_size
,
1157 (prot
& PAGE_BITS
) & ~PAGE_WRITE
);
1158 #ifdef DEBUG_TB_INVALIDATE
1159 printf("protecting code page: 0x" TARGET_FMT_lx
"\n",
1164 /* if some code is already present, then the pages are already
1165 protected. So we handle the case where only the first TB is
1166 allocated in a physical page */
1167 if (!last_first_tb
) {
1168 tlb_protect_code(page_addr
);
1172 #endif /* TARGET_HAS_SMC */
1175 /* Allocate a new translation block. Flush the translation buffer if
1176 too many translation blocks or too much generated code. */
1177 TranslationBlock
*tb_alloc(target_ulong pc
)
1179 TranslationBlock
*tb
;
1181 if (nb_tbs
>= code_gen_max_blocks
||
1182 (code_gen_ptr
- code_gen_buffer
) >= code_gen_buffer_max_size
)
1184 tb
= &tbs
[nb_tbs
++];
1190 void tb_free(TranslationBlock
*tb
)
1192 /* In practice this is mostly used for single use temporary TB
1193 Ignore the hard cases and just back up if this TB happens to
1194 be the last one generated. */
1195 if (nb_tbs
> 0 && tb
== &tbs
[nb_tbs
- 1]) {
1196 code_gen_ptr
= tb
->tc_ptr
;
1201 /* add a new TB and link it to the physical page tables. phys_page2 is
1202 (-1) to indicate that only one page contains the TB. */
1203 void tb_link_phys(TranslationBlock
*tb
,
1204 target_ulong phys_pc
, target_ulong phys_page2
)
1207 TranslationBlock
**ptb
;
1209 /* Grab the mmap lock to stop another thread invalidating this TB
1210 before we are done. */
1212 /* add in the physical hash table */
1213 h
= tb_phys_hash_func(phys_pc
);
1214 ptb
= &tb_phys_hash
[h
];
1215 tb
->phys_hash_next
= *ptb
;
1218 /* add in the page list */
1219 tb_alloc_page(tb
, 0, phys_pc
& TARGET_PAGE_MASK
);
1220 if (phys_page2
!= -1)
1221 tb_alloc_page(tb
, 1, phys_page2
);
1223 tb
->page_addr
[1] = -1;
1225 tb
->jmp_first
= (TranslationBlock
*)((long)tb
| 2);
1226 tb
->jmp_next
[0] = NULL
;
1227 tb
->jmp_next
[1] = NULL
;
1229 /* init original jump addresses */
1230 if (tb
->tb_next_offset
[0] != 0xffff)
1231 tb_reset_jump(tb
, 0);
1232 if (tb
->tb_next_offset
[1] != 0xffff)
1233 tb_reset_jump(tb
, 1);
1235 #ifdef DEBUG_TB_CHECK
1241 /* find the TB 'tb' such that tb[0].tc_ptr <= tc_ptr <
1242 tb[1].tc_ptr. Return NULL if not found */
1243 TranslationBlock
*tb_find_pc(unsigned long tc_ptr
)
1245 int m_min
, m_max
, m
;
1247 TranslationBlock
*tb
;
1251 if (tc_ptr
< (unsigned long)code_gen_buffer
||
1252 tc_ptr
>= (unsigned long)code_gen_ptr
)
1254 /* binary search (cf Knuth) */
1257 while (m_min
<= m_max
) {
1258 m
= (m_min
+ m_max
) >> 1;
1260 v
= (unsigned long)tb
->tc_ptr
;
1263 else if (tc_ptr
< v
) {
1272 static void tb_reset_jump_recursive(TranslationBlock
*tb
);
1274 static inline void tb_reset_jump_recursive2(TranslationBlock
*tb
, int n
)
1276 TranslationBlock
*tb1
, *tb_next
, **ptb
;
1279 tb1
= tb
->jmp_next
[n
];
1281 /* find head of list */
1284 tb1
= (TranslationBlock
*)((long)tb1
& ~3);
1287 tb1
= tb1
->jmp_next
[n1
];
1289 /* we are now sure now that tb jumps to tb1 */
1292 /* remove tb from the jmp_first list */
1293 ptb
= &tb_next
->jmp_first
;
1297 tb1
= (TranslationBlock
*)((long)tb1
& ~3);
1298 if (n1
== n
&& tb1
== tb
)
1300 ptb
= &tb1
->jmp_next
[n1
];
1302 *ptb
= tb
->jmp_next
[n
];
1303 tb
->jmp_next
[n
] = NULL
;
1305 /* suppress the jump to next tb in generated code */
1306 tb_reset_jump(tb
, n
);
1308 /* suppress jumps in the tb on which we could have jumped */
1309 tb_reset_jump_recursive(tb_next
);
1313 static void tb_reset_jump_recursive(TranslationBlock
*tb
)
1315 tb_reset_jump_recursive2(tb
, 0);
1316 tb_reset_jump_recursive2(tb
, 1);
1319 #if defined(TARGET_HAS_ICE)
1320 static void breakpoint_invalidate(CPUState
*env
, target_ulong pc
)
1322 target_phys_addr_t addr
;
1324 ram_addr_t ram_addr
;
1327 addr
= cpu_get_phys_page_debug(env
, pc
);
1328 p
= phys_page_find(addr
>> TARGET_PAGE_BITS
);
1330 pd
= IO_MEM_UNASSIGNED
;
1332 pd
= p
->phys_offset
;
1334 ram_addr
= (pd
& TARGET_PAGE_MASK
) | (pc
& ~TARGET_PAGE_MASK
);
1335 tb_invalidate_phys_page_range(ram_addr
, ram_addr
+ 1, 0);
1339 /* Add a watchpoint. */
1340 int cpu_watchpoint_insert(CPUState
*env
, target_ulong addr
, target_ulong len
,
1341 int flags
, CPUWatchpoint
**watchpoint
)
1343 target_ulong len_mask
= ~(len
- 1);
1346 /* sanity checks: allow power-of-2 lengths, deny unaligned watchpoints */
1347 if ((len
!= 1 && len
!= 2 && len
!= 4 && len
!= 8) || (addr
& ~len_mask
)) {
1348 fprintf(stderr
, "qemu: tried to set invalid watchpoint at "
1349 TARGET_FMT_lx
", len=" TARGET_FMT_lu
"\n", addr
, len
);
1352 wp
= qemu_malloc(sizeof(*wp
));
1355 wp
->len_mask
= len_mask
;
1358 /* keep all GDB-injected watchpoints in front */
1360 TAILQ_INSERT_HEAD(&env
->watchpoints
, wp
, entry
);
1362 TAILQ_INSERT_TAIL(&env
->watchpoints
, wp
, entry
);
1364 tlb_flush_page(env
, addr
);
1371 /* Remove a specific watchpoint. */
1372 int cpu_watchpoint_remove(CPUState
*env
, target_ulong addr
, target_ulong len
,
1375 target_ulong len_mask
= ~(len
- 1);
1378 TAILQ_FOREACH(wp
, &env
->watchpoints
, entry
) {
1379 if (addr
== wp
->vaddr
&& len_mask
== wp
->len_mask
1380 && flags
== (wp
->flags
& ~BP_WATCHPOINT_HIT
)) {
1381 cpu_watchpoint_remove_by_ref(env
, wp
);
1388 /* Remove a specific watchpoint by reference. */
1389 void cpu_watchpoint_remove_by_ref(CPUState
*env
, CPUWatchpoint
*watchpoint
)
1391 TAILQ_REMOVE(&env
->watchpoints
, watchpoint
, entry
);
1393 tlb_flush_page(env
, watchpoint
->vaddr
);
1395 qemu_free(watchpoint
);
1398 /* Remove all matching watchpoints. */
1399 void cpu_watchpoint_remove_all(CPUState
*env
, int mask
)
1401 CPUWatchpoint
*wp
, *next
;
1403 TAILQ_FOREACH_SAFE(wp
, &env
->watchpoints
, entry
, next
) {
1404 if (wp
->flags
& mask
)
1405 cpu_watchpoint_remove_by_ref(env
, wp
);
1409 /* Add a breakpoint. */
1410 int cpu_breakpoint_insert(CPUState
*env
, target_ulong pc
, int flags
,
1411 CPUBreakpoint
**breakpoint
)
1413 #if defined(TARGET_HAS_ICE)
1416 bp
= qemu_malloc(sizeof(*bp
));
1421 /* keep all GDB-injected breakpoints in front */
1423 TAILQ_INSERT_HEAD(&env
->breakpoints
, bp
, entry
);
1425 TAILQ_INSERT_TAIL(&env
->breakpoints
, bp
, entry
);
1427 breakpoint_invalidate(env
, pc
);
1437 /* Remove a specific breakpoint. */
1438 int cpu_breakpoint_remove(CPUState
*env
, target_ulong pc
, int flags
)
1440 #if defined(TARGET_HAS_ICE)
1443 TAILQ_FOREACH(bp
, &env
->breakpoints
, entry
) {
1444 if (bp
->pc
== pc
&& bp
->flags
== flags
) {
1445 cpu_breakpoint_remove_by_ref(env
, bp
);
1455 /* Remove a specific breakpoint by reference. */
1456 void cpu_breakpoint_remove_by_ref(CPUState
*env
, CPUBreakpoint
*breakpoint
)
1458 #if defined(TARGET_HAS_ICE)
1459 TAILQ_REMOVE(&env
->breakpoints
, breakpoint
, entry
);
1461 breakpoint_invalidate(env
, breakpoint
->pc
);
1463 qemu_free(breakpoint
);
1467 /* Remove all matching breakpoints. */
1468 void cpu_breakpoint_remove_all(CPUState
*env
, int mask
)
1470 #if defined(TARGET_HAS_ICE)
1471 CPUBreakpoint
*bp
, *next
;
1473 TAILQ_FOREACH_SAFE(bp
, &env
->breakpoints
, entry
, next
) {
1474 if (bp
->flags
& mask
)
1475 cpu_breakpoint_remove_by_ref(env
, bp
);
1480 /* enable or disable single step mode. EXCP_DEBUG is returned by the
1481 CPU loop after each instruction */
1482 void cpu_single_step(CPUState
*env
, int enabled
)
1484 #if defined(TARGET_HAS_ICE)
1485 if (env
->singlestep_enabled
!= enabled
) {
1486 env
->singlestep_enabled
= enabled
;
1488 kvm_update_guest_debug(env
, 0);
1490 /* must flush all the translated code to avoid inconsistencies */
1491 /* XXX: only flush what is necessary */
1498 /* enable or disable low levels log */
1499 void cpu_set_log(int log_flags
)
1501 loglevel
= log_flags
;
1502 if (loglevel
&& !logfile
) {
1503 logfile
= fopen(logfilename
, log_append
? "a" : "w");
1505 perror(logfilename
);
1508 #if !defined(CONFIG_SOFTMMU)
1509 /* must avoid mmap() usage of glibc by setting a buffer "by hand" */
1511 static char logfile_buf
[4096];
1512 setvbuf(logfile
, logfile_buf
, _IOLBF
, sizeof(logfile_buf
));
1515 setvbuf(logfile
, NULL
, _IOLBF
, 0);
1519 if (!loglevel
&& logfile
) {
1525 void cpu_set_log_filename(const char *filename
)
1527 logfilename
= strdup(filename
);
1532 cpu_set_log(loglevel
);
1535 static void cpu_unlink_tb(CPUState
*env
)
1537 #if defined(USE_NPTL)
1538 /* FIXME: TB unchaining isn't SMP safe. For now just ignore the
1539 problem and hope the cpu will stop of its own accord. For userspace
1540 emulation this often isn't actually as bad as it sounds. Often
1541 signals are used primarily to interrupt blocking syscalls. */
1543 TranslationBlock
*tb
;
1544 static spinlock_t interrupt_lock
= SPIN_LOCK_UNLOCKED
;
1546 tb
= env
->current_tb
;
1547 /* if the cpu is currently executing code, we must unlink it and
1548 all the potentially executing TB */
1549 if (tb
&& !testandset(&interrupt_lock
)) {
1550 env
->current_tb
= NULL
;
1551 tb_reset_jump_recursive(tb
);
1552 resetlock(&interrupt_lock
);
1557 /* mask must never be zero, except for A20 change call */
1558 void cpu_interrupt(CPUState
*env
, int mask
)
1562 old_mask
= env
->interrupt_request
;
1563 env
->interrupt_request
|= mask
;
1565 #ifndef CONFIG_USER_ONLY
1567 * If called from iothread context, wake the target cpu in
1570 if (!qemu_cpu_self(env
)) {
1577 env
->icount_decr
.u16
.high
= 0xffff;
1578 #ifndef CONFIG_USER_ONLY
1580 && (mask
& ~old_mask
) != 0) {
1581 cpu_abort(env
, "Raised interrupt while not in I/O function");
1589 void cpu_reset_interrupt(CPUState
*env
, int mask
)
1591 env
->interrupt_request
&= ~mask
;
1594 void cpu_exit(CPUState
*env
)
1596 env
->exit_request
= 1;
1600 const CPULogItem cpu_log_items
[] = {
1601 { CPU_LOG_TB_OUT_ASM
, "out_asm",
1602 "show generated host assembly code for each compiled TB" },
1603 { CPU_LOG_TB_IN_ASM
, "in_asm",
1604 "show target assembly code for each compiled TB" },
1605 { CPU_LOG_TB_OP
, "op",
1606 "show micro ops for each compiled TB" },
1607 { CPU_LOG_TB_OP_OPT
, "op_opt",
1610 "before eflags optimization and "
1612 "after liveness analysis" },
1613 { CPU_LOG_INT
, "int",
1614 "show interrupts/exceptions in short format" },
1615 { CPU_LOG_EXEC
, "exec",
1616 "show trace before each executed TB (lots of logs)" },
1617 { CPU_LOG_TB_CPU
, "cpu",
1618 "show CPU state before block translation" },
1620 { CPU_LOG_PCALL
, "pcall",
1621 "show protected mode far calls/returns/exceptions" },
1622 { CPU_LOG_RESET
, "cpu_reset",
1623 "show CPU state before CPU resets" },
1626 { CPU_LOG_IOPORT
, "ioport",
1627 "show all i/o ports accesses" },
1632 static int cmp1(const char *s1
, int n
, const char *s2
)
1634 if (strlen(s2
) != n
)
1636 return memcmp(s1
, s2
, n
) == 0;
1639 /* takes a comma separated list of log masks. Return 0 if error. */
1640 int cpu_str_to_log_mask(const char *str
)
1642 const CPULogItem
*item
;
1649 p1
= strchr(p
, ',');
1652 if(cmp1(p
,p1
-p
,"all")) {
1653 for(item
= cpu_log_items
; item
->mask
!= 0; item
++) {
1657 for(item
= cpu_log_items
; item
->mask
!= 0; item
++) {
1658 if (cmp1(p
, p1
- p
, item
->name
))
1672 void cpu_abort(CPUState
*env
, const char *fmt
, ...)
1679 fprintf(stderr
, "qemu: fatal: ");
1680 vfprintf(stderr
, fmt
, ap
);
1681 fprintf(stderr
, "\n");
1683 cpu_dump_state(env
, stderr
, fprintf
, X86_DUMP_FPU
| X86_DUMP_CCOP
);
1685 cpu_dump_state(env
, stderr
, fprintf
, 0);
1687 if (qemu_log_enabled()) {
1688 qemu_log("qemu: fatal: ");
1689 qemu_log_vprintf(fmt
, ap2
);
1692 log_cpu_state(env
, X86_DUMP_FPU
| X86_DUMP_CCOP
);
1694 log_cpu_state(env
, 0);
1704 CPUState
*cpu_copy(CPUState
*env
)
1706 CPUState
*new_env
= cpu_init(env
->cpu_model_str
);
1707 CPUState
*next_cpu
= new_env
->next_cpu
;
1708 int cpu_index
= new_env
->cpu_index
;
1709 #if defined(TARGET_HAS_ICE)
1714 memcpy(new_env
, env
, sizeof(CPUState
));
1716 /* Preserve chaining and index. */
1717 new_env
->next_cpu
= next_cpu
;
1718 new_env
->cpu_index
= cpu_index
;
1720 /* Clone all break/watchpoints.
1721 Note: Once we support ptrace with hw-debug register access, make sure
1722 BP_CPU break/watchpoints are handled correctly on clone. */
1723 TAILQ_INIT(&env
->breakpoints
);
1724 TAILQ_INIT(&env
->watchpoints
);
1725 #if defined(TARGET_HAS_ICE)
1726 TAILQ_FOREACH(bp
, &env
->breakpoints
, entry
) {
1727 cpu_breakpoint_insert(new_env
, bp
->pc
, bp
->flags
, NULL
);
1729 TAILQ_FOREACH(wp
, &env
->watchpoints
, entry
) {
1730 cpu_watchpoint_insert(new_env
, wp
->vaddr
, (~wp
->len_mask
) + 1,
1738 #if !defined(CONFIG_USER_ONLY)
1740 static inline void tlb_flush_jmp_cache(CPUState
*env
, target_ulong addr
)
1744 /* Discard jump cache entries for any tb which might potentially
1745 overlap the flushed page. */
1746 i
= tb_jmp_cache_hash_page(addr
- TARGET_PAGE_SIZE
);
1747 memset (&env
->tb_jmp_cache
[i
], 0,
1748 TB_JMP_PAGE_SIZE
* sizeof(TranslationBlock
*));
1750 i
= tb_jmp_cache_hash_page(addr
);
1751 memset (&env
->tb_jmp_cache
[i
], 0,
1752 TB_JMP_PAGE_SIZE
* sizeof(TranslationBlock
*));
1755 /* NOTE: if flush_global is true, also flush global entries (not
1757 void tlb_flush(CPUState
*env
, int flush_global
)
1761 #if defined(DEBUG_TLB)
1762 printf("tlb_flush:\n");
1764 /* must reset current TB so that interrupts cannot modify the
1765 links while we are modifying them */
1766 env
->current_tb
= NULL
;
1768 for(i
= 0; i
< CPU_TLB_SIZE
; i
++) {
1770 for (mmu_idx
= 0; mmu_idx
< NB_MMU_MODES
; mmu_idx
++) {
1771 env
->tlb_table
[mmu_idx
][i
].addr_read
= -1;
1772 env
->tlb_table
[mmu_idx
][i
].addr_write
= -1;
1773 env
->tlb_table
[mmu_idx
][i
].addr_code
= -1;
1777 memset (env
->tb_jmp_cache
, 0, TB_JMP_CACHE_SIZE
* sizeof (void *));
1780 if (env
->kqemu_enabled
) {
1781 kqemu_flush(env
, flush_global
);
1787 static inline void tlb_flush_entry(CPUTLBEntry
*tlb_entry
, target_ulong addr
)
1789 if (addr
== (tlb_entry
->addr_read
&
1790 (TARGET_PAGE_MASK
| TLB_INVALID_MASK
)) ||
1791 addr
== (tlb_entry
->addr_write
&
1792 (TARGET_PAGE_MASK
| TLB_INVALID_MASK
)) ||
1793 addr
== (tlb_entry
->addr_code
&
1794 (TARGET_PAGE_MASK
| TLB_INVALID_MASK
))) {
1795 tlb_entry
->addr_read
= -1;
1796 tlb_entry
->addr_write
= -1;
1797 tlb_entry
->addr_code
= -1;
1801 void tlb_flush_page(CPUState
*env
, target_ulong addr
)
1806 #if defined(DEBUG_TLB)
1807 printf("tlb_flush_page: " TARGET_FMT_lx
"\n", addr
);
1809 /* must reset current TB so that interrupts cannot modify the
1810 links while we are modifying them */
1811 env
->current_tb
= NULL
;
1813 addr
&= TARGET_PAGE_MASK
;
1814 i
= (addr
>> TARGET_PAGE_BITS
) & (CPU_TLB_SIZE
- 1);
1815 for (mmu_idx
= 0; mmu_idx
< NB_MMU_MODES
; mmu_idx
++)
1816 tlb_flush_entry(&env
->tlb_table
[mmu_idx
][i
], addr
);
1818 tlb_flush_jmp_cache(env
, addr
);
1821 if (env
->kqemu_enabled
) {
1822 kqemu_flush_page(env
, addr
);
1827 /* update the TLBs so that writes to code in the virtual page 'addr'
1829 static void tlb_protect_code(ram_addr_t ram_addr
)
1831 cpu_physical_memory_reset_dirty(ram_addr
,
1832 ram_addr
+ TARGET_PAGE_SIZE
,
1836 /* update the TLB so that writes in physical page 'phys_addr' are no longer
1837 tested for self modifying code */
1838 static void tlb_unprotect_code_phys(CPUState
*env
, ram_addr_t ram_addr
,
1841 phys_ram_dirty
[ram_addr
>> TARGET_PAGE_BITS
] |= CODE_DIRTY_FLAG
;
1844 static inline void tlb_reset_dirty_range(CPUTLBEntry
*tlb_entry
,
1845 unsigned long start
, unsigned long length
)
1848 if ((tlb_entry
->addr_write
& ~TARGET_PAGE_MASK
) == IO_MEM_RAM
) {
1849 addr
= (tlb_entry
->addr_write
& TARGET_PAGE_MASK
) + tlb_entry
->addend
;
1850 if ((addr
- start
) < length
) {
1851 tlb_entry
->addr_write
= (tlb_entry
->addr_write
& TARGET_PAGE_MASK
) | TLB_NOTDIRTY
;
1856 /* Note: start and end must be within the same ram block. */
1857 void cpu_physical_memory_reset_dirty(ram_addr_t start
, ram_addr_t end
,
1861 unsigned long length
, start1
;
1865 start
&= TARGET_PAGE_MASK
;
1866 end
= TARGET_PAGE_ALIGN(end
);
1868 length
= end
- start
;
1871 len
= length
>> TARGET_PAGE_BITS
;
1873 /* XXX: should not depend on cpu context */
1875 if (env
->kqemu_enabled
) {
1878 for(i
= 0; i
< len
; i
++) {
1879 kqemu_set_notdirty(env
, addr
);
1880 addr
+= TARGET_PAGE_SIZE
;
1884 mask
= ~dirty_flags
;
1885 p
= phys_ram_dirty
+ (start
>> TARGET_PAGE_BITS
);
1886 for(i
= 0; i
< len
; i
++)
1889 /* we modify the TLB cache so that the dirty bit will be set again
1890 when accessing the range */
1891 start1
= (unsigned long)qemu_get_ram_ptr(start
);
1892 /* Chek that we don't span multiple blocks - this breaks the
1893 address comparisons below. */
1894 if ((unsigned long)qemu_get_ram_ptr(end
- 1) - start1
1895 != (end
- 1) - start
) {
1899 for(env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
1901 for (mmu_idx
= 0; mmu_idx
< NB_MMU_MODES
; mmu_idx
++) {
1902 for(i
= 0; i
< CPU_TLB_SIZE
; i
++)
1903 tlb_reset_dirty_range(&env
->tlb_table
[mmu_idx
][i
],
1909 int cpu_physical_memory_set_dirty_tracking(int enable
)
1911 in_migration
= enable
;
1912 if (kvm_enabled()) {
1913 return kvm_set_migration_log(enable
);
1918 int cpu_physical_memory_get_dirty_tracking(void)
1920 return in_migration
;
1923 int cpu_physical_sync_dirty_bitmap(target_phys_addr_t start_addr
,
1924 target_phys_addr_t end_addr
)
1929 ret
= kvm_physical_sync_dirty_bitmap(start_addr
, end_addr
);
1933 static inline void tlb_update_dirty(CPUTLBEntry
*tlb_entry
)
1935 ram_addr_t ram_addr
;
1938 if ((tlb_entry
->addr_write
& ~TARGET_PAGE_MASK
) == IO_MEM_RAM
) {
1939 p
= (void *)(unsigned long)((tlb_entry
->addr_write
& TARGET_PAGE_MASK
)
1940 + tlb_entry
->addend
);
1941 ram_addr
= qemu_ram_addr_from_host(p
);
1942 if (!cpu_physical_memory_is_dirty(ram_addr
)) {
1943 tlb_entry
->addr_write
|= TLB_NOTDIRTY
;
1948 /* update the TLB according to the current state of the dirty bits */
1949 void cpu_tlb_update_dirty(CPUState
*env
)
1953 for (mmu_idx
= 0; mmu_idx
< NB_MMU_MODES
; mmu_idx
++) {
1954 for(i
= 0; i
< CPU_TLB_SIZE
; i
++)
1955 tlb_update_dirty(&env
->tlb_table
[mmu_idx
][i
]);
1959 static inline void tlb_set_dirty1(CPUTLBEntry
*tlb_entry
, target_ulong vaddr
)
1961 if (tlb_entry
->addr_write
== (vaddr
| TLB_NOTDIRTY
))
1962 tlb_entry
->addr_write
= vaddr
;
1965 /* update the TLB corresponding to virtual page vaddr
1966 so that it is no longer dirty */
1967 static inline void tlb_set_dirty(CPUState
*env
, target_ulong vaddr
)
1972 vaddr
&= TARGET_PAGE_MASK
;
1973 i
= (vaddr
>> TARGET_PAGE_BITS
) & (CPU_TLB_SIZE
- 1);
1974 for (mmu_idx
= 0; mmu_idx
< NB_MMU_MODES
; mmu_idx
++)
1975 tlb_set_dirty1(&env
->tlb_table
[mmu_idx
][i
], vaddr
);
1978 /* add a new TLB entry. At most one entry for a given virtual address
1979 is permitted. Return 0 if OK or 2 if the page could not be mapped
1980 (can only happen in non SOFTMMU mode for I/O pages or pages
1981 conflicting with the host address space). */
1982 int tlb_set_page_exec(CPUState
*env
, target_ulong vaddr
,
1983 target_phys_addr_t paddr
, int prot
,
1984 int mmu_idx
, int is_softmmu
)
1989 target_ulong address
;
1990 target_ulong code_address
;
1991 target_phys_addr_t addend
;
1995 target_phys_addr_t iotlb
;
1997 p
= phys_page_find(paddr
>> TARGET_PAGE_BITS
);
1999 pd
= IO_MEM_UNASSIGNED
;
2001 pd
= p
->phys_offset
;
2003 #if defined(DEBUG_TLB)
2004 printf("tlb_set_page: vaddr=" TARGET_FMT_lx
" paddr=0x%08x prot=%x idx=%d smmu=%d pd=0x%08lx\n",
2005 vaddr
, (int)paddr
, prot
, mmu_idx
, is_softmmu
, pd
);
2010 if ((pd
& ~TARGET_PAGE_MASK
) > IO_MEM_ROM
&& !(pd
& IO_MEM_ROMD
)) {
2011 /* IO memory case (romd handled later) */
2012 address
|= TLB_MMIO
;
2014 addend
= (unsigned long)qemu_get_ram_ptr(pd
& TARGET_PAGE_MASK
);
2015 if ((pd
& ~TARGET_PAGE_MASK
) <= IO_MEM_ROM
) {
2017 iotlb
= pd
& TARGET_PAGE_MASK
;
2018 if ((pd
& ~TARGET_PAGE_MASK
) == IO_MEM_RAM
)
2019 iotlb
|= IO_MEM_NOTDIRTY
;
2021 iotlb
|= IO_MEM_ROM
;
2023 /* IO handlers are currently passed a physical address.
2024 It would be nice to pass an offset from the base address
2025 of that region. This would avoid having to special case RAM,
2026 and avoid full address decoding in every device.
2027 We can't use the high bits of pd for this because
2028 IO_MEM_ROMD uses these as a ram address. */
2029 iotlb
= (pd
& ~TARGET_PAGE_MASK
);
2031 iotlb
+= p
->region_offset
;
2037 code_address
= address
;
2038 /* Make accesses to pages with watchpoints go via the
2039 watchpoint trap routines. */
2040 TAILQ_FOREACH(wp
, &env
->watchpoints
, entry
) {
2041 if (vaddr
== (wp
->vaddr
& TARGET_PAGE_MASK
)) {
2042 iotlb
= io_mem_watch
+ paddr
;
2043 /* TODO: The memory case can be optimized by not trapping
2044 reads of pages with a write breakpoint. */
2045 address
|= TLB_MMIO
;
2049 index
= (vaddr
>> TARGET_PAGE_BITS
) & (CPU_TLB_SIZE
- 1);
2050 env
->iotlb
[mmu_idx
][index
] = iotlb
- vaddr
;
2051 te
= &env
->tlb_table
[mmu_idx
][index
];
2052 te
->addend
= addend
- vaddr
;
2053 if (prot
& PAGE_READ
) {
2054 te
->addr_read
= address
;
2059 if (prot
& PAGE_EXEC
) {
2060 te
->addr_code
= code_address
;
2064 if (prot
& PAGE_WRITE
) {
2065 if ((pd
& ~TARGET_PAGE_MASK
) == IO_MEM_ROM
||
2066 (pd
& IO_MEM_ROMD
)) {
2067 /* Write access calls the I/O callback. */
2068 te
->addr_write
= address
| TLB_MMIO
;
2069 } else if ((pd
& ~TARGET_PAGE_MASK
) == IO_MEM_RAM
&&
2070 !cpu_physical_memory_is_dirty(pd
)) {
2071 te
->addr_write
= address
| TLB_NOTDIRTY
;
2073 te
->addr_write
= address
;
2076 te
->addr_write
= -1;
2083 void tlb_flush(CPUState
*env
, int flush_global
)
2087 void tlb_flush_page(CPUState
*env
, target_ulong addr
)
2091 int tlb_set_page_exec(CPUState
*env
, target_ulong vaddr
,
2092 target_phys_addr_t paddr
, int prot
,
2093 int mmu_idx
, int is_softmmu
)
2099 * Walks guest process memory "regions" one by one
2100 * and calls callback function 'fn' for each region.
2102 int walk_memory_regions(void *priv
,
2103 int (*fn
)(void *, unsigned long, unsigned long, unsigned long))
2105 unsigned long start
, end
;
2107 int i
, j
, prot
, prot1
;
2113 for (i
= 0; i
<= L1_SIZE
; i
++) {
2114 p
= (i
< L1_SIZE
) ? l1_map
[i
] : NULL
;
2115 for (j
= 0; j
< L2_SIZE
; j
++) {
2116 prot1
= (p
== NULL
) ? 0 : p
[j
].flags
;
2118 * "region" is one continuous chunk of memory
2119 * that has same protection flags set.
2121 if (prot1
!= prot
) {
2122 end
= (i
<< (32 - L1_BITS
)) | (j
<< TARGET_PAGE_BITS
);
2124 rc
= (*fn
)(priv
, start
, end
, prot
);
2125 /* callback can stop iteration by returning != 0 */
2142 static int dump_region(void *priv
, unsigned long start
,
2143 unsigned long end
, unsigned long prot
)
2145 FILE *f
= (FILE *)priv
;
2147 (void) fprintf(f
, "%08lx-%08lx %08lx %c%c%c\n",
2148 start
, end
, end
- start
,
2149 ((prot
& PAGE_READ
) ? 'r' : '-'),
2150 ((prot
& PAGE_WRITE
) ? 'w' : '-'),
2151 ((prot
& PAGE_EXEC
) ? 'x' : '-'));
2156 /* dump memory mappings */
2157 void page_dump(FILE *f
)
2159 (void) fprintf(f
, "%-8s %-8s %-8s %s\n",
2160 "start", "end", "size", "prot");
2161 walk_memory_regions(f
, dump_region
);
2164 int page_get_flags(target_ulong address
)
2168 p
= page_find(address
>> TARGET_PAGE_BITS
);
2174 /* modify the flags of a page and invalidate the code if
2175 necessary. The flag PAGE_WRITE_ORG is positioned automatically
2176 depending on PAGE_WRITE */
2177 void page_set_flags(target_ulong start
, target_ulong end
, int flags
)
2182 /* mmap_lock should already be held. */
2183 start
= start
& TARGET_PAGE_MASK
;
2184 end
= TARGET_PAGE_ALIGN(end
);
2185 if (flags
& PAGE_WRITE
)
2186 flags
|= PAGE_WRITE_ORG
;
2187 for(addr
= start
; addr
< end
; addr
+= TARGET_PAGE_SIZE
) {
2188 p
= page_find_alloc(addr
>> TARGET_PAGE_BITS
);
2189 /* We may be called for host regions that are outside guest
2193 /* if the write protection is set, then we invalidate the code
2195 if (!(p
->flags
& PAGE_WRITE
) &&
2196 (flags
& PAGE_WRITE
) &&
2198 tb_invalidate_phys_page(addr
, 0, NULL
);
2204 int page_check_range(target_ulong start
, target_ulong len
, int flags
)
2210 if (start
+ len
< start
)
2211 /* we've wrapped around */
2214 end
= TARGET_PAGE_ALIGN(start
+len
); /* must do before we loose bits in the next step */
2215 start
= start
& TARGET_PAGE_MASK
;
2217 for(addr
= start
; addr
< end
; addr
+= TARGET_PAGE_SIZE
) {
2218 p
= page_find(addr
>> TARGET_PAGE_BITS
);
2221 if( !(p
->flags
& PAGE_VALID
) )
2224 if ((flags
& PAGE_READ
) && !(p
->flags
& PAGE_READ
))
2226 if (flags
& PAGE_WRITE
) {
2227 if (!(p
->flags
& PAGE_WRITE_ORG
))
2229 /* unprotect the page if it was put read-only because it
2230 contains translated code */
2231 if (!(p
->flags
& PAGE_WRITE
)) {
2232 if (!page_unprotect(addr
, 0, NULL
))
2241 /* called from signal handler: invalidate the code and unprotect the
2242 page. Return TRUE if the fault was successfully handled. */
2243 int page_unprotect(target_ulong address
, unsigned long pc
, void *puc
)
2245 unsigned int page_index
, prot
, pindex
;
2247 target_ulong host_start
, host_end
, addr
;
2249 /* Technically this isn't safe inside a signal handler. However we
2250 know this only ever happens in a synchronous SEGV handler, so in
2251 practice it seems to be ok. */
2254 host_start
= address
& qemu_host_page_mask
;
2255 page_index
= host_start
>> TARGET_PAGE_BITS
;
2256 p1
= page_find(page_index
);
2261 host_end
= host_start
+ qemu_host_page_size
;
2264 for(addr
= host_start
;addr
< host_end
; addr
+= TARGET_PAGE_SIZE
) {
2268 /* if the page was really writable, then we change its
2269 protection back to writable */
2270 if (prot
& PAGE_WRITE_ORG
) {
2271 pindex
= (address
- host_start
) >> TARGET_PAGE_BITS
;
2272 if (!(p1
[pindex
].flags
& PAGE_WRITE
)) {
2273 mprotect((void *)g2h(host_start
), qemu_host_page_size
,
2274 (prot
& PAGE_BITS
) | PAGE_WRITE
);
2275 p1
[pindex
].flags
|= PAGE_WRITE
;
2276 /* and since the content will be modified, we must invalidate
2277 the corresponding translated code. */
2278 tb_invalidate_phys_page(address
, pc
, puc
);
2279 #ifdef DEBUG_TB_CHECK
2280 tb_invalidate_check(address
);
2290 static inline void tlb_set_dirty(CPUState
*env
,
2291 unsigned long addr
, target_ulong vaddr
)
2294 #endif /* defined(CONFIG_USER_ONLY) */
2296 #if !defined(CONFIG_USER_ONLY)
2298 static int subpage_register (subpage_t
*mmio
, uint32_t start
, uint32_t end
,
2299 ram_addr_t memory
, ram_addr_t region_offset
);
2300 static void *subpage_init (target_phys_addr_t base
, ram_addr_t
*phys
,
2301 ram_addr_t orig_memory
, ram_addr_t region_offset
);
2302 #define CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2, \
2305 if (addr > start_addr) \
2308 start_addr2 = start_addr & ~TARGET_PAGE_MASK; \
2309 if (start_addr2 > 0) \
2313 if ((start_addr + orig_size) - addr >= TARGET_PAGE_SIZE) \
2314 end_addr2 = TARGET_PAGE_SIZE - 1; \
2316 end_addr2 = (start_addr + orig_size - 1) & ~TARGET_PAGE_MASK; \
2317 if (end_addr2 < TARGET_PAGE_SIZE - 1) \
2322 /* register physical memory. 'size' must be a multiple of the target
2323 page size. If (phys_offset & ~TARGET_PAGE_MASK) != 0, then it is an
2324 io memory page. The address used when calling the IO function is
2325 the offset from the start of the region, plus region_offset. Both
2326 start_addr and region_offset are rounded down to a page boundary
2327 before calculating this offset. This should not be a problem unless
2328 the low bits of start_addr and region_offset differ. */
2329 void cpu_register_physical_memory_offset(target_phys_addr_t start_addr
,
2331 ram_addr_t phys_offset
,
2332 ram_addr_t region_offset
)
2334 target_phys_addr_t addr
, end_addr
;
2337 ram_addr_t orig_size
= size
;
2341 /* XXX: should not depend on cpu context */
2343 if (env
->kqemu_enabled
) {
2344 kqemu_set_phys_mem(start_addr
, size
, phys_offset
);
2348 kvm_set_phys_mem(start_addr
, size
, phys_offset
);
2350 if (phys_offset
== IO_MEM_UNASSIGNED
) {
2351 region_offset
= start_addr
;
2353 region_offset
&= TARGET_PAGE_MASK
;
2354 size
= (size
+ TARGET_PAGE_SIZE
- 1) & TARGET_PAGE_MASK
;
2355 end_addr
= start_addr
+ (target_phys_addr_t
)size
;
2356 for(addr
= start_addr
; addr
!= end_addr
; addr
+= TARGET_PAGE_SIZE
) {
2357 p
= phys_page_find(addr
>> TARGET_PAGE_BITS
);
2358 if (p
&& p
->phys_offset
!= IO_MEM_UNASSIGNED
) {
2359 ram_addr_t orig_memory
= p
->phys_offset
;
2360 target_phys_addr_t start_addr2
, end_addr2
;
2361 int need_subpage
= 0;
2363 CHECK_SUBPAGE(addr
, start_addr
, start_addr2
, end_addr
, end_addr2
,
2365 if (need_subpage
|| phys_offset
& IO_MEM_SUBWIDTH
) {
2366 if (!(orig_memory
& IO_MEM_SUBPAGE
)) {
2367 subpage
= subpage_init((addr
& TARGET_PAGE_MASK
),
2368 &p
->phys_offset
, orig_memory
,
2371 subpage
= io_mem_opaque
[(orig_memory
& ~TARGET_PAGE_MASK
)
2374 subpage_register(subpage
, start_addr2
, end_addr2
, phys_offset
,
2376 p
->region_offset
= 0;
2378 p
->phys_offset
= phys_offset
;
2379 if ((phys_offset
& ~TARGET_PAGE_MASK
) <= IO_MEM_ROM
||
2380 (phys_offset
& IO_MEM_ROMD
))
2381 phys_offset
+= TARGET_PAGE_SIZE
;
2384 p
= phys_page_find_alloc(addr
>> TARGET_PAGE_BITS
, 1);
2385 p
->phys_offset
= phys_offset
;
2386 p
->region_offset
= region_offset
;
2387 if ((phys_offset
& ~TARGET_PAGE_MASK
) <= IO_MEM_ROM
||
2388 (phys_offset
& IO_MEM_ROMD
)) {
2389 phys_offset
+= TARGET_PAGE_SIZE
;
2391 target_phys_addr_t start_addr2
, end_addr2
;
2392 int need_subpage
= 0;
2394 CHECK_SUBPAGE(addr
, start_addr
, start_addr2
, end_addr
,
2395 end_addr2
, need_subpage
);
2397 if (need_subpage
|| phys_offset
& IO_MEM_SUBWIDTH
) {
2398 subpage
= subpage_init((addr
& TARGET_PAGE_MASK
),
2399 &p
->phys_offset
, IO_MEM_UNASSIGNED
,
2400 addr
& TARGET_PAGE_MASK
);
2401 subpage_register(subpage
, start_addr2
, end_addr2
,
2402 phys_offset
, region_offset
);
2403 p
->region_offset
= 0;
2407 region_offset
+= TARGET_PAGE_SIZE
;
2410 /* since each CPU stores ram addresses in its TLB cache, we must
2411 reset the modified entries */
2413 for(env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
2418 /* XXX: temporary until new memory mapping API */
2419 ram_addr_t
cpu_get_physical_page_desc(target_phys_addr_t addr
)
2423 p
= phys_page_find(addr
>> TARGET_PAGE_BITS
);
2425 return IO_MEM_UNASSIGNED
;
2426 return p
->phys_offset
;
2429 void qemu_register_coalesced_mmio(target_phys_addr_t addr
, ram_addr_t size
)
2432 kvm_coalesce_mmio_region(addr
, size
);
2435 void qemu_unregister_coalesced_mmio(target_phys_addr_t addr
, ram_addr_t size
)
2438 kvm_uncoalesce_mmio_region(addr
, size
);
2442 /* XXX: better than nothing */
2443 static ram_addr_t
kqemu_ram_alloc(ram_addr_t size
)
2446 if ((last_ram_offset
+ size
) > kqemu_phys_ram_size
) {
2447 fprintf(stderr
, "Not enough memory (requested_size = %" PRIu64
", max memory = %" PRIu64
")\n",
2448 (uint64_t)size
, (uint64_t)kqemu_phys_ram_size
);
2451 addr
= last_ram_offset
;
2452 last_ram_offset
= TARGET_PAGE_ALIGN(last_ram_offset
+ size
);
2457 ram_addr_t
qemu_ram_alloc(ram_addr_t size
)
2459 RAMBlock
*new_block
;
2462 if (kqemu_phys_ram_base
) {
2463 return kqemu_ram_alloc(size
);
2467 size
= TARGET_PAGE_ALIGN(size
);
2468 new_block
= qemu_malloc(sizeof(*new_block
));
2470 new_block
->host
= qemu_vmalloc(size
);
2471 new_block
->offset
= last_ram_offset
;
2472 new_block
->length
= size
;
2474 new_block
->next
= ram_blocks
;
2475 ram_blocks
= new_block
;
2477 phys_ram_dirty
= qemu_realloc(phys_ram_dirty
,
2478 (last_ram_offset
+ size
) >> TARGET_PAGE_BITS
);
2479 memset(phys_ram_dirty
+ (last_ram_offset
>> TARGET_PAGE_BITS
),
2480 0xff, size
>> TARGET_PAGE_BITS
);
2482 last_ram_offset
+= size
;
2485 kvm_setup_guest_memory(new_block
->host
, size
);
2487 return new_block
->offset
;
2490 void qemu_ram_free(ram_addr_t addr
)
2492 /* TODO: implement this. */
2495 /* Return a host pointer to ram allocated with qemu_ram_alloc.
2496 With the exception of the softmmu code in this file, this should
2497 only be used for local memory (e.g. video ram) that the device owns,
2498 and knows it isn't going to access beyond the end of the block.
2500 It should not be used for general purpose DMA.
2501 Use cpu_physical_memory_map/cpu_physical_memory_rw instead.
2503 void *qemu_get_ram_ptr(ram_addr_t addr
)
2510 if (kqemu_phys_ram_base
) {
2511 return kqemu_phys_ram_base
+ addr
;
2516 prevp
= &ram_blocks
;
2518 while (block
&& (block
->offset
> addr
2519 || block
->offset
+ block
->length
<= addr
)) {
2521 prevp
= &prev
->next
;
2523 block
= block
->next
;
2526 fprintf(stderr
, "Bad ram offset %" PRIx64
"\n", (uint64_t)addr
);
2529 /* Move this entry to to start of the list. */
2531 prev
->next
= block
->next
;
2532 block
->next
= *prevp
;
2535 return block
->host
+ (addr
- block
->offset
);
2538 /* Some of the softmmu routines need to translate from a host pointer
2539 (typically a TLB entry) back to a ram offset. */
2540 ram_addr_t
qemu_ram_addr_from_host(void *ptr
)
2545 uint8_t *host
= ptr
;
2548 if (kqemu_phys_ram_base
) {
2549 return host
- kqemu_phys_ram_base
;
2554 prevp
= &ram_blocks
;
2556 while (block
&& (block
->host
> host
2557 || block
->host
+ block
->length
<= host
)) {
2559 prevp
= &prev
->next
;
2561 block
= block
->next
;
2564 fprintf(stderr
, "Bad ram pointer %p\n", ptr
);
2567 return block
->offset
+ (host
- block
->host
);
2570 static uint32_t unassigned_mem_readb(void *opaque
, target_phys_addr_t addr
)
2572 #ifdef DEBUG_UNASSIGNED
2573 printf("Unassigned mem read " TARGET_FMT_plx
"\n", addr
);
2575 #if defined(TARGET_SPARC)
2576 do_unassigned_access(addr
, 0, 0, 0, 1);
2581 static uint32_t unassigned_mem_readw(void *opaque
, target_phys_addr_t addr
)
2583 #ifdef DEBUG_UNASSIGNED
2584 printf("Unassigned mem read " TARGET_FMT_plx
"\n", addr
);
2586 #if defined(TARGET_SPARC)
2587 do_unassigned_access(addr
, 0, 0, 0, 2);
2592 static uint32_t unassigned_mem_readl(void *opaque
, target_phys_addr_t addr
)
2594 #ifdef DEBUG_UNASSIGNED
2595 printf("Unassigned mem read " TARGET_FMT_plx
"\n", addr
);
2597 #if defined(TARGET_SPARC)
2598 do_unassigned_access(addr
, 0, 0, 0, 4);
2603 static void unassigned_mem_writeb(void *opaque
, target_phys_addr_t addr
, uint32_t val
)
2605 #ifdef DEBUG_UNASSIGNED
2606 printf("Unassigned mem write " TARGET_FMT_plx
" = 0x%x\n", addr
, val
);
2608 #if defined(TARGET_SPARC)
2609 do_unassigned_access(addr
, 1, 0, 0, 1);
2613 static void unassigned_mem_writew(void *opaque
, target_phys_addr_t addr
, uint32_t val
)
2615 #ifdef DEBUG_UNASSIGNED
2616 printf("Unassigned mem write " TARGET_FMT_plx
" = 0x%x\n", addr
, val
);
2618 #if defined(TARGET_SPARC)
2619 do_unassigned_access(addr
, 1, 0, 0, 2);
2623 static void unassigned_mem_writel(void *opaque
, target_phys_addr_t addr
, uint32_t val
)
2625 #ifdef DEBUG_UNASSIGNED
2626 printf("Unassigned mem write " TARGET_FMT_plx
" = 0x%x\n", addr
, val
);
2628 #if defined(TARGET_SPARC)
2629 do_unassigned_access(addr
, 1, 0, 0, 4);
2633 static CPUReadMemoryFunc
*unassigned_mem_read
[3] = {
2634 unassigned_mem_readb
,
2635 unassigned_mem_readw
,
2636 unassigned_mem_readl
,
2639 static CPUWriteMemoryFunc
*unassigned_mem_write
[3] = {
2640 unassigned_mem_writeb
,
2641 unassigned_mem_writew
,
2642 unassigned_mem_writel
,
2645 static void notdirty_mem_writeb(void *opaque
, target_phys_addr_t ram_addr
,
2649 dirty_flags
= phys_ram_dirty
[ram_addr
>> TARGET_PAGE_BITS
];
2650 if (!(dirty_flags
& CODE_DIRTY_FLAG
)) {
2651 #if !defined(CONFIG_USER_ONLY)
2652 tb_invalidate_phys_page_fast(ram_addr
, 1);
2653 dirty_flags
= phys_ram_dirty
[ram_addr
>> TARGET_PAGE_BITS
];
2656 stb_p(qemu_get_ram_ptr(ram_addr
), val
);
2658 if (cpu_single_env
->kqemu_enabled
&&
2659 (dirty_flags
& KQEMU_MODIFY_PAGE_MASK
) != KQEMU_MODIFY_PAGE_MASK
)
2660 kqemu_modify_page(cpu_single_env
, ram_addr
);
2662 dirty_flags
|= (0xff & ~CODE_DIRTY_FLAG
);
2663 phys_ram_dirty
[ram_addr
>> TARGET_PAGE_BITS
] = dirty_flags
;
2664 /* we remove the notdirty callback only if the code has been
2666 if (dirty_flags
== 0xff)
2667 tlb_set_dirty(cpu_single_env
, cpu_single_env
->mem_io_vaddr
);
2670 static void notdirty_mem_writew(void *opaque
, target_phys_addr_t ram_addr
,
2674 dirty_flags
= phys_ram_dirty
[ram_addr
>> TARGET_PAGE_BITS
];
2675 if (!(dirty_flags
& CODE_DIRTY_FLAG
)) {
2676 #if !defined(CONFIG_USER_ONLY)
2677 tb_invalidate_phys_page_fast(ram_addr
, 2);
2678 dirty_flags
= phys_ram_dirty
[ram_addr
>> TARGET_PAGE_BITS
];
2681 stw_p(qemu_get_ram_ptr(ram_addr
), val
);
2683 if (cpu_single_env
->kqemu_enabled
&&
2684 (dirty_flags
& KQEMU_MODIFY_PAGE_MASK
) != KQEMU_MODIFY_PAGE_MASK
)
2685 kqemu_modify_page(cpu_single_env
, ram_addr
);
2687 dirty_flags
|= (0xff & ~CODE_DIRTY_FLAG
);
2688 phys_ram_dirty
[ram_addr
>> TARGET_PAGE_BITS
] = dirty_flags
;
2689 /* we remove the notdirty callback only if the code has been
2691 if (dirty_flags
== 0xff)
2692 tlb_set_dirty(cpu_single_env
, cpu_single_env
->mem_io_vaddr
);
2695 static void notdirty_mem_writel(void *opaque
, target_phys_addr_t ram_addr
,
2699 dirty_flags
= phys_ram_dirty
[ram_addr
>> TARGET_PAGE_BITS
];
2700 if (!(dirty_flags
& CODE_DIRTY_FLAG
)) {
2701 #if !defined(CONFIG_USER_ONLY)
2702 tb_invalidate_phys_page_fast(ram_addr
, 4);
2703 dirty_flags
= phys_ram_dirty
[ram_addr
>> TARGET_PAGE_BITS
];
2706 stl_p(qemu_get_ram_ptr(ram_addr
), val
);
2708 if (cpu_single_env
->kqemu_enabled
&&
2709 (dirty_flags
& KQEMU_MODIFY_PAGE_MASK
) != KQEMU_MODIFY_PAGE_MASK
)
2710 kqemu_modify_page(cpu_single_env
, ram_addr
);
2712 dirty_flags
|= (0xff & ~CODE_DIRTY_FLAG
);
2713 phys_ram_dirty
[ram_addr
>> TARGET_PAGE_BITS
] = dirty_flags
;
2714 /* we remove the notdirty callback only if the code has been
2716 if (dirty_flags
== 0xff)
2717 tlb_set_dirty(cpu_single_env
, cpu_single_env
->mem_io_vaddr
);
2720 static CPUReadMemoryFunc
*error_mem_read
[3] = {
2721 NULL
, /* never used */
2722 NULL
, /* never used */
2723 NULL
, /* never used */
2726 static CPUWriteMemoryFunc
*notdirty_mem_write
[3] = {
2727 notdirty_mem_writeb
,
2728 notdirty_mem_writew
,
2729 notdirty_mem_writel
,
2732 /* Generate a debug exception if a watchpoint has been hit. */
2733 static void check_watchpoint(int offset
, int len_mask
, int flags
)
2735 CPUState
*env
= cpu_single_env
;
2736 target_ulong pc
, cs_base
;
2737 TranslationBlock
*tb
;
2742 if (env
->watchpoint_hit
) {
2743 /* We re-entered the check after replacing the TB. Now raise
2744 * the debug interrupt so that is will trigger after the
2745 * current instruction. */
2746 cpu_interrupt(env
, CPU_INTERRUPT_DEBUG
);
2749 vaddr
= (env
->mem_io_vaddr
& TARGET_PAGE_MASK
) + offset
;
2750 TAILQ_FOREACH(wp
, &env
->watchpoints
, entry
) {
2751 if ((vaddr
== (wp
->vaddr
& len_mask
) ||
2752 (vaddr
& wp
->len_mask
) == wp
->vaddr
) && (wp
->flags
& flags
)) {
2753 wp
->flags
|= BP_WATCHPOINT_HIT
;
2754 if (!env
->watchpoint_hit
) {
2755 env
->watchpoint_hit
= wp
;
2756 tb
= tb_find_pc(env
->mem_io_pc
);
2758 cpu_abort(env
, "check_watchpoint: could not find TB for "
2759 "pc=%p", (void *)env
->mem_io_pc
);
2761 cpu_restore_state(tb
, env
, env
->mem_io_pc
, NULL
);
2762 tb_phys_invalidate(tb
, -1);
2763 if (wp
->flags
& BP_STOP_BEFORE_ACCESS
) {
2764 env
->exception_index
= EXCP_DEBUG
;
2766 cpu_get_tb_cpu_state(env
, &pc
, &cs_base
, &cpu_flags
);
2767 tb_gen_code(env
, pc
, cs_base
, cpu_flags
, 1);
2769 cpu_resume_from_signal(env
, NULL
);
2772 wp
->flags
&= ~BP_WATCHPOINT_HIT
;
2777 /* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
2778 so these check for a hit then pass through to the normal out-of-line
2780 static uint32_t watch_mem_readb(void *opaque
, target_phys_addr_t addr
)
2782 check_watchpoint(addr
& ~TARGET_PAGE_MASK
, ~0x0, BP_MEM_READ
);
2783 return ldub_phys(addr
);
2786 static uint32_t watch_mem_readw(void *opaque
, target_phys_addr_t addr
)
2788 check_watchpoint(addr
& ~TARGET_PAGE_MASK
, ~0x1, BP_MEM_READ
);
2789 return lduw_phys(addr
);
2792 static uint32_t watch_mem_readl(void *opaque
, target_phys_addr_t addr
)
2794 check_watchpoint(addr
& ~TARGET_PAGE_MASK
, ~0x3, BP_MEM_READ
);
2795 return ldl_phys(addr
);
2798 static void watch_mem_writeb(void *opaque
, target_phys_addr_t addr
,
2801 check_watchpoint(addr
& ~TARGET_PAGE_MASK
, ~0x0, BP_MEM_WRITE
);
2802 stb_phys(addr
, val
);
2805 static void watch_mem_writew(void *opaque
, target_phys_addr_t addr
,
2808 check_watchpoint(addr
& ~TARGET_PAGE_MASK
, ~0x1, BP_MEM_WRITE
);
2809 stw_phys(addr
, val
);
2812 static void watch_mem_writel(void *opaque
, target_phys_addr_t addr
,
2815 check_watchpoint(addr
& ~TARGET_PAGE_MASK
, ~0x3, BP_MEM_WRITE
);
2816 stl_phys(addr
, val
);
2819 static CPUReadMemoryFunc
*watch_mem_read
[3] = {
2825 static CPUWriteMemoryFunc
*watch_mem_write
[3] = {
2831 static inline uint32_t subpage_readlen (subpage_t
*mmio
, target_phys_addr_t addr
,
2837 idx
= SUBPAGE_IDX(addr
);
2838 #if defined(DEBUG_SUBPAGE)
2839 printf("%s: subpage %p len %d addr " TARGET_FMT_plx
" idx %d\n", __func__
,
2840 mmio
, len
, addr
, idx
);
2842 ret
= (**mmio
->mem_read
[idx
][len
])(mmio
->opaque
[idx
][0][len
],
2843 addr
+ mmio
->region_offset
[idx
][0][len
]);
2848 static inline void subpage_writelen (subpage_t
*mmio
, target_phys_addr_t addr
,
2849 uint32_t value
, unsigned int len
)
2853 idx
= SUBPAGE_IDX(addr
);
2854 #if defined(DEBUG_SUBPAGE)
2855 printf("%s: subpage %p len %d addr " TARGET_FMT_plx
" idx %d value %08x\n", __func__
,
2856 mmio
, len
, addr
, idx
, value
);
2858 (**mmio
->mem_write
[idx
][len
])(mmio
->opaque
[idx
][1][len
],
2859 addr
+ mmio
->region_offset
[idx
][1][len
],
2863 static uint32_t subpage_readb (void *opaque
, target_phys_addr_t addr
)
2865 #if defined(DEBUG_SUBPAGE)
2866 printf("%s: addr " TARGET_FMT_plx
"\n", __func__
, addr
);
2869 return subpage_readlen(opaque
, addr
, 0);
2872 static void subpage_writeb (void *opaque
, target_phys_addr_t addr
,
2875 #if defined(DEBUG_SUBPAGE)
2876 printf("%s: addr " TARGET_FMT_plx
" val %08x\n", __func__
, addr
, value
);
2878 subpage_writelen(opaque
, addr
, value
, 0);
2881 static uint32_t subpage_readw (void *opaque
, target_phys_addr_t addr
)
2883 #if defined(DEBUG_SUBPAGE)
2884 printf("%s: addr " TARGET_FMT_plx
"\n", __func__
, addr
);
2887 return subpage_readlen(opaque
, addr
, 1);
2890 static void subpage_writew (void *opaque
, target_phys_addr_t addr
,
2893 #if defined(DEBUG_SUBPAGE)
2894 printf("%s: addr " TARGET_FMT_plx
" val %08x\n", __func__
, addr
, value
);
2896 subpage_writelen(opaque
, addr
, value
, 1);
2899 static uint32_t subpage_readl (void *opaque
, target_phys_addr_t addr
)
2901 #if defined(DEBUG_SUBPAGE)
2902 printf("%s: addr " TARGET_FMT_plx
"\n", __func__
, addr
);
2905 return subpage_readlen(opaque
, addr
, 2);
2908 static void subpage_writel (void *opaque
,
2909 target_phys_addr_t addr
, uint32_t value
)
2911 #if defined(DEBUG_SUBPAGE)
2912 printf("%s: addr " TARGET_FMT_plx
" val %08x\n", __func__
, addr
, value
);
2914 subpage_writelen(opaque
, addr
, value
, 2);
2917 static CPUReadMemoryFunc
*subpage_read
[] = {
2923 static CPUWriteMemoryFunc
*subpage_write
[] = {
2929 static int subpage_register (subpage_t
*mmio
, uint32_t start
, uint32_t end
,
2930 ram_addr_t memory
, ram_addr_t region_offset
)
2935 if (start
>= TARGET_PAGE_SIZE
|| end
>= TARGET_PAGE_SIZE
)
2937 idx
= SUBPAGE_IDX(start
);
2938 eidx
= SUBPAGE_IDX(end
);
2939 #if defined(DEBUG_SUBPAGE)
2940 printf("%s: %p start %08x end %08x idx %08x eidx %08x mem %d\n", __func__
,
2941 mmio
, start
, end
, idx
, eidx
, memory
);
2943 memory
>>= IO_MEM_SHIFT
;
2944 for (; idx
<= eidx
; idx
++) {
2945 for (i
= 0; i
< 4; i
++) {
2946 if (io_mem_read
[memory
][i
]) {
2947 mmio
->mem_read
[idx
][i
] = &io_mem_read
[memory
][i
];
2948 mmio
->opaque
[idx
][0][i
] = io_mem_opaque
[memory
];
2949 mmio
->region_offset
[idx
][0][i
] = region_offset
;
2951 if (io_mem_write
[memory
][i
]) {
2952 mmio
->mem_write
[idx
][i
] = &io_mem_write
[memory
][i
];
2953 mmio
->opaque
[idx
][1][i
] = io_mem_opaque
[memory
];
2954 mmio
->region_offset
[idx
][1][i
] = region_offset
;
2962 static void *subpage_init (target_phys_addr_t base
, ram_addr_t
*phys
,
2963 ram_addr_t orig_memory
, ram_addr_t region_offset
)
2968 mmio
= qemu_mallocz(sizeof(subpage_t
));
2971 subpage_memory
= cpu_register_io_memory(subpage_read
, subpage_write
, mmio
);
2972 #if defined(DEBUG_SUBPAGE)
2973 printf("%s: %p base " TARGET_FMT_plx
" len %08x %d\n", __func__
,
2974 mmio
, base
, TARGET_PAGE_SIZE
, subpage_memory
);
2976 *phys
= subpage_memory
| IO_MEM_SUBPAGE
;
2977 subpage_register(mmio
, 0, TARGET_PAGE_SIZE
- 1, orig_memory
,
2983 static int get_free_io_mem_idx(void)
2987 for (i
= 0; i
<IO_MEM_NB_ENTRIES
; i
++)
2988 if (!io_mem_used
[i
]) {
2996 /* mem_read and mem_write are arrays of functions containing the
2997 function to access byte (index 0), word (index 1) and dword (index
2998 2). Functions can be omitted with a NULL function pointer.
2999 If io_index is non zero, the corresponding io zone is
3000 modified. If it is zero, a new io zone is allocated. The return
3001 value can be used with cpu_register_physical_memory(). (-1) is
3002 returned if error. */
3003 static int cpu_register_io_memory_fixed(int io_index
,
3004 CPUReadMemoryFunc
**mem_read
,
3005 CPUWriteMemoryFunc
**mem_write
,
3008 int i
, subwidth
= 0;
3010 if (io_index
<= 0) {
3011 io_index
= get_free_io_mem_idx();
3015 io_index
>>= IO_MEM_SHIFT
;
3016 if (io_index
>= IO_MEM_NB_ENTRIES
)
3020 for(i
= 0;i
< 3; i
++) {
3021 if (!mem_read
[i
] || !mem_write
[i
])
3022 subwidth
= IO_MEM_SUBWIDTH
;
3023 io_mem_read
[io_index
][i
] = mem_read
[i
];
3024 io_mem_write
[io_index
][i
] = mem_write
[i
];
3026 io_mem_opaque
[io_index
] = opaque
;
3027 return (io_index
<< IO_MEM_SHIFT
) | subwidth
;
3030 int cpu_register_io_memory(CPUReadMemoryFunc
**mem_read
,
3031 CPUWriteMemoryFunc
**mem_write
,
3034 return cpu_register_io_memory_fixed(0, mem_read
, mem_write
, opaque
);
3037 void cpu_unregister_io_memory(int io_table_address
)
3040 int io_index
= io_table_address
>> IO_MEM_SHIFT
;
3042 for (i
=0;i
< 3; i
++) {
3043 io_mem_read
[io_index
][i
] = unassigned_mem_read
[i
];
3044 io_mem_write
[io_index
][i
] = unassigned_mem_write
[i
];
3046 io_mem_opaque
[io_index
] = NULL
;
3047 io_mem_used
[io_index
] = 0;
3050 static void io_mem_init(void)
3054 cpu_register_io_memory_fixed(IO_MEM_ROM
, error_mem_read
, unassigned_mem_write
, NULL
);
3055 cpu_register_io_memory_fixed(IO_MEM_UNASSIGNED
, unassigned_mem_read
, unassigned_mem_write
, NULL
);
3056 cpu_register_io_memory_fixed(IO_MEM_NOTDIRTY
, error_mem_read
, notdirty_mem_write
, NULL
);
3060 io_mem_watch
= cpu_register_io_memory(watch_mem_read
,
3061 watch_mem_write
, NULL
);
3063 if (kqemu_phys_ram_base
) {
3064 /* alloc dirty bits array */
3065 phys_ram_dirty
= qemu_vmalloc(kqemu_phys_ram_size
>> TARGET_PAGE_BITS
);
3066 memset(phys_ram_dirty
, 0xff, kqemu_phys_ram_size
>> TARGET_PAGE_BITS
);
3071 #endif /* !defined(CONFIG_USER_ONLY) */
3073 /* physical memory access (slow version, mainly for debug) */
3074 #if defined(CONFIG_USER_ONLY)
3075 void cpu_physical_memory_rw(target_phys_addr_t addr
, uint8_t *buf
,
3076 int len
, int is_write
)
3083 page
= addr
& TARGET_PAGE_MASK
;
3084 l
= (page
+ TARGET_PAGE_SIZE
) - addr
;
3087 flags
= page_get_flags(page
);
3088 if (!(flags
& PAGE_VALID
))
3091 if (!(flags
& PAGE_WRITE
))
3093 /* XXX: this code should not depend on lock_user */
3094 if (!(p
= lock_user(VERIFY_WRITE
, addr
, l
, 0)))
3095 /* FIXME - should this return an error rather than just fail? */
3098 unlock_user(p
, addr
, l
);
3100 if (!(flags
& PAGE_READ
))
3102 /* XXX: this code should not depend on lock_user */
3103 if (!(p
= lock_user(VERIFY_READ
, addr
, l
, 1)))
3104 /* FIXME - should this return an error rather than just fail? */
3107 unlock_user(p
, addr
, 0);
3116 void cpu_physical_memory_rw(target_phys_addr_t addr
, uint8_t *buf
,
3117 int len
, int is_write
)
3122 target_phys_addr_t page
;
3127 page
= addr
& TARGET_PAGE_MASK
;
3128 l
= (page
+ TARGET_PAGE_SIZE
) - addr
;
3131 p
= phys_page_find(page
>> TARGET_PAGE_BITS
);
3133 pd
= IO_MEM_UNASSIGNED
;
3135 pd
= p
->phys_offset
;
3139 if ((pd
& ~TARGET_PAGE_MASK
) != IO_MEM_RAM
) {
3140 target_phys_addr_t addr1
= addr
;
3141 io_index
= (pd
>> IO_MEM_SHIFT
) & (IO_MEM_NB_ENTRIES
- 1);
3143 addr1
= (addr
& ~TARGET_PAGE_MASK
) + p
->region_offset
;
3144 /* XXX: could force cpu_single_env to NULL to avoid
3146 if (l
>= 4 && ((addr1
& 3) == 0)) {
3147 /* 32 bit write access */
3149 io_mem_write
[io_index
][2](io_mem_opaque
[io_index
], addr1
, val
);
3151 } else if (l
>= 2 && ((addr1
& 1) == 0)) {
3152 /* 16 bit write access */
3154 io_mem_write
[io_index
][1](io_mem_opaque
[io_index
], addr1
, val
);
3157 /* 8 bit write access */
3159 io_mem_write
[io_index
][0](io_mem_opaque
[io_index
], addr1
, val
);
3163 unsigned long addr1
;
3164 addr1
= (pd
& TARGET_PAGE_MASK
) + (addr
& ~TARGET_PAGE_MASK
);
3166 ptr
= qemu_get_ram_ptr(addr1
);
3167 memcpy(ptr
, buf
, l
);
3168 if (!cpu_physical_memory_is_dirty(addr1
)) {
3169 /* invalidate code */
3170 tb_invalidate_phys_page_range(addr1
, addr1
+ l
, 0);
3172 phys_ram_dirty
[addr1
>> TARGET_PAGE_BITS
] |=
3173 (0xff & ~CODE_DIRTY_FLAG
);
3177 if ((pd
& ~TARGET_PAGE_MASK
) > IO_MEM_ROM
&&
3178 !(pd
& IO_MEM_ROMD
)) {
3179 target_phys_addr_t addr1
= addr
;
3181 io_index
= (pd
>> IO_MEM_SHIFT
) & (IO_MEM_NB_ENTRIES
- 1);
3183 addr1
= (addr
& ~TARGET_PAGE_MASK
) + p
->region_offset
;
3184 if (l
>= 4 && ((addr1
& 3) == 0)) {
3185 /* 32 bit read access */
3186 val
= io_mem_read
[io_index
][2](io_mem_opaque
[io_index
], addr1
);
3189 } else if (l
>= 2 && ((addr1
& 1) == 0)) {
3190 /* 16 bit read access */
3191 val
= io_mem_read
[io_index
][1](io_mem_opaque
[io_index
], addr1
);
3195 /* 8 bit read access */
3196 val
= io_mem_read
[io_index
][0](io_mem_opaque
[io_index
], addr1
);
3202 ptr
= qemu_get_ram_ptr(pd
& TARGET_PAGE_MASK
) +
3203 (addr
& ~TARGET_PAGE_MASK
);
3204 memcpy(buf
, ptr
, l
);
3213 /* used for ROM loading : can write in RAM and ROM */
3214 void cpu_physical_memory_write_rom(target_phys_addr_t addr
,
3215 const uint8_t *buf
, int len
)
3219 target_phys_addr_t page
;
3224 page
= addr
& TARGET_PAGE_MASK
;
3225 l
= (page
+ TARGET_PAGE_SIZE
) - addr
;
3228 p
= phys_page_find(page
>> TARGET_PAGE_BITS
);
3230 pd
= IO_MEM_UNASSIGNED
;
3232 pd
= p
->phys_offset
;
3235 if ((pd
& ~TARGET_PAGE_MASK
) != IO_MEM_RAM
&&
3236 (pd
& ~TARGET_PAGE_MASK
) != IO_MEM_ROM
&&
3237 !(pd
& IO_MEM_ROMD
)) {
3240 unsigned long addr1
;
3241 addr1
= (pd
& TARGET_PAGE_MASK
) + (addr
& ~TARGET_PAGE_MASK
);
3243 ptr
= qemu_get_ram_ptr(addr1
);
3244 memcpy(ptr
, buf
, l
);
3254 target_phys_addr_t addr
;
3255 target_phys_addr_t len
;
3258 static BounceBuffer bounce
;
3260 typedef struct MapClient
{
3262 void (*callback
)(void *opaque
);
3263 LIST_ENTRY(MapClient
) link
;
3266 static LIST_HEAD(map_client_list
, MapClient
) map_client_list
3267 = LIST_HEAD_INITIALIZER(map_client_list
);
3269 void *cpu_register_map_client(void *opaque
, void (*callback
)(void *opaque
))
3271 MapClient
*client
= qemu_malloc(sizeof(*client
));
3273 client
->opaque
= opaque
;
3274 client
->callback
= callback
;
3275 LIST_INSERT_HEAD(&map_client_list
, client
, link
);
3279 void cpu_unregister_map_client(void *_client
)
3281 MapClient
*client
= (MapClient
*)_client
;
3283 LIST_REMOVE(client
, link
);
3287 static void cpu_notify_map_clients(void)
3291 while (!LIST_EMPTY(&map_client_list
)) {
3292 client
= LIST_FIRST(&map_client_list
);
3293 client
->callback(client
->opaque
);
3294 cpu_unregister_map_client(client
);
3298 /* Map a physical memory region into a host virtual address.
3299 * May map a subset of the requested range, given by and returned in *plen.
3300 * May return NULL if resources needed to perform the mapping are exhausted.
3301 * Use only for reads OR writes - not for read-modify-write operations.
3302 * Use cpu_register_map_client() to know when retrying the map operation is
3303 * likely to succeed.
3305 void *cpu_physical_memory_map(target_phys_addr_t addr
,
3306 target_phys_addr_t
*plen
,
3309 target_phys_addr_t len
= *plen
;
3310 target_phys_addr_t done
= 0;
3312 uint8_t *ret
= NULL
;
3314 target_phys_addr_t page
;
3317 unsigned long addr1
;
3320 page
= addr
& TARGET_PAGE_MASK
;
3321 l
= (page
+ TARGET_PAGE_SIZE
) - addr
;
3324 p
= phys_page_find(page
>> TARGET_PAGE_BITS
);
3326 pd
= IO_MEM_UNASSIGNED
;
3328 pd
= p
->phys_offset
;
3331 if ((pd
& ~TARGET_PAGE_MASK
) != IO_MEM_RAM
) {
3332 if (done
|| bounce
.buffer
) {
3335 bounce
.buffer
= qemu_memalign(TARGET_PAGE_SIZE
, TARGET_PAGE_SIZE
);
3339 cpu_physical_memory_rw(addr
, bounce
.buffer
, l
, 0);
3341 ptr
= bounce
.buffer
;
3343 addr1
= (pd
& TARGET_PAGE_MASK
) + (addr
& ~TARGET_PAGE_MASK
);
3344 ptr
= qemu_get_ram_ptr(addr1
);
3348 } else if (ret
+ done
!= ptr
) {
3360 /* Unmaps a memory region previously mapped by cpu_physical_memory_map().
3361 * Will also mark the memory as dirty if is_write == 1. access_len gives
3362 * the amount of memory that was actually read or written by the caller.
3364 void cpu_physical_memory_unmap(void *buffer
, target_phys_addr_t len
,
3365 int is_write
, target_phys_addr_t access_len
)
3367 if (buffer
!= bounce
.buffer
) {
3369 ram_addr_t addr1
= qemu_ram_addr_from_host(buffer
);
3370 while (access_len
) {
3372 l
= TARGET_PAGE_SIZE
;
3375 if (!cpu_physical_memory_is_dirty(addr1
)) {
3376 /* invalidate code */
3377 tb_invalidate_phys_page_range(addr1
, addr1
+ l
, 0);
3379 phys_ram_dirty
[addr1
>> TARGET_PAGE_BITS
] |=
3380 (0xff & ~CODE_DIRTY_FLAG
);
3389 cpu_physical_memory_write(bounce
.addr
, bounce
.buffer
, access_len
);
3391 qemu_free(bounce
.buffer
);
3392 bounce
.buffer
= NULL
;
3393 cpu_notify_map_clients();
3396 /* warning: addr must be aligned */
3397 uint32_t ldl_phys(target_phys_addr_t addr
)
3405 p
= phys_page_find(addr
>> TARGET_PAGE_BITS
);
3407 pd
= IO_MEM_UNASSIGNED
;
3409 pd
= p
->phys_offset
;
3412 if ((pd
& ~TARGET_PAGE_MASK
) > IO_MEM_ROM
&&
3413 !(pd
& IO_MEM_ROMD
)) {
3415 io_index
= (pd
>> IO_MEM_SHIFT
) & (IO_MEM_NB_ENTRIES
- 1);
3417 addr
= (addr
& ~TARGET_PAGE_MASK
) + p
->region_offset
;
3418 val
= io_mem_read
[io_index
][2](io_mem_opaque
[io_index
], addr
);
3421 ptr
= qemu_get_ram_ptr(pd
& TARGET_PAGE_MASK
) +
3422 (addr
& ~TARGET_PAGE_MASK
);
3428 /* warning: addr must be aligned */
3429 uint64_t ldq_phys(target_phys_addr_t addr
)
3437 p
= phys_page_find(addr
>> TARGET_PAGE_BITS
);
3439 pd
= IO_MEM_UNASSIGNED
;
3441 pd
= p
->phys_offset
;
3444 if ((pd
& ~TARGET_PAGE_MASK
) > IO_MEM_ROM
&&
3445 !(pd
& IO_MEM_ROMD
)) {
3447 io_index
= (pd
>> IO_MEM_SHIFT
) & (IO_MEM_NB_ENTRIES
- 1);
3449 addr
= (addr
& ~TARGET_PAGE_MASK
) + p
->region_offset
;
3450 #ifdef TARGET_WORDS_BIGENDIAN
3451 val
= (uint64_t)io_mem_read
[io_index
][2](io_mem_opaque
[io_index
], addr
) << 32;
3452 val
|= io_mem_read
[io_index
][2](io_mem_opaque
[io_index
], addr
+ 4);
3454 val
= io_mem_read
[io_index
][2](io_mem_opaque
[io_index
], addr
);
3455 val
|= (uint64_t)io_mem_read
[io_index
][2](io_mem_opaque
[io_index
], addr
+ 4) << 32;
3459 ptr
= qemu_get_ram_ptr(pd
& TARGET_PAGE_MASK
) +
3460 (addr
& ~TARGET_PAGE_MASK
);
3467 uint32_t ldub_phys(target_phys_addr_t addr
)
3470 cpu_physical_memory_read(addr
, &val
, 1);
3475 uint32_t lduw_phys(target_phys_addr_t addr
)
3478 cpu_physical_memory_read(addr
, (uint8_t *)&val
, 2);
3479 return tswap16(val
);
3482 /* warning: addr must be aligned. The ram page is not masked as dirty
3483 and the code inside is not invalidated. It is useful if the dirty
3484 bits are used to track modified PTEs */
3485 void stl_phys_notdirty(target_phys_addr_t addr
, uint32_t val
)
3492 p
= phys_page_find(addr
>> TARGET_PAGE_BITS
);
3494 pd
= IO_MEM_UNASSIGNED
;
3496 pd
= p
->phys_offset
;
3499 if ((pd
& ~TARGET_PAGE_MASK
) != IO_MEM_RAM
) {
3500 io_index
= (pd
>> IO_MEM_SHIFT
) & (IO_MEM_NB_ENTRIES
- 1);
3502 addr
= (addr
& ~TARGET_PAGE_MASK
) + p
->region_offset
;
3503 io_mem_write
[io_index
][2](io_mem_opaque
[io_index
], addr
, val
);
3505 unsigned long addr1
= (pd
& TARGET_PAGE_MASK
) + (addr
& ~TARGET_PAGE_MASK
);
3506 ptr
= qemu_get_ram_ptr(addr1
);
3509 if (unlikely(in_migration
)) {
3510 if (!cpu_physical_memory_is_dirty(addr1
)) {
3511 /* invalidate code */
3512 tb_invalidate_phys_page_range(addr1
, addr1
+ 4, 0);
3514 phys_ram_dirty
[addr1
>> TARGET_PAGE_BITS
] |=
3515 (0xff & ~CODE_DIRTY_FLAG
);
3521 void stq_phys_notdirty(target_phys_addr_t addr
, uint64_t val
)
3528 p
= phys_page_find(addr
>> TARGET_PAGE_BITS
);
3530 pd
= IO_MEM_UNASSIGNED
;
3532 pd
= p
->phys_offset
;
3535 if ((pd
& ~TARGET_PAGE_MASK
) != IO_MEM_RAM
) {
3536 io_index
= (pd
>> IO_MEM_SHIFT
) & (IO_MEM_NB_ENTRIES
- 1);
3538 addr
= (addr
& ~TARGET_PAGE_MASK
) + p
->region_offset
;
3539 #ifdef TARGET_WORDS_BIGENDIAN
3540 io_mem_write
[io_index
][2](io_mem_opaque
[io_index
], addr
, val
>> 32);
3541 io_mem_write
[io_index
][2](io_mem_opaque
[io_index
], addr
+ 4, val
);
3543 io_mem_write
[io_index
][2](io_mem_opaque
[io_index
], addr
, val
);
3544 io_mem_write
[io_index
][2](io_mem_opaque
[io_index
], addr
+ 4, val
>> 32);
3547 ptr
= qemu_get_ram_ptr(pd
& TARGET_PAGE_MASK
) +
3548 (addr
& ~TARGET_PAGE_MASK
);
3553 /* warning: addr must be aligned */
3554 void stl_phys(target_phys_addr_t addr
, uint32_t val
)
3561 p
= phys_page_find(addr
>> TARGET_PAGE_BITS
);
3563 pd
= IO_MEM_UNASSIGNED
;
3565 pd
= p
->phys_offset
;
3568 if ((pd
& ~TARGET_PAGE_MASK
) != IO_MEM_RAM
) {
3569 io_index
= (pd
>> IO_MEM_SHIFT
) & (IO_MEM_NB_ENTRIES
- 1);
3571 addr
= (addr
& ~TARGET_PAGE_MASK
) + p
->region_offset
;
3572 io_mem_write
[io_index
][2](io_mem_opaque
[io_index
], addr
, val
);
3574 unsigned long addr1
;
3575 addr1
= (pd
& TARGET_PAGE_MASK
) + (addr
& ~TARGET_PAGE_MASK
);
3577 ptr
= qemu_get_ram_ptr(addr1
);
3579 if (!cpu_physical_memory_is_dirty(addr1
)) {
3580 /* invalidate code */
3581 tb_invalidate_phys_page_range(addr1
, addr1
+ 4, 0);
3583 phys_ram_dirty
[addr1
>> TARGET_PAGE_BITS
] |=
3584 (0xff & ~CODE_DIRTY_FLAG
);
3590 void stb_phys(target_phys_addr_t addr
, uint32_t val
)
3593 cpu_physical_memory_write(addr
, &v
, 1);
3597 void stw_phys(target_phys_addr_t addr
, uint32_t val
)
3599 uint16_t v
= tswap16(val
);
3600 cpu_physical_memory_write(addr
, (const uint8_t *)&v
, 2);
3604 void stq_phys(target_phys_addr_t addr
, uint64_t val
)
3607 cpu_physical_memory_write(addr
, (const uint8_t *)&val
, 8);
3612 /* virtual memory access for debug (includes writing to ROM) */
3613 int cpu_memory_rw_debug(CPUState
*env
, target_ulong addr
,
3614 uint8_t *buf
, int len
, int is_write
)
3617 target_phys_addr_t phys_addr
;
3621 page
= addr
& TARGET_PAGE_MASK
;
3622 phys_addr
= cpu_get_phys_page_debug(env
, page
);
3623 /* if no physical page mapped, return an error */
3624 if (phys_addr
== -1)
3626 l
= (page
+ TARGET_PAGE_SIZE
) - addr
;
3629 phys_addr
+= (addr
& ~TARGET_PAGE_MASK
);
3630 #if !defined(CONFIG_USER_ONLY)
3632 cpu_physical_memory_write_rom(phys_addr
, buf
, l
);
3635 cpu_physical_memory_rw(phys_addr
, buf
, l
, is_write
);
3643 /* in deterministic execution mode, instructions doing device I/Os
3644 must be at the end of the TB */
3645 void cpu_io_recompile(CPUState
*env
, void *retaddr
)
3647 TranslationBlock
*tb
;
3649 target_ulong pc
, cs_base
;
3652 tb
= tb_find_pc((unsigned long)retaddr
);
3654 cpu_abort(env
, "cpu_io_recompile: could not find TB for pc=%p",
3657 n
= env
->icount_decr
.u16
.low
+ tb
->icount
;
3658 cpu_restore_state(tb
, env
, (unsigned long)retaddr
, NULL
);
3659 /* Calculate how many instructions had been executed before the fault
3661 n
= n
- env
->icount_decr
.u16
.low
;
3662 /* Generate a new TB ending on the I/O insn. */
3664 /* On MIPS and SH, delay slot instructions can only be restarted if
3665 they were already the first instruction in the TB. If this is not
3666 the first instruction in a TB then re-execute the preceding
3668 #if defined(TARGET_MIPS)
3669 if ((env
->hflags
& MIPS_HFLAG_BMASK
) != 0 && n
> 1) {
3670 env
->active_tc
.PC
-= 4;
3671 env
->icount_decr
.u16
.low
++;
3672 env
->hflags
&= ~MIPS_HFLAG_BMASK
;
3674 #elif defined(TARGET_SH4)
3675 if ((env
->flags
& ((DELAY_SLOT
| DELAY_SLOT_CONDITIONAL
))) != 0
3678 env
->icount_decr
.u16
.low
++;
3679 env
->flags
&= ~(DELAY_SLOT
| DELAY_SLOT_CONDITIONAL
);
3682 /* This should never happen. */
3683 if (n
> CF_COUNT_MASK
)
3684 cpu_abort(env
, "TB too big during recompile");
3686 cflags
= n
| CF_LAST_IO
;
3688 cs_base
= tb
->cs_base
;
3690 tb_phys_invalidate(tb
, -1);
3691 /* FIXME: In theory this could raise an exception. In practice
3692 we have already translated the block once so it's probably ok. */
3693 tb_gen_code(env
, pc
, cs_base
, flags
, cflags
);
3694 /* TODO: If env->pc != tb->pc (i.e. the faulting instruction was not
3695 the first in the TB) then we end up generating a whole new TB and
3696 repeating the fault, which is horribly inefficient.
3697 Better would be to execute just this insn uncached, or generate a
3699 cpu_resume_from_signal(env
, NULL
);
3702 void dump_exec_info(FILE *f
,
3703 int (*cpu_fprintf
)(FILE *f
, const char *fmt
, ...))
3705 int i
, target_code_size
, max_target_code_size
;
3706 int direct_jmp_count
, direct_jmp2_count
, cross_page
;
3707 TranslationBlock
*tb
;
3709 target_code_size
= 0;
3710 max_target_code_size
= 0;
3712 direct_jmp_count
= 0;
3713 direct_jmp2_count
= 0;
3714 for(i
= 0; i
< nb_tbs
; i
++) {
3716 target_code_size
+= tb
->size
;
3717 if (tb
->size
> max_target_code_size
)
3718 max_target_code_size
= tb
->size
;
3719 if (tb
->page_addr
[1] != -1)
3721 if (tb
->tb_next_offset
[0] != 0xffff) {
3723 if (tb
->tb_next_offset
[1] != 0xffff) {
3724 direct_jmp2_count
++;
3728 /* XXX: avoid using doubles ? */
3729 cpu_fprintf(f
, "Translation buffer state:\n");
3730 cpu_fprintf(f
, "gen code size %ld/%ld\n",
3731 code_gen_ptr
- code_gen_buffer
, code_gen_buffer_max_size
);
3732 cpu_fprintf(f
, "TB count %d/%d\n",
3733 nb_tbs
, code_gen_max_blocks
);
3734 cpu_fprintf(f
, "TB avg target size %d max=%d bytes\n",
3735 nb_tbs
? target_code_size
/ nb_tbs
: 0,
3736 max_target_code_size
);
3737 cpu_fprintf(f
, "TB avg host size %d bytes (expansion ratio: %0.1f)\n",
3738 nb_tbs
? (code_gen_ptr
- code_gen_buffer
) / nb_tbs
: 0,
3739 target_code_size
? (double) (code_gen_ptr
- code_gen_buffer
) / target_code_size
: 0);
3740 cpu_fprintf(f
, "cross page TB count %d (%d%%)\n",
3742 nb_tbs
? (cross_page
* 100) / nb_tbs
: 0);
3743 cpu_fprintf(f
, "direct jump count %d (%d%%) (2 jumps=%d %d%%)\n",
3745 nb_tbs
? (direct_jmp_count
* 100) / nb_tbs
: 0,
3747 nb_tbs
? (direct_jmp2_count
* 100) / nb_tbs
: 0);
3748 cpu_fprintf(f
, "\nStatistics:\n");
3749 cpu_fprintf(f
, "TB flush count %d\n", tb_flush_count
);
3750 cpu_fprintf(f
, "TB invalidate count %d\n", tb_phys_invalidate_count
);
3751 cpu_fprintf(f
, "TLB flush count %d\n", tlb_flush_count
);
3752 tcg_dump_info(f
, cpu_fprintf
);
3755 #if !defined(CONFIG_USER_ONLY)
3757 #define MMUSUFFIX _cmmu
3758 #define GETPC() NULL
3759 #define env cpu_single_env
3760 #define SOFTMMU_CODE_ACCESS
3763 #include "softmmu_template.h"
3766 #include "softmmu_template.h"
3769 #include "softmmu_template.h"
3772 #include "softmmu_template.h"