4 * Copyright IBM, Corp. 2008
8 * Anthony Liguori <aliguori@us.ibm.com>
9 * Glauber Costa <gcosta@redhat.com>
11 * This work is licensed under the terms of the GNU GPL, version 2 or later.
12 * See the COPYING file in the top-level directory.
16 #include <sys/types.h>
17 #include <sys/ioctl.h>
21 #include <linux/kvm.h>
23 #include "qemu-common.h"
28 /* KVM uses PAGE_SIZE in it's definition of COALESCED_MMIO_MAX */
29 #define PAGE_SIZE TARGET_PAGE_SIZE
34 #define dprintf(fmt, ...) \
35 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
37 #define dprintf(fmt, ...) \
41 typedef struct KVMSlot
43 target_phys_addr_t start_addr
;
44 ram_addr_t memory_size
;
45 ram_addr_t phys_offset
;
50 typedef struct kvm_dirty_log KVMDirtyLog
;
60 #ifdef KVM_CAP_SET_GUEST_DEBUG
61 struct kvm_sw_breakpoint_head kvm_sw_breakpoints
;
65 static KVMState
*kvm_state
;
67 static KVMSlot
*kvm_alloc_slot(KVMState
*s
)
71 for (i
= 0; i
< ARRAY_SIZE(s
->slots
); i
++) {
72 /* KVM private memory slots */
75 if (s
->slots
[i
].memory_size
== 0)
79 fprintf(stderr
, "%s: no free slot available\n", __func__
);
83 static KVMSlot
*kvm_lookup_matching_slot(KVMState
*s
,
84 target_phys_addr_t start_addr
,
85 target_phys_addr_t end_addr
)
89 for (i
= 0; i
< ARRAY_SIZE(s
->slots
); i
++) {
90 KVMSlot
*mem
= &s
->slots
[i
];
92 if (start_addr
== mem
->start_addr
&&
93 end_addr
== mem
->start_addr
+ mem
->memory_size
) {
102 * Find overlapping slot with lowest start address
104 static KVMSlot
*kvm_lookup_overlapping_slot(KVMState
*s
,
105 target_phys_addr_t start_addr
,
106 target_phys_addr_t end_addr
)
108 KVMSlot
*found
= NULL
;
111 for (i
= 0; i
< ARRAY_SIZE(s
->slots
); i
++) {
112 KVMSlot
*mem
= &s
->slots
[i
];
114 if (mem
->memory_size
== 0 ||
115 (found
&& found
->start_addr
< mem
->start_addr
)) {
119 if (end_addr
> mem
->start_addr
&&
120 start_addr
< mem
->start_addr
+ mem
->memory_size
) {
128 static int kvm_set_user_memory_region(KVMState
*s
, KVMSlot
*slot
)
130 struct kvm_userspace_memory_region mem
;
132 mem
.slot
= slot
->slot
;
133 mem
.guest_phys_addr
= slot
->start_addr
;
134 mem
.memory_size
= slot
->memory_size
;
135 mem
.userspace_addr
= (unsigned long)qemu_get_ram_ptr(slot
->phys_offset
);
136 mem
.flags
= slot
->flags
;
138 return kvm_vm_ioctl(s
, KVM_SET_USER_MEMORY_REGION
, &mem
);
142 int kvm_init_vcpu(CPUState
*env
)
144 KVMState
*s
= kvm_state
;
148 dprintf("kvm_init_vcpu\n");
150 ret
= kvm_vm_ioctl(s
, KVM_CREATE_VCPU
, env
->cpu_index
);
152 dprintf("kvm_create_vcpu failed\n");
159 mmap_size
= kvm_ioctl(s
, KVM_GET_VCPU_MMAP_SIZE
, 0);
161 dprintf("KVM_GET_VCPU_MMAP_SIZE failed\n");
165 env
->kvm_run
= mmap(NULL
, mmap_size
, PROT_READ
| PROT_WRITE
, MAP_SHARED
,
167 if (env
->kvm_run
== MAP_FAILED
) {
169 dprintf("mmap'ing vcpu state failed\n");
173 ret
= kvm_arch_init_vcpu(env
);
179 int kvm_sync_vcpus(void)
183 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
186 ret
= kvm_arch_put_registers(env
);
195 * dirty pages logging control
197 static int kvm_dirty_pages_log_change(target_phys_addr_t phys_addr
,
198 ram_addr_t size
, unsigned flags
,
201 KVMState
*s
= kvm_state
;
202 KVMSlot
*mem
= kvm_lookup_matching_slot(s
, phys_addr
, phys_addr
+ size
);
204 fprintf(stderr
, "BUG: %s: invalid parameters " TARGET_FMT_plx
"-"
205 TARGET_FMT_plx
"\n", __func__
, phys_addr
,
206 phys_addr
+ size
- 1);
210 flags
= (mem
->flags
& ~mask
) | flags
;
211 /* Nothing changed, no need to issue ioctl */
212 if (flags
== mem
->flags
)
217 return kvm_set_user_memory_region(s
, mem
);
220 int kvm_log_start(target_phys_addr_t phys_addr
, ram_addr_t size
)
222 return kvm_dirty_pages_log_change(phys_addr
, size
,
223 KVM_MEM_LOG_DIRTY_PAGES
,
224 KVM_MEM_LOG_DIRTY_PAGES
);
227 int kvm_log_stop(target_phys_addr_t phys_addr
, ram_addr_t size
)
229 return kvm_dirty_pages_log_change(phys_addr
, size
,
231 KVM_MEM_LOG_DIRTY_PAGES
);
235 * kvm_physical_sync_dirty_bitmap - Grab dirty bitmap from kernel space
236 * This function updates qemu's dirty bitmap using cpu_physical_memory_set_dirty().
237 * This means all bits are set to dirty.
239 * @start_add: start of logged region.
240 * @end_addr: end of logged region.
242 void kvm_physical_sync_dirty_bitmap(target_phys_addr_t start_addr
,
243 target_phys_addr_t end_addr
)
245 KVMState
*s
= kvm_state
;
247 KVMSlot
*mem
= kvm_lookup_matching_slot(s
, start_addr
, end_addr
);
248 unsigned long alloc_size
;
250 target_phys_addr_t phys_addr
= start_addr
;
252 dprintf("sync addr: " TARGET_FMT_lx
" into %lx\n", start_addr
,
255 fprintf(stderr
, "BUG: %s: invalid parameters " TARGET_FMT_plx
"-"
256 TARGET_FMT_plx
"\n", __func__
, phys_addr
, end_addr
- 1);
260 alloc_size
= mem
->memory_size
>> TARGET_PAGE_BITS
/ sizeof(d
.dirty_bitmap
);
261 d
.dirty_bitmap
= qemu_mallocz(alloc_size
);
264 dprintf("slot %d, phys_addr %llx, uaddr: %llx\n",
265 d
.slot
, mem
->start_addr
, mem
->phys_offset
);
267 if (kvm_vm_ioctl(s
, KVM_GET_DIRTY_LOG
, &d
) == -1) {
268 dprintf("ioctl failed %d\n", errno
);
272 phys_addr
= start_addr
;
273 for (addr
= mem
->phys_offset
; phys_addr
< end_addr
; phys_addr
+= TARGET_PAGE_SIZE
, addr
+= TARGET_PAGE_SIZE
) {
274 unsigned long *bitmap
= (unsigned long *)d
.dirty_bitmap
;
275 unsigned nr
= (phys_addr
- start_addr
) >> TARGET_PAGE_BITS
;
276 unsigned word
= nr
/ (sizeof(*bitmap
) * 8);
277 unsigned bit
= nr
% (sizeof(*bitmap
) * 8);
278 if ((bitmap
[word
] >> bit
) & 1)
279 cpu_physical_memory_set_dirty(addr
);
282 qemu_free(d
.dirty_bitmap
);
285 int kvm_coalesce_mmio_region(target_phys_addr_t start
, ram_addr_t size
)
288 #ifdef KVM_CAP_COALESCED_MMIO
289 KVMState
*s
= kvm_state
;
291 if (s
->coalesced_mmio
) {
292 struct kvm_coalesced_mmio_zone zone
;
297 ret
= kvm_vm_ioctl(s
, KVM_REGISTER_COALESCED_MMIO
, &zone
);
304 int kvm_uncoalesce_mmio_region(target_phys_addr_t start
, ram_addr_t size
)
307 #ifdef KVM_CAP_COALESCED_MMIO
308 KVMState
*s
= kvm_state
;
310 if (s
->coalesced_mmio
) {
311 struct kvm_coalesced_mmio_zone zone
;
316 ret
= kvm_vm_ioctl(s
, KVM_UNREGISTER_COALESCED_MMIO
, &zone
);
323 int kvm_init(int smp_cpus
)
332 s
= qemu_mallocz(sizeof(KVMState
));
334 #ifdef KVM_CAP_SET_GUEST_DEBUG
335 TAILQ_INIT(&s
->kvm_sw_breakpoints
);
337 for (i
= 0; i
< ARRAY_SIZE(s
->slots
); i
++)
338 s
->slots
[i
].slot
= i
;
341 s
->fd
= open("/dev/kvm", O_RDWR
);
343 fprintf(stderr
, "Could not access KVM kernel module: %m\n");
348 ret
= kvm_ioctl(s
, KVM_GET_API_VERSION
, 0);
349 if (ret
< KVM_API_VERSION
) {
352 fprintf(stderr
, "kvm version too old\n");
356 if (ret
> KVM_API_VERSION
) {
358 fprintf(stderr
, "kvm version not supported\n");
362 s
->vmfd
= kvm_ioctl(s
, KVM_CREATE_VM
, 0);
366 /* initially, KVM allocated its own memory and we had to jump through
367 * hooks to make phys_ram_base point to this. Modern versions of KVM
368 * just use a user allocated buffer so we can use regular pages
369 * unmodified. Make sure we have a sufficiently modern version of KVM.
371 ret
= kvm_ioctl(s
, KVM_CHECK_EXTENSION
, KVM_CAP_USER_MEMORY
);
375 fprintf(stderr
, "kvm does not support KVM_CAP_USER_MEMORY\n");
379 /* There was a nasty bug in < kvm-80 that prevents memory slots from being
380 * destroyed properly. Since we rely on this capability, refuse to work
381 * with any kernel without this capability. */
382 ret
= kvm_ioctl(s
, KVM_CHECK_EXTENSION
,
383 KVM_CAP_DESTROY_MEMORY_REGION_WORKS
);
389 "KVM kernel module broken (DESTROY_MEMORY_REGION)\n"
390 "Please upgrade to at least kvm-81.\n");
394 s
->coalesced_mmio
= 0;
395 #ifdef KVM_CAP_COALESCED_MMIO
396 ret
= kvm_ioctl(s
, KVM_CHECK_EXTENSION
, KVM_CAP_COALESCED_MMIO
);
398 s
->coalesced_mmio
= ret
;
401 ret
= kvm_arch_init(s
, smp_cpus
);
421 static int kvm_handle_io(CPUState
*env
, uint16_t port
, void *data
,
422 int direction
, int size
, uint32_t count
)
427 for (i
= 0; i
< count
; i
++) {
428 if (direction
== KVM_EXIT_IO_IN
) {
431 stb_p(ptr
, cpu_inb(env
, port
));
434 stw_p(ptr
, cpu_inw(env
, port
));
437 stl_p(ptr
, cpu_inl(env
, port
));
443 cpu_outb(env
, port
, ldub_p(ptr
));
446 cpu_outw(env
, port
, lduw_p(ptr
));
449 cpu_outl(env
, port
, ldl_p(ptr
));
460 static void kvm_run_coalesced_mmio(CPUState
*env
, struct kvm_run
*run
)
462 #ifdef KVM_CAP_COALESCED_MMIO
463 KVMState
*s
= kvm_state
;
464 if (s
->coalesced_mmio
) {
465 struct kvm_coalesced_mmio_ring
*ring
;
467 ring
= (void *)run
+ (s
->coalesced_mmio
* TARGET_PAGE_SIZE
);
468 while (ring
->first
!= ring
->last
) {
469 struct kvm_coalesced_mmio
*ent
;
471 ent
= &ring
->coalesced_mmio
[ring
->first
];
473 cpu_physical_memory_write(ent
->phys_addr
, ent
->data
, ent
->len
);
474 /* FIXME smp_wmb() */
475 ring
->first
= (ring
->first
+ 1) % KVM_COALESCED_MMIO_MAX
;
481 int kvm_cpu_exec(CPUState
*env
)
483 struct kvm_run
*run
= env
->kvm_run
;
486 dprintf("kvm_cpu_exec()\n");
489 kvm_arch_pre_run(env
, run
);
491 if (env
->exit_request
) {
492 dprintf("interrupt exit requested\n");
497 ret
= kvm_vcpu_ioctl(env
, KVM_RUN
, 0);
498 kvm_arch_post_run(env
, run
);
500 if (ret
== -EINTR
|| ret
== -EAGAIN
) {
501 dprintf("io window exit\n");
507 dprintf("kvm run failed %s\n", strerror(-ret
));
511 kvm_run_coalesced_mmio(env
, run
);
513 ret
= 0; /* exit loop */
514 switch (run
->exit_reason
) {
516 dprintf("handle_io\n");
517 ret
= kvm_handle_io(env
, run
->io
.port
,
518 (uint8_t *)run
+ run
->io
.data_offset
,
524 dprintf("handle_mmio\n");
525 cpu_physical_memory_rw(run
->mmio
.phys_addr
,
531 case KVM_EXIT_IRQ_WINDOW_OPEN
:
532 dprintf("irq_window_open\n");
534 case KVM_EXIT_SHUTDOWN
:
535 dprintf("shutdown\n");
536 qemu_system_reset_request();
539 case KVM_EXIT_UNKNOWN
:
540 dprintf("kvm_exit_unknown\n");
542 case KVM_EXIT_FAIL_ENTRY
:
543 dprintf("kvm_exit_fail_entry\n");
545 case KVM_EXIT_EXCEPTION
:
546 dprintf("kvm_exit_exception\n");
549 dprintf("kvm_exit_debug\n");
550 #ifdef KVM_CAP_SET_GUEST_DEBUG
551 if (kvm_arch_debug(&run
->debug
.arch
)) {
552 gdb_set_stop_cpu(env
);
554 env
->exception_index
= EXCP_DEBUG
;
557 /* re-enter, this exception was guest-internal */
559 #endif /* KVM_CAP_SET_GUEST_DEBUG */
562 dprintf("kvm_arch_handle_exit\n");
563 ret
= kvm_arch_handle_exit(env
, run
);
568 if (env
->exit_request
) {
569 env
->exit_request
= 0;
570 env
->exception_index
= EXCP_INTERRUPT
;
576 void kvm_set_phys_mem(target_phys_addr_t start_addr
,
578 ram_addr_t phys_offset
)
580 KVMState
*s
= kvm_state
;
581 ram_addr_t flags
= phys_offset
& ~TARGET_PAGE_MASK
;
585 if (start_addr
& ~TARGET_PAGE_MASK
) {
586 if (flags
>= IO_MEM_UNASSIGNED
) {
587 if (!kvm_lookup_overlapping_slot(s
, start_addr
,
588 start_addr
+ size
)) {
591 fprintf(stderr
, "Unaligned split of a KVM memory slot\n");
593 fprintf(stderr
, "Only page-aligned memory slots supported\n");
598 /* KVM does not support read-only slots */
599 phys_offset
&= ~IO_MEM_ROM
;
602 mem
= kvm_lookup_overlapping_slot(s
, start_addr
, start_addr
+ size
);
607 if (flags
< IO_MEM_UNASSIGNED
&& start_addr
>= mem
->start_addr
&&
608 (start_addr
+ size
<= mem
->start_addr
+ mem
->memory_size
) &&
609 (phys_offset
- start_addr
== mem
->phys_offset
- mem
->start_addr
)) {
610 /* The new slot fits into the existing one and comes with
611 * identical parameters - nothing to be done. */
617 /* unregister the overlapping slot */
618 mem
->memory_size
= 0;
619 err
= kvm_set_user_memory_region(s
, mem
);
621 fprintf(stderr
, "%s: error unregistering overlapping slot: %s\n",
622 __func__
, strerror(-err
));
626 /* Workaround for older KVM versions: we can't join slots, even not by
627 * unregistering the previous ones and then registering the larger
628 * slot. We have to maintain the existing fragmentation. Sigh.
630 * This workaround assumes that the new slot starts at the same
631 * address as the first existing one. If not or if some overlapping
632 * slot comes around later, we will fail (not seen in practice so far)
633 * - and actually require a recent KVM version. */
634 if (old
.start_addr
== start_addr
&& old
.memory_size
< size
&&
635 flags
< IO_MEM_UNASSIGNED
) {
636 mem
= kvm_alloc_slot(s
);
637 mem
->memory_size
= old
.memory_size
;
638 mem
->start_addr
= old
.start_addr
;
639 mem
->phys_offset
= old
.phys_offset
;
642 err
= kvm_set_user_memory_region(s
, mem
);
644 fprintf(stderr
, "%s: error updating slot: %s\n", __func__
,
649 start_addr
+= old
.memory_size
;
650 phys_offset
+= old
.memory_size
;
651 size
-= old
.memory_size
;
655 /* register prefix slot */
656 if (old
.start_addr
< start_addr
) {
657 mem
= kvm_alloc_slot(s
);
658 mem
->memory_size
= start_addr
- old
.start_addr
;
659 mem
->start_addr
= old
.start_addr
;
660 mem
->phys_offset
= old
.phys_offset
;
663 err
= kvm_set_user_memory_region(s
, mem
);
665 fprintf(stderr
, "%s: error registering prefix slot: %s\n",
666 __func__
, strerror(-err
));
671 /* register suffix slot */
672 if (old
.start_addr
+ old
.memory_size
> start_addr
+ size
) {
673 ram_addr_t size_delta
;
675 mem
= kvm_alloc_slot(s
);
676 mem
->start_addr
= start_addr
+ size
;
677 size_delta
= mem
->start_addr
- old
.start_addr
;
678 mem
->memory_size
= old
.memory_size
- size_delta
;
679 mem
->phys_offset
= old
.phys_offset
+ size_delta
;
682 err
= kvm_set_user_memory_region(s
, mem
);
684 fprintf(stderr
, "%s: error registering suffix slot: %s\n",
685 __func__
, strerror(-err
));
691 /* in case the KVM bug workaround already "consumed" the new slot */
695 /* KVM does not need to know about this memory */
696 if (flags
>= IO_MEM_UNASSIGNED
)
699 mem
= kvm_alloc_slot(s
);
700 mem
->memory_size
= size
;
701 mem
->start_addr
= start_addr
;
702 mem
->phys_offset
= phys_offset
;
705 err
= kvm_set_user_memory_region(s
, mem
);
707 fprintf(stderr
, "%s: error registering slot: %s\n", __func__
,
713 int kvm_ioctl(KVMState
*s
, int type
, ...)
720 arg
= va_arg(ap
, void *);
723 ret
= ioctl(s
->fd
, type
, arg
);
730 int kvm_vm_ioctl(KVMState
*s
, int type
, ...)
737 arg
= va_arg(ap
, void *);
740 ret
= ioctl(s
->vmfd
, type
, arg
);
747 int kvm_vcpu_ioctl(CPUState
*env
, int type
, ...)
754 arg
= va_arg(ap
, void *);
757 ret
= ioctl(env
->kvm_fd
, type
, arg
);
764 int kvm_has_sync_mmu(void)
766 #ifdef KVM_CAP_SYNC_MMU
767 KVMState
*s
= kvm_state
;
769 if (kvm_ioctl(s
, KVM_CHECK_EXTENSION
, KVM_CAP_SYNC_MMU
) > 0)
776 void kvm_setup_guest_memory(void *start
, size_t size
)
778 if (!kvm_has_sync_mmu()) {
780 int ret
= madvise(start
, size
, MADV_DONTFORK
);
788 "Need MADV_DONTFORK in absence of synchronous KVM MMU\n");
794 #ifdef KVM_CAP_SET_GUEST_DEBUG
795 struct kvm_sw_breakpoint
*kvm_find_sw_breakpoint(CPUState
*env
,
798 struct kvm_sw_breakpoint
*bp
;
800 TAILQ_FOREACH(bp
, &env
->kvm_state
->kvm_sw_breakpoints
, entry
) {
807 int kvm_sw_breakpoints_active(CPUState
*env
)
809 return !TAILQ_EMPTY(&env
->kvm_state
->kvm_sw_breakpoints
);
812 int kvm_update_guest_debug(CPUState
*env
, unsigned long reinject_trap
)
814 struct kvm_guest_debug dbg
;
817 if (env
->singlestep_enabled
)
818 dbg
.control
= KVM_GUESTDBG_ENABLE
| KVM_GUESTDBG_SINGLESTEP
;
820 kvm_arch_update_guest_debug(env
, &dbg
);
821 dbg
.control
|= reinject_trap
;
823 return kvm_vcpu_ioctl(env
, KVM_SET_GUEST_DEBUG
, &dbg
);
826 int kvm_insert_breakpoint(CPUState
*current_env
, target_ulong addr
,
827 target_ulong len
, int type
)
829 struct kvm_sw_breakpoint
*bp
;
833 if (type
== GDB_BREAKPOINT_SW
) {
834 bp
= kvm_find_sw_breakpoint(current_env
, addr
);
840 bp
= qemu_malloc(sizeof(struct kvm_sw_breakpoint
));
846 err
= kvm_arch_insert_sw_breakpoint(current_env
, bp
);
852 TAILQ_INSERT_HEAD(¤t_env
->kvm_state
->kvm_sw_breakpoints
,
855 err
= kvm_arch_insert_hw_breakpoint(addr
, len
, type
);
860 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
861 err
= kvm_update_guest_debug(env
, 0);
868 int kvm_remove_breakpoint(CPUState
*current_env
, target_ulong addr
,
869 target_ulong len
, int type
)
871 struct kvm_sw_breakpoint
*bp
;
875 if (type
== GDB_BREAKPOINT_SW
) {
876 bp
= kvm_find_sw_breakpoint(current_env
, addr
);
880 if (bp
->use_count
> 1) {
885 err
= kvm_arch_remove_sw_breakpoint(current_env
, bp
);
889 TAILQ_REMOVE(¤t_env
->kvm_state
->kvm_sw_breakpoints
, bp
, entry
);
892 err
= kvm_arch_remove_hw_breakpoint(addr
, len
, type
);
897 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
898 err
= kvm_update_guest_debug(env
, 0);
905 void kvm_remove_all_breakpoints(CPUState
*current_env
)
907 struct kvm_sw_breakpoint
*bp
, *next
;
908 KVMState
*s
= current_env
->kvm_state
;
911 TAILQ_FOREACH_SAFE(bp
, &s
->kvm_sw_breakpoints
, entry
, next
) {
912 if (kvm_arch_remove_sw_breakpoint(current_env
, bp
) != 0) {
913 /* Try harder to find a CPU that currently sees the breakpoint. */
914 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
915 if (kvm_arch_remove_sw_breakpoint(env
, bp
) == 0)
920 kvm_arch_remove_all_hw_breakpoints();
922 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
)
923 kvm_update_guest_debug(env
, 0);
926 #else /* !KVM_CAP_SET_GUEST_DEBUG */
928 int kvm_update_guest_debug(CPUState
*env
, unsigned long reinject_trap
)
933 int kvm_insert_breakpoint(CPUState
*current_env
, target_ulong addr
,
934 target_ulong len
, int type
)
939 int kvm_remove_breakpoint(CPUState
*current_env
, target_ulong addr
,
940 target_ulong len
, int type
)
945 void kvm_remove_all_breakpoints(CPUState
*current_env
)
948 #endif /* !KVM_CAP_SET_GUEST_DEBUG */