kvm: external module: handle set_kset_name()'s removal
[qemu-kvm/fedora.git] / qemu-kvm-x86.c
blob037abb14e7a3f51bbafec47cee20430c20350f88
2 #include "config.h"
3 #include "config-host.h"
5 #include <string.h>
6 #include "hw/hw.h"
8 #include "qemu-kvm.h"
9 #include <libkvm.h>
10 #include <pthread.h>
11 #include <sys/utsname.h>
13 #define MSR_IA32_TSC 0x10
15 static struct kvm_msr_list *kvm_msr_list;
16 extern unsigned int kvm_shadow_memory;
17 extern kvm_context_t kvm_context;
18 static int kvm_has_msr_star;
20 static int lm_capable_kernel;
22 int kvm_arch_qemu_create_context(void)
24 int i;
25 struct utsname utsname;
27 uname(&utsname);
28 lm_capable_kernel = strcmp(utsname.machine, "x86_64") == 0;
30 if (kvm_shadow_memory)
31 kvm_set_shadow_pages(kvm_context, kvm_shadow_memory);
33 kvm_msr_list = kvm_get_msr_list(kvm_context);
34 if (!kvm_msr_list)
35 return -1;
36 for (i = 0; i < kvm_msr_list->nmsrs; ++i)
37 if (kvm_msr_list->indices[i] == MSR_STAR)
38 kvm_has_msr_star = 1;
39 return 0;
42 static void set_msr_entry(struct kvm_msr_entry *entry, uint32_t index,
43 uint64_t data)
45 entry->index = index;
46 entry->data = data;
49 /* returns 0 on success, non-0 on failure */
50 static int get_msr_entry(struct kvm_msr_entry *entry, CPUState *env)
52 switch (entry->index) {
53 case MSR_IA32_SYSENTER_CS:
54 env->sysenter_cs = entry->data;
55 break;
56 case MSR_IA32_SYSENTER_ESP:
57 env->sysenter_esp = entry->data;
58 break;
59 case MSR_IA32_SYSENTER_EIP:
60 env->sysenter_eip = entry->data;
61 break;
62 case MSR_STAR:
63 env->star = entry->data;
64 break;
65 #ifdef TARGET_X86_64
66 case MSR_CSTAR:
67 env->cstar = entry->data;
68 break;
69 case MSR_KERNELGSBASE:
70 env->kernelgsbase = entry->data;
71 break;
72 case MSR_FMASK:
73 env->fmask = entry->data;
74 break;
75 case MSR_LSTAR:
76 env->lstar = entry->data;
77 break;
78 #endif
79 case MSR_IA32_TSC:
80 env->tsc = entry->data;
81 break;
82 default:
83 printf("Warning unknown msr index 0x%x\n", entry->index);
84 return 1;
86 return 0;
89 #ifdef TARGET_X86_64
90 #define MSR_COUNT 9
91 #else
92 #define MSR_COUNT 5
93 #endif
95 static void set_v8086_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
97 lhs->selector = rhs->selector;
98 lhs->base = rhs->base;
99 lhs->limit = rhs->limit;
100 lhs->type = 3;
101 lhs->present = 1;
102 lhs->dpl = 3;
103 lhs->db = 0;
104 lhs->s = 1;
105 lhs->l = 0;
106 lhs->g = 0;
107 lhs->avl = 0;
108 lhs->unusable = 0;
111 static void set_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
113 unsigned flags = rhs->flags;
114 lhs->selector = rhs->selector;
115 lhs->base = rhs->base;
116 lhs->limit = rhs->limit;
117 lhs->type = (flags >> DESC_TYPE_SHIFT) & 15;
118 lhs->present = (flags & DESC_P_MASK) != 0;
119 lhs->dpl = rhs->selector & 3;
120 lhs->db = (flags >> DESC_B_SHIFT) & 1;
121 lhs->s = (flags & DESC_S_MASK) != 0;
122 lhs->l = (flags >> DESC_L_SHIFT) & 1;
123 lhs->g = (flags & DESC_G_MASK) != 0;
124 lhs->avl = (flags & DESC_AVL_MASK) != 0;
125 lhs->unusable = 0;
128 static void get_seg(SegmentCache *lhs, const struct kvm_segment *rhs)
130 lhs->selector = rhs->selector;
131 lhs->base = rhs->base;
132 lhs->limit = rhs->limit;
133 lhs->flags =
134 (rhs->type << DESC_TYPE_SHIFT)
135 | (rhs->present * DESC_P_MASK)
136 | (rhs->dpl << DESC_DPL_SHIFT)
137 | (rhs->db << DESC_B_SHIFT)
138 | (rhs->s * DESC_S_MASK)
139 | (rhs->l << DESC_L_SHIFT)
140 | (rhs->g * DESC_G_MASK)
141 | (rhs->avl * DESC_AVL_MASK);
144 /* the reset values of qemu are not compatible to SVM
145 * this function is used to fix the segment descriptor values */
146 static void fix_realmode_dataseg(struct kvm_segment *seg)
148 seg->type = 0x02;
149 seg->present = 1;
150 seg->s = 1;
153 void kvm_arch_load_regs(CPUState *env)
155 struct kvm_regs regs;
156 struct kvm_fpu fpu;
157 struct kvm_sregs sregs;
158 struct kvm_msr_entry msrs[MSR_COUNT];
159 int rc, n, i;
161 regs.rax = env->regs[R_EAX];
162 regs.rbx = env->regs[R_EBX];
163 regs.rcx = env->regs[R_ECX];
164 regs.rdx = env->regs[R_EDX];
165 regs.rsi = env->regs[R_ESI];
166 regs.rdi = env->regs[R_EDI];
167 regs.rsp = env->regs[R_ESP];
168 regs.rbp = env->regs[R_EBP];
169 #ifdef TARGET_X86_64
170 regs.r8 = env->regs[8];
171 regs.r9 = env->regs[9];
172 regs.r10 = env->regs[10];
173 regs.r11 = env->regs[11];
174 regs.r12 = env->regs[12];
175 regs.r13 = env->regs[13];
176 regs.r14 = env->regs[14];
177 regs.r15 = env->regs[15];
178 #endif
180 regs.rflags = env->eflags;
181 regs.rip = env->eip;
183 kvm_set_regs(kvm_context, env->cpu_index, &regs);
185 memset(&fpu, 0, sizeof fpu);
186 fpu.fsw = env->fpus & ~(7 << 11);
187 fpu.fsw |= (env->fpstt & 7) << 11;
188 fpu.fcw = env->fpuc;
189 for (i = 0; i < 8; ++i)
190 fpu.ftwx |= (!env->fptags[i]) << i;
191 memcpy(fpu.fpr, env->fpregs, sizeof env->fpregs);
192 memcpy(fpu.xmm, env->xmm_regs, sizeof env->xmm_regs);
193 fpu.mxcsr = env->mxcsr;
194 kvm_set_fpu(kvm_context, env->cpu_index, &fpu);
196 memcpy(sregs.interrupt_bitmap, env->kvm_interrupt_bitmap, sizeof(sregs.interrupt_bitmap));
198 if ((env->eflags & VM_MASK)) {
199 set_v8086_seg(&sregs.cs, &env->segs[R_CS]);
200 set_v8086_seg(&sregs.ds, &env->segs[R_DS]);
201 set_v8086_seg(&sregs.es, &env->segs[R_ES]);
202 set_v8086_seg(&sregs.fs, &env->segs[R_FS]);
203 set_v8086_seg(&sregs.gs, &env->segs[R_GS]);
204 set_v8086_seg(&sregs.ss, &env->segs[R_SS]);
205 } else {
206 set_seg(&sregs.cs, &env->segs[R_CS]);
207 set_seg(&sregs.ds, &env->segs[R_DS]);
208 set_seg(&sregs.es, &env->segs[R_ES]);
209 set_seg(&sregs.fs, &env->segs[R_FS]);
210 set_seg(&sregs.gs, &env->segs[R_GS]);
211 set_seg(&sregs.ss, &env->segs[R_SS]);
213 if (env->cr[0] & CR0_PE_MASK) {
214 /* force ss cpl to cs cpl */
215 sregs.ss.selector = (sregs.ss.selector & ~3) |
216 (sregs.cs.selector & 3);
217 sregs.ss.dpl = sregs.ss.selector & 3;
220 if (!(env->cr[0] & CR0_PG_MASK)) {
221 fix_realmode_dataseg(&sregs.cs);
222 fix_realmode_dataseg(&sregs.ds);
223 fix_realmode_dataseg(&sregs.es);
224 fix_realmode_dataseg(&sregs.fs);
225 fix_realmode_dataseg(&sregs.gs);
226 fix_realmode_dataseg(&sregs.ss);
230 set_seg(&sregs.tr, &env->tr);
231 set_seg(&sregs.ldt, &env->ldt);
233 sregs.idt.limit = env->idt.limit;
234 sregs.idt.base = env->idt.base;
235 sregs.gdt.limit = env->gdt.limit;
236 sregs.gdt.base = env->gdt.base;
238 sregs.cr0 = env->cr[0];
239 sregs.cr2 = env->cr[2];
240 sregs.cr3 = env->cr[3];
241 sregs.cr4 = env->cr[4];
243 sregs.apic_base = cpu_get_apic_base(env);
244 sregs.efer = env->efer;
245 sregs.cr8 = cpu_get_apic_tpr(env);
247 kvm_set_sregs(kvm_context, env->cpu_index, &sregs);
249 /* msrs */
250 n = 0;
251 set_msr_entry(&msrs[n++], MSR_IA32_SYSENTER_CS, env->sysenter_cs);
252 set_msr_entry(&msrs[n++], MSR_IA32_SYSENTER_ESP, env->sysenter_esp);
253 set_msr_entry(&msrs[n++], MSR_IA32_SYSENTER_EIP, env->sysenter_eip);
254 if (kvm_has_msr_star)
255 set_msr_entry(&msrs[n++], MSR_STAR, env->star);
256 set_msr_entry(&msrs[n++], MSR_IA32_TSC, env->tsc);
257 #ifdef TARGET_X86_64
258 if (lm_capable_kernel) {
259 set_msr_entry(&msrs[n++], MSR_CSTAR, env->cstar);
260 set_msr_entry(&msrs[n++], MSR_KERNELGSBASE, env->kernelgsbase);
261 set_msr_entry(&msrs[n++], MSR_FMASK, env->fmask);
262 set_msr_entry(&msrs[n++], MSR_LSTAR , env->lstar);
264 #endif
266 rc = kvm_set_msrs(kvm_context, env->cpu_index, msrs, n);
267 if (rc == -1)
268 perror("kvm_set_msrs FAILED");
272 void kvm_arch_save_regs(CPUState *env)
274 struct kvm_regs regs;
275 struct kvm_fpu fpu;
276 struct kvm_sregs sregs;
277 struct kvm_msr_entry msrs[MSR_COUNT];
278 uint32_t hflags;
279 uint32_t i, n, rc;
281 kvm_get_regs(kvm_context, env->cpu_index, &regs);
283 env->regs[R_EAX] = regs.rax;
284 env->regs[R_EBX] = regs.rbx;
285 env->regs[R_ECX] = regs.rcx;
286 env->regs[R_EDX] = regs.rdx;
287 env->regs[R_ESI] = regs.rsi;
288 env->regs[R_EDI] = regs.rdi;
289 env->regs[R_ESP] = regs.rsp;
290 env->regs[R_EBP] = regs.rbp;
291 #ifdef TARGET_X86_64
292 env->regs[8] = regs.r8;
293 env->regs[9] = regs.r9;
294 env->regs[10] = regs.r10;
295 env->regs[11] = regs.r11;
296 env->regs[12] = regs.r12;
297 env->regs[13] = regs.r13;
298 env->regs[14] = regs.r14;
299 env->regs[15] = regs.r15;
300 #endif
302 env->eflags = regs.rflags;
303 env->eip = regs.rip;
305 kvm_get_fpu(kvm_context, env->cpu_index, &fpu);
306 env->fpstt = (fpu.fsw >> 11) & 7;
307 env->fpus = fpu.fsw;
308 env->fpuc = fpu.fcw;
309 for (i = 0; i < 8; ++i)
310 env->fptags[i] = !((fpu.ftwx >> i) & 1);
311 memcpy(env->fpregs, fpu.fpr, sizeof env->fpregs);
312 memcpy(env->xmm_regs, fpu.xmm, sizeof env->xmm_regs);
313 env->mxcsr = fpu.mxcsr;
315 kvm_get_sregs(kvm_context, env->cpu_index, &sregs);
317 memcpy(env->kvm_interrupt_bitmap, sregs.interrupt_bitmap, sizeof(env->kvm_interrupt_bitmap));
319 get_seg(&env->segs[R_CS], &sregs.cs);
320 get_seg(&env->segs[R_DS], &sregs.ds);
321 get_seg(&env->segs[R_ES], &sregs.es);
322 get_seg(&env->segs[R_FS], &sregs.fs);
323 get_seg(&env->segs[R_GS], &sregs.gs);
324 get_seg(&env->segs[R_SS], &sregs.ss);
326 get_seg(&env->tr, &sregs.tr);
327 get_seg(&env->ldt, &sregs.ldt);
329 env->idt.limit = sregs.idt.limit;
330 env->idt.base = sregs.idt.base;
331 env->gdt.limit = sregs.gdt.limit;
332 env->gdt.base = sregs.gdt.base;
334 env->cr[0] = sregs.cr0;
335 env->cr[2] = sregs.cr2;
336 env->cr[3] = sregs.cr3;
337 env->cr[4] = sregs.cr4;
339 cpu_set_apic_base(env, sregs.apic_base);
341 env->efer = sregs.efer;
342 //cpu_set_apic_tpr(env, sregs.cr8);
344 #define HFLAG_COPY_MASK ~( \
345 HF_CPL_MASK | HF_PE_MASK | HF_MP_MASK | HF_EM_MASK | \
346 HF_TS_MASK | HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK | \
347 HF_OSFXSR_MASK | HF_LMA_MASK | HF_CS32_MASK | \
348 HF_SS32_MASK | HF_CS64_MASK | HF_ADDSEG_MASK)
352 hflags = (env->segs[R_CS].flags >> DESC_DPL_SHIFT) & HF_CPL_MASK;
353 hflags |= (env->cr[0] & CR0_PE_MASK) << (HF_PE_SHIFT - CR0_PE_SHIFT);
354 hflags |= (env->cr[0] << (HF_MP_SHIFT - CR0_MP_SHIFT)) &
355 (HF_MP_MASK | HF_EM_MASK | HF_TS_MASK);
356 hflags |= (env->eflags & (HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK));
357 hflags |= (env->cr[4] & CR4_OSFXSR_MASK) <<
358 (HF_OSFXSR_SHIFT - CR4_OSFXSR_SHIFT);
360 if (env->efer & MSR_EFER_LMA) {
361 hflags |= HF_LMA_MASK;
364 if ((hflags & HF_LMA_MASK) && (env->segs[R_CS].flags & DESC_L_MASK)) {
365 hflags |= HF_CS32_MASK | HF_SS32_MASK | HF_CS64_MASK;
366 } else {
367 hflags |= (env->segs[R_CS].flags & DESC_B_MASK) >>
368 (DESC_B_SHIFT - HF_CS32_SHIFT);
369 hflags |= (env->segs[R_SS].flags & DESC_B_MASK) >>
370 (DESC_B_SHIFT - HF_SS32_SHIFT);
371 if (!(env->cr[0] & CR0_PE_MASK) ||
372 (env->eflags & VM_MASK) ||
373 !(hflags & HF_CS32_MASK)) {
374 hflags |= HF_ADDSEG_MASK;
375 } else {
376 hflags |= ((env->segs[R_DS].base |
377 env->segs[R_ES].base |
378 env->segs[R_SS].base) != 0) <<
379 HF_ADDSEG_SHIFT;
382 env->hflags = (env->hflags & HFLAG_COPY_MASK) | hflags;
383 env->cc_src = env->eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
384 env->df = 1 - (2 * ((env->eflags >> 10) & 1));
385 env->cc_op = CC_OP_EFLAGS;
386 env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
388 /* msrs */
389 n = 0;
390 msrs[n++].index = MSR_IA32_SYSENTER_CS;
391 msrs[n++].index = MSR_IA32_SYSENTER_ESP;
392 msrs[n++].index = MSR_IA32_SYSENTER_EIP;
393 if (kvm_has_msr_star)
394 msrs[n++].index = MSR_STAR;
395 msrs[n++].index = MSR_IA32_TSC;
396 #ifdef TARGET_X86_64
397 if (lm_capable_kernel) {
398 msrs[n++].index = MSR_CSTAR;
399 msrs[n++].index = MSR_KERNELGSBASE;
400 msrs[n++].index = MSR_FMASK;
401 msrs[n++].index = MSR_LSTAR;
403 #endif
404 rc = kvm_get_msrs(kvm_context, env->cpu_index, msrs, n);
405 if (rc == -1) {
406 perror("kvm_get_msrs FAILED");
408 else {
409 n = rc; /* actual number of MSRs */
410 for (i=0 ; i<n; i++) {
411 if (get_msr_entry(&msrs[i], env))
412 return;
417 static void host_cpuid(uint32_t function, uint32_t *eax, uint32_t *ebx,
418 uint32_t *ecx, uint32_t *edx)
420 uint32_t vec[4];
422 vec[0] = function;
423 asm volatile (
424 #ifdef __x86_64__
425 "sub $128, %%rsp \n\t" /* skip red zone */
426 "push %0; push %%rsi \n\t"
427 "push %%rax; push %%rbx; push %%rcx; push %%rdx \n\t"
428 "mov 8*5(%%rsp), %%rsi \n\t"
429 "mov (%%rsi), %%eax \n\t"
430 "cpuid \n\t"
431 "mov %%eax, (%%rsi) \n\t"
432 "mov %%ebx, 4(%%rsi) \n\t"
433 "mov %%ecx, 8(%%rsi) \n\t"
434 "mov %%edx, 12(%%rsi) \n\t"
435 "pop %%rdx; pop %%rcx; pop %%rbx; pop %%rax \n\t"
436 "pop %%rsi; pop %0 \n\t"
437 "add $128, %%rsp"
438 #else
439 "push %0; push %%esi \n\t"
440 "push %%eax; push %%ebx; push %%ecx; push %%edx \n\t"
441 "mov 4*5(%%esp), %%esi \n\t"
442 "mov (%%esi), %%eax \n\t"
443 "cpuid \n\t"
444 "mov %%eax, (%%esi) \n\t"
445 "mov %%ebx, 4(%%esi) \n\t"
446 "mov %%ecx, 8(%%esi) \n\t"
447 "mov %%edx, 12(%%esi) \n\t"
448 "pop %%edx; pop %%ecx; pop %%ebx; pop %%eax \n\t"
449 "pop %%esi; pop %0 \n\t"
450 #endif
451 : : "rm"(vec) : "memory");
452 if (eax)
453 *eax = vec[0];
454 if (ebx)
455 *ebx = vec[1];
456 if (ecx)
457 *ecx = vec[2];
458 if (edx)
459 *edx = vec[3];
463 static void do_cpuid_ent(struct kvm_cpuid_entry *e, uint32_t function,
464 CPUState *env)
466 env->regs[R_EAX] = function;
467 qemu_kvm_cpuid_on_env(env);
468 e->function = function;
469 e->eax = env->regs[R_EAX];
470 e->ebx = env->regs[R_EBX];
471 e->ecx = env->regs[R_ECX];
472 e->edx = env->regs[R_EDX];
473 if (function == 0x80000001) {
474 uint32_t h_eax, h_edx;
476 host_cpuid(function, &h_eax, NULL, NULL, &h_edx);
478 // long mode
479 if ((h_edx & 0x20000000) == 0 || !lm_capable_kernel)
480 e->edx &= ~0x20000000u;
481 // syscall
482 if ((h_edx & 0x00000800) == 0)
483 e->edx &= ~0x00000800u;
484 // nx
485 if ((h_edx & 0x00100000) == 0)
486 e->edx &= ~0x00100000u;
487 // svm
488 if (e->ecx & 4)
489 e->ecx &= ~4u;
491 // sysenter isn't supported on compatibility mode on AMD. and syscall
492 // isn't supported in compatibility mode on Intel. so advertise the
493 // actuall cpu, and say goodbye to migration between different vendors
494 // is you use compatibility mode.
495 if (function == 0) {
496 uint32_t bcd[3];
498 host_cpuid(0, NULL, &bcd[0], &bcd[1], &bcd[2]);
499 e->ebx = bcd[0];
500 e->ecx = bcd[1];
501 e->edx = bcd[2];
505 int kvm_arch_qemu_init_env(CPUState *cenv)
507 struct kvm_cpuid_entry cpuid_ent[100];
508 #ifdef KVM_CPUID_SIGNATURE
509 struct kvm_cpuid_entry *pv_ent;
510 uint32_t signature[3];
511 #endif
512 int cpuid_nent = 0;
513 CPUState copy;
514 uint32_t i, limit;
516 copy = *cenv;
518 #ifdef KVM_CPUID_SIGNATURE
519 /* Paravirtualization CPUIDs */
520 memcpy(signature, "KVMKVMKVM", 12);
521 pv_ent = &cpuid_ent[cpuid_nent++];
522 memset(pv_ent, 0, sizeof(*pv_ent));
523 pv_ent->function = KVM_CPUID_SIGNATURE;
524 pv_ent->eax = 0;
525 pv_ent->ebx = signature[0];
526 pv_ent->ecx = signature[1];
527 pv_ent->edx = signature[2];
529 pv_ent = &cpuid_ent[cpuid_nent++];
530 memset(pv_ent, 0, sizeof(*pv_ent));
531 pv_ent->function = KVM_CPUID_FEATURES;
532 pv_ent->eax = 0;
533 #endif
535 copy.regs[R_EAX] = 0;
536 qemu_kvm_cpuid_on_env(&copy);
537 limit = copy.regs[R_EAX];
539 for (i = 0; i <= limit; ++i)
540 do_cpuid_ent(&cpuid_ent[cpuid_nent++], i, &copy);
542 copy.regs[R_EAX] = 0x80000000;
543 qemu_kvm_cpuid_on_env(&copy);
544 limit = copy.regs[R_EAX];
546 for (i = 0x80000000; i <= limit; ++i)
547 do_cpuid_ent(&cpuid_ent[cpuid_nent++], i, &copy);
549 kvm_setup_cpuid(kvm_context, cenv->cpu_index, cpuid_nent, cpuid_ent);
550 return 0;
553 int kvm_arch_halt(void *opaque, int vcpu)
555 CPUState *env = cpu_single_env;
557 if (!((env->interrupt_request & CPU_INTERRUPT_HARD) &&
558 (env->eflags & IF_MASK))) {
559 env->hflags |= HF_HALTED_MASK;
560 env->exception_index = EXCP_HLT;
562 return 1;
565 void kvm_arch_pre_kvm_run(void *opaque, int vcpu)
567 CPUState *env = cpu_single_env;
569 if (!kvm_irqchip_in_kernel(kvm_context))
570 kvm_set_cr8(kvm_context, vcpu, cpu_get_apic_tpr(env));
573 void kvm_arch_post_kvm_run(void *opaque, int vcpu)
575 CPUState *env = qemu_kvm_cpu_env(vcpu);
576 cpu_single_env = env;
578 env->eflags = kvm_get_interrupt_flag(kvm_context, vcpu)
579 ? env->eflags | IF_MASK : env->eflags & ~IF_MASK;
580 env->ready_for_interrupt_injection
581 = kvm_is_ready_for_interrupt_injection(kvm_context, vcpu);
583 cpu_set_apic_tpr(env, kvm_get_cr8(kvm_context, vcpu));
584 cpu_set_apic_base(env, kvm_get_apic_base(kvm_context, vcpu));
587 int kvm_arch_has_work(CPUState *env)
589 if ((env->interrupt_request & (CPU_INTERRUPT_HARD | CPU_INTERRUPT_EXIT)) &&
590 (env->eflags & IF_MASK))
591 return 1;
592 return 0;
595 int kvm_arch_try_push_interrupts(void *opaque)
597 CPUState *env = cpu_single_env;
598 int r, irq;
600 if (env->ready_for_interrupt_injection &&
601 (env->interrupt_request & CPU_INTERRUPT_HARD) &&
602 (env->eflags & IF_MASK)) {
603 env->interrupt_request &= ~CPU_INTERRUPT_HARD;
604 irq = cpu_get_pic_interrupt(env);
605 if (irq >= 0) {
606 r = kvm_inject_irq(kvm_context, env->cpu_index, irq);
607 if (r < 0)
608 printf("cpu %d fail inject %x\n", env->cpu_index, irq);
612 return (env->interrupt_request & CPU_INTERRUPT_HARD) != 0;
615 void kvm_arch_update_regs_for_sipi(CPUState *env)
617 SegmentCache cs = env->segs[R_CS];
619 kvm_arch_save_regs(env);
620 env->segs[R_CS] = cs;
621 env->eip = 0;
622 kvm_arch_load_regs(env);
625 int handle_tpr_access(void *opaque, int vcpu,
626 uint64_t rip, int is_write)
628 kvm_tpr_access_report(cpu_single_env, rip, is_write);
629 return 0;