Virtio-blk save/restore support
[qemu-kvm/fedora.git] / qemu-kvm.c
blob3cc6d8e3b3929fe03afdcc9681ea0b12bb0b28b3
1 /*
2 * qemu/kvm integration
4 * Copyright (C) 2006-2008 Qumranet Technologies
6 * Licensed under the terms of the GNU GPL version 2 or higher.
7 */
8 #include "config.h"
9 #include "config-host.h"
11 int kvm_allowed = 1;
12 int kvm_irqchip = 1;
13 int kvm_pit = 1;
15 #include <string.h>
16 #include "hw/hw.h"
17 #include "sysemu.h"
18 #include "qemu-common.h"
19 #include "console.h"
20 #include "block.h"
22 #include "qemu-kvm.h"
23 #include <libkvm.h>
24 #include <pthread.h>
25 #include <sys/utsname.h>
26 #include <sys/syscall.h>
28 extern void perror(const char *s);
30 kvm_context_t kvm_context;
32 extern int smp_cpus;
34 static int qemu_kvm_reset_requested;
36 pthread_mutex_t qemu_mutex = PTHREAD_MUTEX_INITIALIZER;
37 pthread_cond_t qemu_aio_cond = PTHREAD_COND_INITIALIZER;
38 pthread_cond_t qemu_vcpu_cond = PTHREAD_COND_INITIALIZER;
39 pthread_cond_t qemu_system_cond = PTHREAD_COND_INITIALIZER;
40 pthread_cond_t qemu_pause_cond = PTHREAD_COND_INITIALIZER;
41 __thread struct vcpu_info *vcpu;
43 static int qemu_system_ready;
45 #define SIG_IPI (SIGRTMIN+4)
47 struct vcpu_info {
48 CPUState *env;
49 int sipi_needed;
50 int init;
51 pthread_t thread;
52 int signalled;
53 int stop;
54 int stopped;
55 int reload_regs;
56 int created;
57 } vcpu_info[256];
59 pthread_t io_thread;
60 static int io_thread_fd = -1;
61 static int io_thread_sigfd = -1;
63 static inline unsigned long kvm_get_thread_id(void)
65 return syscall(SYS_gettid);
68 CPUState *qemu_kvm_cpu_env(int index)
70 return vcpu_info[index].env;
73 static void sig_ipi_handler(int n)
77 void kvm_update_interrupt_request(CPUState *env)
79 int signal = 0;
81 if (env) {
82 if (!vcpu)
83 signal = 1;
84 if (vcpu && env != vcpu->env && !vcpu_info[env->cpu_index].signalled)
85 signal = 1;
87 if (signal) {
88 vcpu_info[env->cpu_index].signalled = 1;
89 if (vcpu_info[env->cpu_index].thread)
90 pthread_kill(vcpu_info[env->cpu_index].thread, SIG_IPI);
95 void kvm_update_after_sipi(CPUState *env)
97 vcpu_info[env->cpu_index].sipi_needed = 1;
98 kvm_update_interrupt_request(env);
101 void kvm_apic_init(CPUState *env)
103 if (env->cpu_index != 0)
104 vcpu_info[env->cpu_index].init = 1;
105 kvm_update_interrupt_request(env);
108 #include <signal.h>
110 static int try_push_interrupts(void *opaque)
112 return kvm_arch_try_push_interrupts(opaque);
115 static void post_kvm_run(void *opaque, int vcpu)
118 pthread_mutex_lock(&qemu_mutex);
119 kvm_arch_post_kvm_run(opaque, vcpu);
122 static int pre_kvm_run(void *opaque, int vcpu)
124 CPUState *env = qemu_kvm_cpu_env(vcpu);
126 kvm_arch_pre_kvm_run(opaque, vcpu);
128 if (env->interrupt_request & CPU_INTERRUPT_EXIT)
129 return 1;
130 pthread_mutex_unlock(&qemu_mutex);
131 return 0;
134 void kvm_load_registers(CPUState *env)
136 if (kvm_enabled())
137 kvm_arch_load_regs(env);
140 void kvm_save_registers(CPUState *env)
142 if (kvm_enabled())
143 kvm_arch_save_regs(env);
146 int kvm_cpu_exec(CPUState *env)
148 int r;
150 r = kvm_run(kvm_context, env->cpu_index);
151 if (r < 0) {
152 printf("kvm_run returned %d\n", r);
153 exit(1);
156 return 0;
159 extern int vm_running;
161 static int has_work(CPUState *env)
163 if (!vm_running || (env && vcpu_info[env->cpu_index].stopped))
164 return 0;
165 if (!(env->hflags & HF_HALTED_MASK))
166 return 1;
167 return kvm_arch_has_work(env);
170 static int kvm_eat_signal(CPUState *env, int timeout)
172 struct timespec ts;
173 int r, e, ret = 0;
174 siginfo_t siginfo;
175 sigset_t waitset;
177 ts.tv_sec = timeout / 1000;
178 ts.tv_nsec = (timeout % 1000) * 1000000;
179 sigemptyset(&waitset);
180 sigaddset(&waitset, SIG_IPI);
182 r = sigtimedwait(&waitset, &siginfo, &ts);
183 if (r == -1 && (errno == EAGAIN || errno == EINTR) && !timeout)
184 return 0;
185 e = errno;
187 pthread_mutex_lock(&qemu_mutex);
188 if (env && vcpu)
189 cpu_single_env = vcpu->env;
190 if (r == -1 && !(errno == EAGAIN || errno == EINTR)) {
191 printf("sigtimedwait: %s\n", strerror(e));
192 exit(1);
194 if (r != -1)
195 ret = 1;
197 if (env && vcpu_info[env->cpu_index].stop) {
198 vcpu_info[env->cpu_index].stop = 0;
199 vcpu_info[env->cpu_index].stopped = 1;
200 pthread_cond_signal(&qemu_pause_cond);
202 pthread_mutex_unlock(&qemu_mutex);
204 return ret;
208 static void kvm_eat_signals(CPUState *env, int timeout)
210 int r = 0;
212 while (kvm_eat_signal(env, 0))
213 r = 1;
214 if (!r && timeout) {
215 r = kvm_eat_signal(env, timeout);
216 if (r)
217 while (kvm_eat_signal(env, 0))
222 static void kvm_main_loop_wait(CPUState *env, int timeout)
224 pthread_mutex_unlock(&qemu_mutex);
225 kvm_eat_signals(env, timeout);
226 pthread_mutex_lock(&qemu_mutex);
227 cpu_single_env = env;
228 vcpu_info[env->cpu_index].signalled = 0;
231 static int all_threads_paused(void)
233 int i;
235 for (i = 0; i < smp_cpus; ++i)
236 if (vcpu_info[i].stop)
237 return 0;
238 return 1;
241 static void pause_all_threads(void)
243 int i;
245 for (i = 0; i < smp_cpus; ++i) {
246 vcpu_info[i].stop = 1;
247 pthread_kill(vcpu_info[i].thread, SIG_IPI);
249 while (!all_threads_paused()) {
250 CPUState *env = cpu_single_env;
251 pthread_cond_wait(&qemu_pause_cond, &qemu_mutex);
252 cpu_single_env = env;
256 static void resume_all_threads(void)
258 int i;
260 for (i = 0; i < smp_cpus; ++i) {
261 vcpu_info[i].stop = 0;
262 vcpu_info[i].stopped = 0;
263 pthread_kill(vcpu_info[i].thread, SIG_IPI);
267 static void kvm_vm_state_change_handler(void *context, int running)
269 if (running)
270 resume_all_threads();
271 else
272 pause_all_threads();
275 static void update_regs_for_sipi(CPUState *env)
277 kvm_arch_update_regs_for_sipi(env);
278 vcpu_info[env->cpu_index].sipi_needed = 0;
279 vcpu_info[env->cpu_index].init = 0;
282 static void update_regs_for_init(CPUState *env)
284 cpu_reset(env);
285 kvm_arch_load_regs(env);
288 static void setup_kernel_sigmask(CPUState *env)
290 sigset_t set;
292 sigemptyset(&set);
293 sigaddset(&set, SIGUSR2);
294 sigaddset(&set, SIGIO);
295 sigaddset(&set, SIGALRM);
296 sigprocmask(SIG_BLOCK, &set, NULL);
298 sigprocmask(SIG_BLOCK, NULL, &set);
299 sigdelset(&set, SIG_IPI);
301 kvm_set_signal_mask(kvm_context, env->cpu_index, &set);
304 void qemu_kvm_system_reset_request(void)
306 int i;
308 for (i = 0; i < smp_cpus; ++i) {
309 vcpu_info[i].reload_regs = 1;
310 pthread_kill(vcpu_info[i].thread, SIG_IPI);
312 qemu_system_reset();
315 static int kvm_main_loop_cpu(CPUState *env)
317 struct vcpu_info *info = &vcpu_info[env->cpu_index];
319 setup_kernel_sigmask(env);
321 pthread_mutex_lock(&qemu_mutex);
322 if (kvm_irqchip_in_kernel(kvm_context))
323 env->hflags &= ~HF_HALTED_MASK;
325 kvm_qemu_init_env(env);
326 env->ready_for_interrupt_injection = 1;
327 #ifdef TARGET_I386
328 kvm_tpr_vcpu_start(env);
329 #endif
331 cpu_single_env = env;
332 while (1) {
333 while (!has_work(env))
334 kvm_main_loop_wait(env, 1000);
335 if (env->interrupt_request & CPU_INTERRUPT_HARD)
336 env->hflags &= ~HF_HALTED_MASK;
337 if (!kvm_irqchip_in_kernel(kvm_context) && info->sipi_needed)
338 update_regs_for_sipi(env);
339 if (!kvm_irqchip_in_kernel(kvm_context) && info->init)
340 update_regs_for_init(env);
341 if (!(env->hflags & HF_HALTED_MASK) && !info->init)
342 kvm_cpu_exec(env);
343 env->interrupt_request &= ~CPU_INTERRUPT_EXIT;
344 kvm_main_loop_wait(env, 0);
345 if (info->reload_regs) {
346 info->reload_regs = 0;
347 if (env->cpu_index == 0) /* ap needs to be placed in INIT */
348 kvm_arch_load_regs(env);
351 pthread_mutex_unlock(&qemu_mutex);
352 return 0;
355 static void *ap_main_loop(void *_env)
357 CPUState *env = _env;
358 sigset_t signals;
360 vcpu = &vcpu_info[env->cpu_index];
361 vcpu->env = env;
362 vcpu->env->thread_id = kvm_get_thread_id();
363 sigfillset(&signals);
364 sigprocmask(SIG_BLOCK, &signals, NULL);
365 kvm_create_vcpu(kvm_context, env->cpu_index);
366 kvm_qemu_init_env(env);
368 /* signal VCPU creation */
369 pthread_mutex_lock(&qemu_mutex);
370 vcpu->created = 1;
371 pthread_cond_signal(&qemu_vcpu_cond);
373 /* and wait for machine initialization */
374 while (!qemu_system_ready)
375 pthread_cond_wait(&qemu_system_cond, &qemu_mutex);
376 pthread_mutex_unlock(&qemu_mutex);
378 kvm_main_loop_cpu(env);
379 return NULL;
382 void kvm_init_new_ap(int cpu, CPUState *env)
384 pthread_create(&vcpu_info[cpu].thread, NULL, ap_main_loop, env);
386 while (vcpu_info[cpu].created == 0)
387 pthread_cond_wait(&qemu_vcpu_cond, &qemu_mutex);
390 int kvm_init_ap(void)
392 #ifdef TARGET_I386
393 kvm_tpr_opt_setup();
394 #endif
395 qemu_add_vm_change_state_handler(kvm_vm_state_change_handler, NULL);
397 signal(SIG_IPI, sig_ipi_handler);
398 return 0;
401 void qemu_kvm_notify_work(void)
403 uint64_t value = 1;
404 char buffer[8];
405 size_t offset = 0;
407 if (io_thread_fd == -1)
408 return;
410 memcpy(buffer, &value, sizeof(value));
412 while (offset < 8) {
413 ssize_t len;
415 len = write(io_thread_fd, buffer + offset, 8 - offset);
416 if (len == -1 && errno == EINTR)
417 continue;
419 if (len <= 0)
420 break;
422 offset += len;
425 if (offset != 8)
426 fprintf(stderr, "failed to notify io thread\n");
429 /* If we have signalfd, we mask out the signals we want to handle and then
430 * use signalfd to listen for them. We rely on whatever the current signal
431 * handler is to dispatch the signals when we receive them.
434 static void sigfd_handler(void *opaque)
436 int fd = (unsigned long)opaque;
437 struct signalfd_siginfo info;
438 struct sigaction action;
439 ssize_t len;
441 while (1) {
442 do {
443 len = read(fd, &info, sizeof(info));
444 } while (len == -1 && errno == EINTR);
446 if (len == -1 && errno == EAGAIN)
447 break;
449 if (len != sizeof(info)) {
450 printf("read from sigfd returned %ld: %m\n", len);
451 return;
454 sigaction(info.ssi_signo, NULL, &action);
455 if (action.sa_handler)
456 action.sa_handler(info.ssi_signo);
458 if (info.ssi_signo == SIGUSR2) {
459 pthread_cond_signal(&qemu_aio_cond);
464 /* Used to break IO thread out of select */
465 static void io_thread_wakeup(void *opaque)
467 int fd = (unsigned long)opaque;
468 char buffer[8];
469 size_t offset = 0;
471 while (offset < 8) {
472 ssize_t len;
474 len = read(fd, buffer + offset, 8 - offset);
475 if (len == -1 && errno == EINTR)
476 continue;
478 if (len <= 0)
479 break;
481 offset += len;
485 int kvm_main_loop(void)
487 int fds[2];
488 sigset_t mask;
489 int sigfd;
491 io_thread = pthread_self();
492 qemu_system_ready = 1;
494 if (kvm_eventfd(fds) == -1) {
495 fprintf(stderr, "failed to create eventfd\n");
496 return -errno;
499 qemu_set_fd_handler2(fds[0], NULL, io_thread_wakeup, NULL,
500 (void *)(unsigned long)fds[0]);
502 io_thread_fd = fds[1];
504 sigemptyset(&mask);
505 sigaddset(&mask, SIGIO);
506 sigaddset(&mask, SIGALRM);
507 sigaddset(&mask, SIGUSR2);
508 sigprocmask(SIG_BLOCK, &mask, NULL);
510 sigfd = kvm_signalfd(&mask);
511 if (sigfd == -1) {
512 fprintf(stderr, "failed to create signalfd\n");
513 return -errno;
516 fcntl(sigfd, F_SETFL, O_NONBLOCK);
518 qemu_set_fd_handler2(sigfd, NULL, sigfd_handler, NULL,
519 (void *)(unsigned long)sigfd);
521 pthread_cond_broadcast(&qemu_system_cond);
523 io_thread_sigfd = sigfd;
524 cpu_single_env = NULL;
526 while (1) {
527 main_loop_wait(1000);
528 if (qemu_shutdown_requested())
529 break;
530 else if (qemu_powerdown_requested())
531 qemu_system_powerdown();
532 else if (qemu_reset_requested()) {
533 pthread_kill(vcpu_info[0].thread, SIG_IPI);
534 qemu_kvm_reset_requested = 1;
538 pause_all_threads();
539 pthread_mutex_unlock(&qemu_mutex);
541 return 0;
544 static int kvm_debug(void *opaque, int vcpu)
546 CPUState *env = cpu_single_env;
548 env->exception_index = EXCP_DEBUG;
549 return 1;
552 static int kvm_inb(void *opaque, uint16_t addr, uint8_t *data)
554 *data = cpu_inb(0, addr);
555 return 0;
558 static int kvm_inw(void *opaque, uint16_t addr, uint16_t *data)
560 *data = cpu_inw(0, addr);
561 return 0;
564 static int kvm_inl(void *opaque, uint16_t addr, uint32_t *data)
566 *data = cpu_inl(0, addr);
567 return 0;
570 #define PM_IO_BASE 0xb000
572 static int kvm_outb(void *opaque, uint16_t addr, uint8_t data)
574 if (addr == 0xb2) {
575 switch (data) {
576 case 0: {
577 cpu_outb(0, 0xb3, 0);
578 break;
580 case 0xf0: {
581 unsigned x;
583 /* enable acpi */
584 x = cpu_inw(0, PM_IO_BASE + 4);
585 x &= ~1;
586 cpu_outw(0, PM_IO_BASE + 4, x);
587 break;
589 case 0xf1: {
590 unsigned x;
592 /* enable acpi */
593 x = cpu_inw(0, PM_IO_BASE + 4);
594 x |= 1;
595 cpu_outw(0, PM_IO_BASE + 4, x);
596 break;
598 default:
599 break;
601 return 0;
603 cpu_outb(0, addr, data);
604 return 0;
607 static int kvm_outw(void *opaque, uint16_t addr, uint16_t data)
609 cpu_outw(0, addr, data);
610 return 0;
613 static int kvm_outl(void *opaque, uint16_t addr, uint32_t data)
615 cpu_outl(0, addr, data);
616 return 0;
619 static int kvm_mmio_read(void *opaque, uint64_t addr, uint8_t *data, int len)
621 cpu_physical_memory_rw(addr, data, len, 0);
622 return 0;
625 static int kvm_mmio_write(void *opaque, uint64_t addr, uint8_t *data, int len)
627 cpu_physical_memory_rw(addr, data, len, 1);
628 return 0;
631 static int kvm_io_window(void *opaque)
633 return 1;
637 static int kvm_halt(void *opaque, int vcpu)
639 return kvm_arch_halt(opaque, vcpu);
642 static int kvm_shutdown(void *opaque, int vcpu)
644 qemu_system_reset_request();
645 return 1;
648 static struct kvm_callbacks qemu_kvm_ops = {
649 .debug = kvm_debug,
650 .inb = kvm_inb,
651 .inw = kvm_inw,
652 .inl = kvm_inl,
653 .outb = kvm_outb,
654 .outw = kvm_outw,
655 .outl = kvm_outl,
656 .mmio_read = kvm_mmio_read,
657 .mmio_write = kvm_mmio_write,
658 .halt = kvm_halt,
659 .shutdown = kvm_shutdown,
660 .io_window = kvm_io_window,
661 .try_push_interrupts = try_push_interrupts,
662 .post_kvm_run = post_kvm_run,
663 .pre_kvm_run = pre_kvm_run,
664 #ifdef TARGET_I386
665 .tpr_access = handle_tpr_access,
666 #endif
667 #ifdef TARGET_PPC
668 .powerpc_dcr_read = handle_powerpc_dcr_read,
669 .powerpc_dcr_write = handle_powerpc_dcr_write,
670 #endif
673 int kvm_qemu_init()
675 /* Try to initialize kvm */
676 kvm_context = kvm_init(&qemu_kvm_ops, cpu_single_env);
677 if (!kvm_context) {
678 return -1;
680 pthread_mutex_lock(&qemu_mutex);
682 return 0;
685 int kvm_qemu_create_context(void)
687 int r;
688 if (!kvm_irqchip) {
689 kvm_disable_irqchip_creation(kvm_context);
691 if (!kvm_pit) {
692 kvm_disable_pit_creation(kvm_context);
694 if (kvm_create(kvm_context, phys_ram_size, (void**)&phys_ram_base) < 0) {
695 kvm_qemu_destroy();
696 return -1;
698 r = kvm_arch_qemu_create_context();
699 if(r <0)
700 kvm_qemu_destroy();
701 return 0;
704 void kvm_qemu_destroy(void)
706 kvm_finalize(kvm_context);
709 void kvm_cpu_register_physical_memory(target_phys_addr_t start_addr,
710 unsigned long size,
711 unsigned long phys_offset)
713 #ifdef KVM_CAP_USER_MEMORY
714 int r = 0;
716 r = kvm_check_extension(kvm_context, KVM_CAP_USER_MEMORY);
717 if (r) {
718 if (!(phys_offset & ~TARGET_PAGE_MASK)) {
719 r = kvm_is_allocated_mem(kvm_context, start_addr, size);
720 if (r)
721 return;
722 r = kvm_is_intersecting_mem(kvm_context, start_addr);
723 if (r)
724 kvm_create_mem_hole(kvm_context, start_addr, size);
725 r = kvm_register_userspace_phys_mem(kvm_context, start_addr,
726 phys_ram_base + phys_offset,
727 size, 0);
729 if (phys_offset & IO_MEM_ROM) {
730 phys_offset &= ~IO_MEM_ROM;
731 r = kvm_is_intersecting_mem(kvm_context, start_addr);
732 if (r)
733 kvm_create_mem_hole(kvm_context, start_addr, size);
734 r = kvm_register_userspace_phys_mem(kvm_context, start_addr,
735 phys_ram_base + phys_offset,
736 size, 0);
738 if (r < 0) {
739 printf("kvm_cpu_register_physical_memory: failed\n");
740 exit(1);
742 return;
744 #endif
745 if (phys_offset & IO_MEM_ROM) {
746 phys_offset &= ~IO_MEM_ROM;
747 memcpy(phys_ram_base + start_addr, phys_ram_base + phys_offset, size);
751 int kvm_qemu_check_extension(int ext)
753 return kvm_check_extension(kvm_context, ext);
756 int kvm_qemu_init_env(CPUState *cenv)
758 return kvm_arch_qemu_init_env(cenv);
761 int kvm_update_debugger(CPUState *env)
763 struct kvm_debug_guest dbg;
764 int i;
766 dbg.enabled = 0;
767 if (env->nb_breakpoints || env->singlestep_enabled) {
768 dbg.enabled = 1;
769 for (i = 0; i < 4 && i < env->nb_breakpoints; ++i) {
770 dbg.breakpoints[i].enabled = 1;
771 dbg.breakpoints[i].address = env->breakpoints[i];
773 dbg.singlestep = env->singlestep_enabled;
775 return kvm_guest_debug(kvm_context, env->cpu_index, &dbg);
780 * dirty pages logging
782 /* FIXME: use unsigned long pointer instead of unsigned char */
783 unsigned char *kvm_dirty_bitmap = NULL;
784 int kvm_physical_memory_set_dirty_tracking(int enable)
786 int r = 0;
788 if (!kvm_enabled())
789 return 0;
791 if (enable) {
792 if (!kvm_dirty_bitmap) {
793 unsigned bitmap_size = BITMAP_SIZE(phys_ram_size);
794 kvm_dirty_bitmap = qemu_malloc(bitmap_size);
795 if (kvm_dirty_bitmap == NULL) {
796 perror("Failed to allocate dirty pages bitmap");
797 r=-1;
799 else {
800 r = kvm_dirty_pages_log_enable_all(kvm_context);
804 else {
805 if (kvm_dirty_bitmap) {
806 r = kvm_dirty_pages_log_reset(kvm_context);
807 qemu_free(kvm_dirty_bitmap);
808 kvm_dirty_bitmap = NULL;
811 return r;
814 /* get kvm's dirty pages bitmap and update qemu's */
815 int kvm_get_dirty_pages_log_range(unsigned long start_addr,
816 unsigned char *bitmap,
817 unsigned int offset,
818 unsigned long mem_size)
820 unsigned int i, j, n=0;
821 unsigned char c;
822 unsigned page_number, addr, addr1;
823 unsigned int len = ((mem_size/TARGET_PAGE_SIZE) + 7) / 8;
826 * bitmap-traveling is faster than memory-traveling (for addr...)
827 * especially when most of the memory is not dirty.
829 for (i=0; i<len; i++) {
830 c = bitmap[i];
831 while (c>0) {
832 j = ffsl(c) - 1;
833 c &= ~(1u<<j);
834 page_number = i * 8 + j;
835 addr1 = page_number * TARGET_PAGE_SIZE;
836 addr = offset + addr1;
837 cpu_physical_memory_set_dirty(addr);
838 n++;
841 return 0;
843 int kvm_get_dirty_bitmap_cb(unsigned long start, unsigned long len,
844 void *bitmap, void *opaque)
846 return kvm_get_dirty_pages_log_range(start, bitmap, start, len);
850 * get kvm's dirty pages bitmap and update qemu's
851 * we only care about physical ram, which resides in slots 0 and 3
853 int kvm_update_dirty_pages_log(void)
855 int r = 0;
858 r = kvm_get_dirty_pages_range(kvm_context, 0, phys_ram_size,
859 kvm_dirty_bitmap, NULL,
860 kvm_get_dirty_bitmap_cb);
861 return r;
864 int kvm_get_phys_ram_page_bitmap(unsigned char *bitmap)
866 unsigned int bsize = BITMAP_SIZE(phys_ram_size);
867 unsigned int brsize = BITMAP_SIZE(ram_size);
868 unsigned int extra_pages = (phys_ram_size - ram_size) / TARGET_PAGE_SIZE;
869 unsigned int extra_bytes = (extra_pages +7)/8;
870 unsigned int hole_start = BITMAP_SIZE(0xa0000);
871 unsigned int hole_end = BITMAP_SIZE(0xc0000);
873 memset(bitmap, 0xFF, brsize + extra_bytes);
874 memset(bitmap + hole_start, 0, hole_end - hole_start);
875 memset(bitmap + brsize + extra_bytes, 0, bsize - brsize - extra_bytes);
877 return 0;
880 #ifdef KVM_CAP_IRQCHIP
882 int kvm_set_irq(int irq, int level)
884 return kvm_set_irq_level(kvm_context, irq, level);
887 #endif
889 void qemu_kvm_aio_wait_start(void)
893 void qemu_kvm_aio_wait(void)
895 CPUState *cpu_single = cpu_single_env;
897 if (!cpu_single_env) {
898 if (io_thread_sigfd != -1) {
899 fd_set rfds;
900 int ret;
902 FD_ZERO(&rfds);
903 FD_SET(io_thread_sigfd, &rfds);
905 /* this is a rare case where we do want to hold qemu_mutex
906 * while sleeping. We cannot allow anything else to run
907 * right now. */
908 ret = select(io_thread_sigfd + 1, &rfds, NULL, NULL, NULL);
909 if (ret > 0 && FD_ISSET(io_thread_sigfd, &rfds))
910 sigfd_handler((void *)(unsigned long)io_thread_sigfd);
912 qemu_aio_poll();
913 } else {
914 pthread_cond_wait(&qemu_aio_cond, &qemu_mutex);
915 cpu_single_env = cpu_single;
919 void qemu_kvm_aio_wait_end(void)
923 int qemu_kvm_get_dirty_pages(unsigned long phys_addr, void *buf)
925 return kvm_get_dirty_pages(kvm_context, phys_addr, buf);
928 void *kvm_cpu_create_phys_mem(target_phys_addr_t start_addr,
929 unsigned long size, int log, int writable)
931 return kvm_create_phys_mem(kvm_context, start_addr, size, log, writable);
934 void kvm_cpu_destroy_phys_mem(target_phys_addr_t start_addr,
935 unsigned long size)
937 kvm_destroy_phys_mem(kvm_context, start_addr, size);
940 void kvm_mutex_unlock(void)
942 pthread_mutex_unlock(&qemu_mutex);
945 void kvm_mutex_lock(void)
947 pthread_mutex_lock(&qemu_mutex);
948 cpu_single_env = NULL;