Do not build extboot on non-x86
[qemu-kvm/fedora.git] / kvm-all.c
blob36659a95e8d5d718f97a9bb1bae20c6d0e5977c1
1 /*
2 * QEMU KVM support
4 * Copyright IBM, Corp. 2008
5 * Red Hat, Inc. 2008
7 * Authors:
8 * Anthony Liguori <aliguori@us.ibm.com>
9 * Glauber Costa <gcosta@redhat.com>
11 * This work is licensed under the terms of the GNU GPL, version 2 or later.
12 * See the COPYING file in the top-level directory.
16 #include <sys/types.h>
17 #include <sys/ioctl.h>
18 #include <sys/mman.h>
19 #include <stdarg.h>
21 #include <linux/kvm.h>
23 #include "qemu-common.h"
24 #include "sysemu.h"
25 #include "gdbstub.h"
26 #include "kvm.h"
28 /* KVM uses PAGE_SIZE in it's definition of COALESCED_MMIO_MAX */
29 #define PAGE_SIZE TARGET_PAGE_SIZE
31 //#define DEBUG_KVM
33 #ifdef DEBUG_KVM
34 #define dprintf(fmt, ...) \
35 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
36 #else
37 #define dprintf(fmt, ...) \
38 do { } while (0)
39 #endif
41 typedef struct KVMSlot
43 target_phys_addr_t start_addr;
44 ram_addr_t memory_size;
45 ram_addr_t phys_offset;
46 int slot;
47 int flags;
48 } KVMSlot;
50 typedef struct kvm_dirty_log KVMDirtyLog;
52 int kvm_allowed = 0;
54 struct KVMState
56 KVMSlot slots[32];
57 int fd;
58 int vmfd;
59 int coalesced_mmio;
60 #ifdef KVM_CAP_SET_GUEST_DEBUG
61 struct kvm_sw_breakpoint_head kvm_sw_breakpoints;
62 #endif
65 static KVMState *kvm_state;
67 static KVMSlot *kvm_alloc_slot(KVMState *s)
69 int i;
71 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
72 /* KVM private memory slots */
73 if (i >= 8 && i < 12)
74 continue;
75 if (s->slots[i].memory_size == 0)
76 return &s->slots[i];
79 fprintf(stderr, "%s: no free slot available\n", __func__);
80 abort();
83 static KVMSlot *kvm_lookup_matching_slot(KVMState *s,
84 target_phys_addr_t start_addr,
85 target_phys_addr_t end_addr)
87 int i;
89 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
90 KVMSlot *mem = &s->slots[i];
92 if (start_addr == mem->start_addr &&
93 end_addr == mem->start_addr + mem->memory_size) {
94 return mem;
98 return NULL;
102 * Find overlapping slot with lowest start address
104 static KVMSlot *kvm_lookup_overlapping_slot(KVMState *s,
105 target_phys_addr_t start_addr,
106 target_phys_addr_t end_addr)
108 KVMSlot *found = NULL;
109 int i;
111 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
112 KVMSlot *mem = &s->slots[i];
114 if (mem->memory_size == 0 ||
115 (found && found->start_addr < mem->start_addr)) {
116 continue;
119 if (end_addr > mem->start_addr &&
120 start_addr < mem->start_addr + mem->memory_size) {
121 found = mem;
125 return found;
128 static int kvm_set_user_memory_region(KVMState *s, KVMSlot *slot)
130 struct kvm_userspace_memory_region mem;
132 mem.slot = slot->slot;
133 mem.guest_phys_addr = slot->start_addr;
134 mem.memory_size = slot->memory_size;
135 mem.userspace_addr = (unsigned long)qemu_get_ram_ptr(slot->phys_offset);
136 mem.flags = slot->flags;
138 return kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
142 int kvm_init_vcpu(CPUState *env)
144 KVMState *s = kvm_state;
145 long mmap_size;
146 int ret;
148 dprintf("kvm_init_vcpu\n");
150 ret = kvm_vm_ioctl(s, KVM_CREATE_VCPU, env->cpu_index);
151 if (ret < 0) {
152 dprintf("kvm_create_vcpu failed\n");
153 goto err;
156 env->kvm_fd = ret;
157 env->kvm_state = s;
159 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
160 if (mmap_size < 0) {
161 dprintf("KVM_GET_VCPU_MMAP_SIZE failed\n");
162 goto err;
165 env->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED,
166 env->kvm_fd, 0);
167 if (env->kvm_run == MAP_FAILED) {
168 ret = -errno;
169 dprintf("mmap'ing vcpu state failed\n");
170 goto err;
173 ret = kvm_arch_init_vcpu(env);
175 err:
176 return ret;
179 int kvm_sync_vcpus(void)
181 CPUState *env;
183 for (env = first_cpu; env != NULL; env = env->next_cpu) {
184 int ret;
186 ret = kvm_arch_put_registers(env);
187 if (ret)
188 return ret;
191 return 0;
195 * dirty pages logging control
197 static int kvm_dirty_pages_log_change(target_phys_addr_t phys_addr,
198 ram_addr_t size, unsigned flags,
199 unsigned mask)
201 KVMState *s = kvm_state;
202 KVMSlot *mem = kvm_lookup_matching_slot(s, phys_addr, phys_addr + size);
203 if (mem == NULL) {
204 fprintf(stderr, "BUG: %s: invalid parameters " TARGET_FMT_plx "-"
205 TARGET_FMT_plx "\n", __func__, phys_addr,
206 phys_addr + size - 1);
207 return -EINVAL;
210 flags = (mem->flags & ~mask) | flags;
211 /* Nothing changed, no need to issue ioctl */
212 if (flags == mem->flags)
213 return 0;
215 mem->flags = flags;
217 return kvm_set_user_memory_region(s, mem);
220 int kvm_log_start(target_phys_addr_t phys_addr, ram_addr_t size)
222 return kvm_dirty_pages_log_change(phys_addr, size,
223 KVM_MEM_LOG_DIRTY_PAGES,
224 KVM_MEM_LOG_DIRTY_PAGES);
227 int kvm_log_stop(target_phys_addr_t phys_addr, ram_addr_t size)
229 return kvm_dirty_pages_log_change(phys_addr, size,
231 KVM_MEM_LOG_DIRTY_PAGES);
235 * kvm_physical_sync_dirty_bitmap - Grab dirty bitmap from kernel space
236 * This function updates qemu's dirty bitmap using cpu_physical_memory_set_dirty().
237 * This means all bits are set to dirty.
239 * @start_add: start of logged region.
240 * @end_addr: end of logged region.
242 void kvm_physical_sync_dirty_bitmap(target_phys_addr_t start_addr,
243 target_phys_addr_t end_addr)
245 KVMState *s = kvm_state;
246 KVMDirtyLog d;
247 KVMSlot *mem = kvm_lookup_matching_slot(s, start_addr, end_addr);
248 unsigned long alloc_size;
249 ram_addr_t addr;
250 target_phys_addr_t phys_addr = start_addr;
252 dprintf("sync addr: " TARGET_FMT_lx " into %lx\n", start_addr,
253 mem->phys_offset);
254 if (mem == NULL) {
255 fprintf(stderr, "BUG: %s: invalid parameters " TARGET_FMT_plx "-"
256 TARGET_FMT_plx "\n", __func__, phys_addr, end_addr - 1);
257 return;
260 alloc_size = mem->memory_size >> TARGET_PAGE_BITS / sizeof(d.dirty_bitmap);
261 d.dirty_bitmap = qemu_mallocz(alloc_size);
263 d.slot = mem->slot;
264 dprintf("slot %d, phys_addr %llx, uaddr: %llx\n",
265 d.slot, mem->start_addr, mem->phys_offset);
267 if (kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d) == -1) {
268 dprintf("ioctl failed %d\n", errno);
269 goto out;
272 phys_addr = start_addr;
273 for (addr = mem->phys_offset; phys_addr < end_addr; phys_addr+= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
274 unsigned long *bitmap = (unsigned long *)d.dirty_bitmap;
275 unsigned nr = (phys_addr - start_addr) >> TARGET_PAGE_BITS;
276 unsigned word = nr / (sizeof(*bitmap) * 8);
277 unsigned bit = nr % (sizeof(*bitmap) * 8);
278 if ((bitmap[word] >> bit) & 1)
279 cpu_physical_memory_set_dirty(addr);
281 out:
282 qemu_free(d.dirty_bitmap);
285 int kvm_coalesce_mmio_region(target_phys_addr_t start, ram_addr_t size)
287 int ret = -ENOSYS;
288 #ifdef KVM_CAP_COALESCED_MMIO
289 KVMState *s = kvm_state;
291 if (s->coalesced_mmio) {
292 struct kvm_coalesced_mmio_zone zone;
294 zone.addr = start;
295 zone.size = size;
297 ret = kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
299 #endif
301 return ret;
304 int kvm_uncoalesce_mmio_region(target_phys_addr_t start, ram_addr_t size)
306 int ret = -ENOSYS;
307 #ifdef KVM_CAP_COALESCED_MMIO
308 KVMState *s = kvm_state;
310 if (s->coalesced_mmio) {
311 struct kvm_coalesced_mmio_zone zone;
313 zone.addr = start;
314 zone.size = size;
316 ret = kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
318 #endif
320 return ret;
323 int kvm_init(int smp_cpus)
325 KVMState *s;
326 int ret;
327 int i;
329 if (smp_cpus > 1)
330 return -EINVAL;
332 s = qemu_mallocz(sizeof(KVMState));
334 #ifdef KVM_CAP_SET_GUEST_DEBUG
335 TAILQ_INIT(&s->kvm_sw_breakpoints);
336 #endif
337 for (i = 0; i < ARRAY_SIZE(s->slots); i++)
338 s->slots[i].slot = i;
340 s->vmfd = -1;
341 s->fd = open("/dev/kvm", O_RDWR);
342 if (s->fd == -1) {
343 fprintf(stderr, "Could not access KVM kernel module: %m\n");
344 ret = -errno;
345 goto err;
348 ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0);
349 if (ret < KVM_API_VERSION) {
350 if (ret > 0)
351 ret = -EINVAL;
352 fprintf(stderr, "kvm version too old\n");
353 goto err;
356 if (ret > KVM_API_VERSION) {
357 ret = -EINVAL;
358 fprintf(stderr, "kvm version not supported\n");
359 goto err;
362 s->vmfd = kvm_ioctl(s, KVM_CREATE_VM, 0);
363 if (s->vmfd < 0)
364 goto err;
366 /* initially, KVM allocated its own memory and we had to jump through
367 * hooks to make phys_ram_base point to this. Modern versions of KVM
368 * just use a user allocated buffer so we can use regular pages
369 * unmodified. Make sure we have a sufficiently modern version of KVM.
371 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, KVM_CAP_USER_MEMORY);
372 if (ret <= 0) {
373 if (ret == 0)
374 ret = -EINVAL;
375 fprintf(stderr, "kvm does not support KVM_CAP_USER_MEMORY\n");
376 goto err;
379 /* There was a nasty bug in < kvm-80 that prevents memory slots from being
380 * destroyed properly. Since we rely on this capability, refuse to work
381 * with any kernel without this capability. */
382 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION,
383 KVM_CAP_DESTROY_MEMORY_REGION_WORKS);
384 if (ret <= 0) {
385 if (ret == 0)
386 ret = -EINVAL;
388 fprintf(stderr,
389 "KVM kernel module broken (DESTROY_MEMORY_REGION)\n"
390 "Please upgrade to at least kvm-81.\n");
391 goto err;
394 s->coalesced_mmio = 0;
395 #ifdef KVM_CAP_COALESCED_MMIO
396 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, KVM_CAP_COALESCED_MMIO);
397 if (ret > 0)
398 s->coalesced_mmio = ret;
399 #endif
401 ret = kvm_arch_init(s, smp_cpus);
402 if (ret < 0)
403 goto err;
405 kvm_state = s;
407 return 0;
409 err:
410 if (s) {
411 if (s->vmfd != -1)
412 close(s->vmfd);
413 if (s->fd != -1)
414 close(s->fd);
416 qemu_free(s);
418 return ret;
421 static int kvm_handle_io(CPUState *env, uint16_t port, void *data,
422 int direction, int size, uint32_t count)
424 int i;
425 uint8_t *ptr = data;
427 for (i = 0; i < count; i++) {
428 if (direction == KVM_EXIT_IO_IN) {
429 switch (size) {
430 case 1:
431 stb_p(ptr, cpu_inb(env, port));
432 break;
433 case 2:
434 stw_p(ptr, cpu_inw(env, port));
435 break;
436 case 4:
437 stl_p(ptr, cpu_inl(env, port));
438 break;
440 } else {
441 switch (size) {
442 case 1:
443 cpu_outb(env, port, ldub_p(ptr));
444 break;
445 case 2:
446 cpu_outw(env, port, lduw_p(ptr));
447 break;
448 case 4:
449 cpu_outl(env, port, ldl_p(ptr));
450 break;
454 ptr += size;
457 return 1;
460 static void kvm_run_coalesced_mmio(CPUState *env, struct kvm_run *run)
462 #ifdef KVM_CAP_COALESCED_MMIO
463 KVMState *s = kvm_state;
464 if (s->coalesced_mmio) {
465 struct kvm_coalesced_mmio_ring *ring;
467 ring = (void *)run + (s->coalesced_mmio * TARGET_PAGE_SIZE);
468 while (ring->first != ring->last) {
469 struct kvm_coalesced_mmio *ent;
471 ent = &ring->coalesced_mmio[ring->first];
473 cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len);
474 /* FIXME smp_wmb() */
475 ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX;
478 #endif
481 int kvm_cpu_exec(CPUState *env)
483 struct kvm_run *run = env->kvm_run;
484 int ret;
486 dprintf("kvm_cpu_exec()\n");
488 do {
489 kvm_arch_pre_run(env, run);
491 if (env->exit_request) {
492 dprintf("interrupt exit requested\n");
493 ret = 0;
494 break;
497 ret = kvm_vcpu_ioctl(env, KVM_RUN, 0);
498 kvm_arch_post_run(env, run);
500 if (ret == -EINTR || ret == -EAGAIN) {
501 dprintf("io window exit\n");
502 ret = 0;
503 break;
506 if (ret < 0) {
507 dprintf("kvm run failed %s\n", strerror(-ret));
508 abort();
511 kvm_run_coalesced_mmio(env, run);
513 ret = 0; /* exit loop */
514 switch (run->exit_reason) {
515 case KVM_EXIT_IO:
516 dprintf("handle_io\n");
517 ret = kvm_handle_io(env, run->io.port,
518 (uint8_t *)run + run->io.data_offset,
519 run->io.direction,
520 run->io.size,
521 run->io.count);
522 break;
523 case KVM_EXIT_MMIO:
524 dprintf("handle_mmio\n");
525 cpu_physical_memory_rw(run->mmio.phys_addr,
526 run->mmio.data,
527 run->mmio.len,
528 run->mmio.is_write);
529 ret = 1;
530 break;
531 case KVM_EXIT_IRQ_WINDOW_OPEN:
532 dprintf("irq_window_open\n");
533 break;
534 case KVM_EXIT_SHUTDOWN:
535 dprintf("shutdown\n");
536 qemu_system_reset_request();
537 ret = 1;
538 break;
539 case KVM_EXIT_UNKNOWN:
540 dprintf("kvm_exit_unknown\n");
541 break;
542 case KVM_EXIT_FAIL_ENTRY:
543 dprintf("kvm_exit_fail_entry\n");
544 break;
545 case KVM_EXIT_EXCEPTION:
546 dprintf("kvm_exit_exception\n");
547 break;
548 case KVM_EXIT_DEBUG:
549 dprintf("kvm_exit_debug\n");
550 #ifdef KVM_CAP_SET_GUEST_DEBUG
551 if (kvm_arch_debug(&run->debug.arch)) {
552 gdb_set_stop_cpu(env);
553 vm_stop(EXCP_DEBUG);
554 env->exception_index = EXCP_DEBUG;
555 return 0;
557 /* re-enter, this exception was guest-internal */
558 ret = 1;
559 #endif /* KVM_CAP_SET_GUEST_DEBUG */
560 break;
561 default:
562 dprintf("kvm_arch_handle_exit\n");
563 ret = kvm_arch_handle_exit(env, run);
564 break;
566 } while (ret > 0);
568 if (env->exit_request) {
569 env->exit_request = 0;
570 env->exception_index = EXCP_INTERRUPT;
573 return ret;
576 void kvm_set_phys_mem(target_phys_addr_t start_addr,
577 ram_addr_t size,
578 ram_addr_t phys_offset)
580 KVMState *s = kvm_state;
581 ram_addr_t flags = phys_offset & ~TARGET_PAGE_MASK;
582 KVMSlot *mem, old;
583 int err;
585 if (start_addr & ~TARGET_PAGE_MASK) {
586 if (flags >= IO_MEM_UNASSIGNED) {
587 if (!kvm_lookup_overlapping_slot(s, start_addr,
588 start_addr + size)) {
589 return;
591 fprintf(stderr, "Unaligned split of a KVM memory slot\n");
592 } else {
593 fprintf(stderr, "Only page-aligned memory slots supported\n");
595 abort();
598 /* KVM does not support read-only slots */
599 phys_offset &= ~IO_MEM_ROM;
601 while (1) {
602 mem = kvm_lookup_overlapping_slot(s, start_addr, start_addr + size);
603 if (!mem) {
604 break;
607 if (flags < IO_MEM_UNASSIGNED && start_addr >= mem->start_addr &&
608 (start_addr + size <= mem->start_addr + mem->memory_size) &&
609 (phys_offset - start_addr == mem->phys_offset - mem->start_addr)) {
610 /* The new slot fits into the existing one and comes with
611 * identical parameters - nothing to be done. */
612 return;
615 old = *mem;
617 /* unregister the overlapping slot */
618 mem->memory_size = 0;
619 err = kvm_set_user_memory_region(s, mem);
620 if (err) {
621 fprintf(stderr, "%s: error unregistering overlapping slot: %s\n",
622 __func__, strerror(-err));
623 abort();
626 /* Workaround for older KVM versions: we can't join slots, even not by
627 * unregistering the previous ones and then registering the larger
628 * slot. We have to maintain the existing fragmentation. Sigh.
630 * This workaround assumes that the new slot starts at the same
631 * address as the first existing one. If not or if some overlapping
632 * slot comes around later, we will fail (not seen in practice so far)
633 * - and actually require a recent KVM version. */
634 if (old.start_addr == start_addr && old.memory_size < size &&
635 flags < IO_MEM_UNASSIGNED) {
636 mem = kvm_alloc_slot(s);
637 mem->memory_size = old.memory_size;
638 mem->start_addr = old.start_addr;
639 mem->phys_offset = old.phys_offset;
640 mem->flags = 0;
642 err = kvm_set_user_memory_region(s, mem);
643 if (err) {
644 fprintf(stderr, "%s: error updating slot: %s\n", __func__,
645 strerror(-err));
646 abort();
649 start_addr += old.memory_size;
650 phys_offset += old.memory_size;
651 size -= old.memory_size;
652 continue;
655 /* register prefix slot */
656 if (old.start_addr < start_addr) {
657 mem = kvm_alloc_slot(s);
658 mem->memory_size = start_addr - old.start_addr;
659 mem->start_addr = old.start_addr;
660 mem->phys_offset = old.phys_offset;
661 mem->flags = 0;
663 err = kvm_set_user_memory_region(s, mem);
664 if (err) {
665 fprintf(stderr, "%s: error registering prefix slot: %s\n",
666 __func__, strerror(-err));
667 abort();
671 /* register suffix slot */
672 if (old.start_addr + old.memory_size > start_addr + size) {
673 ram_addr_t size_delta;
675 mem = kvm_alloc_slot(s);
676 mem->start_addr = start_addr + size;
677 size_delta = mem->start_addr - old.start_addr;
678 mem->memory_size = old.memory_size - size_delta;
679 mem->phys_offset = old.phys_offset + size_delta;
680 mem->flags = 0;
682 err = kvm_set_user_memory_region(s, mem);
683 if (err) {
684 fprintf(stderr, "%s: error registering suffix slot: %s\n",
685 __func__, strerror(-err));
686 abort();
691 /* in case the KVM bug workaround already "consumed" the new slot */
692 if (!size)
693 return;
695 /* KVM does not need to know about this memory */
696 if (flags >= IO_MEM_UNASSIGNED)
697 return;
699 mem = kvm_alloc_slot(s);
700 mem->memory_size = size;
701 mem->start_addr = start_addr;
702 mem->phys_offset = phys_offset;
703 mem->flags = 0;
705 err = kvm_set_user_memory_region(s, mem);
706 if (err) {
707 fprintf(stderr, "%s: error registering slot: %s\n", __func__,
708 strerror(-err));
709 abort();
713 int kvm_ioctl(KVMState *s, int type, ...)
715 int ret;
716 void *arg;
717 va_list ap;
719 va_start(ap, type);
720 arg = va_arg(ap, void *);
721 va_end(ap);
723 ret = ioctl(s->fd, type, arg);
724 if (ret == -1)
725 ret = -errno;
727 return ret;
730 int kvm_vm_ioctl(KVMState *s, int type, ...)
732 int ret;
733 void *arg;
734 va_list ap;
736 va_start(ap, type);
737 arg = va_arg(ap, void *);
738 va_end(ap);
740 ret = ioctl(s->vmfd, type, arg);
741 if (ret == -1)
742 ret = -errno;
744 return ret;
747 int kvm_vcpu_ioctl(CPUState *env, int type, ...)
749 int ret;
750 void *arg;
751 va_list ap;
753 va_start(ap, type);
754 arg = va_arg(ap, void *);
755 va_end(ap);
757 ret = ioctl(env->kvm_fd, type, arg);
758 if (ret == -1)
759 ret = -errno;
761 return ret;
764 int kvm_has_sync_mmu(void)
766 #ifdef KVM_CAP_SYNC_MMU
767 KVMState *s = kvm_state;
769 if (kvm_ioctl(s, KVM_CHECK_EXTENSION, KVM_CAP_SYNC_MMU) > 0)
770 return 1;
771 #endif
773 return 0;
776 void kvm_setup_guest_memory(void *start, size_t size)
778 if (!kvm_has_sync_mmu()) {
779 #ifdef MADV_DONTFORK
780 int ret = madvise(start, size, MADV_DONTFORK);
782 if (ret) {
783 perror("madvice");
784 exit(1);
786 #else
787 fprintf(stderr,
788 "Need MADV_DONTFORK in absence of synchronous KVM MMU\n");
789 exit(1);
790 #endif
794 #ifdef KVM_CAP_SET_GUEST_DEBUG
795 struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *env,
796 target_ulong pc)
798 struct kvm_sw_breakpoint *bp;
800 TAILQ_FOREACH(bp, &env->kvm_state->kvm_sw_breakpoints, entry) {
801 if (bp->pc == pc)
802 return bp;
804 return NULL;
807 int kvm_sw_breakpoints_active(CPUState *env)
809 return !TAILQ_EMPTY(&env->kvm_state->kvm_sw_breakpoints);
812 int kvm_update_guest_debug(CPUState *env, unsigned long reinject_trap)
814 struct kvm_guest_debug dbg;
816 dbg.control = 0;
817 if (env->singlestep_enabled)
818 dbg.control = KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP;
820 kvm_arch_update_guest_debug(env, &dbg);
821 dbg.control |= reinject_trap;
823 return kvm_vcpu_ioctl(env, KVM_SET_GUEST_DEBUG, &dbg);
826 int kvm_insert_breakpoint(CPUState *current_env, target_ulong addr,
827 target_ulong len, int type)
829 struct kvm_sw_breakpoint *bp;
830 CPUState *env;
831 int err;
833 if (type == GDB_BREAKPOINT_SW) {
834 bp = kvm_find_sw_breakpoint(current_env, addr);
835 if (bp) {
836 bp->use_count++;
837 return 0;
840 bp = qemu_malloc(sizeof(struct kvm_sw_breakpoint));
841 if (!bp)
842 return -ENOMEM;
844 bp->pc = addr;
845 bp->use_count = 1;
846 err = kvm_arch_insert_sw_breakpoint(current_env, bp);
847 if (err) {
848 free(bp);
849 return err;
852 TAILQ_INSERT_HEAD(&current_env->kvm_state->kvm_sw_breakpoints,
853 bp, entry);
854 } else {
855 err = kvm_arch_insert_hw_breakpoint(addr, len, type);
856 if (err)
857 return err;
860 for (env = first_cpu; env != NULL; env = env->next_cpu) {
861 err = kvm_update_guest_debug(env, 0);
862 if (err)
863 return err;
865 return 0;
868 int kvm_remove_breakpoint(CPUState *current_env, target_ulong addr,
869 target_ulong len, int type)
871 struct kvm_sw_breakpoint *bp;
872 CPUState *env;
873 int err;
875 if (type == GDB_BREAKPOINT_SW) {
876 bp = kvm_find_sw_breakpoint(current_env, addr);
877 if (!bp)
878 return -ENOENT;
880 if (bp->use_count > 1) {
881 bp->use_count--;
882 return 0;
885 err = kvm_arch_remove_sw_breakpoint(current_env, bp);
886 if (err)
887 return err;
889 TAILQ_REMOVE(&current_env->kvm_state->kvm_sw_breakpoints, bp, entry);
890 qemu_free(bp);
891 } else {
892 err = kvm_arch_remove_hw_breakpoint(addr, len, type);
893 if (err)
894 return err;
897 for (env = first_cpu; env != NULL; env = env->next_cpu) {
898 err = kvm_update_guest_debug(env, 0);
899 if (err)
900 return err;
902 return 0;
905 void kvm_remove_all_breakpoints(CPUState *current_env)
907 struct kvm_sw_breakpoint *bp, *next;
908 KVMState *s = current_env->kvm_state;
909 CPUState *env;
911 TAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) {
912 if (kvm_arch_remove_sw_breakpoint(current_env, bp) != 0) {
913 /* Try harder to find a CPU that currently sees the breakpoint. */
914 for (env = first_cpu; env != NULL; env = env->next_cpu) {
915 if (kvm_arch_remove_sw_breakpoint(env, bp) == 0)
916 break;
920 kvm_arch_remove_all_hw_breakpoints();
922 for (env = first_cpu; env != NULL; env = env->next_cpu)
923 kvm_update_guest_debug(env, 0);
926 #else /* !KVM_CAP_SET_GUEST_DEBUG */
928 int kvm_update_guest_debug(CPUState *env, unsigned long reinject_trap)
930 return -EINVAL;
933 int kvm_insert_breakpoint(CPUState *current_env, target_ulong addr,
934 target_ulong len, int type)
936 return -EINVAL;
939 int kvm_remove_breakpoint(CPUState *current_env, target_ulong addr,
940 target_ulong len, int type)
942 return -EINVAL;
945 void kvm_remove_all_breakpoints(CPUState *current_env)
948 #endif /* !KVM_CAP_SET_GUEST_DEBUG */