2 * virtual page mapping and translated block handling
4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
22 #define WIN32_LEAN_AND_MEAN
25 #include <sys/types.h>
38 #include "qemu-common.h"
40 #if !defined(TARGET_IA64)
47 #if defined(CONFIG_USER_ONLY)
51 //#define DEBUG_TB_INVALIDATE
54 //#define DEBUG_UNASSIGNED
56 /* make various TB consistency checks */
57 //#define DEBUG_TB_CHECK
58 //#define DEBUG_TLB_CHECK
60 //#define DEBUG_IOPORT
61 //#define DEBUG_SUBPAGE
63 #if !defined(CONFIG_USER_ONLY)
64 /* TB consistency checks only implemented for usermode emulation. */
68 #define SMC_BITMAP_USE_THRESHOLD 10
70 #define MMAP_AREA_START 0x00000000
71 #define MMAP_AREA_END 0xa8000000
73 #if defined(TARGET_SPARC64)
74 #define TARGET_PHYS_ADDR_SPACE_BITS 41
75 #elif defined(TARGET_SPARC)
76 #define TARGET_PHYS_ADDR_SPACE_BITS 36
77 #elif defined(TARGET_ALPHA)
78 #define TARGET_PHYS_ADDR_SPACE_BITS 42
79 #define TARGET_VIRT_ADDR_SPACE_BITS 42
80 #elif defined(TARGET_PPC64)
81 #define TARGET_PHYS_ADDR_SPACE_BITS 42
82 #elif defined(TARGET_X86_64) && !defined(USE_KQEMU)
83 #define TARGET_PHYS_ADDR_SPACE_BITS 42
84 #elif defined(TARGET_I386) && !defined(USE_KQEMU)
85 #define TARGET_PHYS_ADDR_SPACE_BITS 36
86 #elif defined(TARGET_IA64)
87 #define TARGET_PHYS_ADDR_SPACE_BITS 36
89 /* Note: for compatibility with kqemu, we use 32 bits for x86_64 */
90 #define TARGET_PHYS_ADDR_SPACE_BITS 32
93 static TranslationBlock
*tbs
;
94 int code_gen_max_blocks
;
95 TranslationBlock
*tb_phys_hash
[CODE_GEN_PHYS_HASH_SIZE
];
97 /* any access to the tbs or the page table must use this lock */
98 spinlock_t tb_lock
= SPIN_LOCK_UNLOCKED
;
100 #if defined(__arm__) || defined(__sparc_v9__)
101 /* The prologue must be reachable with a direct jump. ARM and Sparc64
102 have limited branch ranges (possibly also PPC) so place it in a
103 section close to code segment. */
104 #define code_gen_section \
105 __attribute__((__section__(".gen_code"))) \
106 __attribute__((aligned (32)))
108 #define code_gen_section \
109 __attribute__((aligned (32)))
112 uint8_t code_gen_prologue
[1024] code_gen_section
;
113 static uint8_t *code_gen_buffer
;
114 static unsigned long code_gen_buffer_size
;
115 /* threshold to flush the translated code buffer */
116 static unsigned long code_gen_buffer_max_size
;
117 uint8_t *code_gen_ptr
;
119 #if !defined(CONFIG_USER_ONLY)
120 ram_addr_t phys_ram_size
;
122 uint8_t *phys_ram_base
;
123 uint8_t *phys_ram_dirty
;
125 static int in_migration
;
126 static ram_addr_t phys_ram_alloc_offset
= 0;
130 /* current CPU in the current thread. It is only valid inside
132 CPUState
*cpu_single_env
;
133 /* 0 = Do not count executed instructions.
134 1 = Precise instruction counting.
135 2 = Adaptive rate instruction counting. */
137 /* Current instruction counter. While executing translated code this may
138 include some instructions that have not yet been executed. */
141 typedef struct PageDesc
{
142 /* list of TBs intersecting this ram page */
143 TranslationBlock
*first_tb
;
144 /* in order to optimize self modifying code, we count the number
145 of lookups we do to a given page to use a bitmap */
146 unsigned int code_write_count
;
147 uint8_t *code_bitmap
;
148 #if defined(CONFIG_USER_ONLY)
153 typedef struct PhysPageDesc
{
154 /* offset in host memory of the page + io_index in the low bits */
155 ram_addr_t phys_offset
;
159 #if defined(CONFIG_USER_ONLY) && defined(TARGET_VIRT_ADDR_SPACE_BITS)
160 /* XXX: this is a temporary hack for alpha target.
161 * In the future, this is to be replaced by a multi-level table
162 * to actually be able to handle the complete 64 bits address space.
164 #define L1_BITS (TARGET_VIRT_ADDR_SPACE_BITS - L2_BITS - TARGET_PAGE_BITS)
166 #define L1_BITS (32 - L2_BITS - TARGET_PAGE_BITS)
169 #define L1_SIZE (1 << L1_BITS)
170 #define L2_SIZE (1 << L2_BITS)
172 unsigned long qemu_real_host_page_size
;
173 unsigned long qemu_host_page_bits
;
174 unsigned long qemu_host_page_size
;
175 unsigned long qemu_host_page_mask
;
177 /* XXX: for system emulation, it could just be an array */
178 static PageDesc
*l1_map
[L1_SIZE
];
179 static PhysPageDesc
**l1_phys_map
;
181 #if !defined(CONFIG_USER_ONLY)
182 static void io_mem_init(void);
184 /* io memory support */
185 CPUWriteMemoryFunc
*io_mem_write
[IO_MEM_NB_ENTRIES
][4];
186 CPUReadMemoryFunc
*io_mem_read
[IO_MEM_NB_ENTRIES
][4];
187 void *io_mem_opaque
[IO_MEM_NB_ENTRIES
];
188 char io_mem_used
[IO_MEM_NB_ENTRIES
];
189 static int io_mem_watch
;
193 static const char *logfilename
= "/tmp/qemu.log";
196 static int log_append
= 0;
199 static int tlb_flush_count
;
200 static int tb_flush_count
;
201 static int tb_phys_invalidate_count
;
203 #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
204 typedef struct subpage_t
{
205 target_phys_addr_t base
;
206 CPUReadMemoryFunc
**mem_read
[TARGET_PAGE_SIZE
][4];
207 CPUWriteMemoryFunc
**mem_write
[TARGET_PAGE_SIZE
][4];
208 void *opaque
[TARGET_PAGE_SIZE
][2][4];
212 static void map_exec(void *addr
, long size
)
215 VirtualProtect(addr
, size
,
216 PAGE_EXECUTE_READWRITE
, &old_protect
);
220 static void map_exec(void *addr
, long size
)
222 unsigned long start
, end
, page_size
;
224 page_size
= getpagesize();
225 start
= (unsigned long)addr
;
226 start
&= ~(page_size
- 1);
228 end
= (unsigned long)addr
+ size
;
229 end
+= page_size
- 1;
230 end
&= ~(page_size
- 1);
232 mprotect((void *)start
, end
- start
,
233 PROT_READ
| PROT_WRITE
| PROT_EXEC
);
237 static void page_init(void)
239 /* NOTE: we can always suppose that qemu_host_page_size >=
243 SYSTEM_INFO system_info
;
246 GetSystemInfo(&system_info
);
247 qemu_real_host_page_size
= system_info
.dwPageSize
;
250 qemu_real_host_page_size
= getpagesize();
252 if (qemu_host_page_size
== 0)
253 qemu_host_page_size
= qemu_real_host_page_size
;
254 if (qemu_host_page_size
< TARGET_PAGE_SIZE
)
255 qemu_host_page_size
= TARGET_PAGE_SIZE
;
256 qemu_host_page_bits
= 0;
257 while ((1 << qemu_host_page_bits
) < qemu_host_page_size
)
258 qemu_host_page_bits
++;
259 qemu_host_page_mask
= ~(qemu_host_page_size
- 1);
260 l1_phys_map
= qemu_vmalloc(L1_SIZE
* sizeof(void *));
261 memset(l1_phys_map
, 0, L1_SIZE
* sizeof(void *));
263 #if !defined(_WIN32) && defined(CONFIG_USER_ONLY)
265 long long startaddr
, endaddr
;
270 last_brk
= (unsigned long)sbrk(0);
271 f
= fopen("/proc/self/maps", "r");
274 n
= fscanf (f
, "%llx-%llx %*[^\n]\n", &startaddr
, &endaddr
);
276 startaddr
= MIN(startaddr
,
277 (1ULL << TARGET_PHYS_ADDR_SPACE_BITS
) - 1);
278 endaddr
= MIN(endaddr
,
279 (1ULL << TARGET_PHYS_ADDR_SPACE_BITS
) - 1);
280 page_set_flags(startaddr
& TARGET_PAGE_MASK
,
281 TARGET_PAGE_ALIGN(endaddr
),
292 static inline PageDesc
**page_l1_map(target_ulong index
)
294 #if TARGET_LONG_BITS > 32
295 /* Host memory outside guest VM. For 32-bit targets we have already
296 excluded high addresses. */
297 if (index
> ((target_ulong
)L2_SIZE
* L1_SIZE
))
300 return &l1_map
[index
>> L2_BITS
];
303 static inline PageDesc
*page_find_alloc(target_ulong index
)
306 lp
= page_l1_map(index
);
312 /* allocate if not found */
313 #if defined(CONFIG_USER_ONLY)
315 size_t len
= sizeof(PageDesc
) * L2_SIZE
;
316 /* Don't use qemu_malloc because it may recurse. */
317 p
= mmap(0, len
, PROT_READ
| PROT_WRITE
,
318 MAP_PRIVATE
| MAP_ANONYMOUS
, -1, 0);
321 if (addr
== (target_ulong
)addr
) {
322 page_set_flags(addr
& TARGET_PAGE_MASK
,
323 TARGET_PAGE_ALIGN(addr
+ len
),
327 p
= qemu_mallocz(sizeof(PageDesc
) * L2_SIZE
);
331 return p
+ (index
& (L2_SIZE
- 1));
334 static inline PageDesc
*page_find(target_ulong index
)
337 lp
= page_l1_map(index
);
344 return p
+ (index
& (L2_SIZE
- 1));
347 static PhysPageDesc
*phys_page_find_alloc(target_phys_addr_t index
, int alloc
)
352 p
= (void **)l1_phys_map
;
353 #if TARGET_PHYS_ADDR_SPACE_BITS > 32
355 #if TARGET_PHYS_ADDR_SPACE_BITS > (32 + L1_BITS)
356 #error unsupported TARGET_PHYS_ADDR_SPACE_BITS
358 lp
= p
+ ((index
>> (L1_BITS
+ L2_BITS
)) & (L1_SIZE
- 1));
361 /* allocate if not found */
364 p
= qemu_vmalloc(sizeof(void *) * L1_SIZE
);
365 memset(p
, 0, sizeof(void *) * L1_SIZE
);
369 lp
= p
+ ((index
>> L2_BITS
) & (L1_SIZE
- 1));
373 /* allocate if not found */
376 pd
= qemu_vmalloc(sizeof(PhysPageDesc
) * L2_SIZE
);
378 for (i
= 0; i
< L2_SIZE
; i
++)
379 pd
[i
].phys_offset
= IO_MEM_UNASSIGNED
;
381 return ((PhysPageDesc
*)pd
) + (index
& (L2_SIZE
- 1));
384 static inline PhysPageDesc
*phys_page_find(target_phys_addr_t index
)
386 return phys_page_find_alloc(index
, 0);
389 #if !defined(CONFIG_USER_ONLY)
390 static void tlb_protect_code(ram_addr_t ram_addr
);
391 static void tlb_unprotect_code_phys(CPUState
*env
, ram_addr_t ram_addr
,
393 #define mmap_lock() do { } while(0)
394 #define mmap_unlock() do { } while(0)
397 #define DEFAULT_CODE_GEN_BUFFER_SIZE (32 * 1024 * 1024)
399 #if defined(CONFIG_USER_ONLY)
400 /* Currently it is not recommanded to allocate big chunks of data in
401 user mode. It will change when a dedicated libc will be used */
402 #define USE_STATIC_CODE_GEN_BUFFER
405 #ifdef USE_STATIC_CODE_GEN_BUFFER
406 static uint8_t static_code_gen_buffer
[DEFAULT_CODE_GEN_BUFFER_SIZE
];
409 static void code_gen_alloc(unsigned long tb_size
)
414 #ifdef USE_STATIC_CODE_GEN_BUFFER
415 code_gen_buffer
= static_code_gen_buffer
;
416 code_gen_buffer_size
= DEFAULT_CODE_GEN_BUFFER_SIZE
;
417 map_exec(code_gen_buffer
, code_gen_buffer_size
);
419 code_gen_buffer_size
= tb_size
;
420 if (code_gen_buffer_size
== 0) {
421 #if defined(CONFIG_USER_ONLY)
422 /* in user mode, phys_ram_size is not meaningful */
423 code_gen_buffer_size
= DEFAULT_CODE_GEN_BUFFER_SIZE
;
425 /* XXX: needs ajustments */
426 code_gen_buffer_size
= (unsigned long)(phys_ram_size
/ 4);
429 if (code_gen_buffer_size
< MIN_CODE_GEN_BUFFER_SIZE
)
430 code_gen_buffer_size
= MIN_CODE_GEN_BUFFER_SIZE
;
431 /* The code gen buffer location may have constraints depending on
432 the host cpu and OS */
433 #if defined(__linux__)
438 flags
= MAP_PRIVATE
| MAP_ANONYMOUS
;
439 #if defined(__x86_64__)
441 /* Cannot map more than that */
442 if (code_gen_buffer_size
> (800 * 1024 * 1024))
443 code_gen_buffer_size
= (800 * 1024 * 1024);
444 #elif defined(__sparc_v9__)
445 // Map the buffer below 2G, so we can use direct calls and branches
447 start
= (void *) 0x60000000UL
;
448 if (code_gen_buffer_size
> (512 * 1024 * 1024))
449 code_gen_buffer_size
= (512 * 1024 * 1024);
451 code_gen_buffer
= mmap(start
, code_gen_buffer_size
,
452 PROT_WRITE
| PROT_READ
| PROT_EXEC
,
454 if (code_gen_buffer
== MAP_FAILED
) {
455 fprintf(stderr
, "Could not allocate dynamic translator buffer\n");
459 #elif defined(__FreeBSD__)
463 flags
= MAP_PRIVATE
| MAP_ANONYMOUS
;
464 #if defined(__x86_64__)
465 /* FreeBSD doesn't have MAP_32BIT, use MAP_FIXED and assume
466 * 0x40000000 is free */
468 addr
= (void *)0x40000000;
469 /* Cannot map more than that */
470 if (code_gen_buffer_size
> (800 * 1024 * 1024))
471 code_gen_buffer_size
= (800 * 1024 * 1024);
473 code_gen_buffer
= mmap(addr
, code_gen_buffer_size
,
474 PROT_WRITE
| PROT_READ
| PROT_EXEC
,
476 if (code_gen_buffer
== MAP_FAILED
) {
477 fprintf(stderr
, "Could not allocate dynamic translator buffer\n");
482 code_gen_buffer
= qemu_malloc(code_gen_buffer_size
);
483 if (!code_gen_buffer
) {
484 fprintf(stderr
, "Could not allocate dynamic translator buffer\n");
487 map_exec(code_gen_buffer
, code_gen_buffer_size
);
489 #endif /* !USE_STATIC_CODE_GEN_BUFFER */
490 map_exec(code_gen_prologue
, sizeof(code_gen_prologue
));
491 code_gen_buffer_max_size
= code_gen_buffer_size
-
492 code_gen_max_block_size();
493 code_gen_max_blocks
= code_gen_buffer_size
/ CODE_GEN_AVG_BLOCK_SIZE
;
494 tbs
= qemu_malloc(code_gen_max_blocks
* sizeof(TranslationBlock
));
497 /* Must be called before using the QEMU cpus. 'tb_size' is the size
498 (in bytes) allocated to the translation buffer. Zero means default
500 void cpu_exec_init_all(unsigned long tb_size
)
503 code_gen_alloc(tb_size
);
504 code_gen_ptr
= code_gen_buffer
;
506 #if !defined(CONFIG_USER_ONLY)
511 #if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
513 #define CPU_COMMON_SAVE_VERSION 1
515 static void cpu_common_save(QEMUFile
*f
, void *opaque
)
517 CPUState
*env
= opaque
;
519 qemu_put_be32s(f
, &env
->halted
);
520 qemu_put_be32s(f
, &env
->interrupt_request
);
523 static int cpu_common_load(QEMUFile
*f
, void *opaque
, int version_id
)
525 CPUState
*env
= opaque
;
527 if (version_id
!= CPU_COMMON_SAVE_VERSION
)
530 qemu_get_be32s(f
, &env
->halted
);
531 qemu_get_be32s(f
, &env
->interrupt_request
);
538 void cpu_exec_init(CPUState
*env
)
543 env
->next_cpu
= NULL
;
546 while (*penv
!= NULL
) {
547 penv
= (CPUState
**)&(*penv
)->next_cpu
;
550 env
->cpu_index
= cpu_index
;
551 env
->nb_watchpoints
= 0;
553 env
->thread_id
= GetCurrentProcessId();
555 env
->thread_id
= getpid();
558 #if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
559 register_savevm("cpu_common", cpu_index
, CPU_COMMON_SAVE_VERSION
,
560 cpu_common_save
, cpu_common_load
, env
);
561 register_savevm("cpu", cpu_index
, CPU_SAVE_VERSION
,
562 cpu_save
, cpu_load
, env
);
566 static inline void invalidate_page_bitmap(PageDesc
*p
)
568 if (p
->code_bitmap
) {
569 qemu_free(p
->code_bitmap
);
570 p
->code_bitmap
= NULL
;
572 p
->code_write_count
= 0;
575 /* set to NULL all the 'first_tb' fields in all PageDescs */
576 static void page_flush_tb(void)
581 for(i
= 0; i
< L1_SIZE
; i
++) {
584 for(j
= 0; j
< L2_SIZE
; j
++) {
586 invalidate_page_bitmap(p
);
593 /* flush all the translation blocks */
594 /* XXX: tb_flush is currently not thread safe */
595 void tb_flush(CPUState
*env1
)
598 #if defined(DEBUG_FLUSH)
599 printf("qemu: flush code_size=%ld nb_tbs=%d avg_tb_size=%ld\n",
600 (unsigned long)(code_gen_ptr
- code_gen_buffer
),
602 ((unsigned long)(code_gen_ptr
- code_gen_buffer
)) / nb_tbs
: 0);
604 if ((unsigned long)(code_gen_ptr
- code_gen_buffer
) > code_gen_buffer_size
)
605 cpu_abort(env1
, "Internal error: code buffer overflow\n");
609 for(env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
610 memset (env
->tb_jmp_cache
, 0, TB_JMP_CACHE_SIZE
* sizeof (void *));
613 memset (tb_phys_hash
, 0, CODE_GEN_PHYS_HASH_SIZE
* sizeof (void *));
616 code_gen_ptr
= code_gen_buffer
;
617 /* XXX: flush processor icache at this point if cache flush is
622 #ifdef DEBUG_TB_CHECK
624 static void tb_invalidate_check(target_ulong address
)
626 TranslationBlock
*tb
;
628 address
&= TARGET_PAGE_MASK
;
629 for(i
= 0;i
< CODE_GEN_PHYS_HASH_SIZE
; i
++) {
630 for(tb
= tb_phys_hash
[i
]; tb
!= NULL
; tb
= tb
->phys_hash_next
) {
631 if (!(address
+ TARGET_PAGE_SIZE
<= tb
->pc
||
632 address
>= tb
->pc
+ tb
->size
)) {
633 printf("ERROR invalidate: address=%08lx PC=%08lx size=%04x\n",
634 address
, (long)tb
->pc
, tb
->size
);
640 /* verify that all the pages have correct rights for code */
641 static void tb_page_check(void)
643 TranslationBlock
*tb
;
644 int i
, flags1
, flags2
;
646 for(i
= 0;i
< CODE_GEN_PHYS_HASH_SIZE
; i
++) {
647 for(tb
= tb_phys_hash
[i
]; tb
!= NULL
; tb
= tb
->phys_hash_next
) {
648 flags1
= page_get_flags(tb
->pc
);
649 flags2
= page_get_flags(tb
->pc
+ tb
->size
- 1);
650 if ((flags1
& PAGE_WRITE
) || (flags2
& PAGE_WRITE
)) {
651 printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n",
652 (long)tb
->pc
, tb
->size
, flags1
, flags2
);
658 static void tb_jmp_check(TranslationBlock
*tb
)
660 TranslationBlock
*tb1
;
663 /* suppress any remaining jumps to this TB */
667 tb1
= (TranslationBlock
*)((long)tb1
& ~3);
670 tb1
= tb1
->jmp_next
[n1
];
672 /* check end of list */
674 printf("ERROR: jmp_list from 0x%08lx\n", (long)tb
);
680 /* invalidate one TB */
681 static inline void tb_remove(TranslationBlock
**ptb
, TranslationBlock
*tb
,
684 TranslationBlock
*tb1
;
688 *ptb
= *(TranslationBlock
**)((char *)tb1
+ next_offset
);
691 ptb
= (TranslationBlock
**)((char *)tb1
+ next_offset
);
695 static inline void tb_page_remove(TranslationBlock
**ptb
, TranslationBlock
*tb
)
697 TranslationBlock
*tb1
;
703 tb1
= (TranslationBlock
*)((long)tb1
& ~3);
705 *ptb
= tb1
->page_next
[n1
];
708 ptb
= &tb1
->page_next
[n1
];
712 static inline void tb_jmp_remove(TranslationBlock
*tb
, int n
)
714 TranslationBlock
*tb1
, **ptb
;
717 ptb
= &tb
->jmp_next
[n
];
720 /* find tb(n) in circular list */
724 tb1
= (TranslationBlock
*)((long)tb1
& ~3);
725 if (n1
== n
&& tb1
== tb
)
728 ptb
= &tb1
->jmp_first
;
730 ptb
= &tb1
->jmp_next
[n1
];
733 /* now we can suppress tb(n) from the list */
734 *ptb
= tb
->jmp_next
[n
];
736 tb
->jmp_next
[n
] = NULL
;
740 /* reset the jump entry 'n' of a TB so that it is not chained to
742 static inline void tb_reset_jump(TranslationBlock
*tb
, int n
)
744 tb_set_jmp_target(tb
, n
, (unsigned long)(tb
->tc_ptr
+ tb
->tb_next_offset
[n
]));
747 void tb_phys_invalidate(TranslationBlock
*tb
, target_ulong page_addr
)
752 target_phys_addr_t phys_pc
;
753 TranslationBlock
*tb1
, *tb2
;
755 /* remove the TB from the hash list */
756 phys_pc
= tb
->page_addr
[0] + (tb
->pc
& ~TARGET_PAGE_MASK
);
757 h
= tb_phys_hash_func(phys_pc
);
758 tb_remove(&tb_phys_hash
[h
], tb
,
759 offsetof(TranslationBlock
, phys_hash_next
));
761 /* remove the TB from the page list */
762 if (tb
->page_addr
[0] != page_addr
) {
763 p
= page_find(tb
->page_addr
[0] >> TARGET_PAGE_BITS
);
764 tb_page_remove(&p
->first_tb
, tb
);
765 invalidate_page_bitmap(p
);
767 if (tb
->page_addr
[1] != -1 && tb
->page_addr
[1] != page_addr
) {
768 p
= page_find(tb
->page_addr
[1] >> TARGET_PAGE_BITS
);
769 tb_page_remove(&p
->first_tb
, tb
);
770 invalidate_page_bitmap(p
);
773 tb_invalidated_flag
= 1;
775 /* remove the TB from the hash list */
776 h
= tb_jmp_cache_hash_func(tb
->pc
);
777 for(env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
778 if (env
->tb_jmp_cache
[h
] == tb
)
779 env
->tb_jmp_cache
[h
] = NULL
;
782 /* suppress this TB from the two jump lists */
783 tb_jmp_remove(tb
, 0);
784 tb_jmp_remove(tb
, 1);
786 /* suppress any remaining jumps to this TB */
792 tb1
= (TranslationBlock
*)((long)tb1
& ~3);
793 tb2
= tb1
->jmp_next
[n1
];
794 tb_reset_jump(tb1
, n1
);
795 tb1
->jmp_next
[n1
] = NULL
;
798 tb
->jmp_first
= (TranslationBlock
*)((long)tb
| 2); /* fail safe */
800 tb_phys_invalidate_count
++;
803 static inline void set_bits(uint8_t *tab
, int start
, int len
)
809 mask
= 0xff << (start
& 7);
810 if ((start
& ~7) == (end
& ~7)) {
812 mask
&= ~(0xff << (end
& 7));
817 start
= (start
+ 8) & ~7;
819 while (start
< end1
) {
824 mask
= ~(0xff << (end
& 7));
830 static void build_page_bitmap(PageDesc
*p
)
832 int n
, tb_start
, tb_end
;
833 TranslationBlock
*tb
;
835 p
->code_bitmap
= qemu_mallocz(TARGET_PAGE_SIZE
/ 8);
842 tb
= (TranslationBlock
*)((long)tb
& ~3);
843 /* NOTE: this is subtle as a TB may span two physical pages */
845 /* NOTE: tb_end may be after the end of the page, but
846 it is not a problem */
847 tb_start
= tb
->pc
& ~TARGET_PAGE_MASK
;
848 tb_end
= tb_start
+ tb
->size
;
849 if (tb_end
> TARGET_PAGE_SIZE
)
850 tb_end
= TARGET_PAGE_SIZE
;
853 tb_end
= ((tb
->pc
+ tb
->size
) & ~TARGET_PAGE_MASK
);
855 set_bits(p
->code_bitmap
, tb_start
, tb_end
- tb_start
);
856 tb
= tb
->page_next
[n
];
860 TranslationBlock
*tb_gen_code(CPUState
*env
,
861 target_ulong pc
, target_ulong cs_base
,
862 int flags
, int cflags
)
864 TranslationBlock
*tb
;
866 target_ulong phys_pc
, phys_page2
, virt_page2
;
869 phys_pc
= get_phys_addr_code(env
, pc
);
872 /* flush must be done */
874 /* cannot fail at this point */
876 /* Don't forget to invalidate previous TB info. */
877 tb_invalidated_flag
= 1;
879 tc_ptr
= code_gen_ptr
;
881 tb
->cs_base
= cs_base
;
884 cpu_gen_code(env
, tb
, &code_gen_size
);
885 code_gen_ptr
= (void *)(((unsigned long)code_gen_ptr
+ code_gen_size
+ CODE_GEN_ALIGN
- 1) & ~(CODE_GEN_ALIGN
- 1));
887 /* check next page if needed */
888 virt_page2
= (pc
+ tb
->size
- 1) & TARGET_PAGE_MASK
;
890 if ((pc
& TARGET_PAGE_MASK
) != virt_page2
) {
891 phys_page2
= get_phys_addr_code(env
, virt_page2
);
893 tb_link_phys(tb
, phys_pc
, phys_page2
);
897 /* invalidate all TBs which intersect with the target physical page
898 starting in range [start;end[. NOTE: start and end must refer to
899 the same physical page. 'is_cpu_write_access' should be true if called
900 from a real cpu write access: the virtual CPU will exit the current
901 TB if code is modified inside this TB. */
902 void tb_invalidate_phys_page_range(target_phys_addr_t start
, target_phys_addr_t end
,
903 int is_cpu_write_access
)
905 int n
, current_tb_modified
, current_tb_not_found
, current_flags
;
906 CPUState
*env
= cpu_single_env
;
908 TranslationBlock
*tb
, *tb_next
, *current_tb
, *saved_tb
;
909 target_ulong tb_start
, tb_end
;
910 target_ulong current_pc
, current_cs_base
;
912 p
= page_find(start
>> TARGET_PAGE_BITS
);
915 if (!p
->code_bitmap
&&
916 ++p
->code_write_count
>= SMC_BITMAP_USE_THRESHOLD
&&
917 is_cpu_write_access
) {
918 /* build code bitmap */
919 build_page_bitmap(p
);
922 /* we remove all the TBs in the range [start, end[ */
923 /* XXX: see if in some cases it could be faster to invalidate all the code */
924 current_tb_not_found
= is_cpu_write_access
;
925 current_tb_modified
= 0;
926 current_tb
= NULL
; /* avoid warning */
927 current_pc
= 0; /* avoid warning */
928 current_cs_base
= 0; /* avoid warning */
929 current_flags
= 0; /* avoid warning */
933 tb
= (TranslationBlock
*)((long)tb
& ~3);
934 tb_next
= tb
->page_next
[n
];
935 /* NOTE: this is subtle as a TB may span two physical pages */
937 /* NOTE: tb_end may be after the end of the page, but
938 it is not a problem */
939 tb_start
= tb
->page_addr
[0] + (tb
->pc
& ~TARGET_PAGE_MASK
);
940 tb_end
= tb_start
+ tb
->size
;
942 tb_start
= tb
->page_addr
[1];
943 tb_end
= tb_start
+ ((tb
->pc
+ tb
->size
) & ~TARGET_PAGE_MASK
);
945 if (!(tb_end
<= start
|| tb_start
>= end
)) {
946 #ifdef TARGET_HAS_PRECISE_SMC
947 if (current_tb_not_found
) {
948 current_tb_not_found
= 0;
950 if (env
->mem_io_pc
) {
951 /* now we have a real cpu fault */
952 current_tb
= tb_find_pc(env
->mem_io_pc
);
955 if (current_tb
== tb
&&
956 (current_tb
->cflags
& CF_COUNT_MASK
) != 1) {
957 /* If we are modifying the current TB, we must stop
958 its execution. We could be more precise by checking
959 that the modification is after the current PC, but it
960 would require a specialized function to partially
961 restore the CPU state */
963 current_tb_modified
= 1;
964 cpu_restore_state(current_tb
, env
,
965 env
->mem_io_pc
, NULL
);
966 #if defined(TARGET_I386)
967 current_flags
= env
->hflags
;
968 current_flags
|= (env
->eflags
& (IOPL_MASK
| TF_MASK
| VM_MASK
));
969 current_cs_base
= (target_ulong
)env
->segs
[R_CS
].base
;
970 current_pc
= current_cs_base
+ env
->eip
;
972 #error unsupported CPU
975 #endif /* TARGET_HAS_PRECISE_SMC */
976 /* we need to do that to handle the case where a signal
977 occurs while doing tb_phys_invalidate() */
980 saved_tb
= env
->current_tb
;
981 env
->current_tb
= NULL
;
983 tb_phys_invalidate(tb
, -1);
985 env
->current_tb
= saved_tb
;
986 if (env
->interrupt_request
&& env
->current_tb
)
987 cpu_interrupt(env
, env
->interrupt_request
);
992 #if !defined(CONFIG_USER_ONLY)
993 /* if no code remaining, no need to continue to use slow writes */
995 invalidate_page_bitmap(p
);
996 if (is_cpu_write_access
) {
997 tlb_unprotect_code_phys(env
, start
, env
->mem_io_vaddr
);
1001 #ifdef TARGET_HAS_PRECISE_SMC
1002 if (current_tb_modified
) {
1003 /* we generate a block containing just the instruction
1004 modifying the memory. It will ensure that it cannot modify
1006 env
->current_tb
= NULL
;
1007 tb_gen_code(env
, current_pc
, current_cs_base
, current_flags
, 1);
1008 cpu_resume_from_signal(env
, NULL
);
1013 /* len must be <= 8 and start must be a multiple of len */
1014 static inline void tb_invalidate_phys_page_fast(target_phys_addr_t start
, int len
)
1021 fprintf(logfile
, "modifying code at 0x%x size=%d EIP=%x PC=%08x\n",
1022 cpu_single_env
->mem_io_vaddr
, len
,
1023 cpu_single_env
->eip
,
1024 cpu_single_env
->eip
+ (long)cpu_single_env
->segs
[R_CS
].base
);
1028 p
= page_find(start
>> TARGET_PAGE_BITS
);
1031 if (p
->code_bitmap
) {
1032 offset
= start
& ~TARGET_PAGE_MASK
;
1033 b
= p
->code_bitmap
[offset
>> 3] >> (offset
& 7);
1034 if (b
& ((1 << len
) - 1))
1038 tb_invalidate_phys_page_range(start
, start
+ len
, 1);
1042 #if !defined(CONFIG_SOFTMMU)
1043 static void tb_invalidate_phys_page(target_phys_addr_t addr
,
1044 unsigned long pc
, void *puc
)
1046 int n
, current_flags
, current_tb_modified
;
1047 target_ulong current_pc
, current_cs_base
;
1049 TranslationBlock
*tb
, *current_tb
;
1050 #ifdef TARGET_HAS_PRECISE_SMC
1051 CPUState
*env
= cpu_single_env
;
1054 addr
&= TARGET_PAGE_MASK
;
1055 p
= page_find(addr
>> TARGET_PAGE_BITS
);
1059 current_tb_modified
= 0;
1061 current_pc
= 0; /* avoid warning */
1062 current_cs_base
= 0; /* avoid warning */
1063 current_flags
= 0; /* avoid warning */
1064 #ifdef TARGET_HAS_PRECISE_SMC
1065 if (tb
&& pc
!= 0) {
1066 current_tb
= tb_find_pc(pc
);
1069 while (tb
!= NULL
) {
1071 tb
= (TranslationBlock
*)((long)tb
& ~3);
1072 #ifdef TARGET_HAS_PRECISE_SMC
1073 if (current_tb
== tb
&&
1074 (current_tb
->cflags
& CF_COUNT_MASK
) != 1) {
1075 /* If we are modifying the current TB, we must stop
1076 its execution. We could be more precise by checking
1077 that the modification is after the current PC, but it
1078 would require a specialized function to partially
1079 restore the CPU state */
1081 current_tb_modified
= 1;
1082 cpu_restore_state(current_tb
, env
, pc
, puc
);
1083 #if defined(TARGET_I386)
1084 current_flags
= env
->hflags
;
1085 current_flags
|= (env
->eflags
& (IOPL_MASK
| TF_MASK
| VM_MASK
));
1086 current_cs_base
= (target_ulong
)env
->segs
[R_CS
].base
;
1087 current_pc
= current_cs_base
+ env
->eip
;
1089 #error unsupported CPU
1092 #endif /* TARGET_HAS_PRECISE_SMC */
1093 tb_phys_invalidate(tb
, addr
);
1094 tb
= tb
->page_next
[n
];
1097 #ifdef TARGET_HAS_PRECISE_SMC
1098 if (current_tb_modified
) {
1099 /* we generate a block containing just the instruction
1100 modifying the memory. It will ensure that it cannot modify
1102 env
->current_tb
= NULL
;
1103 tb_gen_code(env
, current_pc
, current_cs_base
, current_flags
, 1);
1104 cpu_resume_from_signal(env
, puc
);
1110 /* add the tb in the target page and protect it if necessary */
1111 static inline void tb_alloc_page(TranslationBlock
*tb
,
1112 unsigned int n
, target_ulong page_addr
)
1115 TranslationBlock
*last_first_tb
;
1117 tb
->page_addr
[n
] = page_addr
;
1118 p
= page_find_alloc(page_addr
>> TARGET_PAGE_BITS
);
1119 tb
->page_next
[n
] = p
->first_tb
;
1120 last_first_tb
= p
->first_tb
;
1121 p
->first_tb
= (TranslationBlock
*)((long)tb
| n
);
1122 invalidate_page_bitmap(p
);
1124 #if defined(TARGET_HAS_SMC) || 1
1126 #if defined(CONFIG_USER_ONLY)
1127 if (p
->flags
& PAGE_WRITE
) {
1132 /* force the host page as non writable (writes will have a
1133 page fault + mprotect overhead) */
1134 page_addr
&= qemu_host_page_mask
;
1136 for(addr
= page_addr
; addr
< page_addr
+ qemu_host_page_size
;
1137 addr
+= TARGET_PAGE_SIZE
) {
1139 p2
= page_find (addr
>> TARGET_PAGE_BITS
);
1143 p2
->flags
&= ~PAGE_WRITE
;
1144 page_get_flags(addr
);
1146 mprotect(g2h(page_addr
), qemu_host_page_size
,
1147 (prot
& PAGE_BITS
) & ~PAGE_WRITE
);
1148 #ifdef DEBUG_TB_INVALIDATE
1149 printf("protecting code page: 0x" TARGET_FMT_lx
"\n",
1154 /* if some code is already present, then the pages are already
1155 protected. So we handle the case where only the first TB is
1156 allocated in a physical page */
1157 if (!last_first_tb
) {
1158 tlb_protect_code(page_addr
);
1162 #endif /* TARGET_HAS_SMC */
1165 /* Allocate a new translation block. Flush the translation buffer if
1166 too many translation blocks or too much generated code. */
1167 TranslationBlock
*tb_alloc(target_ulong pc
)
1169 TranslationBlock
*tb
;
1171 if (nb_tbs
>= code_gen_max_blocks
||
1172 (code_gen_ptr
- code_gen_buffer
) >= code_gen_buffer_max_size
)
1174 tb
= &tbs
[nb_tbs
++];
1180 void tb_free(TranslationBlock
*tb
)
1182 /* In practice this is mostly used for single use temporary TB
1183 Ignore the hard cases and just back up if this TB happens to
1184 be the last one generated. */
1185 if (nb_tbs
> 0 && tb
== &tbs
[nb_tbs
- 1]) {
1186 code_gen_ptr
= tb
->tc_ptr
;
1191 /* add a new TB and link it to the physical page tables. phys_page2 is
1192 (-1) to indicate that only one page contains the TB. */
1193 void tb_link_phys(TranslationBlock
*tb
,
1194 target_ulong phys_pc
, target_ulong phys_page2
)
1197 TranslationBlock
**ptb
;
1199 /* Grab the mmap lock to stop another thread invalidating this TB
1200 before we are done. */
1202 /* add in the physical hash table */
1203 h
= tb_phys_hash_func(phys_pc
);
1204 ptb
= &tb_phys_hash
[h
];
1205 tb
->phys_hash_next
= *ptb
;
1208 /* add in the page list */
1209 tb_alloc_page(tb
, 0, phys_pc
& TARGET_PAGE_MASK
);
1210 if (phys_page2
!= -1)
1211 tb_alloc_page(tb
, 1, phys_page2
);
1213 tb
->page_addr
[1] = -1;
1215 tb
->jmp_first
= (TranslationBlock
*)((long)tb
| 2);
1216 tb
->jmp_next
[0] = NULL
;
1217 tb
->jmp_next
[1] = NULL
;
1219 /* init original jump addresses */
1220 if (tb
->tb_next_offset
[0] != 0xffff)
1221 tb_reset_jump(tb
, 0);
1222 if (tb
->tb_next_offset
[1] != 0xffff)
1223 tb_reset_jump(tb
, 1);
1225 #ifdef DEBUG_TB_CHECK
1231 /* find the TB 'tb' such that tb[0].tc_ptr <= tc_ptr <
1232 tb[1].tc_ptr. Return NULL if not found */
1233 TranslationBlock
*tb_find_pc(unsigned long tc_ptr
)
1235 int m_min
, m_max
, m
;
1237 TranslationBlock
*tb
;
1241 if (tc_ptr
< (unsigned long)code_gen_buffer
||
1242 tc_ptr
>= (unsigned long)code_gen_ptr
)
1244 /* binary search (cf Knuth) */
1247 while (m_min
<= m_max
) {
1248 m
= (m_min
+ m_max
) >> 1;
1250 v
= (unsigned long)tb
->tc_ptr
;
1253 else if (tc_ptr
< v
) {
1262 static void tb_reset_jump_recursive(TranslationBlock
*tb
);
1264 static inline void tb_reset_jump_recursive2(TranslationBlock
*tb
, int n
)
1266 TranslationBlock
*tb1
, *tb_next
, **ptb
;
1269 tb1
= tb
->jmp_next
[n
];
1271 /* find head of list */
1274 tb1
= (TranslationBlock
*)((long)tb1
& ~3);
1277 tb1
= tb1
->jmp_next
[n1
];
1279 /* we are now sure now that tb jumps to tb1 */
1282 /* remove tb from the jmp_first list */
1283 ptb
= &tb_next
->jmp_first
;
1287 tb1
= (TranslationBlock
*)((long)tb1
& ~3);
1288 if (n1
== n
&& tb1
== tb
)
1290 ptb
= &tb1
->jmp_next
[n1
];
1292 *ptb
= tb
->jmp_next
[n
];
1293 tb
->jmp_next
[n
] = NULL
;
1295 /* suppress the jump to next tb in generated code */
1296 tb_reset_jump(tb
, n
);
1298 /* suppress jumps in the tb on which we could have jumped */
1299 tb_reset_jump_recursive(tb_next
);
1303 static void tb_reset_jump_recursive(TranslationBlock
*tb
)
1305 tb_reset_jump_recursive2(tb
, 0);
1306 tb_reset_jump_recursive2(tb
, 1);
1309 #if defined(TARGET_HAS_ICE)
1310 static void breakpoint_invalidate(CPUState
*env
, target_ulong pc
)
1312 target_phys_addr_t addr
;
1314 ram_addr_t ram_addr
;
1317 addr
= cpu_get_phys_page_debug(env
, pc
);
1318 p
= phys_page_find(addr
>> TARGET_PAGE_BITS
);
1320 pd
= IO_MEM_UNASSIGNED
;
1322 pd
= p
->phys_offset
;
1324 ram_addr
= (pd
& TARGET_PAGE_MASK
) | (pc
& ~TARGET_PAGE_MASK
);
1325 tb_invalidate_phys_page_range(ram_addr
, ram_addr
+ 1, 0);
1329 /* Add a watchpoint. */
1330 int cpu_watchpoint_insert(CPUState
*env
, target_ulong addr
, int type
)
1334 for (i
= 0; i
< env
->nb_watchpoints
; i
++) {
1335 if (addr
== env
->watchpoint
[i
].vaddr
)
1338 if (env
->nb_watchpoints
>= MAX_WATCHPOINTS
)
1341 i
= env
->nb_watchpoints
++;
1342 env
->watchpoint
[i
].vaddr
= addr
;
1343 env
->watchpoint
[i
].type
= type
;
1344 tlb_flush_page(env
, addr
);
1345 /* FIXME: This flush is needed because of the hack to make memory ops
1346 terminate the TB. It can be removed once the proper IO trap and
1347 re-execute bits are in. */
1352 /* Remove a watchpoint. */
1353 int cpu_watchpoint_remove(CPUState
*env
, target_ulong addr
)
1357 for (i
= 0; i
< env
->nb_watchpoints
; i
++) {
1358 if (addr
== env
->watchpoint
[i
].vaddr
) {
1359 env
->nb_watchpoints
--;
1360 env
->watchpoint
[i
] = env
->watchpoint
[env
->nb_watchpoints
];
1361 tlb_flush_page(env
, addr
);
1368 /* Remove all watchpoints. */
1369 void cpu_watchpoint_remove_all(CPUState
*env
) {
1372 for (i
= 0; i
< env
->nb_watchpoints
; i
++) {
1373 tlb_flush_page(env
, env
->watchpoint
[i
].vaddr
);
1375 env
->nb_watchpoints
= 0;
1378 /* add a breakpoint. EXCP_DEBUG is returned by the CPU loop if a
1379 breakpoint is reached */
1380 int cpu_breakpoint_insert(CPUState
*env
, target_ulong pc
)
1382 #if defined(TARGET_HAS_ICE)
1385 for(i
= 0; i
< env
->nb_breakpoints
; i
++) {
1386 if (env
->breakpoints
[i
] == pc
)
1390 if (env
->nb_breakpoints
>= MAX_BREAKPOINTS
)
1392 env
->breakpoints
[env
->nb_breakpoints
++] = pc
;
1395 kvm_update_debugger(env
);
1397 breakpoint_invalidate(env
, pc
);
1404 /* remove all breakpoints */
1405 void cpu_breakpoint_remove_all(CPUState
*env
) {
1406 #if defined(TARGET_HAS_ICE)
1408 for(i
= 0; i
< env
->nb_breakpoints
; i
++) {
1409 breakpoint_invalidate(env
, env
->breakpoints
[i
]);
1411 env
->nb_breakpoints
= 0;
1415 /* remove a breakpoint */
1416 int cpu_breakpoint_remove(CPUState
*env
, target_ulong pc
)
1418 #if defined(TARGET_HAS_ICE)
1420 for(i
= 0; i
< env
->nb_breakpoints
; i
++) {
1421 if (env
->breakpoints
[i
] == pc
)
1426 env
->nb_breakpoints
--;
1427 if (i
< env
->nb_breakpoints
)
1428 env
->breakpoints
[i
] = env
->breakpoints
[env
->nb_breakpoints
];
1431 kvm_update_debugger(env
);
1433 breakpoint_invalidate(env
, pc
);
1440 /* enable or disable single step mode. EXCP_DEBUG is returned by the
1441 CPU loop after each instruction */
1442 void cpu_single_step(CPUState
*env
, int enabled
)
1444 #if defined(TARGET_HAS_ICE)
1445 if (env
->singlestep_enabled
!= enabled
) {
1446 env
->singlestep_enabled
= enabled
;
1447 /* must flush all the translated code to avoid inconsistancies */
1448 /* XXX: only flush what is necessary */
1452 kvm_update_debugger(env
);
1456 /* enable or disable low levels log */
1457 void cpu_set_log(int log_flags
)
1459 loglevel
= log_flags
;
1460 if (loglevel
&& !logfile
) {
1461 logfile
= fopen(logfilename
, log_append
? "a" : "w");
1463 perror(logfilename
);
1466 #if !defined(CONFIG_SOFTMMU)
1467 /* must avoid mmap() usage of glibc by setting a buffer "by hand" */
1469 static char logfile_buf
[4096];
1470 setvbuf(logfile
, logfile_buf
, _IOLBF
, sizeof(logfile_buf
));
1473 setvbuf(logfile
, NULL
, _IOLBF
, 0);
1477 if (!loglevel
&& logfile
) {
1483 void cpu_set_log_filename(const char *filename
)
1485 logfilename
= strdup(filename
);
1490 cpu_set_log(loglevel
);
1493 /* mask must never be zero, except for A20 change call */
1494 void cpu_interrupt(CPUState
*env
, int mask
)
1496 #if !defined(USE_NPTL)
1497 TranslationBlock
*tb
;
1498 static spinlock_t interrupt_lock
= SPIN_LOCK_UNLOCKED
;
1502 old_mask
= env
->interrupt_request
;
1503 /* FIXME: This is probably not threadsafe. A different thread could
1504 be in the middle of a read-modify-write operation. */
1505 env
->interrupt_request
|= mask
;
1506 if (kvm_enabled() && !qemu_kvm_irqchip_in_kernel())
1507 kvm_update_interrupt_request(env
);
1508 #if defined(USE_NPTL)
1509 /* FIXME: TB unchaining isn't SMP safe. For now just ignore the
1510 problem and hope the cpu will stop of its own accord. For userspace
1511 emulation this often isn't actually as bad as it sounds. Often
1512 signals are used primarily to interrupt blocking syscalls. */
1515 env
->icount_decr
.u16
.high
= 0xffff;
1516 #ifndef CONFIG_USER_ONLY
1517 /* CPU_INTERRUPT_EXIT isn't a real interrupt. It just means
1518 an async event happened and we need to process it. */
1520 && (mask
& ~(old_mask
| CPU_INTERRUPT_EXIT
)) != 0) {
1521 cpu_abort(env
, "Raised interrupt while not in I/O function");
1525 tb
= env
->current_tb
;
1526 /* if the cpu is currently executing code, we must unlink it and
1527 all the potentially executing TB */
1528 if (tb
&& !testandset(&interrupt_lock
)) {
1529 env
->current_tb
= NULL
;
1530 tb_reset_jump_recursive(tb
);
1531 resetlock(&interrupt_lock
);
1537 void cpu_reset_interrupt(CPUState
*env
, int mask
)
1539 env
->interrupt_request
&= ~mask
;
1542 const CPULogItem cpu_log_items
[] = {
1543 { CPU_LOG_TB_OUT_ASM
, "out_asm",
1544 "show generated host assembly code for each compiled TB" },
1545 { CPU_LOG_TB_IN_ASM
, "in_asm",
1546 "show target assembly code for each compiled TB" },
1547 { CPU_LOG_TB_OP
, "op",
1548 "show micro ops for each compiled TB" },
1549 { CPU_LOG_TB_OP_OPT
, "op_opt",
1552 "before eflags optimization and "
1554 "after liveness analysis" },
1555 { CPU_LOG_INT
, "int",
1556 "show interrupts/exceptions in short format" },
1557 { CPU_LOG_EXEC
, "exec",
1558 "show trace before each executed TB (lots of logs)" },
1559 { CPU_LOG_TB_CPU
, "cpu",
1560 "show CPU state before block translation" },
1562 { CPU_LOG_PCALL
, "pcall",
1563 "show protected mode far calls/returns/exceptions" },
1566 { CPU_LOG_IOPORT
, "ioport",
1567 "show all i/o ports accesses" },
1572 static int cmp1(const char *s1
, int n
, const char *s2
)
1574 if (strlen(s2
) != n
)
1576 return memcmp(s1
, s2
, n
) == 0;
1579 /* takes a comma separated list of log masks. Return 0 if error. */
1580 int cpu_str_to_log_mask(const char *str
)
1582 const CPULogItem
*item
;
1589 p1
= strchr(p
, ',');
1592 if(cmp1(p
,p1
-p
,"all")) {
1593 for(item
= cpu_log_items
; item
->mask
!= 0; item
++) {
1597 for(item
= cpu_log_items
; item
->mask
!= 0; item
++) {
1598 if (cmp1(p
, p1
- p
, item
->name
))
1612 void cpu_abort(CPUState
*env
, const char *fmt
, ...)
1619 fprintf(stderr
, "qemu: fatal: ");
1620 vfprintf(stderr
, fmt
, ap
);
1621 fprintf(stderr
, "\n");
1623 cpu_dump_state(env
, stderr
, fprintf
, X86_DUMP_FPU
| X86_DUMP_CCOP
);
1625 cpu_dump_state(env
, stderr
, fprintf
, 0);
1628 fprintf(logfile
, "qemu: fatal: ");
1629 vfprintf(logfile
, fmt
, ap2
);
1630 fprintf(logfile
, "\n");
1632 cpu_dump_state(env
, logfile
, fprintf
, X86_DUMP_FPU
| X86_DUMP_CCOP
);
1634 cpu_dump_state(env
, logfile
, fprintf
, 0);
1644 CPUState
*cpu_copy(CPUState
*env
)
1646 CPUState
*new_env
= cpu_init(env
->cpu_model_str
);
1647 /* preserve chaining and index */
1648 CPUState
*next_cpu
= new_env
->next_cpu
;
1649 int cpu_index
= new_env
->cpu_index
;
1650 memcpy(new_env
, env
, sizeof(CPUState
));
1651 new_env
->next_cpu
= next_cpu
;
1652 new_env
->cpu_index
= cpu_index
;
1656 #if !defined(CONFIG_USER_ONLY)
1658 static inline void tlb_flush_jmp_cache(CPUState
*env
, target_ulong addr
)
1662 /* Discard jump cache entries for any tb which might potentially
1663 overlap the flushed page. */
1664 i
= tb_jmp_cache_hash_page(addr
- TARGET_PAGE_SIZE
);
1665 memset (&env
->tb_jmp_cache
[i
], 0,
1666 TB_JMP_PAGE_SIZE
* sizeof(TranslationBlock
*));
1668 i
= tb_jmp_cache_hash_page(addr
);
1669 memset (&env
->tb_jmp_cache
[i
], 0,
1670 TB_JMP_PAGE_SIZE
* sizeof(TranslationBlock
*));
1673 /* NOTE: if flush_global is true, also flush global entries (not
1675 void tlb_flush(CPUState
*env
, int flush_global
)
1679 #if defined(DEBUG_TLB)
1680 printf("tlb_flush:\n");
1682 /* must reset current TB so that interrupts cannot modify the
1683 links while we are modifying them */
1684 env
->current_tb
= NULL
;
1686 for(i
= 0; i
< CPU_TLB_SIZE
; i
++) {
1687 env
->tlb_table
[0][i
].addr_read
= -1;
1688 env
->tlb_table
[0][i
].addr_write
= -1;
1689 env
->tlb_table
[0][i
].addr_code
= -1;
1690 env
->tlb_table
[1][i
].addr_read
= -1;
1691 env
->tlb_table
[1][i
].addr_write
= -1;
1692 env
->tlb_table
[1][i
].addr_code
= -1;
1693 #if (NB_MMU_MODES >= 3)
1694 env
->tlb_table
[2][i
].addr_read
= -1;
1695 env
->tlb_table
[2][i
].addr_write
= -1;
1696 env
->tlb_table
[2][i
].addr_code
= -1;
1697 #if (NB_MMU_MODES == 4)
1698 env
->tlb_table
[3][i
].addr_read
= -1;
1699 env
->tlb_table
[3][i
].addr_write
= -1;
1700 env
->tlb_table
[3][i
].addr_code
= -1;
1705 memset (env
->tb_jmp_cache
, 0, TB_JMP_CACHE_SIZE
* sizeof (void *));
1708 if (env
->kqemu_enabled
) {
1709 kqemu_flush(env
, flush_global
);
1715 static inline void tlb_flush_entry(CPUTLBEntry
*tlb_entry
, target_ulong addr
)
1717 if (addr
== (tlb_entry
->addr_read
&
1718 (TARGET_PAGE_MASK
| TLB_INVALID_MASK
)) ||
1719 addr
== (tlb_entry
->addr_write
&
1720 (TARGET_PAGE_MASK
| TLB_INVALID_MASK
)) ||
1721 addr
== (tlb_entry
->addr_code
&
1722 (TARGET_PAGE_MASK
| TLB_INVALID_MASK
))) {
1723 tlb_entry
->addr_read
= -1;
1724 tlb_entry
->addr_write
= -1;
1725 tlb_entry
->addr_code
= -1;
1729 void tlb_flush_page(CPUState
*env
, target_ulong addr
)
1733 #if defined(DEBUG_TLB)
1734 printf("tlb_flush_page: " TARGET_FMT_lx
"\n", addr
);
1736 /* must reset current TB so that interrupts cannot modify the
1737 links while we are modifying them */
1738 env
->current_tb
= NULL
;
1740 addr
&= TARGET_PAGE_MASK
;
1741 i
= (addr
>> TARGET_PAGE_BITS
) & (CPU_TLB_SIZE
- 1);
1742 tlb_flush_entry(&env
->tlb_table
[0][i
], addr
);
1743 tlb_flush_entry(&env
->tlb_table
[1][i
], addr
);
1744 #if (NB_MMU_MODES >= 3)
1745 tlb_flush_entry(&env
->tlb_table
[2][i
], addr
);
1746 #if (NB_MMU_MODES == 4)
1747 tlb_flush_entry(&env
->tlb_table
[3][i
], addr
);
1751 tlb_flush_jmp_cache(env
, addr
);
1754 if (env
->kqemu_enabled
) {
1755 kqemu_flush_page(env
, addr
);
1760 /* update the TLBs so that writes to code in the virtual page 'addr'
1762 static void tlb_protect_code(ram_addr_t ram_addr
)
1764 cpu_physical_memory_reset_dirty(ram_addr
,
1765 ram_addr
+ TARGET_PAGE_SIZE
,
1769 /* update the TLB so that writes in physical page 'phys_addr' are no longer
1770 tested for self modifying code */
1771 static void tlb_unprotect_code_phys(CPUState
*env
, ram_addr_t ram_addr
,
1774 phys_ram_dirty
[ram_addr
>> TARGET_PAGE_BITS
] |= CODE_DIRTY_FLAG
;
1777 static inline void tlb_reset_dirty_range(CPUTLBEntry
*tlb_entry
,
1778 unsigned long start
, unsigned long length
)
1781 if ((tlb_entry
->addr_write
& ~TARGET_PAGE_MASK
) == IO_MEM_RAM
) {
1782 addr
= (tlb_entry
->addr_write
& TARGET_PAGE_MASK
) + tlb_entry
->addend
;
1783 if ((addr
- start
) < length
) {
1784 tlb_entry
->addr_write
= (tlb_entry
->addr_write
& TARGET_PAGE_MASK
) | TLB_NOTDIRTY
;
1789 void cpu_physical_memory_reset_dirty(ram_addr_t start
, ram_addr_t end
,
1793 unsigned long length
, start1
;
1797 start
&= TARGET_PAGE_MASK
;
1798 end
= TARGET_PAGE_ALIGN(end
);
1800 length
= end
- start
;
1803 len
= length
>> TARGET_PAGE_BITS
;
1805 /* XXX: should not depend on cpu context */
1807 if (env
->kqemu_enabled
) {
1810 for(i
= 0; i
< len
; i
++) {
1811 kqemu_set_notdirty(env
, addr
);
1812 addr
+= TARGET_PAGE_SIZE
;
1816 mask
= ~dirty_flags
;
1817 p
= phys_ram_dirty
+ (start
>> TARGET_PAGE_BITS
);
1818 for(i
= 0; i
< len
; i
++)
1821 /* we modify the TLB cache so that the dirty bit will be set again
1822 when accessing the range */
1823 start1
= start
+ (unsigned long)phys_ram_base
;
1824 for(env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
1825 for(i
= 0; i
< CPU_TLB_SIZE
; i
++)
1826 tlb_reset_dirty_range(&env
->tlb_table
[0][i
], start1
, length
);
1827 for(i
= 0; i
< CPU_TLB_SIZE
; i
++)
1828 tlb_reset_dirty_range(&env
->tlb_table
[1][i
], start1
, length
);
1829 #if (NB_MMU_MODES >= 3)
1830 for(i
= 0; i
< CPU_TLB_SIZE
; i
++)
1831 tlb_reset_dirty_range(&env
->tlb_table
[2][i
], start1
, length
);
1832 #if (NB_MMU_MODES == 4)
1833 for(i
= 0; i
< CPU_TLB_SIZE
; i
++)
1834 tlb_reset_dirty_range(&env
->tlb_table
[3][i
], start1
, length
);
1840 int cpu_physical_memory_set_dirty_tracking(int enable
)
1845 r
= kvm_physical_memory_set_dirty_tracking(enable
);
1846 in_migration
= enable
;
1850 int cpu_physical_memory_get_dirty_tracking(void)
1852 return in_migration
;
1855 static inline void tlb_update_dirty(CPUTLBEntry
*tlb_entry
)
1857 ram_addr_t ram_addr
;
1859 if ((tlb_entry
->addr_write
& ~TARGET_PAGE_MASK
) == IO_MEM_RAM
) {
1860 ram_addr
= (tlb_entry
->addr_write
& TARGET_PAGE_MASK
) +
1861 tlb_entry
->addend
- (unsigned long)phys_ram_base
;
1862 if (!cpu_physical_memory_is_dirty(ram_addr
)) {
1863 tlb_entry
->addr_write
|= TLB_NOTDIRTY
;
1868 /* update the TLB according to the current state of the dirty bits */
1869 void cpu_tlb_update_dirty(CPUState
*env
)
1872 for(i
= 0; i
< CPU_TLB_SIZE
; i
++)
1873 tlb_update_dirty(&env
->tlb_table
[0][i
]);
1874 for(i
= 0; i
< CPU_TLB_SIZE
; i
++)
1875 tlb_update_dirty(&env
->tlb_table
[1][i
]);
1876 #if (NB_MMU_MODES >= 3)
1877 for(i
= 0; i
< CPU_TLB_SIZE
; i
++)
1878 tlb_update_dirty(&env
->tlb_table
[2][i
]);
1879 #if (NB_MMU_MODES == 4)
1880 for(i
= 0; i
< CPU_TLB_SIZE
; i
++)
1881 tlb_update_dirty(&env
->tlb_table
[3][i
]);
1886 static inline void tlb_set_dirty1(CPUTLBEntry
*tlb_entry
, target_ulong vaddr
)
1888 if (tlb_entry
->addr_write
== (vaddr
| TLB_NOTDIRTY
))
1889 tlb_entry
->addr_write
= vaddr
;
1892 /* update the TLB corresponding to virtual page vaddr
1893 so that it is no longer dirty */
1894 static inline void tlb_set_dirty(CPUState
*env
, target_ulong vaddr
)
1898 vaddr
&= TARGET_PAGE_MASK
;
1899 i
= (vaddr
>> TARGET_PAGE_BITS
) & (CPU_TLB_SIZE
- 1);
1900 tlb_set_dirty1(&env
->tlb_table
[0][i
], vaddr
);
1901 tlb_set_dirty1(&env
->tlb_table
[1][i
], vaddr
);
1902 #if (NB_MMU_MODES >= 3)
1903 tlb_set_dirty1(&env
->tlb_table
[2][i
], vaddr
);
1904 #if (NB_MMU_MODES == 4)
1905 tlb_set_dirty1(&env
->tlb_table
[3][i
], vaddr
);
1910 /* add a new TLB entry. At most one entry for a given virtual address
1911 is permitted. Return 0 if OK or 2 if the page could not be mapped
1912 (can only happen in non SOFTMMU mode for I/O pages or pages
1913 conflicting with the host address space). */
1914 int tlb_set_page_exec(CPUState
*env
, target_ulong vaddr
,
1915 target_phys_addr_t paddr
, int prot
,
1916 int mmu_idx
, int is_softmmu
)
1921 target_ulong address
;
1922 target_ulong code_address
;
1923 target_phys_addr_t addend
;
1927 target_phys_addr_t iotlb
;
1929 p
= phys_page_find(paddr
>> TARGET_PAGE_BITS
);
1931 pd
= IO_MEM_UNASSIGNED
;
1933 pd
= p
->phys_offset
;
1935 #if defined(DEBUG_TLB)
1936 printf("tlb_set_page: vaddr=" TARGET_FMT_lx
" paddr=0x%08x prot=%x idx=%d smmu=%d pd=0x%08lx\n",
1937 vaddr
, (int)paddr
, prot
, mmu_idx
, is_softmmu
, pd
);
1942 if ((pd
& ~TARGET_PAGE_MASK
) > IO_MEM_ROM
&& !(pd
& IO_MEM_ROMD
)) {
1943 /* IO memory case (romd handled later) */
1944 address
|= TLB_MMIO
;
1946 addend
= (unsigned long)phys_ram_base
+ (pd
& TARGET_PAGE_MASK
);
1947 if ((pd
& ~TARGET_PAGE_MASK
) <= IO_MEM_ROM
) {
1949 iotlb
= pd
& TARGET_PAGE_MASK
;
1950 if ((pd
& ~TARGET_PAGE_MASK
) == IO_MEM_RAM
)
1951 iotlb
|= IO_MEM_NOTDIRTY
;
1953 iotlb
|= IO_MEM_ROM
;
1955 /* IO handlers are currently passed a phsical address.
1956 It would be nice to pass an offset from the base address
1957 of that region. This would avoid having to special case RAM,
1958 and avoid full address decoding in every device.
1959 We can't use the high bits of pd for this because
1960 IO_MEM_ROMD uses these as a ram address. */
1961 iotlb
= (pd
& ~TARGET_PAGE_MASK
) + paddr
;
1964 code_address
= address
;
1965 /* Make accesses to pages with watchpoints go via the
1966 watchpoint trap routines. */
1967 for (i
= 0; i
< env
->nb_watchpoints
; i
++) {
1968 if (vaddr
== (env
->watchpoint
[i
].vaddr
& TARGET_PAGE_MASK
)) {
1969 iotlb
= io_mem_watch
+ paddr
;
1970 /* TODO: The memory case can be optimized by not trapping
1971 reads of pages with a write breakpoint. */
1972 address
|= TLB_MMIO
;
1976 index
= (vaddr
>> TARGET_PAGE_BITS
) & (CPU_TLB_SIZE
- 1);
1977 env
->iotlb
[mmu_idx
][index
] = iotlb
- vaddr
;
1978 te
= &env
->tlb_table
[mmu_idx
][index
];
1979 te
->addend
= addend
- vaddr
;
1980 if (prot
& PAGE_READ
) {
1981 te
->addr_read
= address
;
1986 if (prot
& PAGE_EXEC
) {
1987 te
->addr_code
= code_address
;
1991 if (prot
& PAGE_WRITE
) {
1992 if ((pd
& ~TARGET_PAGE_MASK
) == IO_MEM_ROM
||
1993 (pd
& IO_MEM_ROMD
)) {
1994 /* Write access calls the I/O callback. */
1995 te
->addr_write
= address
| TLB_MMIO
;
1996 } else if ((pd
& ~TARGET_PAGE_MASK
) == IO_MEM_RAM
&&
1997 !cpu_physical_memory_is_dirty(pd
)) {
1998 te
->addr_write
= address
| TLB_NOTDIRTY
;
2000 te
->addr_write
= address
;
2003 te
->addr_write
= -1;
2010 void tlb_flush(CPUState
*env
, int flush_global
)
2014 void tlb_flush_page(CPUState
*env
, target_ulong addr
)
2018 int tlb_set_page_exec(CPUState
*env
, target_ulong vaddr
,
2019 target_phys_addr_t paddr
, int prot
,
2020 int mmu_idx
, int is_softmmu
)
2025 /* dump memory mappings */
2026 void page_dump(FILE *f
)
2028 unsigned long start
, end
;
2029 int i
, j
, prot
, prot1
;
2032 fprintf(f
, "%-8s %-8s %-8s %s\n",
2033 "start", "end", "size", "prot");
2037 for(i
= 0; i
<= L1_SIZE
; i
++) {
2042 for(j
= 0;j
< L2_SIZE
; j
++) {
2047 if (prot1
!= prot
) {
2048 end
= (i
<< (32 - L1_BITS
)) | (j
<< TARGET_PAGE_BITS
);
2050 fprintf(f
, "%08lx-%08lx %08lx %c%c%c\n",
2051 start
, end
, end
- start
,
2052 prot
& PAGE_READ
? 'r' : '-',
2053 prot
& PAGE_WRITE
? 'w' : '-',
2054 prot
& PAGE_EXEC
? 'x' : '-');
2068 int page_get_flags(target_ulong address
)
2072 p
= page_find(address
>> TARGET_PAGE_BITS
);
2078 /* modify the flags of a page and invalidate the code if
2079 necessary. The flag PAGE_WRITE_ORG is positionned automatically
2080 depending on PAGE_WRITE */
2081 void page_set_flags(target_ulong start
, target_ulong end
, int flags
)
2086 /* mmap_lock should already be held. */
2087 start
= start
& TARGET_PAGE_MASK
;
2088 end
= TARGET_PAGE_ALIGN(end
);
2089 if (flags
& PAGE_WRITE
)
2090 flags
|= PAGE_WRITE_ORG
;
2091 for(addr
= start
; addr
< end
; addr
+= TARGET_PAGE_SIZE
) {
2092 p
= page_find_alloc(addr
>> TARGET_PAGE_BITS
);
2093 /* We may be called for host regions that are outside guest
2097 /* if the write protection is set, then we invalidate the code
2099 if (!(p
->flags
& PAGE_WRITE
) &&
2100 (flags
& PAGE_WRITE
) &&
2102 tb_invalidate_phys_page(addr
, 0, NULL
);
2108 int page_check_range(target_ulong start
, target_ulong len
, int flags
)
2114 end
= TARGET_PAGE_ALIGN(start
+len
); /* must do before we loose bits in the next step */
2115 start
= start
& TARGET_PAGE_MASK
;
2118 /* we've wrapped around */
2120 for(addr
= start
; addr
< end
; addr
+= TARGET_PAGE_SIZE
) {
2121 p
= page_find(addr
>> TARGET_PAGE_BITS
);
2124 if( !(p
->flags
& PAGE_VALID
) )
2127 if ((flags
& PAGE_READ
) && !(p
->flags
& PAGE_READ
))
2129 if (flags
& PAGE_WRITE
) {
2130 if (!(p
->flags
& PAGE_WRITE_ORG
))
2132 /* unprotect the page if it was put read-only because it
2133 contains translated code */
2134 if (!(p
->flags
& PAGE_WRITE
)) {
2135 if (!page_unprotect(addr
, 0, NULL
))
2144 /* called from signal handler: invalidate the code and unprotect the
2145 page. Return TRUE if the fault was succesfully handled. */
2146 int page_unprotect(target_ulong address
, unsigned long pc
, void *puc
)
2148 unsigned int page_index
, prot
, pindex
;
2150 target_ulong host_start
, host_end
, addr
;
2152 /* Technically this isn't safe inside a signal handler. However we
2153 know this only ever happens in a synchronous SEGV handler, so in
2154 practice it seems to be ok. */
2157 host_start
= address
& qemu_host_page_mask
;
2158 page_index
= host_start
>> TARGET_PAGE_BITS
;
2159 p1
= page_find(page_index
);
2164 host_end
= host_start
+ qemu_host_page_size
;
2167 for(addr
= host_start
;addr
< host_end
; addr
+= TARGET_PAGE_SIZE
) {
2171 /* if the page was really writable, then we change its
2172 protection back to writable */
2173 if (prot
& PAGE_WRITE_ORG
) {
2174 pindex
= (address
- host_start
) >> TARGET_PAGE_BITS
;
2175 if (!(p1
[pindex
].flags
& PAGE_WRITE
)) {
2176 mprotect((void *)g2h(host_start
), qemu_host_page_size
,
2177 (prot
& PAGE_BITS
) | PAGE_WRITE
);
2178 p1
[pindex
].flags
|= PAGE_WRITE
;
2179 /* and since the content will be modified, we must invalidate
2180 the corresponding translated code. */
2181 tb_invalidate_phys_page(address
, pc
, puc
);
2182 #ifdef DEBUG_TB_CHECK
2183 tb_invalidate_check(address
);
2193 static inline void tlb_set_dirty(CPUState
*env
,
2194 unsigned long addr
, target_ulong vaddr
)
2197 #endif /* defined(CONFIG_USER_ONLY) */
2199 #if !defined(CONFIG_USER_ONLY)
2200 static int subpage_register (subpage_t
*mmio
, uint32_t start
, uint32_t end
,
2202 static void *subpage_init (target_phys_addr_t base
, ram_addr_t
*phys
,
2203 ram_addr_t orig_memory
);
2204 #define CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2, \
2207 if (addr > start_addr) \
2210 start_addr2 = start_addr & ~TARGET_PAGE_MASK; \
2211 if (start_addr2 > 0) \
2215 if ((start_addr + orig_size) - addr >= TARGET_PAGE_SIZE) \
2216 end_addr2 = TARGET_PAGE_SIZE - 1; \
2218 end_addr2 = (start_addr + orig_size - 1) & ~TARGET_PAGE_MASK; \
2219 if (end_addr2 < TARGET_PAGE_SIZE - 1) \
2224 /* register physical memory. 'size' must be a multiple of the target
2225 page size. If (phys_offset & ~TARGET_PAGE_MASK) != 0, then it is an
2227 void cpu_register_physical_memory(target_phys_addr_t start_addr
,
2229 ram_addr_t phys_offset
)
2231 target_phys_addr_t addr
, end_addr
;
2234 ram_addr_t orig_size
= size
;
2238 /* XXX: should not depend on cpu context */
2240 if (env
->kqemu_enabled
) {
2241 kqemu_set_phys_mem(start_addr
, size
, phys_offset
);
2246 kvm_cpu_register_physical_memory(start_addr
, size
, phys_offset
);
2249 size
= (size
+ TARGET_PAGE_SIZE
- 1) & TARGET_PAGE_MASK
;
2250 end_addr
= start_addr
+ (target_phys_addr_t
)size
;
2251 for(addr
= start_addr
; addr
!= end_addr
; addr
+= TARGET_PAGE_SIZE
) {
2252 p
= phys_page_find(addr
>> TARGET_PAGE_BITS
);
2253 if (p
&& p
->phys_offset
!= IO_MEM_UNASSIGNED
) {
2254 ram_addr_t orig_memory
= p
->phys_offset
;
2255 target_phys_addr_t start_addr2
, end_addr2
;
2256 int need_subpage
= 0;
2258 CHECK_SUBPAGE(addr
, start_addr
, start_addr2
, end_addr
, end_addr2
,
2260 if (need_subpage
|| phys_offset
& IO_MEM_SUBWIDTH
) {
2261 if (!(orig_memory
& IO_MEM_SUBPAGE
)) {
2262 subpage
= subpage_init((addr
& TARGET_PAGE_MASK
),
2263 &p
->phys_offset
, orig_memory
);
2265 subpage
= io_mem_opaque
[(orig_memory
& ~TARGET_PAGE_MASK
)
2268 subpage_register(subpage
, start_addr2
, end_addr2
, phys_offset
);
2270 p
->phys_offset
= phys_offset
;
2271 if ((phys_offset
& ~TARGET_PAGE_MASK
) <= IO_MEM_ROM
||
2272 (phys_offset
& IO_MEM_ROMD
))
2273 phys_offset
+= TARGET_PAGE_SIZE
;
2276 p
= phys_page_find_alloc(addr
>> TARGET_PAGE_BITS
, 1);
2277 p
->phys_offset
= phys_offset
;
2278 if ((phys_offset
& ~TARGET_PAGE_MASK
) <= IO_MEM_ROM
||
2279 (phys_offset
& IO_MEM_ROMD
))
2280 phys_offset
+= TARGET_PAGE_SIZE
;
2282 target_phys_addr_t start_addr2
, end_addr2
;
2283 int need_subpage
= 0;
2285 CHECK_SUBPAGE(addr
, start_addr
, start_addr2
, end_addr
,
2286 end_addr2
, need_subpage
);
2288 if (need_subpage
|| phys_offset
& IO_MEM_SUBWIDTH
) {
2289 subpage
= subpage_init((addr
& TARGET_PAGE_MASK
),
2290 &p
->phys_offset
, IO_MEM_UNASSIGNED
);
2291 subpage_register(subpage
, start_addr2
, end_addr2
,
2298 /* since each CPU stores ram addresses in its TLB cache, we must
2299 reset the modified entries */
2301 for(env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
2306 /* XXX: temporary until new memory mapping API */
2307 ram_addr_t
cpu_get_physical_page_desc(target_phys_addr_t addr
)
2311 p
= phys_page_find(addr
>> TARGET_PAGE_BITS
);
2313 return IO_MEM_UNASSIGNED
;
2314 return p
->phys_offset
;
2317 /* XXX: better than nothing */
2318 ram_addr_t
qemu_ram_alloc(ram_addr_t size
)
2321 if ((phys_ram_alloc_offset
+ size
) > phys_ram_size
) {
2322 fprintf(stderr
, "Not enough memory (requested_size = %" PRIu64
", max memory = %" PRIu64
")\n",
2323 (uint64_t)size
, (uint64_t)phys_ram_size
);
2326 addr
= phys_ram_alloc_offset
;
2327 phys_ram_alloc_offset
= TARGET_PAGE_ALIGN(phys_ram_alloc_offset
+ size
);
2331 void qemu_ram_free(ram_addr_t addr
)
2335 static uint32_t unassigned_mem_readb(void *opaque
, target_phys_addr_t addr
)
2337 #ifdef DEBUG_UNASSIGNED
2338 printf("Unassigned mem read " TARGET_FMT_plx
"\n", addr
);
2340 #if defined(TARGET_SPARC) || defined(TARGET_CRIS)
2341 do_unassigned_access(addr
, 0, 0, 0, 1);
2346 static uint32_t unassigned_mem_readw(void *opaque
, target_phys_addr_t addr
)
2348 #ifdef DEBUG_UNASSIGNED
2349 printf("Unassigned mem read " TARGET_FMT_plx
"\n", addr
);
2351 #if defined(TARGET_SPARC) || defined(TARGET_CRIS)
2352 do_unassigned_access(addr
, 0, 0, 0, 2);
2357 static uint32_t unassigned_mem_readl(void *opaque
, target_phys_addr_t addr
)
2359 #ifdef DEBUG_UNASSIGNED
2360 printf("Unassigned mem read " TARGET_FMT_plx
"\n", addr
);
2362 #if defined(TARGET_SPARC) || defined(TARGET_CRIS)
2363 do_unassigned_access(addr
, 0, 0, 0, 4);
2368 static void unassigned_mem_writeb(void *opaque
, target_phys_addr_t addr
, uint32_t val
)
2370 #ifdef DEBUG_UNASSIGNED
2371 printf("Unassigned mem write " TARGET_FMT_plx
" = 0x%x\n", addr
, val
);
2373 #if defined(TARGET_SPARC) || defined(TARGET_CRIS)
2374 do_unassigned_access(addr
, 1, 0, 0, 1);
2378 static void unassigned_mem_writew(void *opaque
, target_phys_addr_t addr
, uint32_t val
)
2380 #ifdef DEBUG_UNASSIGNED
2381 printf("Unassigned mem write " TARGET_FMT_plx
" = 0x%x\n", addr
, val
);
2383 #if defined(TARGET_SPARC) || defined(TARGET_CRIS)
2384 do_unassigned_access(addr
, 1, 0, 0, 2);
2388 static void unassigned_mem_writel(void *opaque
, target_phys_addr_t addr
, uint32_t val
)
2390 #ifdef DEBUG_UNASSIGNED
2391 printf("Unassigned mem write " TARGET_FMT_plx
" = 0x%x\n", addr
, val
);
2393 #if defined(TARGET_SPARC) || defined(TARGET_CRIS)
2394 do_unassigned_access(addr
, 1, 0, 0, 4);
2398 static CPUReadMemoryFunc
*unassigned_mem_read
[3] = {
2399 unassigned_mem_readb
,
2400 unassigned_mem_readw
,
2401 unassigned_mem_readl
,
2404 static CPUWriteMemoryFunc
*unassigned_mem_write
[3] = {
2405 unassigned_mem_writeb
,
2406 unassigned_mem_writew
,
2407 unassigned_mem_writel
,
2410 static void notdirty_mem_writeb(void *opaque
, target_phys_addr_t ram_addr
,
2414 dirty_flags
= phys_ram_dirty
[ram_addr
>> TARGET_PAGE_BITS
];
2415 if (!(dirty_flags
& CODE_DIRTY_FLAG
)) {
2416 #if !defined(CONFIG_USER_ONLY)
2417 tb_invalidate_phys_page_fast(ram_addr
, 1);
2418 dirty_flags
= phys_ram_dirty
[ram_addr
>> TARGET_PAGE_BITS
];
2421 stb_p(phys_ram_base
+ ram_addr
, val
);
2423 if (cpu_single_env
->kqemu_enabled
&&
2424 (dirty_flags
& KQEMU_MODIFY_PAGE_MASK
) != KQEMU_MODIFY_PAGE_MASK
)
2425 kqemu_modify_page(cpu_single_env
, ram_addr
);
2427 dirty_flags
|= (0xff & ~CODE_DIRTY_FLAG
);
2428 phys_ram_dirty
[ram_addr
>> TARGET_PAGE_BITS
] = dirty_flags
;
2429 /* we remove the notdirty callback only if the code has been
2431 if (dirty_flags
== 0xff)
2432 tlb_set_dirty(cpu_single_env
, cpu_single_env
->mem_io_vaddr
);
2435 static void notdirty_mem_writew(void *opaque
, target_phys_addr_t ram_addr
,
2439 dirty_flags
= phys_ram_dirty
[ram_addr
>> TARGET_PAGE_BITS
];
2440 if (!(dirty_flags
& CODE_DIRTY_FLAG
)) {
2441 #if !defined(CONFIG_USER_ONLY)
2442 tb_invalidate_phys_page_fast(ram_addr
, 2);
2443 dirty_flags
= phys_ram_dirty
[ram_addr
>> TARGET_PAGE_BITS
];
2446 stw_p(phys_ram_base
+ ram_addr
, val
);
2448 if (cpu_single_env
->kqemu_enabled
&&
2449 (dirty_flags
& KQEMU_MODIFY_PAGE_MASK
) != KQEMU_MODIFY_PAGE_MASK
)
2450 kqemu_modify_page(cpu_single_env
, ram_addr
);
2452 dirty_flags
|= (0xff & ~CODE_DIRTY_FLAG
);
2453 phys_ram_dirty
[ram_addr
>> TARGET_PAGE_BITS
] = dirty_flags
;
2454 /* we remove the notdirty callback only if the code has been
2456 if (dirty_flags
== 0xff)
2457 tlb_set_dirty(cpu_single_env
, cpu_single_env
->mem_io_vaddr
);
2460 static void notdirty_mem_writel(void *opaque
, target_phys_addr_t ram_addr
,
2464 dirty_flags
= phys_ram_dirty
[ram_addr
>> TARGET_PAGE_BITS
];
2465 if (!(dirty_flags
& CODE_DIRTY_FLAG
)) {
2466 #if !defined(CONFIG_USER_ONLY)
2467 tb_invalidate_phys_page_fast(ram_addr
, 4);
2468 dirty_flags
= phys_ram_dirty
[ram_addr
>> TARGET_PAGE_BITS
];
2471 stl_p(phys_ram_base
+ ram_addr
, val
);
2473 if (cpu_single_env
->kqemu_enabled
&&
2474 (dirty_flags
& KQEMU_MODIFY_PAGE_MASK
) != KQEMU_MODIFY_PAGE_MASK
)
2475 kqemu_modify_page(cpu_single_env
, ram_addr
);
2477 dirty_flags
|= (0xff & ~CODE_DIRTY_FLAG
);
2478 phys_ram_dirty
[ram_addr
>> TARGET_PAGE_BITS
] = dirty_flags
;
2479 /* we remove the notdirty callback only if the code has been
2481 if (dirty_flags
== 0xff)
2482 tlb_set_dirty(cpu_single_env
, cpu_single_env
->mem_io_vaddr
);
2485 static CPUReadMemoryFunc
*error_mem_read
[3] = {
2486 NULL
, /* never used */
2487 NULL
, /* never used */
2488 NULL
, /* never used */
2491 static CPUWriteMemoryFunc
*notdirty_mem_write
[3] = {
2492 notdirty_mem_writeb
,
2493 notdirty_mem_writew
,
2494 notdirty_mem_writel
,
2497 /* Generate a debug exception if a watchpoint has been hit. */
2498 static void check_watchpoint(int offset
, int flags
)
2500 CPUState
*env
= cpu_single_env
;
2504 vaddr
= (env
->mem_io_vaddr
& TARGET_PAGE_MASK
) + offset
;
2505 for (i
= 0; i
< env
->nb_watchpoints
; i
++) {
2506 if (vaddr
== env
->watchpoint
[i
].vaddr
2507 && (env
->watchpoint
[i
].type
& flags
)) {
2508 env
->watchpoint_hit
= i
+ 1;
2509 cpu_interrupt(env
, CPU_INTERRUPT_DEBUG
);
2515 /* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
2516 so these check for a hit then pass through to the normal out-of-line
2518 static uint32_t watch_mem_readb(void *opaque
, target_phys_addr_t addr
)
2520 check_watchpoint(addr
& ~TARGET_PAGE_MASK
, PAGE_READ
);
2521 return ldub_phys(addr
);
2524 static uint32_t watch_mem_readw(void *opaque
, target_phys_addr_t addr
)
2526 check_watchpoint(addr
& ~TARGET_PAGE_MASK
, PAGE_READ
);
2527 return lduw_phys(addr
);
2530 static uint32_t watch_mem_readl(void *opaque
, target_phys_addr_t addr
)
2532 check_watchpoint(addr
& ~TARGET_PAGE_MASK
, PAGE_READ
);
2533 return ldl_phys(addr
);
2536 static void watch_mem_writeb(void *opaque
, target_phys_addr_t addr
,
2539 check_watchpoint(addr
& ~TARGET_PAGE_MASK
, PAGE_WRITE
);
2540 stb_phys(addr
, val
);
2543 static void watch_mem_writew(void *opaque
, target_phys_addr_t addr
,
2546 check_watchpoint(addr
& ~TARGET_PAGE_MASK
, PAGE_WRITE
);
2547 stw_phys(addr
, val
);
2550 static void watch_mem_writel(void *opaque
, target_phys_addr_t addr
,
2553 check_watchpoint(addr
& ~TARGET_PAGE_MASK
, PAGE_WRITE
);
2554 stl_phys(addr
, val
);
2557 static CPUReadMemoryFunc
*watch_mem_read
[3] = {
2563 static CPUWriteMemoryFunc
*watch_mem_write
[3] = {
2569 static inline uint32_t subpage_readlen (subpage_t
*mmio
, target_phys_addr_t addr
,
2575 idx
= SUBPAGE_IDX(addr
- mmio
->base
);
2576 #if defined(DEBUG_SUBPAGE)
2577 printf("%s: subpage %p len %d addr " TARGET_FMT_plx
" idx %d\n", __func__
,
2578 mmio
, len
, addr
, idx
);
2580 ret
= (**mmio
->mem_read
[idx
][len
])(mmio
->opaque
[idx
][0][len
], addr
);
2585 static inline void subpage_writelen (subpage_t
*mmio
, target_phys_addr_t addr
,
2586 uint32_t value
, unsigned int len
)
2590 idx
= SUBPAGE_IDX(addr
- mmio
->base
);
2591 #if defined(DEBUG_SUBPAGE)
2592 printf("%s: subpage %p len %d addr " TARGET_FMT_plx
" idx %d value %08x\n", __func__
,
2593 mmio
, len
, addr
, idx
, value
);
2595 (**mmio
->mem_write
[idx
][len
])(mmio
->opaque
[idx
][1][len
], addr
, value
);
2598 static uint32_t subpage_readb (void *opaque
, target_phys_addr_t addr
)
2600 #if defined(DEBUG_SUBPAGE)
2601 printf("%s: addr " TARGET_FMT_plx
"\n", __func__
, addr
);
2604 return subpage_readlen(opaque
, addr
, 0);
2607 static void subpage_writeb (void *opaque
, target_phys_addr_t addr
,
2610 #if defined(DEBUG_SUBPAGE)
2611 printf("%s: addr " TARGET_FMT_plx
" val %08x\n", __func__
, addr
, value
);
2613 subpage_writelen(opaque
, addr
, value
, 0);
2616 static uint32_t subpage_readw (void *opaque
, target_phys_addr_t addr
)
2618 #if defined(DEBUG_SUBPAGE)
2619 printf("%s: addr " TARGET_FMT_plx
"\n", __func__
, addr
);
2622 return subpage_readlen(opaque
, addr
, 1);
2625 static void subpage_writew (void *opaque
, target_phys_addr_t addr
,
2628 #if defined(DEBUG_SUBPAGE)
2629 printf("%s: addr " TARGET_FMT_plx
" val %08x\n", __func__
, addr
, value
);
2631 subpage_writelen(opaque
, addr
, value
, 1);
2634 static uint32_t subpage_readl (void *opaque
, target_phys_addr_t addr
)
2636 #if defined(DEBUG_SUBPAGE)
2637 printf("%s: addr " TARGET_FMT_plx
"\n", __func__
, addr
);
2640 return subpage_readlen(opaque
, addr
, 2);
2643 static void subpage_writel (void *opaque
,
2644 target_phys_addr_t addr
, uint32_t value
)
2646 #if defined(DEBUG_SUBPAGE)
2647 printf("%s: addr " TARGET_FMT_plx
" val %08x\n", __func__
, addr
, value
);
2649 subpage_writelen(opaque
, addr
, value
, 2);
2652 static CPUReadMemoryFunc
*subpage_read
[] = {
2658 static CPUWriteMemoryFunc
*subpage_write
[] = {
2664 static int subpage_register (subpage_t
*mmio
, uint32_t start
, uint32_t end
,
2670 if (start
>= TARGET_PAGE_SIZE
|| end
>= TARGET_PAGE_SIZE
)
2672 idx
= SUBPAGE_IDX(start
);
2673 eidx
= SUBPAGE_IDX(end
);
2674 #if defined(DEBUG_SUBPAGE)
2675 printf("%s: %p start %08x end %08x idx %08x eidx %08x mem %d\n", __func__
,
2676 mmio
, start
, end
, idx
, eidx
, memory
);
2678 memory
>>= IO_MEM_SHIFT
;
2679 for (; idx
<= eidx
; idx
++) {
2680 for (i
= 0; i
< 4; i
++) {
2681 if (io_mem_read
[memory
][i
]) {
2682 mmio
->mem_read
[idx
][i
] = &io_mem_read
[memory
][i
];
2683 mmio
->opaque
[idx
][0][i
] = io_mem_opaque
[memory
];
2685 if (io_mem_write
[memory
][i
]) {
2686 mmio
->mem_write
[idx
][i
] = &io_mem_write
[memory
][i
];
2687 mmio
->opaque
[idx
][1][i
] = io_mem_opaque
[memory
];
2695 static void *subpage_init (target_phys_addr_t base
, ram_addr_t
*phys
,
2696 ram_addr_t orig_memory
)
2701 mmio
= qemu_mallocz(sizeof(subpage_t
));
2704 subpage_memory
= cpu_register_io_memory(0, subpage_read
, subpage_write
, mmio
);
2705 #if defined(DEBUG_SUBPAGE)
2706 printf("%s: %p base " TARGET_FMT_plx
" len %08x %d\n", __func__
,
2707 mmio
, base
, TARGET_PAGE_SIZE
, subpage_memory
);
2709 *phys
= subpage_memory
| IO_MEM_SUBPAGE
;
2710 subpage_register(mmio
, 0, TARGET_PAGE_SIZE
- 1, orig_memory
);
2716 static int get_free_io_mem_idx(void)
2720 for (i
= 0; i
<IO_MEM_NB_ENTRIES
; i
++)
2721 if (!io_mem_used
[i
]) {
2729 static void io_mem_init(void)
2733 cpu_register_io_memory(IO_MEM_ROM
>> IO_MEM_SHIFT
, error_mem_read
, unassigned_mem_write
, NULL
);
2734 cpu_register_io_memory(IO_MEM_UNASSIGNED
>> IO_MEM_SHIFT
, unassigned_mem_read
, unassigned_mem_write
, NULL
);
2735 cpu_register_io_memory(IO_MEM_NOTDIRTY
>> IO_MEM_SHIFT
, error_mem_read
, notdirty_mem_write
, NULL
);
2739 io_mem_watch
= cpu_register_io_memory(0, watch_mem_read
,
2740 watch_mem_write
, NULL
);
2741 /* alloc dirty bits array */
2742 phys_ram_dirty
= qemu_vmalloc(phys_ram_size
>> TARGET_PAGE_BITS
);
2743 memset(phys_ram_dirty
, 0xff, phys_ram_size
>> TARGET_PAGE_BITS
);
2746 /* mem_read and mem_write are arrays of functions containing the
2747 function to access byte (index 0), word (index 1) and dword (index
2748 2). Functions can be omitted with a NULL function pointer. The
2749 registered functions may be modified dynamically later.
2750 If io_index is non zero, the corresponding io zone is
2751 modified. If it is zero, a new io zone is allocated. The return
2752 value can be used with cpu_register_physical_memory(). (-1) is
2753 returned if error. */
2754 int cpu_register_io_memory(int io_index
,
2755 CPUReadMemoryFunc
**mem_read
,
2756 CPUWriteMemoryFunc
**mem_write
,
2759 int i
, subwidth
= 0;
2761 if (io_index
<= 0) {
2762 io_index
= get_free_io_mem_idx();
2766 if (io_index
>= IO_MEM_NB_ENTRIES
)
2770 for(i
= 0;i
< 3; i
++) {
2771 if (!mem_read
[i
] || !mem_write
[i
])
2772 subwidth
= IO_MEM_SUBWIDTH
;
2773 io_mem_read
[io_index
][i
] = mem_read
[i
];
2774 io_mem_write
[io_index
][i
] = mem_write
[i
];
2776 io_mem_opaque
[io_index
] = opaque
;
2777 return (io_index
<< IO_MEM_SHIFT
) | subwidth
;
2780 void cpu_unregister_io_memory(int io_table_address
)
2783 int io_index
= io_table_address
>> IO_MEM_SHIFT
;
2785 for (i
=0;i
< 3; i
++) {
2786 io_mem_read
[io_index
][i
] = unassigned_mem_read
[i
];
2787 io_mem_write
[io_index
][i
] = unassigned_mem_write
[i
];
2789 io_mem_opaque
[io_index
] = NULL
;
2790 io_mem_used
[io_index
] = 0;
2793 CPUWriteMemoryFunc
**cpu_get_io_memory_write(int io_index
)
2795 return io_mem_write
[io_index
>> IO_MEM_SHIFT
];
2798 CPUReadMemoryFunc
**cpu_get_io_memory_read(int io_index
)
2800 return io_mem_read
[io_index
>> IO_MEM_SHIFT
];
2803 #endif /* !defined(CONFIG_USER_ONLY) */
2805 /* physical memory access (slow version, mainly for debug) */
2806 #if defined(CONFIG_USER_ONLY)
2807 void cpu_physical_memory_rw(target_phys_addr_t addr
, uint8_t *buf
,
2808 int len
, int is_write
)
2815 page
= addr
& TARGET_PAGE_MASK
;
2816 l
= (page
+ TARGET_PAGE_SIZE
) - addr
;
2819 flags
= page_get_flags(page
);
2820 if (!(flags
& PAGE_VALID
))
2823 if (!(flags
& PAGE_WRITE
))
2825 /* XXX: this code should not depend on lock_user */
2826 if (!(p
= lock_user(VERIFY_WRITE
, addr
, l
, 0)))
2827 /* FIXME - should this return an error rather than just fail? */
2830 unlock_user(p
, addr
, l
);
2832 if (!(flags
& PAGE_READ
))
2834 /* XXX: this code should not depend on lock_user */
2835 if (!(p
= lock_user(VERIFY_READ
, addr
, l
, 1)))
2836 /* FIXME - should this return an error rather than just fail? */
2839 unlock_user(p
, addr
, 0);
2848 void cpu_physical_memory_rw(target_phys_addr_t addr
, uint8_t *buf
,
2849 int len
, int is_write
)
2854 target_phys_addr_t page
;
2859 page
= addr
& TARGET_PAGE_MASK
;
2860 l
= (page
+ TARGET_PAGE_SIZE
) - addr
;
2863 p
= phys_page_find(page
>> TARGET_PAGE_BITS
);
2865 pd
= IO_MEM_UNASSIGNED
;
2867 pd
= p
->phys_offset
;
2871 if ((pd
& ~TARGET_PAGE_MASK
) != IO_MEM_RAM
) {
2872 io_index
= (pd
>> IO_MEM_SHIFT
) & (IO_MEM_NB_ENTRIES
- 1);
2873 /* XXX: could force cpu_single_env to NULL to avoid
2875 if (l
>= 4 && ((addr
& 3) == 0)) {
2876 /* 32 bit write access */
2878 io_mem_write
[io_index
][2](io_mem_opaque
[io_index
], addr
, val
);
2880 } else if (l
>= 2 && ((addr
& 1) == 0)) {
2881 /* 16 bit write access */
2883 io_mem_write
[io_index
][1](io_mem_opaque
[io_index
], addr
, val
);
2886 /* 8 bit write access */
2888 io_mem_write
[io_index
][0](io_mem_opaque
[io_index
], addr
, val
);
2892 unsigned long addr1
;
2893 addr1
= (pd
& TARGET_PAGE_MASK
) + (addr
& ~TARGET_PAGE_MASK
);
2895 ptr
= phys_ram_base
+ addr1
;
2896 memcpy(ptr
, buf
, l
);
2897 if (!cpu_physical_memory_is_dirty(addr1
)) {
2898 /* invalidate code */
2899 tb_invalidate_phys_page_range(addr1
, addr1
+ l
, 0);
2901 phys_ram_dirty
[addr1
>> TARGET_PAGE_BITS
] |=
2902 (0xff & ~CODE_DIRTY_FLAG
);
2904 /* qemu doesn't execute guest code directly, but kvm does
2905 therefore fluch instruction caches */
2907 flush_icache_range((unsigned long)ptr
,
2908 ((unsigned long)ptr
)+l
);
2911 if ((pd
& ~TARGET_PAGE_MASK
) > IO_MEM_ROM
&&
2912 !(pd
& IO_MEM_ROMD
)) {
2914 io_index
= (pd
>> IO_MEM_SHIFT
) & (IO_MEM_NB_ENTRIES
- 1);
2915 if (l
>= 4 && ((addr
& 3) == 0)) {
2916 /* 32 bit read access */
2917 val
= io_mem_read
[io_index
][2](io_mem_opaque
[io_index
], addr
);
2920 } else if (l
>= 2 && ((addr
& 1) == 0)) {
2921 /* 16 bit read access */
2922 val
= io_mem_read
[io_index
][1](io_mem_opaque
[io_index
], addr
);
2926 /* 8 bit read access */
2927 val
= io_mem_read
[io_index
][0](io_mem_opaque
[io_index
], addr
);
2933 ptr
= phys_ram_base
+ (pd
& TARGET_PAGE_MASK
) +
2934 (addr
& ~TARGET_PAGE_MASK
);
2935 memcpy(buf
, ptr
, l
);
2944 /* used for ROM loading : can write in RAM and ROM */
2945 void cpu_physical_memory_write_rom(target_phys_addr_t addr
,
2946 const uint8_t *buf
, int len
)
2950 target_phys_addr_t page
;
2955 page
= addr
& TARGET_PAGE_MASK
;
2956 l
= (page
+ TARGET_PAGE_SIZE
) - addr
;
2959 p
= phys_page_find(page
>> TARGET_PAGE_BITS
);
2961 pd
= IO_MEM_UNASSIGNED
;
2963 pd
= p
->phys_offset
;
2966 if ((pd
& ~TARGET_PAGE_MASK
) != IO_MEM_RAM
&&
2967 (pd
& ~TARGET_PAGE_MASK
) != IO_MEM_ROM
&&
2968 !(pd
& IO_MEM_ROMD
)) {
2971 unsigned long addr1
;
2972 addr1
= (pd
& TARGET_PAGE_MASK
) + (addr
& ~TARGET_PAGE_MASK
);
2974 ptr
= phys_ram_base
+ addr1
;
2975 memcpy(ptr
, buf
, l
);
2984 /* warning: addr must be aligned */
2985 uint32_t ldl_phys(target_phys_addr_t addr
)
2993 p
= phys_page_find(addr
>> TARGET_PAGE_BITS
);
2995 pd
= IO_MEM_UNASSIGNED
;
2997 pd
= p
->phys_offset
;
3000 if ((pd
& ~TARGET_PAGE_MASK
) > IO_MEM_ROM
&&
3001 !(pd
& IO_MEM_ROMD
)) {
3003 io_index
= (pd
>> IO_MEM_SHIFT
) & (IO_MEM_NB_ENTRIES
- 1);
3004 val
= io_mem_read
[io_index
][2](io_mem_opaque
[io_index
], addr
);
3007 ptr
= phys_ram_base
+ (pd
& TARGET_PAGE_MASK
) +
3008 (addr
& ~TARGET_PAGE_MASK
);
3014 /* warning: addr must be aligned */
3015 uint64_t ldq_phys(target_phys_addr_t addr
)
3023 p
= phys_page_find(addr
>> TARGET_PAGE_BITS
);
3025 pd
= IO_MEM_UNASSIGNED
;
3027 pd
= p
->phys_offset
;
3030 if ((pd
& ~TARGET_PAGE_MASK
) > IO_MEM_ROM
&&
3031 !(pd
& IO_MEM_ROMD
)) {
3033 io_index
= (pd
>> IO_MEM_SHIFT
) & (IO_MEM_NB_ENTRIES
- 1);
3034 #ifdef TARGET_WORDS_BIGENDIAN
3035 val
= (uint64_t)io_mem_read
[io_index
][2](io_mem_opaque
[io_index
], addr
) << 32;
3036 val
|= io_mem_read
[io_index
][2](io_mem_opaque
[io_index
], addr
+ 4);
3038 val
= io_mem_read
[io_index
][2](io_mem_opaque
[io_index
], addr
);
3039 val
|= (uint64_t)io_mem_read
[io_index
][2](io_mem_opaque
[io_index
], addr
+ 4) << 32;
3043 ptr
= phys_ram_base
+ (pd
& TARGET_PAGE_MASK
) +
3044 (addr
& ~TARGET_PAGE_MASK
);
3051 uint32_t ldub_phys(target_phys_addr_t addr
)
3054 cpu_physical_memory_read(addr
, &val
, 1);
3059 uint32_t lduw_phys(target_phys_addr_t addr
)
3062 cpu_physical_memory_read(addr
, (uint8_t *)&val
, 2);
3063 return tswap16(val
);
3067 #define likely(x) __builtin_expect(!!(x), 1)
3068 #define unlikely(x) __builtin_expect(!!(x), 0)
3071 #define unlikely(x) x
3074 /* warning: addr must be aligned. The ram page is not masked as dirty
3075 and the code inside is not invalidated. It is useful if the dirty
3076 bits are used to track modified PTEs */
3077 void stl_phys_notdirty(target_phys_addr_t addr
, uint32_t val
)
3084 p
= phys_page_find(addr
>> TARGET_PAGE_BITS
);
3086 pd
= IO_MEM_UNASSIGNED
;
3088 pd
= p
->phys_offset
;
3091 if ((pd
& ~TARGET_PAGE_MASK
) != IO_MEM_RAM
) {
3092 io_index
= (pd
>> IO_MEM_SHIFT
) & (IO_MEM_NB_ENTRIES
- 1);
3093 io_mem_write
[io_index
][2](io_mem_opaque
[io_index
], addr
, val
);
3095 unsigned long addr1
= (pd
& TARGET_PAGE_MASK
) + (addr
& ~TARGET_PAGE_MASK
);
3096 ptr
= phys_ram_base
+ addr1
;
3099 if (unlikely(in_migration
)) {
3100 if (!cpu_physical_memory_is_dirty(addr1
)) {
3101 /* invalidate code */
3102 tb_invalidate_phys_page_range(addr1
, addr1
+ 4, 0);
3104 phys_ram_dirty
[addr1
>> TARGET_PAGE_BITS
] |=
3105 (0xff & ~CODE_DIRTY_FLAG
);
3111 void stq_phys_notdirty(target_phys_addr_t addr
, uint64_t val
)
3118 p
= phys_page_find(addr
>> TARGET_PAGE_BITS
);
3120 pd
= IO_MEM_UNASSIGNED
;
3122 pd
= p
->phys_offset
;
3125 if ((pd
& ~TARGET_PAGE_MASK
) != IO_MEM_RAM
) {
3126 io_index
= (pd
>> IO_MEM_SHIFT
) & (IO_MEM_NB_ENTRIES
- 1);
3127 #ifdef TARGET_WORDS_BIGENDIAN
3128 io_mem_write
[io_index
][2](io_mem_opaque
[io_index
], addr
, val
>> 32);
3129 io_mem_write
[io_index
][2](io_mem_opaque
[io_index
], addr
+ 4, val
);
3131 io_mem_write
[io_index
][2](io_mem_opaque
[io_index
], addr
, val
);
3132 io_mem_write
[io_index
][2](io_mem_opaque
[io_index
], addr
+ 4, val
>> 32);
3135 ptr
= phys_ram_base
+ (pd
& TARGET_PAGE_MASK
) +
3136 (addr
& ~TARGET_PAGE_MASK
);
3141 /* warning: addr must be aligned */
3142 void stl_phys(target_phys_addr_t addr
, uint32_t val
)
3149 p
= phys_page_find(addr
>> TARGET_PAGE_BITS
);
3151 pd
= IO_MEM_UNASSIGNED
;
3153 pd
= p
->phys_offset
;
3156 if ((pd
& ~TARGET_PAGE_MASK
) != IO_MEM_RAM
) {
3157 io_index
= (pd
>> IO_MEM_SHIFT
) & (IO_MEM_NB_ENTRIES
- 1);
3158 io_mem_write
[io_index
][2](io_mem_opaque
[io_index
], addr
, val
);
3160 unsigned long addr1
;
3161 addr1
= (pd
& TARGET_PAGE_MASK
) + (addr
& ~TARGET_PAGE_MASK
);
3163 ptr
= phys_ram_base
+ addr1
;
3165 if (!cpu_physical_memory_is_dirty(addr1
)) {
3166 /* invalidate code */
3167 tb_invalidate_phys_page_range(addr1
, addr1
+ 4, 0);
3169 phys_ram_dirty
[addr1
>> TARGET_PAGE_BITS
] |=
3170 (0xff & ~CODE_DIRTY_FLAG
);
3176 void stb_phys(target_phys_addr_t addr
, uint32_t val
)
3179 cpu_physical_memory_write(addr
, &v
, 1);
3183 void stw_phys(target_phys_addr_t addr
, uint32_t val
)
3185 uint16_t v
= tswap16(val
);
3186 cpu_physical_memory_write(addr
, (const uint8_t *)&v
, 2);
3190 void stq_phys(target_phys_addr_t addr
, uint64_t val
)
3193 cpu_physical_memory_write(addr
, (const uint8_t *)&val
, 8);
3198 /* virtual memory access for debug */
3199 int cpu_memory_rw_debug(CPUState
*env
, target_ulong addr
,
3200 uint8_t *buf
, int len
, int is_write
)
3203 target_phys_addr_t phys_addr
;
3207 page
= addr
& TARGET_PAGE_MASK
;
3208 phys_addr
= cpu_get_phys_page_debug(env
, page
);
3209 /* if no physical page mapped, return an error */
3210 if (phys_addr
== -1)
3212 l
= (page
+ TARGET_PAGE_SIZE
) - addr
;
3215 cpu_physical_memory_rw(phys_addr
+ (addr
& ~TARGET_PAGE_MASK
),
3224 /* in deterministic execution mode, instructions doing device I/Os
3225 must be at the end of the TB */
3226 void cpu_io_recompile(CPUState
*env
, void *retaddr
)
3228 TranslationBlock
*tb
;
3230 target_ulong pc
, cs_base
;
3233 tb
= tb_find_pc((unsigned long)retaddr
);
3235 cpu_abort(env
, "cpu_io_recompile: could not find TB for pc=%p",
3238 n
= env
->icount_decr
.u16
.low
+ tb
->icount
;
3239 cpu_restore_state(tb
, env
, (unsigned long)retaddr
, NULL
);
3240 /* Calculate how many instructions had been executed before the fault
3242 n
= n
- env
->icount_decr
.u16
.low
;
3243 /* Generate a new TB ending on the I/O insn. */
3245 /* On MIPS and SH, delay slot instructions can only be restarted if
3246 they were already the first instruction in the TB. If this is not
3247 the first instruction in a TB then re-execute the preceding
3249 #if defined(TARGET_MIPS)
3250 if ((env
->hflags
& MIPS_HFLAG_BMASK
) != 0 && n
> 1) {
3251 env
->active_tc
.PC
-= 4;
3252 env
->icount_decr
.u16
.low
++;
3253 env
->hflags
&= ~MIPS_HFLAG_BMASK
;
3255 #elif defined(TARGET_SH4)
3256 if ((env
->flags
& ((DELAY_SLOT
| DELAY_SLOT_CONDITIONAL
))) != 0
3259 env
->icount_decr
.u16
.low
++;
3260 env
->flags
&= ~(DELAY_SLOT
| DELAY_SLOT_CONDITIONAL
);
3263 /* This should never happen. */
3264 if (n
> CF_COUNT_MASK
)
3265 cpu_abort(env
, "TB too big during recompile");
3267 cflags
= n
| CF_LAST_IO
;
3269 cs_base
= tb
->cs_base
;
3271 tb_phys_invalidate(tb
, -1);
3272 /* FIXME: In theory this could raise an exception. In practice
3273 we have already translated the block once so it's probably ok. */
3274 tb_gen_code(env
, pc
, cs_base
, flags
, cflags
);
3275 /* TODO: If env->pc != tb->pc (i.e. the faulting instruction was not
3276 the first in the TB) then we end up generating a whole new TB and
3277 repeating the fault, which is horribly inefficient.
3278 Better would be to execute just this insn uncached, or generate a
3280 cpu_resume_from_signal(env
, NULL
);
3283 void dump_exec_info(FILE *f
,
3284 int (*cpu_fprintf
)(FILE *f
, const char *fmt
, ...))
3286 int i
, target_code_size
, max_target_code_size
;
3287 int direct_jmp_count
, direct_jmp2_count
, cross_page
;
3288 TranslationBlock
*tb
;
3290 target_code_size
= 0;
3291 max_target_code_size
= 0;
3293 direct_jmp_count
= 0;
3294 direct_jmp2_count
= 0;
3295 for(i
= 0; i
< nb_tbs
; i
++) {
3297 target_code_size
+= tb
->size
;
3298 if (tb
->size
> max_target_code_size
)
3299 max_target_code_size
= tb
->size
;
3300 if (tb
->page_addr
[1] != -1)
3302 if (tb
->tb_next_offset
[0] != 0xffff) {
3304 if (tb
->tb_next_offset
[1] != 0xffff) {
3305 direct_jmp2_count
++;
3309 /* XXX: avoid using doubles ? */
3310 cpu_fprintf(f
, "Translation buffer state:\n");
3311 cpu_fprintf(f
, "gen code size %ld/%ld\n",
3312 code_gen_ptr
- code_gen_buffer
, code_gen_buffer_max_size
);
3313 cpu_fprintf(f
, "TB count %d/%d\n",
3314 nb_tbs
, code_gen_max_blocks
);
3315 cpu_fprintf(f
, "TB avg target size %d max=%d bytes\n",
3316 nb_tbs
? target_code_size
/ nb_tbs
: 0,
3317 max_target_code_size
);
3318 cpu_fprintf(f
, "TB avg host size %d bytes (expansion ratio: %0.1f)\n",
3319 nb_tbs
? (code_gen_ptr
- code_gen_buffer
) / nb_tbs
: 0,
3320 target_code_size
? (double) (code_gen_ptr
- code_gen_buffer
) / target_code_size
: 0);
3321 cpu_fprintf(f
, "cross page TB count %d (%d%%)\n",
3323 nb_tbs
? (cross_page
* 100) / nb_tbs
: 0);
3324 cpu_fprintf(f
, "direct jump count %d (%d%%) (2 jumps=%d %d%%)\n",
3326 nb_tbs
? (direct_jmp_count
* 100) / nb_tbs
: 0,
3328 nb_tbs
? (direct_jmp2_count
* 100) / nb_tbs
: 0);
3329 cpu_fprintf(f
, "\nStatistics:\n");
3330 cpu_fprintf(f
, "TB flush count %d\n", tb_flush_count
);
3331 cpu_fprintf(f
, "TB invalidate count %d\n", tb_phys_invalidate_count
);
3332 cpu_fprintf(f
, "TLB flush count %d\n", tlb_flush_count
);
3333 tcg_dump_info(f
, cpu_fprintf
);
3336 #if !defined(CONFIG_USER_ONLY)
3338 #define MMUSUFFIX _cmmu
3339 #define GETPC() NULL
3340 #define env cpu_single_env
3341 #define SOFTMMU_CODE_ACCESS
3344 #include "softmmu_template.h"
3347 #include "softmmu_template.h"
3350 #include "softmmu_template.h"
3353 #include "softmmu_template.h"