2 * internal execution defines for qemu
4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
21 /* allow to see translation results - the slowdown should be negligible, so we leave it */
24 /* is_jmp field values */
25 #define DISAS_NEXT 0 /* next instruction can be analyzed */
26 #define DISAS_JUMP 1 /* only pc was modified dynamically */
27 #define DISAS_UPDATE 2 /* cpu state was modified dynamically */
28 #define DISAS_TB_JUMP 3 /* only pc was modified statically */
30 struct TranslationBlock
;
32 /* XXX: make safe guess about sizes */
33 #define MAX_OP_PER_INSTR 64
34 /* A Call op needs up to 6 + 2N parameters (N = number of arguments). */
35 #define MAX_OPC_PARAM 10
36 #define OPC_BUF_SIZE 512
37 #define OPC_MAX_SIZE (OPC_BUF_SIZE - MAX_OP_PER_INSTR)
39 /* Maximum size a TCG op can expand to. This is complicated because a
40 single op may require several host instructions and regirster reloads.
41 For now take a wild guess at 128 bytes, which should allow at least
42 a couple of fixup instructions per argument. */
43 #define TCG_MAX_OP_SIZE 128
45 #define OPPARAM_BUF_SIZE (OPC_BUF_SIZE * MAX_OPC_PARAM)
47 extern target_ulong gen_opc_pc
[OPC_BUF_SIZE
];
48 extern target_ulong gen_opc_npc
[OPC_BUF_SIZE
];
49 extern uint8_t gen_opc_cc_op
[OPC_BUF_SIZE
];
50 extern uint8_t gen_opc_instr_start
[OPC_BUF_SIZE
];
51 extern target_ulong gen_opc_jump_pc
[2];
52 extern uint32_t gen_opc_hflags
[OPC_BUF_SIZE
];
54 typedef void (GenOpFunc
)(void);
55 typedef void (GenOpFunc1
)(long);
56 typedef void (GenOpFunc2
)(long, long);
57 typedef void (GenOpFunc3
)(long, long, long);
62 int gen_intermediate_code(CPUState
*env
, struct TranslationBlock
*tb
);
63 int gen_intermediate_code_pc(CPUState
*env
, struct TranslationBlock
*tb
);
64 void gen_pc_load(CPUState
*env
, struct TranslationBlock
*tb
,
65 unsigned long searched_pc
, int pc_pos
, void *puc
);
67 unsigned long code_gen_max_block_size(void);
68 void cpu_gen_init(void);
69 int cpu_gen_code(CPUState
*env
, struct TranslationBlock
*tb
,
70 int *gen_code_size_ptr
);
71 int cpu_restore_state(struct TranslationBlock
*tb
,
72 CPUState
*env
, unsigned long searched_pc
,
74 int cpu_restore_state_copy(struct TranslationBlock
*tb
,
75 CPUState
*env
, unsigned long searched_pc
,
77 void cpu_resume_from_signal(CPUState
*env1
, void *puc
);
78 void cpu_exec_init(CPUState
*env
);
79 int page_unprotect(target_ulong address
, unsigned long pc
, void *puc
);
80 void tb_invalidate_phys_page_range(target_phys_addr_t start
, target_phys_addr_t end
,
81 int is_cpu_write_access
);
82 void tb_invalidate_page_range(target_ulong start
, target_ulong end
);
83 void tlb_flush_page(CPUState
*env
, target_ulong addr
);
84 void tlb_flush(CPUState
*env
, int flush_global
);
85 int tlb_set_page_exec(CPUState
*env
, target_ulong vaddr
,
86 target_phys_addr_t paddr
, int prot
,
87 int mmu_idx
, int is_softmmu
);
88 static inline int tlb_set_page(CPUState
*env1
, target_ulong vaddr
,
89 target_phys_addr_t paddr
, int prot
,
90 int mmu_idx
, int is_softmmu
)
94 return tlb_set_page_exec(env1
, vaddr
, paddr
, prot
, mmu_idx
, is_softmmu
);
97 #define CODE_GEN_ALIGN 16 /* must be >= of the size of a icache line */
99 #define CODE_GEN_PHYS_HASH_BITS 15
100 #define CODE_GEN_PHYS_HASH_SIZE (1 << CODE_GEN_PHYS_HASH_BITS)
102 #define MIN_CODE_GEN_BUFFER_SIZE (1024 * 1024)
104 /* estimated block size for TB allocation */
105 /* XXX: use a per code average code fragment size and modulate it
106 according to the host CPU */
107 #if defined(CONFIG_SOFTMMU)
108 #define CODE_GEN_AVG_BLOCK_SIZE 128
110 #define CODE_GEN_AVG_BLOCK_SIZE 64
113 #if defined(__powerpc__) || defined(__x86_64__) || defined(__arm__)
114 #define USE_DIRECT_JUMP
116 #if defined(__i386__) && !defined(_WIN32)
117 #define USE_DIRECT_JUMP
120 typedef struct TranslationBlock
{
121 target_ulong pc
; /* simulated PC corresponding to this block (EIP + CS base) */
122 target_ulong cs_base
; /* CS base for this block */
123 uint64_t flags
; /* flags defining in which context the code was generated */
124 uint16_t size
; /* size of target code for this block (1 <=
125 size <= TARGET_PAGE_SIZE) */
126 uint16_t cflags
; /* compile flags */
127 #define CF_TB_FP_USED 0x0002 /* fp ops are used in the TB */
128 #define CF_FP_USED 0x0004 /* fp ops are used in the TB or in a chained TB */
129 #define CF_SINGLE_INSN 0x0008 /* compile only a single instruction */
131 uint8_t *tc_ptr
; /* pointer to the translated code */
132 /* next matching tb for physical address. */
133 struct TranslationBlock
*phys_hash_next
;
134 /* first and second physical page containing code. The lower bit
135 of the pointer tells the index in page_next[] */
136 struct TranslationBlock
*page_next
[2];
137 target_ulong page_addr
[2];
139 /* the following data are used to directly call another TB from
140 the code of this one. */
141 uint16_t tb_next_offset
[2]; /* offset of original jump target */
142 #ifdef USE_DIRECT_JUMP
143 uint16_t tb_jmp_offset
[4]; /* offset of jump instruction */
145 unsigned long tb_next
[2]; /* address of jump generated code */
147 /* list of TBs jumping to this one. This is a circular list using
148 the two least significant bits of the pointers to tell what is
149 the next pointer: 0 = jmp_next[0], 1 = jmp_next[1], 2 =
151 struct TranslationBlock
*jmp_next
[2];
152 struct TranslationBlock
*jmp_first
;
155 static inline unsigned int tb_jmp_cache_hash_page(target_ulong pc
)
158 tmp
= pc
^ (pc
>> (TARGET_PAGE_BITS
- TB_JMP_PAGE_BITS
));
159 return (tmp
>> (TARGET_PAGE_BITS
- TB_JMP_PAGE_BITS
)) & TB_JMP_PAGE_MASK
;
162 static inline unsigned int tb_jmp_cache_hash_func(target_ulong pc
)
165 tmp
= pc
^ (pc
>> (TARGET_PAGE_BITS
- TB_JMP_PAGE_BITS
));
166 return (((tmp
>> (TARGET_PAGE_BITS
- TB_JMP_PAGE_BITS
)) & TB_JMP_PAGE_MASK
)
167 | (tmp
& TB_JMP_ADDR_MASK
));
170 static inline unsigned int tb_phys_hash_func(unsigned long pc
)
172 return pc
& (CODE_GEN_PHYS_HASH_SIZE
- 1);
175 TranslationBlock
*tb_alloc(target_ulong pc
);
176 void tb_flush(CPUState
*env
);
177 void tb_link_phys(TranslationBlock
*tb
,
178 target_ulong phys_pc
, target_ulong phys_page2
);
180 extern TranslationBlock
*tb_phys_hash
[CODE_GEN_PHYS_HASH_SIZE
];
181 extern uint8_t *code_gen_ptr
;
182 extern int code_gen_max_blocks
;
184 #if defined(USE_DIRECT_JUMP)
186 #if defined(__powerpc__)
187 static inline void flush_icache_range(unsigned long start
, unsigned long stop
);
188 static inline void tb_set_jmp_target1(unsigned long jmp_addr
, unsigned long addr
)
190 /* This must be in concord with INDEX_op_goto_tb inside tcg_out_op */
192 long disp
= addr
- jmp_addr
;
193 unsigned long patch_size
;
195 ptr
= (uint32_t *)jmp_addr
;
197 if ((disp
<< 6) >> 6 != disp
) {
198 ptr
[0] = 0x3c000000 | (addr
>> 16); /* lis 0,addr@ha */
199 ptr
[1] = 0x60000000 | (addr
& 0xffff); /* la 0,addr@l(0) */
200 ptr
[2] = 0x7c0903a6; /* mtctr 0 */
201 ptr
[3] = 0x4e800420; /* brctr */
204 /* patch the branch destination */
206 *ptr
= 0x48000000 | (disp
& 0x03fffffc); /* b disp */
209 ptr
[0] = 0x60000000; /* nop */
217 flush_icache_range(jmp_addr
, jmp_addr
+ patch_size
);
219 #elif defined(__i386__) || defined(__x86_64__)
220 static inline void tb_set_jmp_target1(unsigned long jmp_addr
, unsigned long addr
)
222 /* patch the branch destination */
223 *(uint32_t *)jmp_addr
= addr
- (jmp_addr
+ 4);
224 /* no need to flush icache explicitly */
226 #elif defined(__arm__)
227 static inline void tb_set_jmp_target1(unsigned long jmp_addr
, unsigned long addr
)
229 register unsigned long _beg
__asm ("a1");
230 register unsigned long _end
__asm ("a2");
231 register unsigned long _flg
__asm ("a3");
233 /* we could use a ldr pc, [pc, #-4] kind of branch and avoid the flush */
234 *(uint32_t *)jmp_addr
|= ((addr
- (jmp_addr
+ 8)) >> 2) & 0xffffff;
240 __asm
__volatile__ ("swi 0x9f0002" : : "r" (_beg
), "r" (_end
), "r" (_flg
));
244 static inline void tb_set_jmp_target(TranslationBlock
*tb
,
245 int n
, unsigned long addr
)
247 unsigned long offset
;
249 offset
= tb
->tb_jmp_offset
[n
];
250 tb_set_jmp_target1((unsigned long)(tb
->tc_ptr
+ offset
), addr
);
251 offset
= tb
->tb_jmp_offset
[n
+ 2];
252 if (offset
!= 0xffff)
253 tb_set_jmp_target1((unsigned long)(tb
->tc_ptr
+ offset
), addr
);
258 /* set the jump target */
259 static inline void tb_set_jmp_target(TranslationBlock
*tb
,
260 int n
, unsigned long addr
)
262 tb
->tb_next
[n
] = addr
;
267 static inline void tb_add_jump(TranslationBlock
*tb
, int n
,
268 TranslationBlock
*tb_next
)
270 /* NOTE: this test is only needed for thread safety */
271 if (!tb
->jmp_next
[n
]) {
272 /* patch the native jump address */
273 tb_set_jmp_target(tb
, n
, (unsigned long)tb_next
->tc_ptr
);
275 /* add in TB jmp circular list */
276 tb
->jmp_next
[n
] = tb_next
->jmp_first
;
277 tb_next
->jmp_first
= (TranslationBlock
*)((long)(tb
) | (n
));
281 TranslationBlock
*tb_find_pc(unsigned long pc_ptr
);
284 #define offsetof(type, field) ((size_t) &((type *)0)->field)
288 #define ASM_DATA_SECTION ".section \".data\"\n"
289 #define ASM_PREVIOUS_SECTION ".section .text\n"
290 #elif defined(__APPLE__)
291 #define ASM_DATA_SECTION ".data\n"
292 #define ASM_PREVIOUS_SECTION ".text\n"
294 #define ASM_DATA_SECTION ".section \".data\"\n"
295 #define ASM_PREVIOUS_SECTION ".previous\n"
298 #define ASM_OP_LABEL_NAME(n, opname) \
299 ASM_NAME(__op_label) #n "." ASM_NAME(opname)
301 extern CPUWriteMemoryFunc
*io_mem_write
[IO_MEM_NB_ENTRIES
][4];
302 extern CPUReadMemoryFunc
*io_mem_read
[IO_MEM_NB_ENTRIES
][4];
303 extern void *io_mem_opaque
[IO_MEM_NB_ENTRIES
];
305 #include "qemu-lock.h"
307 extern spinlock_t tb_lock
;
309 extern int tb_invalidated_flag
;
311 #if !defined(CONFIG_USER_ONLY)
313 void tlb_fill(target_ulong addr
, int is_write
, int mmu_idx
,
316 #define ACCESS_TYPE (NB_MMU_MODES + 1)
317 #define MEMSUFFIX _code
318 #define env cpu_single_env
321 #include "softmmu_header.h"
324 #include "softmmu_header.h"
327 #include "softmmu_header.h"
330 #include "softmmu_header.h"
338 #if defined(CONFIG_USER_ONLY)
339 static inline target_ulong
get_phys_addr_code(CPUState
*env1
, target_ulong addr
)
344 /* NOTE: this function can trigger an exception */
345 /* NOTE2: the returned address is not exactly the physical address: it
346 is the offset relative to phys_ram_base */
347 static inline target_ulong
get_phys_addr_code(CPUState
*env1
, target_ulong addr
)
349 int mmu_idx
, page_index
, pd
;
351 page_index
= (addr
>> TARGET_PAGE_BITS
) & (CPU_TLB_SIZE
- 1);
352 mmu_idx
= cpu_mmu_index(env1
);
353 if (__builtin_expect(env1
->tlb_table
[mmu_idx
][page_index
].addr_code
!=
354 (addr
& TARGET_PAGE_MASK
), 0)) {
357 pd
= env1
->tlb_table
[mmu_idx
][page_index
].addr_code
& ~TARGET_PAGE_MASK
;
358 if (pd
> IO_MEM_ROM
&& !(pd
& IO_MEM_ROMD
)) {
359 #if defined(TARGET_SPARC) || defined(TARGET_MIPS)
360 do_unassigned_access(addr
, 0, 1, 0);
362 cpu_abort(env1
, "Trying to execute code outside RAM or ROM at 0x" TARGET_FMT_lx
"\n", addr
);
365 return addr
+ env1
->tlb_table
[mmu_idx
][page_index
].addend
- (unsigned long)phys_ram_base
;
370 #define KQEMU_MODIFY_PAGE_MASK (0xff & ~(VGA_DIRTY_FLAG | CODE_DIRTY_FLAG))
372 #define MSR_QPI_COMMBASE 0xfabe0010
374 int kqemu_init(CPUState
*env
);
375 int kqemu_cpu_exec(CPUState
*env
);
376 void kqemu_flush_page(CPUState
*env
, target_ulong addr
);
377 void kqemu_flush(CPUState
*env
, int global
);
378 void kqemu_set_notdirty(CPUState
*env
, ram_addr_t ram_addr
);
379 void kqemu_modify_page(CPUState
*env
, ram_addr_t ram_addr
);
380 void kqemu_set_phys_mem(uint64_t start_addr
, ram_addr_t size
,
381 ram_addr_t phys_offset
);
382 void kqemu_cpu_interrupt(CPUState
*env
);
383 void kqemu_record_dump(void);
385 extern uint32_t kqemu_comm_base
;
387 static inline int kqemu_is_ok(CPUState
*env
)
389 return(env
->kqemu_enabled
&&
390 (env
->cr
[0] & CR0_PE_MASK
) &&
391 !(env
->hflags
& HF_INHIBIT_IRQ_MASK
) &&
392 (env
->eflags
& IF_MASK
) &&
393 !(env
->eflags
& VM_MASK
) &&
394 (env
->kqemu_enabled
== 2 ||
395 ((env
->hflags
& HF_CPL_MASK
) == 3 &&
396 (env
->eflags
& IOPL_MASK
) != IOPL_MASK
)));