2 * ColdFire Fast Ethernet Controller emulation.
4 * Copyright (c) 2007 CodeSourcery.
6 * This code is licenced under the GPL
15 #define DPRINTF(fmt, args...) \
16 do { printf("mcf_fec: " fmt , ##args); } while (0)
18 #define DPRINTF(fmt, args...) do {} while(0)
21 #define FEC_MAX_FRAME_SIZE 2032
30 uint32_t rx_descriptor
;
31 uint32_t tx_descriptor
;
45 #define FEC_INT_HB 0x80000000
46 #define FEC_INT_BABR 0x40000000
47 #define FEC_INT_BABT 0x20000000
48 #define FEC_INT_GRA 0x10000000
49 #define FEC_INT_TXF 0x08000000
50 #define FEC_INT_TXB 0x04000000
51 #define FEC_INT_RXF 0x02000000
52 #define FEC_INT_RXB 0x01000000
53 #define FEC_INT_MII 0x00800000
54 #define FEC_INT_EB 0x00400000
55 #define FEC_INT_LC 0x00200000
56 #define FEC_INT_RL 0x00100000
57 #define FEC_INT_UN 0x00080000
62 /* Map interrupt flags onto IRQ lines. */
63 #define FEC_NUM_IRQ 13
64 static const uint32_t mcf_fec_irq_map
[FEC_NUM_IRQ
] = {
80 /* Buffer Descriptor. */
87 #define FEC_BD_R 0x8000
88 #define FEC_BD_E 0x8000
89 #define FEC_BD_O1 0x4000
90 #define FEC_BD_W 0x2000
91 #define FEC_BD_O2 0x1000
92 #define FEC_BD_L 0x0800
93 #define FEC_BD_TC 0x0400
94 #define FEC_BD_ABC 0x0200
95 #define FEC_BD_M 0x0100
96 #define FEC_BD_BC 0x0080
97 #define FEC_BD_MC 0x0040
98 #define FEC_BD_LG 0x0020
99 #define FEC_BD_NO 0x0010
100 #define FEC_BD_CR 0x0004
101 #define FEC_BD_OV 0x0002
102 #define FEC_BD_TR 0x0001
104 static void mcf_fec_read_bd(mcf_fec_bd
*bd
, uint32_t addr
)
106 cpu_physical_memory_read(addr
, (uint8_t *)bd
, sizeof(*bd
));
107 be16_to_cpus(&bd
->flags
);
108 be16_to_cpus(&bd
->length
);
109 be32_to_cpus(&bd
->data
);
112 static void mcf_fec_write_bd(mcf_fec_bd
*bd
, uint32_t addr
)
115 tmp
.flags
= cpu_to_be16(bd
->flags
);
116 tmp
.length
= cpu_to_be16(bd
->length
);
117 tmp
.data
= cpu_to_be32(bd
->data
);
118 cpu_physical_memory_write(addr
, (uint8_t *)&tmp
, sizeof(tmp
));
121 static void mcf_fec_update(mcf_fec_state
*s
)
128 active
= s
->eir
& s
->eimr
;
129 changed
= active
^s
->irq_state
;
130 for (i
= 0; i
< FEC_NUM_IRQ
; i
++) {
131 mask
= mcf_fec_irq_map
[i
];
132 if (changed
& mask
) {
133 DPRINTF("IRQ %d = %d\n", i
, (active
& mask
) != 0);
134 qemu_set_irq(s
->irq
[i
], (active
& mask
) != 0);
137 s
->irq_state
= active
;
140 static void mcf_fec_do_tx(mcf_fec_state
*s
)
146 uint8_t frame
[FEC_MAX_FRAME_SIZE
];
152 addr
= s
->tx_descriptor
;
154 mcf_fec_read_bd(&bd
, addr
);
155 DPRINTF("tx_bd %x flags %04x len %d data %08x\n",
156 addr
, bd
.flags
, bd
.length
, bd
.data
);
157 if ((bd
.flags
& FEC_BD_R
) == 0) {
158 /* Run out of descriptors to transmit. */
162 if (frame_size
+ len
> FEC_MAX_FRAME_SIZE
) {
163 len
= FEC_MAX_FRAME_SIZE
- frame_size
;
164 s
->eir
|= FEC_INT_BABT
;
166 cpu_physical_memory_read(bd
.data
, ptr
, len
);
169 if (bd
.flags
& FEC_BD_L
) {
170 /* Last buffer in frame. */
171 DPRINTF("Sending packet\n");
172 qemu_send_packet(s
->vc
, frame
, len
);
175 s
->eir
|= FEC_INT_TXF
;
177 s
->eir
|= FEC_INT_TXB
;
178 bd
.flags
&= ~FEC_BD_R
;
179 /* Write back the modified descriptor. */
180 mcf_fec_write_bd(&bd
, addr
);
181 /* Advance to the next descriptor. */
182 if ((bd
.flags
& FEC_BD_W
) != 0) {
188 s
->tx_descriptor
= addr
;
191 static void mcf_fec_enable_rx(mcf_fec_state
*s
)
195 mcf_fec_read_bd(&bd
, s
->rx_descriptor
);
196 s
->rx_enabled
= ((bd
.flags
& FEC_BD_E
) != 0);
198 DPRINTF("RX buffer full\n");
201 static void mcf_fec_reset(mcf_fec_state
*s
)
214 static uint32_t mcf_fec_read(void *opaque
, target_phys_addr_t addr
)
216 mcf_fec_state
*s
= (mcf_fec_state
*)opaque
;
217 switch (addr
& 0x3ff) {
218 case 0x004: return s
->eir
;
219 case 0x008: return s
->eimr
;
220 case 0x010: return s
->rx_enabled
? (1 << 24) : 0; /* RDAR */
221 case 0x014: return 0; /* TDAR */
222 case 0x024: return s
->ecr
;
223 case 0x040: return s
->mmfr
;
224 case 0x044: return s
->mscr
;
225 case 0x064: return 0; /* MIBC */
226 case 0x084: return s
->rcr
;
227 case 0x0c4: return s
->tcr
;
228 case 0x0e4: /* PALR */
229 return (s
->macaddr
[0] << 24) | (s
->macaddr
[1] << 16)
230 | (s
->macaddr
[2] << 8) | s
->macaddr
[3];
232 case 0x0e8: /* PAUR */
233 return (s
->macaddr
[4] << 24) | (s
->macaddr
[5] << 16) | 0x8808;
234 case 0x0ec: return 0x10000; /* OPD */
235 case 0x118: return 0;
236 case 0x11c: return 0;
237 case 0x120: return 0;
238 case 0x124: return 0;
239 case 0x144: return s
->tfwr
;
240 case 0x14c: return 0x600;
241 case 0x150: return s
->rfsr
;
242 case 0x180: return s
->erdsr
;
243 case 0x184: return s
->etdsr
;
244 case 0x188: return s
->emrbr
;
246 cpu_abort(cpu_single_env
, "mcf_fec_read: Bad address 0x%x\n",
252 void mcf_fec_write(void *opaque
, target_phys_addr_t addr
, uint32_t value
)
254 mcf_fec_state
*s
= (mcf_fec_state
*)opaque
;
255 switch (addr
& 0x3ff) {
262 case 0x010: /* RDAR */
263 if ((s
->ecr
& FEC_EN
) && !s
->rx_enabled
) {
264 DPRINTF("RX enable\n");
265 mcf_fec_enable_rx(s
);
268 case 0x014: /* TDAR */
269 if (s
->ecr
& FEC_EN
) {
275 if (value
& FEC_RESET
) {
279 if ((s
->ecr
& FEC_EN
) == 0) {
284 /* TODO: Implement MII. */
288 s
->mscr
= value
& 0xfe;
291 /* TODO: Implement MIB. */
294 s
->rcr
= value
& 0x07ff003f;
295 /* TODO: Implement LOOP mode. */
297 case 0x0c4: /* TCR */
298 /* We transmit immediately, so raise GRA immediately. */
301 s
->eir
|= FEC_INT_GRA
;
303 case 0x0e4: /* PALR */
304 s
->macaddr
[0] = value
>> 24;
305 s
->macaddr
[1] = value
>> 16;
306 s
->macaddr
[2] = value
>> 8;
307 s
->macaddr
[3] = value
;
309 case 0x0e8: /* PAUR */
310 s
->macaddr
[4] = value
>> 24;
311 s
->macaddr
[5] = value
>> 16;
320 /* TODO: implement MAC hash filtering. */
326 /* FRBR writes ignored. */
329 s
->rfsr
= (value
& 0x3fc) | 0x400;
332 s
->erdsr
= value
& ~3;
333 s
->rx_descriptor
= s
->erdsr
;
336 s
->etdsr
= value
& ~3;
337 s
->tx_descriptor
= s
->etdsr
;
340 s
->emrbr
= value
& 0x7f0;
343 cpu_abort(cpu_single_env
, "mcf_fec_write Bad address 0x%x\n",
349 static int mcf_fec_can_receive(void *opaque
)
351 mcf_fec_state
*s
= (mcf_fec_state
*)opaque
;
352 return s
->rx_enabled
;
355 static void mcf_fec_receive(void *opaque
, const uint8_t *buf
, int size
)
357 mcf_fec_state
*s
= (mcf_fec_state
*)opaque
;
364 unsigned int buf_len
;
366 DPRINTF("do_rx len %d\n", size
);
367 if (!s
->rx_enabled
) {
368 fprintf(stderr
, "mcf_fec_receive: Unexpected packet\n");
370 /* 4 bytes for the CRC. */
372 crc
= cpu_to_be32(crc32(~0, buf
, size
));
373 crc_ptr
= (uint8_t *)&crc
;
374 /* Huge frames are truncted. */
375 if (size
> FEC_MAX_FRAME_SIZE
) {
376 size
= FEC_MAX_FRAME_SIZE
;
377 flags
|= FEC_BD_TR
| FEC_BD_LG
;
379 /* Frames larger than the user limit just set error flags. */
380 if (size
> (s
->rcr
>> 16)) {
383 addr
= s
->rx_descriptor
;
385 mcf_fec_read_bd(&bd
, addr
);
386 if ((bd
.flags
& FEC_BD_E
) == 0) {
387 /* No descriptors available. Bail out. */
388 /* FIXME: This is wrong. We should probably either save the
389 remainder for when more RX buffers are available, or
391 fprintf(stderr
, "mcf_fec: Lost end of frame\n");
394 buf_len
= (size
<= s
->emrbr
) ? size
: s
->emrbr
;
397 DPRINTF("rx_bd %x length %d\n", addr
, bd
.length
);
398 /* The last 4 bytes are the CRC. */
402 cpu_physical_memory_write(buf_addr
, buf
, buf_len
);
405 cpu_physical_memory_write(buf_addr
+ buf_len
, crc_ptr
, 4 - size
);
408 bd
.flags
&= ~FEC_BD_E
;
410 /* Last buffer in frame. */
411 bd
.flags
|= flags
| FEC_BD_L
;
412 DPRINTF("rx frame flags %04x\n", bd
.flags
);
413 s
->eir
|= FEC_INT_RXF
;
415 s
->eir
|= FEC_INT_RXB
;
417 mcf_fec_write_bd(&bd
, addr
);
418 /* Advance to the next descriptor. */
419 if ((bd
.flags
& FEC_BD_W
) != 0) {
425 s
->rx_descriptor
= addr
;
426 mcf_fec_enable_rx(s
);
430 static CPUReadMemoryFunc
*mcf_fec_readfn
[] = {
436 static CPUWriteMemoryFunc
*mcf_fec_writefn
[] = {
442 void mcf_fec_init(NICInfo
*nd
, target_phys_addr_t base
, qemu_irq
*irq
)
447 s
= (mcf_fec_state
*)qemu_mallocz(sizeof(mcf_fec_state
));
449 iomemtype
= cpu_register_io_memory(0, mcf_fec_readfn
,
451 cpu_register_physical_memory(base
, 0x400, iomemtype
);
453 s
->vc
= qemu_new_vlan_client(nd
->vlan
, mcf_fec_receive
,
454 mcf_fec_can_receive
, s
);
455 memcpy(s
->macaddr
, nd
->macaddr
, 6);