1 /* This is the Linux kernel elf-loading code, ported into user space */
11 #include <sys/resource.h>
28 #define ELF_OSABI ELFOSABI_SYSV
30 /* from personality.h */
33 * Flags for bug emulation.
35 * These occupy the top three bytes.
38 ADDR_NO_RANDOMIZE
= 0x0040000, /* disable randomization of VA space */
39 FDPIC_FUNCPTRS
= 0x0080000, /* userspace function ptrs point to descriptors
42 MMAP_PAGE_ZERO
= 0x0100000,
43 ADDR_COMPAT_LAYOUT
= 0x0200000,
44 READ_IMPLIES_EXEC
= 0x0400000,
45 ADDR_LIMIT_32BIT
= 0x0800000,
46 SHORT_INODE
= 0x1000000,
47 WHOLE_SECONDS
= 0x2000000,
48 STICKY_TIMEOUTS
= 0x4000000,
49 ADDR_LIMIT_3GB
= 0x8000000,
55 * These go in the low byte. Avoid using the top bit, it will
56 * conflict with error returns.
60 PER_LINUX_32BIT
= 0x0000 | ADDR_LIMIT_32BIT
,
61 PER_LINUX_FDPIC
= 0x0000 | FDPIC_FUNCPTRS
,
62 PER_SVR4
= 0x0001 | STICKY_TIMEOUTS
| MMAP_PAGE_ZERO
,
63 PER_SVR3
= 0x0002 | STICKY_TIMEOUTS
| SHORT_INODE
,
64 PER_SCOSVR3
= 0x0003 | STICKY_TIMEOUTS
|
65 WHOLE_SECONDS
| SHORT_INODE
,
66 PER_OSR5
= 0x0003 | STICKY_TIMEOUTS
| WHOLE_SECONDS
,
67 PER_WYSEV386
= 0x0004 | STICKY_TIMEOUTS
| SHORT_INODE
,
68 PER_ISCR4
= 0x0005 | STICKY_TIMEOUTS
,
70 PER_SUNOS
= 0x0006 | STICKY_TIMEOUTS
,
71 PER_XENIX
= 0x0007 | STICKY_TIMEOUTS
| SHORT_INODE
,
73 PER_LINUX32_3GB
= 0x0008 | ADDR_LIMIT_3GB
,
74 PER_IRIX32
= 0x0009 | STICKY_TIMEOUTS
,/* IRIX5 32-bit */
75 PER_IRIXN32
= 0x000a | STICKY_TIMEOUTS
,/* IRIX6 new 32-bit */
76 PER_IRIX64
= 0x000b | STICKY_TIMEOUTS
,/* IRIX6 64-bit */
78 PER_SOLARIS
= 0x000d | STICKY_TIMEOUTS
,
79 PER_UW7
= 0x000e | STICKY_TIMEOUTS
| MMAP_PAGE_ZERO
,
80 PER_OSF4
= 0x000f, /* OSF/1 v4 */
86 * Return the base personality without flags.
88 #define personality(pers) (pers & PER_MASK)
90 /* this flag is uneffective under linux too, should be deleted */
92 #define MAP_DENYWRITE 0
95 /* should probably go in elf.h */
102 #define ELF_PLATFORM get_elf_platform()
104 static const char *get_elf_platform(void)
106 static char elf_platform
[] = "i386";
107 int family
= (thread_env
->cpuid_version
>> 8) & 0xff;
111 elf_platform
[1] = '0' + family
;
115 #define ELF_HWCAP get_elf_hwcap()
117 static uint32_t get_elf_hwcap(void)
119 return thread_env
->cpuid_features
;
123 #define ELF_START_MMAP 0x2aaaaab000ULL
124 #define elf_check_arch(x) ( ((x) == ELF_ARCH) )
126 #define ELF_CLASS ELFCLASS64
127 #define ELF_DATA ELFDATA2LSB
128 #define ELF_ARCH EM_X86_64
130 static inline void init_thread(struct target_pt_regs
*regs
, struct image_info
*infop
)
133 regs
->rsp
= infop
->start_stack
;
134 regs
->rip
= infop
->entry
;
137 typedef target_ulong elf_greg_t
;
138 typedef uint32_t target_uid_t
;
139 typedef uint32_t target_gid_t
;
140 typedef int32_t target_pid_t
;
143 typedef elf_greg_t elf_gregset_t
[ELF_NREG
];
146 * Note that ELF_NREG should be 29 as there should be place for
147 * TRAPNO and ERR "registers" as well but linux doesn't dump
150 * See linux kernel: arch/x86/include/asm/elf.h
152 static void elf_core_copy_regs(elf_gregset_t
*regs
, const CPUState
*env
)
154 (*regs
)[0] = env
->regs
[15];
155 (*regs
)[1] = env
->regs
[14];
156 (*regs
)[2] = env
->regs
[13];
157 (*regs
)[3] = env
->regs
[12];
158 (*regs
)[4] = env
->regs
[R_EBP
];
159 (*regs
)[5] = env
->regs
[R_EBX
];
160 (*regs
)[6] = env
->regs
[11];
161 (*regs
)[7] = env
->regs
[10];
162 (*regs
)[8] = env
->regs
[9];
163 (*regs
)[9] = env
->regs
[8];
164 (*regs
)[10] = env
->regs
[R_EAX
];
165 (*regs
)[11] = env
->regs
[R_ECX
];
166 (*regs
)[12] = env
->regs
[R_EDX
];
167 (*regs
)[13] = env
->regs
[R_ESI
];
168 (*regs
)[14] = env
->regs
[R_EDI
];
169 (*regs
)[15] = env
->regs
[R_EAX
]; /* XXX */
170 (*regs
)[16] = env
->eip
;
171 (*regs
)[17] = env
->segs
[R_CS
].selector
& 0xffff;
172 (*regs
)[18] = env
->eflags
;
173 (*regs
)[19] = env
->regs
[R_ESP
];
174 (*regs
)[20] = env
->segs
[R_SS
].selector
& 0xffff;
175 (*regs
)[21] = env
->segs
[R_FS
].selector
& 0xffff;
176 (*regs
)[22] = env
->segs
[R_GS
].selector
& 0xffff;
177 (*regs
)[23] = env
->segs
[R_DS
].selector
& 0xffff;
178 (*regs
)[24] = env
->segs
[R_ES
].selector
& 0xffff;
179 (*regs
)[25] = env
->segs
[R_FS
].selector
& 0xffff;
180 (*regs
)[26] = env
->segs
[R_GS
].selector
& 0xffff;
185 #define ELF_START_MMAP 0x80000000
188 * This is used to ensure we don't load something for the wrong architecture.
190 #define elf_check_arch(x) ( ((x) == EM_386) || ((x) == EM_486) )
193 * These are used to set parameters in the core dumps.
195 #define ELF_CLASS ELFCLASS32
196 #define ELF_DATA ELFDATA2LSB
197 #define ELF_ARCH EM_386
199 static inline void init_thread(struct target_pt_regs
*regs
, struct image_info
*infop
)
201 regs
->esp
= infop
->start_stack
;
202 regs
->eip
= infop
->entry
;
204 /* SVR4/i386 ABI (pages 3-31, 3-32) says that when the program
205 starts %edx contains a pointer to a function which might be
206 registered using `atexit'. This provides a mean for the
207 dynamic linker to call DT_FINI functions for shared libraries
208 that have been loaded before the code runs.
210 A value of 0 tells we have no such handler. */
214 typedef target_ulong elf_greg_t
;
215 typedef uint16_t target_uid_t
;
216 typedef uint16_t target_gid_t
;
217 typedef int32_t target_pid_t
;
220 typedef elf_greg_t elf_gregset_t
[ELF_NREG
];
223 * Note that ELF_NREG should be 19 as there should be place for
224 * TRAPNO and ERR "registers" as well but linux doesn't dump
227 * See linux kernel: arch/x86/include/asm/elf.h
229 static void elf_core_copy_regs(elf_gregset_t
*regs
, const CPUState
*env
)
231 (*regs
)[0] = env
->regs
[R_EBX
];
232 (*regs
)[1] = env
->regs
[R_ECX
];
233 (*regs
)[2] = env
->regs
[R_EDX
];
234 (*regs
)[3] = env
->regs
[R_ESI
];
235 (*regs
)[4] = env
->regs
[R_EDI
];
236 (*regs
)[5] = env
->regs
[R_EBP
];
237 (*regs
)[6] = env
->regs
[R_EAX
];
238 (*regs
)[7] = env
->segs
[R_DS
].selector
& 0xffff;
239 (*regs
)[8] = env
->segs
[R_ES
].selector
& 0xffff;
240 (*regs
)[9] = env
->segs
[R_FS
].selector
& 0xffff;
241 (*regs
)[10] = env
->segs
[R_GS
].selector
& 0xffff;
242 (*regs
)[11] = env
->regs
[R_EAX
]; /* XXX */
243 (*regs
)[12] = env
->eip
;
244 (*regs
)[13] = env
->segs
[R_CS
].selector
& 0xffff;
245 (*regs
)[14] = env
->eflags
;
246 (*regs
)[15] = env
->regs
[R_ESP
];
247 (*regs
)[16] = env
->segs
[R_SS
].selector
& 0xffff;
251 #define USE_ELF_CORE_DUMP
252 #define ELF_EXEC_PAGESIZE 4096
258 #define ELF_START_MMAP 0x80000000
260 #define elf_check_arch(x) ( (x) == EM_ARM )
262 #define ELF_CLASS ELFCLASS32
263 #ifdef TARGET_WORDS_BIGENDIAN
264 #define ELF_DATA ELFDATA2MSB
266 #define ELF_DATA ELFDATA2LSB
268 #define ELF_ARCH EM_ARM
270 static inline void init_thread(struct target_pt_regs
*regs
, struct image_info
*infop
)
272 abi_long stack
= infop
->start_stack
;
273 memset(regs
, 0, sizeof(*regs
));
274 regs
->ARM_cpsr
= 0x10;
275 if (infop
->entry
& 1)
276 regs
->ARM_cpsr
|= CPSR_T
;
277 regs
->ARM_pc
= infop
->entry
& 0xfffffffe;
278 regs
->ARM_sp
= infop
->start_stack
;
279 /* FIXME - what to for failure of get_user()? */
280 get_user_ual(regs
->ARM_r2
, stack
+ 8); /* envp */
281 get_user_ual(regs
->ARM_r1
, stack
+ 4); /* envp */
282 /* XXX: it seems that r0 is zeroed after ! */
284 /* For uClinux PIC binaries. */
285 /* XXX: Linux does this only on ARM with no MMU (do we care ?) */
286 regs
->ARM_r10
= infop
->start_data
;
289 typedef uint32_t elf_greg_t
;
290 typedef uint16_t target_uid_t
;
291 typedef uint16_t target_gid_t
;
292 typedef int32_t target_pid_t
;
295 typedef elf_greg_t elf_gregset_t
[ELF_NREG
];
297 static void elf_core_copy_regs(elf_gregset_t
*regs
, const CPUState
*env
)
299 (*regs
)[0] = env
->regs
[0];
300 (*regs
)[1] = env
->regs
[1];
301 (*regs
)[2] = env
->regs
[2];
302 (*regs
)[3] = env
->regs
[3];
303 (*regs
)[4] = env
->regs
[4];
304 (*regs
)[5] = env
->regs
[5];
305 (*regs
)[6] = env
->regs
[6];
306 (*regs
)[7] = env
->regs
[7];
307 (*regs
)[8] = env
->regs
[8];
308 (*regs
)[9] = env
->regs
[9];
309 (*regs
)[10] = env
->regs
[10];
310 (*regs
)[11] = env
->regs
[11];
311 (*regs
)[12] = env
->regs
[12];
312 (*regs
)[13] = env
->regs
[13];
313 (*regs
)[14] = env
->regs
[14];
314 (*regs
)[15] = env
->regs
[15];
316 (*regs
)[16] = cpsr_read((CPUState
*)env
);
317 (*regs
)[17] = env
->regs
[0]; /* XXX */
320 #define USE_ELF_CORE_DUMP
321 #define ELF_EXEC_PAGESIZE 4096
325 ARM_HWCAP_ARM_SWP
= 1 << 0,
326 ARM_HWCAP_ARM_HALF
= 1 << 1,
327 ARM_HWCAP_ARM_THUMB
= 1 << 2,
328 ARM_HWCAP_ARM_26BIT
= 1 << 3,
329 ARM_HWCAP_ARM_FAST_MULT
= 1 << 4,
330 ARM_HWCAP_ARM_FPA
= 1 << 5,
331 ARM_HWCAP_ARM_VFP
= 1 << 6,
332 ARM_HWCAP_ARM_EDSP
= 1 << 7,
335 #define ELF_HWCAP (ARM_HWCAP_ARM_SWP | ARM_HWCAP_ARM_HALF \
336 | ARM_HWCAP_ARM_THUMB | ARM_HWCAP_ARM_FAST_MULT \
337 | ARM_HWCAP_ARM_FPA | ARM_HWCAP_ARM_VFP)
342 #ifdef TARGET_SPARC64
344 #define ELF_START_MMAP 0x80000000
347 #define elf_check_arch(x) ( (x) == EM_SPARCV9 || (x) == EM_SPARC32PLUS )
349 #define elf_check_arch(x) ( (x) == EM_SPARC32PLUS || (x) == EM_SPARC )
352 #define ELF_CLASS ELFCLASS64
353 #define ELF_DATA ELFDATA2MSB
354 #define ELF_ARCH EM_SPARCV9
356 #define STACK_BIAS 2047
358 static inline void init_thread(struct target_pt_regs
*regs
, struct image_info
*infop
)
363 regs
->pc
= infop
->entry
;
364 regs
->npc
= regs
->pc
+ 4;
367 regs
->u_regs
[14] = infop
->start_stack
- 16 * 4;
369 if (personality(infop
->personality
) == PER_LINUX32
)
370 regs
->u_regs
[14] = infop
->start_stack
- 16 * 4;
372 regs
->u_regs
[14] = infop
->start_stack
- 16 * 8 - STACK_BIAS
;
377 #define ELF_START_MMAP 0x80000000
379 #define elf_check_arch(x) ( (x) == EM_SPARC )
381 #define ELF_CLASS ELFCLASS32
382 #define ELF_DATA ELFDATA2MSB
383 #define ELF_ARCH EM_SPARC
385 static inline void init_thread(struct target_pt_regs
*regs
, struct image_info
*infop
)
388 regs
->pc
= infop
->entry
;
389 regs
->npc
= regs
->pc
+ 4;
391 regs
->u_regs
[14] = infop
->start_stack
- 16 * 4;
399 #define ELF_START_MMAP 0x80000000
401 #if defined(TARGET_PPC64) && !defined(TARGET_ABI32)
403 #define elf_check_arch(x) ( (x) == EM_PPC64 )
405 #define ELF_CLASS ELFCLASS64
409 #define elf_check_arch(x) ( (x) == EM_PPC )
411 #define ELF_CLASS ELFCLASS32
415 #ifdef TARGET_WORDS_BIGENDIAN
416 #define ELF_DATA ELFDATA2MSB
418 #define ELF_DATA ELFDATA2LSB
420 #define ELF_ARCH EM_PPC
422 /* Feature masks for the Aux Vector Hardware Capabilities (AT_HWCAP).
423 See arch/powerpc/include/asm/cputable.h. */
425 PPC_FEATURE_32
= 0x80000000,
426 PPC_FEATURE_64
= 0x40000000,
427 PPC_FEATURE_601_INSTR
= 0x20000000,
428 PPC_FEATURE_HAS_ALTIVEC
= 0x10000000,
429 PPC_FEATURE_HAS_FPU
= 0x08000000,
430 PPC_FEATURE_HAS_MMU
= 0x04000000,
431 PPC_FEATURE_HAS_4xxMAC
= 0x02000000,
432 PPC_FEATURE_UNIFIED_CACHE
= 0x01000000,
433 PPC_FEATURE_HAS_SPE
= 0x00800000,
434 PPC_FEATURE_HAS_EFP_SINGLE
= 0x00400000,
435 PPC_FEATURE_HAS_EFP_DOUBLE
= 0x00200000,
436 PPC_FEATURE_NO_TB
= 0x00100000,
437 PPC_FEATURE_POWER4
= 0x00080000,
438 PPC_FEATURE_POWER5
= 0x00040000,
439 PPC_FEATURE_POWER5_PLUS
= 0x00020000,
440 PPC_FEATURE_CELL
= 0x00010000,
441 PPC_FEATURE_BOOKE
= 0x00008000,
442 PPC_FEATURE_SMT
= 0x00004000,
443 PPC_FEATURE_ICACHE_SNOOP
= 0x00002000,
444 PPC_FEATURE_ARCH_2_05
= 0x00001000,
445 PPC_FEATURE_PA6T
= 0x00000800,
446 PPC_FEATURE_HAS_DFP
= 0x00000400,
447 PPC_FEATURE_POWER6_EXT
= 0x00000200,
448 PPC_FEATURE_ARCH_2_06
= 0x00000100,
449 PPC_FEATURE_HAS_VSX
= 0x00000080,
450 PPC_FEATURE_PSERIES_PERFMON_COMPAT
= 0x00000040,
452 PPC_FEATURE_TRUE_LE
= 0x00000002,
453 PPC_FEATURE_PPC_LE
= 0x00000001,
456 #define ELF_HWCAP get_elf_hwcap()
458 static uint32_t get_elf_hwcap(void)
460 CPUState
*e
= thread_env
;
461 uint32_t features
= 0;
463 /* We don't have to be terribly complete here; the high points are
464 Altivec/FP/SPE support. Anything else is just a bonus. */
465 #define GET_FEATURE(flag, feature) \
466 do {if (e->insns_flags & flag) features |= feature; } while(0)
467 GET_FEATURE(PPC_64B
, PPC_FEATURE_64
);
468 GET_FEATURE(PPC_FLOAT
, PPC_FEATURE_HAS_FPU
);
469 GET_FEATURE(PPC_ALTIVEC
, PPC_FEATURE_HAS_ALTIVEC
);
470 GET_FEATURE(PPC_SPE
, PPC_FEATURE_HAS_SPE
);
471 GET_FEATURE(PPC_SPE_SINGLE
, PPC_FEATURE_HAS_EFP_SINGLE
);
472 GET_FEATURE(PPC_SPE_DOUBLE
, PPC_FEATURE_HAS_EFP_DOUBLE
);
473 GET_FEATURE(PPC_BOOKE
, PPC_FEATURE_BOOKE
);
474 GET_FEATURE(PPC_405_MAC
, PPC_FEATURE_HAS_4xxMAC
);
481 * We need to put in some extra aux table entries to tell glibc what
482 * the cache block size is, so it can use the dcbz instruction safely.
484 #define AT_DCACHEBSIZE 19
485 #define AT_ICACHEBSIZE 20
486 #define AT_UCACHEBSIZE 21
487 /* A special ignored type value for PPC, for glibc compatibility. */
488 #define AT_IGNOREPPC 22
490 * The requirements here are:
491 * - keep the final alignment of sp (sp & 0xf)
492 * - make sure the 32-bit value at the first 16 byte aligned position of
493 * AUXV is greater than 16 for glibc compatibility.
494 * AT_IGNOREPPC is used for that.
495 * - for compatibility with glibc ARCH_DLINFO must always be defined on PPC,
496 * even if DLINFO_ARCH_ITEMS goes to zero or is undefined.
498 #define DLINFO_ARCH_ITEMS 5
499 #define ARCH_DLINFO \
501 NEW_AUX_ENT(AT_DCACHEBSIZE, 0x20); \
502 NEW_AUX_ENT(AT_ICACHEBSIZE, 0x20); \
503 NEW_AUX_ENT(AT_UCACHEBSIZE, 0); \
505 * Now handle glibc compatibility. \
507 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \
508 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \
511 static inline void init_thread(struct target_pt_regs
*_regs
, struct image_info
*infop
)
513 abi_ulong pos
= infop
->start_stack
;
515 #if defined(TARGET_PPC64) && !defined(TARGET_ABI32)
516 abi_ulong entry
, toc
;
519 _regs
->gpr
[1] = infop
->start_stack
;
520 #if defined(TARGET_PPC64) && !defined(TARGET_ABI32)
521 entry
= ldq_raw(infop
->entry
) + infop
->load_addr
;
522 toc
= ldq_raw(infop
->entry
+ 8) + infop
->load_addr
;
524 infop
->entry
= entry
;
526 _regs
->nip
= infop
->entry
;
527 /* Note that isn't exactly what regular kernel does
528 * but this is what the ABI wants and is needed to allow
529 * execution of PPC BSD programs.
531 /* FIXME - what to for failure of get_user()? */
532 get_user_ual(_regs
->gpr
[3], pos
);
533 pos
+= sizeof(abi_ulong
);
535 for (tmp
= 1; tmp
!= 0; pos
+= sizeof(abi_ulong
))
540 #define ELF_EXEC_PAGESIZE 4096
546 #define ELF_START_MMAP 0x80000000
548 #define elf_check_arch(x) ( (x) == EM_MIPS )
551 #define ELF_CLASS ELFCLASS64
553 #define ELF_CLASS ELFCLASS32
555 #ifdef TARGET_WORDS_BIGENDIAN
556 #define ELF_DATA ELFDATA2MSB
558 #define ELF_DATA ELFDATA2LSB
560 #define ELF_ARCH EM_MIPS
562 static inline void init_thread(struct target_pt_regs
*regs
, struct image_info
*infop
)
564 regs
->cp0_status
= 2 << CP0St_KSU
;
565 regs
->cp0_epc
= infop
->entry
;
566 regs
->regs
[29] = infop
->start_stack
;
569 #define ELF_EXEC_PAGESIZE 4096
571 #endif /* TARGET_MIPS */
573 #ifdef TARGET_MICROBLAZE
575 #define ELF_START_MMAP 0x80000000
577 #define elf_check_arch(x) ( (x) == EM_XILINX_MICROBLAZE )
579 #define ELF_CLASS ELFCLASS32
580 #define ELF_DATA ELFDATA2MSB
581 #define ELF_ARCH EM_MIPS
583 static inline void init_thread(struct target_pt_regs
*regs
, struct image_info
*infop
)
585 regs
->pc
= infop
->entry
;
586 regs
->r1
= infop
->start_stack
;
590 #define ELF_EXEC_PAGESIZE 4096
592 #endif /* TARGET_MICROBLAZE */
596 #define ELF_START_MMAP 0x80000000
598 #define elf_check_arch(x) ( (x) == EM_SH )
600 #define ELF_CLASS ELFCLASS32
601 #define ELF_DATA ELFDATA2LSB
602 #define ELF_ARCH EM_SH
604 static inline void init_thread(struct target_pt_regs
*regs
, struct image_info
*infop
)
606 /* Check other registers XXXXX */
607 regs
->pc
= infop
->entry
;
608 regs
->regs
[15] = infop
->start_stack
;
611 #define ELF_EXEC_PAGESIZE 4096
617 #define ELF_START_MMAP 0x80000000
619 #define elf_check_arch(x) ( (x) == EM_CRIS )
621 #define ELF_CLASS ELFCLASS32
622 #define ELF_DATA ELFDATA2LSB
623 #define ELF_ARCH EM_CRIS
625 static inline void init_thread(struct target_pt_regs
*regs
, struct image_info
*infop
)
627 regs
->erp
= infop
->entry
;
630 #define ELF_EXEC_PAGESIZE 8192
636 #define ELF_START_MMAP 0x80000000
638 #define elf_check_arch(x) ( (x) == EM_68K )
640 #define ELF_CLASS ELFCLASS32
641 #define ELF_DATA ELFDATA2MSB
642 #define ELF_ARCH EM_68K
644 /* ??? Does this need to do anything?
645 #define ELF_PLAT_INIT(_r) */
647 static inline void init_thread(struct target_pt_regs
*regs
, struct image_info
*infop
)
649 regs
->usp
= infop
->start_stack
;
651 regs
->pc
= infop
->entry
;
654 #define ELF_EXEC_PAGESIZE 8192
660 #define ELF_START_MMAP (0x30000000000ULL)
662 #define elf_check_arch(x) ( (x) == ELF_ARCH )
664 #define ELF_CLASS ELFCLASS64
665 #define ELF_DATA ELFDATA2MSB
666 #define ELF_ARCH EM_ALPHA
668 static inline void init_thread(struct target_pt_regs
*regs
, struct image_info
*infop
)
670 regs
->pc
= infop
->entry
;
672 regs
->usp
= infop
->start_stack
;
673 regs
->unique
= infop
->start_data
; /* ? */
674 printf("Set unique value to " TARGET_FMT_lx
" (" TARGET_FMT_lx
")\n",
675 regs
->unique
, infop
->start_data
);
678 #define ELF_EXEC_PAGESIZE 8192
680 #endif /* TARGET_ALPHA */
683 #define ELF_PLATFORM (NULL)
692 #define ELF_CLASS ELFCLASS32
694 #define bswaptls(ptr) bswap32s(ptr)
701 unsigned int a_info
; /* Use macros N_MAGIC, etc for access */
702 unsigned int a_text
; /* length of text, in bytes */
703 unsigned int a_data
; /* length of data, in bytes */
704 unsigned int a_bss
; /* length of uninitialized data area, in bytes */
705 unsigned int a_syms
; /* length of symbol table data in file, in bytes */
706 unsigned int a_entry
; /* start address */
707 unsigned int a_trsize
; /* length of relocation info for text, in bytes */
708 unsigned int a_drsize
; /* length of relocation info for data, in bytes */
712 #define N_MAGIC(exec) ((exec).a_info & 0xffff)
718 /* max code+data+bss space allocated to elf interpreter */
719 #define INTERP_MAP_SIZE (32 * 1024 * 1024)
721 /* max code+data+bss+brk space allocated to ET_DYN executables */
722 #define ET_DYN_MAP_SIZE (128 * 1024 * 1024)
724 /* Necessary parameters */
725 #define TARGET_ELF_EXEC_PAGESIZE TARGET_PAGE_SIZE
726 #define TARGET_ELF_PAGESTART(_v) ((_v) & ~(unsigned long)(TARGET_ELF_EXEC_PAGESIZE-1))
727 #define TARGET_ELF_PAGEOFFSET(_v) ((_v) & (TARGET_ELF_EXEC_PAGESIZE-1))
729 #define INTERPRETER_NONE 0
730 #define INTERPRETER_AOUT 1
731 #define INTERPRETER_ELF 2
733 #define DLINFO_ITEMS 12
735 static inline void memcpy_fromfs(void * to
, const void * from
, unsigned long n
)
740 static int load_aout_interp(void * exptr
, int interp_fd
);
743 static void bswap_ehdr(struct elfhdr
*ehdr
)
745 bswap16s(&ehdr
->e_type
); /* Object file type */
746 bswap16s(&ehdr
->e_machine
); /* Architecture */
747 bswap32s(&ehdr
->e_version
); /* Object file version */
748 bswaptls(&ehdr
->e_entry
); /* Entry point virtual address */
749 bswaptls(&ehdr
->e_phoff
); /* Program header table file offset */
750 bswaptls(&ehdr
->e_shoff
); /* Section header table file offset */
751 bswap32s(&ehdr
->e_flags
); /* Processor-specific flags */
752 bswap16s(&ehdr
->e_ehsize
); /* ELF header size in bytes */
753 bswap16s(&ehdr
->e_phentsize
); /* Program header table entry size */
754 bswap16s(&ehdr
->e_phnum
); /* Program header table entry count */
755 bswap16s(&ehdr
->e_shentsize
); /* Section header table entry size */
756 bswap16s(&ehdr
->e_shnum
); /* Section header table entry count */
757 bswap16s(&ehdr
->e_shstrndx
); /* Section header string table index */
760 static void bswap_phdr(struct elf_phdr
*phdr
)
762 bswap32s(&phdr
->p_type
); /* Segment type */
763 bswaptls(&phdr
->p_offset
); /* Segment file offset */
764 bswaptls(&phdr
->p_vaddr
); /* Segment virtual address */
765 bswaptls(&phdr
->p_paddr
); /* Segment physical address */
766 bswaptls(&phdr
->p_filesz
); /* Segment size in file */
767 bswaptls(&phdr
->p_memsz
); /* Segment size in memory */
768 bswap32s(&phdr
->p_flags
); /* Segment flags */
769 bswaptls(&phdr
->p_align
); /* Segment alignment */
772 static void bswap_shdr(struct elf_shdr
*shdr
)
774 bswap32s(&shdr
->sh_name
);
775 bswap32s(&shdr
->sh_type
);
776 bswaptls(&shdr
->sh_flags
);
777 bswaptls(&shdr
->sh_addr
);
778 bswaptls(&shdr
->sh_offset
);
779 bswaptls(&shdr
->sh_size
);
780 bswap32s(&shdr
->sh_link
);
781 bswap32s(&shdr
->sh_info
);
782 bswaptls(&shdr
->sh_addralign
);
783 bswaptls(&shdr
->sh_entsize
);
786 static void bswap_sym(struct elf_sym
*sym
)
788 bswap32s(&sym
->st_name
);
789 bswaptls(&sym
->st_value
);
790 bswaptls(&sym
->st_size
);
791 bswap16s(&sym
->st_shndx
);
795 #ifdef USE_ELF_CORE_DUMP
796 static int elf_core_dump(int, const CPUState
*);
799 static void bswap_note(struct elf_note
*en
)
801 bswaptls(&en
->n_namesz
);
802 bswaptls(&en
->n_descsz
);
803 bswaptls(&en
->n_type
);
805 #endif /* BSWAP_NEEDED */
807 #endif /* USE_ELF_CORE_DUMP */
810 * 'copy_elf_strings()' copies argument/envelope strings from user
811 * memory to free pages in kernel mem. These are in a format ready
812 * to be put directly into the top of new user memory.
815 static abi_ulong
copy_elf_strings(int argc
,char ** argv
, void **page
,
818 char *tmp
, *tmp1
, *pag
= NULL
;
822 return 0; /* bullet-proofing */
827 fprintf(stderr
, "VFS: argc is wrong");
833 if (p
< len
) { /* this shouldn't happen - 128kB */
839 offset
= p
% TARGET_PAGE_SIZE
;
840 pag
= (char *)page
[p
/TARGET_PAGE_SIZE
];
842 pag
= (char *)malloc(TARGET_PAGE_SIZE
);
843 memset(pag
, 0, TARGET_PAGE_SIZE
);
844 page
[p
/TARGET_PAGE_SIZE
] = pag
;
849 if (len
== 0 || offset
== 0) {
850 *(pag
+ offset
) = *tmp
;
853 int bytes_to_copy
= (len
> offset
) ? offset
: len
;
854 tmp
-= bytes_to_copy
;
856 offset
-= bytes_to_copy
;
857 len
-= bytes_to_copy
;
858 memcpy_fromfs(pag
+ offset
, tmp
, bytes_to_copy
+ 1);
865 static abi_ulong
setup_arg_pages(abi_ulong p
, struct linux_binprm
*bprm
,
866 struct image_info
*info
)
868 abi_ulong stack_base
, size
, error
;
871 /* Create enough stack to hold everything. If we don't use
872 * it for args, we'll use it for something else...
874 size
= x86_stack_size
;
875 if (size
< MAX_ARG_PAGES
*TARGET_PAGE_SIZE
)
876 size
= MAX_ARG_PAGES
*TARGET_PAGE_SIZE
;
877 error
= target_mmap(0,
878 size
+ qemu_host_page_size
,
879 PROT_READ
| PROT_WRITE
,
880 MAP_PRIVATE
| MAP_ANONYMOUS
,
886 /* we reserve one extra page at the top of the stack as guard */
887 target_mprotect(error
+ size
, qemu_host_page_size
, PROT_NONE
);
889 stack_base
= error
+ size
- MAX_ARG_PAGES
*TARGET_PAGE_SIZE
;
892 for (i
= 0 ; i
< MAX_ARG_PAGES
; i
++) {
895 /* FIXME - check return value of memcpy_to_target() for failure */
896 memcpy_to_target(stack_base
, bprm
->page
[i
], TARGET_PAGE_SIZE
);
899 stack_base
+= TARGET_PAGE_SIZE
;
904 static void set_brk(abi_ulong start
, abi_ulong end
)
906 /* page-align the start and end addresses... */
907 start
= HOST_PAGE_ALIGN(start
);
908 end
= HOST_PAGE_ALIGN(end
);
911 if(target_mmap(start
, end
- start
,
912 PROT_READ
| PROT_WRITE
| PROT_EXEC
,
913 MAP_FIXED
| MAP_PRIVATE
| MAP_ANONYMOUS
, -1, 0) == -1) {
914 perror("cannot mmap brk");
920 /* We need to explicitly zero any fractional pages after the data
921 section (i.e. bss). This would contain the junk from the file that
922 should not be in memory. */
923 static void padzero(abi_ulong elf_bss
, abi_ulong last_bss
)
927 if (elf_bss
>= last_bss
)
930 /* XXX: this is really a hack : if the real host page size is
931 smaller than the target page size, some pages after the end
932 of the file may not be mapped. A better fix would be to
933 patch target_mmap(), but it is more complicated as the file
934 size must be known */
935 if (qemu_real_host_page_size
< qemu_host_page_size
) {
936 abi_ulong end_addr
, end_addr1
;
937 end_addr1
= (elf_bss
+ qemu_real_host_page_size
- 1) &
938 ~(qemu_real_host_page_size
- 1);
939 end_addr
= HOST_PAGE_ALIGN(elf_bss
);
940 if (end_addr1
< end_addr
) {
941 mmap((void *)g2h(end_addr1
), end_addr
- end_addr1
,
942 PROT_READ
|PROT_WRITE
|PROT_EXEC
,
943 MAP_FIXED
|MAP_PRIVATE
|MAP_ANONYMOUS
, -1, 0);
947 nbyte
= elf_bss
& (qemu_host_page_size
-1);
949 nbyte
= qemu_host_page_size
- nbyte
;
951 /* FIXME - what to do if put_user() fails? */
952 put_user_u8(0, elf_bss
);
959 static abi_ulong
create_elf_tables(abi_ulong p
, int argc
, int envc
,
960 struct elfhdr
* exec
,
963 abi_ulong interp_load_addr
, int ibcs
,
964 struct image_info
*info
)
968 abi_ulong u_platform
;
969 const char *k_platform
;
970 const int n
= sizeof(elf_addr_t
);
974 k_platform
= ELF_PLATFORM
;
976 size_t len
= strlen(k_platform
) + 1;
977 sp
-= (len
+ n
- 1) & ~(n
- 1);
979 /* FIXME - check return value of memcpy_to_target() for failure */
980 memcpy_to_target(sp
, k_platform
, len
);
983 * Force 16 byte _final_ alignment here for generality.
985 sp
= sp
&~ (abi_ulong
)15;
986 size
= (DLINFO_ITEMS
+ 1) * 2;
989 #ifdef DLINFO_ARCH_ITEMS
990 size
+= DLINFO_ARCH_ITEMS
* 2;
992 size
+= envc
+ argc
+ 2;
993 size
+= (!ibcs
? 3 : 1); /* argc itself */
996 sp
-= 16 - (size
& 15);
998 /* This is correct because Linux defines
999 * elf_addr_t as Elf32_Off / Elf64_Off
1001 #define NEW_AUX_ENT(id, val) do { \
1002 sp -= n; put_user_ual(val, sp); \
1003 sp -= n; put_user_ual(id, sp); \
1006 NEW_AUX_ENT (AT_NULL
, 0);
1008 /* There must be exactly DLINFO_ITEMS entries here. */
1009 NEW_AUX_ENT(AT_PHDR
, (abi_ulong
)(load_addr
+ exec
->e_phoff
));
1010 NEW_AUX_ENT(AT_PHENT
, (abi_ulong
)(sizeof (struct elf_phdr
)));
1011 NEW_AUX_ENT(AT_PHNUM
, (abi_ulong
)(exec
->e_phnum
));
1012 NEW_AUX_ENT(AT_PAGESZ
, (abi_ulong
)(TARGET_PAGE_SIZE
));
1013 NEW_AUX_ENT(AT_BASE
, (abi_ulong
)(interp_load_addr
));
1014 NEW_AUX_ENT(AT_FLAGS
, (abi_ulong
)0);
1015 NEW_AUX_ENT(AT_ENTRY
, load_bias
+ exec
->e_entry
);
1016 NEW_AUX_ENT(AT_UID
, (abi_ulong
) getuid());
1017 NEW_AUX_ENT(AT_EUID
, (abi_ulong
) geteuid());
1018 NEW_AUX_ENT(AT_GID
, (abi_ulong
) getgid());
1019 NEW_AUX_ENT(AT_EGID
, (abi_ulong
) getegid());
1020 NEW_AUX_ENT(AT_HWCAP
, (abi_ulong
) ELF_HWCAP
);
1021 NEW_AUX_ENT(AT_CLKTCK
, (abi_ulong
) sysconf(_SC_CLK_TCK
));
1023 NEW_AUX_ENT(AT_PLATFORM
, u_platform
);
1026 * ARCH_DLINFO must come last so platform specific code can enforce
1027 * special alignment requirements on the AUXV if necessary (eg. PPC).
1033 info
->saved_auxv
= sp
;
1035 sp
= loader_build_argptr(envc
, argc
, sp
, p
, !ibcs
);
1040 static abi_ulong
load_elf_interp(struct elfhdr
* interp_elf_ex
,
1042 abi_ulong
*interp_load_addr
)
1044 struct elf_phdr
*elf_phdata
= NULL
;
1045 struct elf_phdr
*eppnt
;
1046 abi_ulong load_addr
= 0;
1047 int load_addr_set
= 0;
1049 abi_ulong last_bss
, elf_bss
;
1058 bswap_ehdr(interp_elf_ex
);
1060 /* First of all, some simple consistency checks */
1061 if ((interp_elf_ex
->e_type
!= ET_EXEC
&&
1062 interp_elf_ex
->e_type
!= ET_DYN
) ||
1063 !elf_check_arch(interp_elf_ex
->e_machine
)) {
1064 return ~((abi_ulong
)0UL);
1068 /* Now read in all of the header information */
1070 if (sizeof(struct elf_phdr
) * interp_elf_ex
->e_phnum
> TARGET_PAGE_SIZE
)
1071 return ~(abi_ulong
)0UL;
1073 elf_phdata
= (struct elf_phdr
*)
1074 malloc(sizeof(struct elf_phdr
) * interp_elf_ex
->e_phnum
);
1077 return ~((abi_ulong
)0UL);
1080 * If the size of this structure has changed, then punt, since
1081 * we will be doing the wrong thing.
1083 if (interp_elf_ex
->e_phentsize
!= sizeof(struct elf_phdr
)) {
1085 return ~((abi_ulong
)0UL);
1088 retval
= lseek(interpreter_fd
, interp_elf_ex
->e_phoff
, SEEK_SET
);
1090 retval
= read(interpreter_fd
,
1091 (char *) elf_phdata
,
1092 sizeof(struct elf_phdr
) * interp_elf_ex
->e_phnum
);
1095 perror("load_elf_interp");
1102 for (i
=0; i
<interp_elf_ex
->e_phnum
; i
++, eppnt
++) {
1107 if (interp_elf_ex
->e_type
== ET_DYN
) {
1108 /* in order to avoid hardcoding the interpreter load
1109 address in qemu, we allocate a big enough memory zone */
1110 error
= target_mmap(0, INTERP_MAP_SIZE
,
1111 PROT_NONE
, MAP_PRIVATE
| MAP_ANON
,
1122 for(i
=0; i
<interp_elf_ex
->e_phnum
; i
++, eppnt
++)
1123 if (eppnt
->p_type
== PT_LOAD
) {
1124 int elf_type
= MAP_PRIVATE
| MAP_DENYWRITE
;
1126 abi_ulong vaddr
= 0;
1129 if (eppnt
->p_flags
& PF_R
) elf_prot
= PROT_READ
;
1130 if (eppnt
->p_flags
& PF_W
) elf_prot
|= PROT_WRITE
;
1131 if (eppnt
->p_flags
& PF_X
) elf_prot
|= PROT_EXEC
;
1132 if (interp_elf_ex
->e_type
== ET_EXEC
|| load_addr_set
) {
1133 elf_type
|= MAP_FIXED
;
1134 vaddr
= eppnt
->p_vaddr
;
1136 error
= target_mmap(load_addr
+TARGET_ELF_PAGESTART(vaddr
),
1137 eppnt
->p_filesz
+ TARGET_ELF_PAGEOFFSET(eppnt
->p_vaddr
),
1141 eppnt
->p_offset
- TARGET_ELF_PAGEOFFSET(eppnt
->p_vaddr
));
1145 close(interpreter_fd
);
1147 return ~((abi_ulong
)0UL);
1150 if (!load_addr_set
&& interp_elf_ex
->e_type
== ET_DYN
) {
1156 * Find the end of the file mapping for this phdr, and keep
1157 * track of the largest address we see for this.
1159 k
= load_addr
+ eppnt
->p_vaddr
+ eppnt
->p_filesz
;
1160 if (k
> elf_bss
) elf_bss
= k
;
1163 * Do the same thing for the memory mapping - between
1164 * elf_bss and last_bss is the bss section.
1166 k
= load_addr
+ eppnt
->p_memsz
+ eppnt
->p_vaddr
;
1167 if (k
> last_bss
) last_bss
= k
;
1170 /* Now use mmap to map the library into memory. */
1172 close(interpreter_fd
);
1175 * Now fill out the bss section. First pad the last page up
1176 * to the page boundary, and then perform a mmap to make sure
1177 * that there are zeromapped pages up to and including the last
1180 padzero(elf_bss
, last_bss
);
1181 elf_bss
= TARGET_ELF_PAGESTART(elf_bss
+ qemu_host_page_size
- 1); /* What we have mapped so far */
1183 /* Map the last of the bss segment */
1184 if (last_bss
> elf_bss
) {
1185 target_mmap(elf_bss
, last_bss
-elf_bss
,
1186 PROT_READ
|PROT_WRITE
|PROT_EXEC
,
1187 MAP_FIXED
|MAP_PRIVATE
|MAP_ANONYMOUS
, -1, 0);
1191 *interp_load_addr
= load_addr
;
1192 return ((abi_ulong
) interp_elf_ex
->e_entry
) + load_addr
;
1195 static int symfind(const void *s0
, const void *s1
)
1197 struct elf_sym
*key
= (struct elf_sym
*)s0
;
1198 struct elf_sym
*sym
= (struct elf_sym
*)s1
;
1200 if (key
->st_value
< sym
->st_value
) {
1202 } else if (key
->st_value
> sym
->st_value
+ sym
->st_size
) {
1208 static const char *lookup_symbolxx(struct syminfo
*s
, target_ulong orig_addr
)
1210 #if ELF_CLASS == ELFCLASS32
1211 struct elf_sym
*syms
= s
->disas_symtab
.elf32
;
1213 struct elf_sym
*syms
= s
->disas_symtab
.elf64
;
1218 struct elf_sym
*sym
;
1220 key
.st_value
= orig_addr
;
1222 sym
= bsearch(&key
, syms
, s
->disas_num_syms
, sizeof(*syms
), symfind
);
1224 return s
->disas_strtab
+ sym
->st_name
;
1230 /* FIXME: This should use elf_ops.h */
1231 static int symcmp(const void *s0
, const void *s1
)
1233 struct elf_sym
*sym0
= (struct elf_sym
*)s0
;
1234 struct elf_sym
*sym1
= (struct elf_sym
*)s1
;
1235 return (sym0
->st_value
< sym1
->st_value
)
1237 : ((sym0
->st_value
> sym1
->st_value
) ? 1 : 0);
1240 /* Best attempt to load symbols from this ELF object. */
1241 static void load_symbols(struct elfhdr
*hdr
, int fd
)
1243 unsigned int i
, nsyms
;
1244 struct elf_shdr sechdr
, symtab
, strtab
;
1247 struct elf_sym
*syms
;
1249 lseek(fd
, hdr
->e_shoff
, SEEK_SET
);
1250 for (i
= 0; i
< hdr
->e_shnum
; i
++) {
1251 if (read(fd
, &sechdr
, sizeof(sechdr
)) != sizeof(sechdr
))
1254 bswap_shdr(&sechdr
);
1256 if (sechdr
.sh_type
== SHT_SYMTAB
) {
1258 lseek(fd
, hdr
->e_shoff
1259 + sizeof(sechdr
) * sechdr
.sh_link
, SEEK_SET
);
1260 if (read(fd
, &strtab
, sizeof(strtab
))
1264 bswap_shdr(&strtab
);
1269 return; /* Shouldn't happen... */
1272 /* Now know where the strtab and symtab are. Snarf them. */
1273 s
= malloc(sizeof(*s
));
1274 syms
= malloc(symtab
.sh_size
);
1277 s
->disas_strtab
= strings
= malloc(strtab
.sh_size
);
1278 if (!s
->disas_strtab
)
1281 lseek(fd
, symtab
.sh_offset
, SEEK_SET
);
1282 if (read(fd
, syms
, symtab
.sh_size
) != symtab
.sh_size
)
1285 nsyms
= symtab
.sh_size
/ sizeof(struct elf_sym
);
1290 bswap_sym(syms
+ i
);
1292 // Throw away entries which we do not need.
1293 if (syms
[i
].st_shndx
== SHN_UNDEF
||
1294 syms
[i
].st_shndx
>= SHN_LORESERVE
||
1295 ELF_ST_TYPE(syms
[i
].st_info
) != STT_FUNC
) {
1298 syms
[i
] = syms
[nsyms
];
1302 #if defined(TARGET_ARM) || defined (TARGET_MIPS)
1303 /* The bottom address bit marks a Thumb or MIPS16 symbol. */
1304 syms
[i
].st_value
&= ~(target_ulong
)1;
1308 syms
= realloc(syms
, nsyms
* sizeof(*syms
));
1310 qsort(syms
, nsyms
, sizeof(*syms
), symcmp
);
1312 lseek(fd
, strtab
.sh_offset
, SEEK_SET
);
1313 if (read(fd
, strings
, strtab
.sh_size
) != strtab
.sh_size
)
1315 s
->disas_num_syms
= nsyms
;
1316 #if ELF_CLASS == ELFCLASS32
1317 s
->disas_symtab
.elf32
= syms
;
1318 s
->lookup_symbol
= lookup_symbolxx
;
1320 s
->disas_symtab
.elf64
= syms
;
1321 s
->lookup_symbol
= lookup_symbolxx
;
1327 int load_elf_binary(struct linux_binprm
* bprm
, struct target_pt_regs
* regs
,
1328 struct image_info
* info
)
1330 struct elfhdr elf_ex
;
1331 struct elfhdr interp_elf_ex
;
1332 struct exec interp_ex
;
1333 int interpreter_fd
= -1; /* avoid warning */
1334 abi_ulong load_addr
, load_bias
;
1335 int load_addr_set
= 0;
1336 unsigned int interpreter_type
= INTERPRETER_NONE
;
1337 unsigned char ibcs2_interpreter
;
1339 abi_ulong mapped_addr
;
1340 struct elf_phdr
* elf_ppnt
;
1341 struct elf_phdr
*elf_phdata
;
1342 abi_ulong elf_bss
, k
, elf_brk
;
1344 char * elf_interpreter
;
1345 abi_ulong elf_entry
, interp_load_addr
= 0;
1347 abi_ulong start_code
, end_code
, start_data
, end_data
;
1348 abi_ulong reloc_func_desc
= 0;
1349 abi_ulong elf_stack
;
1350 char passed_fileno
[6];
1352 ibcs2_interpreter
= 0;
1356 elf_ex
= *((struct elfhdr
*) bprm
->buf
); /* exec-header */
1358 bswap_ehdr(&elf_ex
);
1361 /* First of all, some simple consistency checks */
1362 if ((elf_ex
.e_type
!= ET_EXEC
&& elf_ex
.e_type
!= ET_DYN
) ||
1363 (! elf_check_arch(elf_ex
.e_machine
))) {
1367 bprm
->p
= copy_elf_strings(1, &bprm
->filename
, bprm
->page
, bprm
->p
);
1368 bprm
->p
= copy_elf_strings(bprm
->envc
,bprm
->envp
,bprm
->page
,bprm
->p
);
1369 bprm
->p
= copy_elf_strings(bprm
->argc
,bprm
->argv
,bprm
->page
,bprm
->p
);
1374 /* Now read in all of the header information */
1375 elf_phdata
= (struct elf_phdr
*)malloc(elf_ex
.e_phentsize
*elf_ex
.e_phnum
);
1376 if (elf_phdata
== NULL
) {
1380 retval
= lseek(bprm
->fd
, elf_ex
.e_phoff
, SEEK_SET
);
1382 retval
= read(bprm
->fd
, (char *) elf_phdata
,
1383 elf_ex
.e_phentsize
* elf_ex
.e_phnum
);
1387 perror("load_elf_binary");
1394 elf_ppnt
= elf_phdata
;
1395 for (i
=0; i
<elf_ex
.e_phnum
; i
++, elf_ppnt
++) {
1396 bswap_phdr(elf_ppnt
);
1399 elf_ppnt
= elf_phdata
;
1405 elf_stack
= ~((abi_ulong
)0UL);
1406 elf_interpreter
= NULL
;
1407 start_code
= ~((abi_ulong
)0UL);
1411 interp_ex
.a_info
= 0;
1413 for(i
=0;i
< elf_ex
.e_phnum
; i
++) {
1414 if (elf_ppnt
->p_type
== PT_INTERP
) {
1415 if ( elf_interpreter
!= NULL
)
1418 free(elf_interpreter
);
1423 /* This is the program interpreter used for
1424 * shared libraries - for now assume that this
1425 * is an a.out format binary
1428 elf_interpreter
= (char *)malloc(elf_ppnt
->p_filesz
);
1430 if (elf_interpreter
== NULL
) {
1436 retval
= lseek(bprm
->fd
, elf_ppnt
->p_offset
, SEEK_SET
);
1438 retval
= read(bprm
->fd
, elf_interpreter
, elf_ppnt
->p_filesz
);
1441 perror("load_elf_binary2");
1445 /* If the program interpreter is one of these two,
1446 then assume an iBCS2 image. Otherwise assume
1447 a native linux image. */
1449 /* JRP - Need to add X86 lib dir stuff here... */
1451 if (strcmp(elf_interpreter
,"/usr/lib/libc.so.1") == 0 ||
1452 strcmp(elf_interpreter
,"/usr/lib/ld.so.1") == 0) {
1453 ibcs2_interpreter
= 1;
1457 printf("Using ELF interpreter %s\n", elf_interpreter
);
1460 retval
= open(path(elf_interpreter
), O_RDONLY
);
1462 interpreter_fd
= retval
;
1465 perror(elf_interpreter
);
1467 /* retval = -errno; */
1472 retval
= lseek(interpreter_fd
, 0, SEEK_SET
);
1474 retval
= read(interpreter_fd
,bprm
->buf
,128);
1478 interp_ex
= *((struct exec
*) bprm
->buf
); /* aout exec-header */
1479 interp_elf_ex
=*((struct elfhdr
*) bprm
->buf
); /* elf exec-header */
1482 perror("load_elf_binary3");
1485 free(elf_interpreter
);
1493 /* Some simple consistency checks for the interpreter */
1494 if (elf_interpreter
){
1495 interpreter_type
= INTERPRETER_ELF
| INTERPRETER_AOUT
;
1497 /* Now figure out which format our binary is */
1498 if ((N_MAGIC(interp_ex
) != OMAGIC
) && (N_MAGIC(interp_ex
) != ZMAGIC
) &&
1499 (N_MAGIC(interp_ex
) != QMAGIC
)) {
1500 interpreter_type
= INTERPRETER_ELF
;
1503 if (interp_elf_ex
.e_ident
[0] != 0x7f ||
1504 strncmp((char *)&interp_elf_ex
.e_ident
[1], "ELF",3) != 0) {
1505 interpreter_type
&= ~INTERPRETER_ELF
;
1508 if (!interpreter_type
) {
1509 free(elf_interpreter
);
1516 /* OK, we are done with that, now set up the arg stuff,
1517 and then start this sucker up */
1522 if (interpreter_type
== INTERPRETER_AOUT
) {
1523 snprintf(passed_fileno
, sizeof(passed_fileno
), "%d", bprm
->fd
);
1524 passed_p
= passed_fileno
;
1526 if (elf_interpreter
) {
1527 bprm
->p
= copy_elf_strings(1,&passed_p
,bprm
->page
,bprm
->p
);
1532 if (elf_interpreter
) {
1533 free(elf_interpreter
);
1541 /* OK, This is the point of no return */
1544 info
->start_mmap
= (abi_ulong
)ELF_START_MMAP
;
1546 elf_entry
= (abi_ulong
) elf_ex
.e_entry
;
1548 /* Do this so that we can load the interpreter, if need be. We will
1549 change some of these later */
1551 bprm
->p
= setup_arg_pages(bprm
->p
, bprm
, info
);
1552 info
->start_stack
= bprm
->p
;
1554 /* Now we do a little grungy work by mmaping the ELF image into
1555 * the correct location in memory. At this point, we assume that
1556 * the image should be loaded at fixed address, not at a variable
1560 for(i
= 0, elf_ppnt
= elf_phdata
; i
< elf_ex
.e_phnum
; i
++, elf_ppnt
++) {
1565 if (elf_ppnt
->p_type
!= PT_LOAD
)
1568 if (elf_ppnt
->p_flags
& PF_R
) elf_prot
|= PROT_READ
;
1569 if (elf_ppnt
->p_flags
& PF_W
) elf_prot
|= PROT_WRITE
;
1570 if (elf_ppnt
->p_flags
& PF_X
) elf_prot
|= PROT_EXEC
;
1571 elf_flags
= MAP_PRIVATE
| MAP_DENYWRITE
;
1572 if (elf_ex
.e_type
== ET_EXEC
|| load_addr_set
) {
1573 elf_flags
|= MAP_FIXED
;
1574 } else if (elf_ex
.e_type
== ET_DYN
) {
1575 /* Try and get dynamic programs out of the way of the default mmap
1576 base, as well as whatever program they might try to exec. This
1577 is because the brk will follow the loader, and is not movable. */
1578 /* NOTE: for qemu, we do a big mmap to get enough space
1579 without hardcoding any address */
1580 error
= target_mmap(0, ET_DYN_MAP_SIZE
,
1581 PROT_NONE
, MAP_PRIVATE
| MAP_ANON
,
1587 load_bias
= TARGET_ELF_PAGESTART(error
- elf_ppnt
->p_vaddr
);
1590 error
= target_mmap(TARGET_ELF_PAGESTART(load_bias
+ elf_ppnt
->p_vaddr
),
1591 (elf_ppnt
->p_filesz
+
1592 TARGET_ELF_PAGEOFFSET(elf_ppnt
->p_vaddr
)),
1594 (MAP_FIXED
| MAP_PRIVATE
| MAP_DENYWRITE
),
1596 (elf_ppnt
->p_offset
-
1597 TARGET_ELF_PAGEOFFSET(elf_ppnt
->p_vaddr
)));
1603 #ifdef LOW_ELF_STACK
1604 if (TARGET_ELF_PAGESTART(elf_ppnt
->p_vaddr
) < elf_stack
)
1605 elf_stack
= TARGET_ELF_PAGESTART(elf_ppnt
->p_vaddr
);
1608 if (!load_addr_set
) {
1610 load_addr
= elf_ppnt
->p_vaddr
- elf_ppnt
->p_offset
;
1611 if (elf_ex
.e_type
== ET_DYN
) {
1612 load_bias
+= error
-
1613 TARGET_ELF_PAGESTART(load_bias
+ elf_ppnt
->p_vaddr
);
1614 load_addr
+= load_bias
;
1615 reloc_func_desc
= load_bias
;
1618 k
= elf_ppnt
->p_vaddr
;
1623 k
= elf_ppnt
->p_vaddr
+ elf_ppnt
->p_filesz
;
1626 if ((elf_ppnt
->p_flags
& PF_X
) && end_code
< k
)
1630 k
= elf_ppnt
->p_vaddr
+ elf_ppnt
->p_memsz
;
1631 if (k
> elf_brk
) elf_brk
= k
;
1634 elf_entry
+= load_bias
;
1635 elf_bss
+= load_bias
;
1636 elf_brk
+= load_bias
;
1637 start_code
+= load_bias
;
1638 end_code
+= load_bias
;
1639 start_data
+= load_bias
;
1640 end_data
+= load_bias
;
1642 if (elf_interpreter
) {
1643 if (interpreter_type
& 1) {
1644 elf_entry
= load_aout_interp(&interp_ex
, interpreter_fd
);
1646 else if (interpreter_type
& 2) {
1647 elf_entry
= load_elf_interp(&interp_elf_ex
, interpreter_fd
,
1650 reloc_func_desc
= interp_load_addr
;
1652 close(interpreter_fd
);
1653 free(elf_interpreter
);
1655 if (elf_entry
== ~((abi_ulong
)0UL)) {
1656 printf("Unable to load interpreter\n");
1665 if (qemu_log_enabled())
1666 load_symbols(&elf_ex
, bprm
->fd
);
1668 if (interpreter_type
!= INTERPRETER_AOUT
) close(bprm
->fd
);
1669 info
->personality
= (ibcs2_interpreter
? PER_SVR4
: PER_LINUX
);
1671 #ifdef LOW_ELF_STACK
1672 info
->start_stack
= bprm
->p
= elf_stack
- 4;
1674 bprm
->p
= create_elf_tables(bprm
->p
,
1678 load_addr
, load_bias
,
1680 (interpreter_type
== INTERPRETER_AOUT
? 0 : 1),
1682 info
->load_addr
= reloc_func_desc
;
1683 info
->start_brk
= info
->brk
= elf_brk
;
1684 info
->end_code
= end_code
;
1685 info
->start_code
= start_code
;
1686 info
->start_data
= start_data
;
1687 info
->end_data
= end_data
;
1688 info
->start_stack
= bprm
->p
;
1690 /* Calling set_brk effectively mmaps the pages that we need for the bss and break
1692 set_brk(elf_bss
, elf_brk
);
1694 padzero(elf_bss
, elf_brk
);
1697 printf("(start_brk) %x\n" , info
->start_brk
);
1698 printf("(end_code) %x\n" , info
->end_code
);
1699 printf("(start_code) %x\n" , info
->start_code
);
1700 printf("(end_data) %x\n" , info
->end_data
);
1701 printf("(start_stack) %x\n" , info
->start_stack
);
1702 printf("(brk) %x\n" , info
->brk
);
1705 if ( info
->personality
== PER_SVR4
)
1707 /* Why this, you ask??? Well SVr4 maps page 0 as read-only,
1708 and some applications "depend" upon this behavior.
1709 Since we do not have the power to recompile these, we
1710 emulate the SVr4 behavior. Sigh. */
1711 mapped_addr
= target_mmap(0, qemu_host_page_size
, PROT_READ
| PROT_EXEC
,
1712 MAP_FIXED
| MAP_PRIVATE
, -1, 0);
1715 info
->entry
= elf_entry
;
1717 #ifdef USE_ELF_CORE_DUMP
1718 bprm
->core_dump
= &elf_core_dump
;
1724 #ifdef USE_ELF_CORE_DUMP
1727 * Definitions to generate Intel SVR4-like core files.
1728 * These mostly have the same names as the SVR4 types with "elf_"
1729 * tacked on the front to prevent clashes with linux definitions,
1730 * and the typedef forms have been avoided. This is mostly like
1731 * the SVR4 structure, but more Linuxy, with things that Linux does
1732 * not support and which gdb doesn't really use excluded.
1734 * Fields we don't dump (their contents is zero) in linux-user qemu
1735 * are marked with XXX.
1737 * Core dump code is copied from linux kernel (fs/binfmt_elf.c).
1739 * Porting ELF coredump for target is (quite) simple process. First you
1740 * define ELF_USE_CORE_DUMP in target ELF code (where init_thread() for
1741 * the target resides):
1743 * #define USE_ELF_CORE_DUMP
1745 * Next you define type of register set used for dumping. ELF specification
1746 * says that it needs to be array of elf_greg_t that has size of ELF_NREG.
1748 * typedef <target_regtype> elf_greg_t;
1749 * #define ELF_NREG <number of registers>
1750 * typedef elf_greg_t elf_gregset_t[ELF_NREG];
1752 * Then define following types to match target types. Actual types can
1753 * be found from linux kernel (arch/<ARCH>/include/asm/posix_types.h):
1755 * typedef <target_uid_type> target_uid_t;
1756 * typedef <target_gid_type> target_gid_t;
1757 * typedef <target_pid_type> target_pid_t;
1759 * Last step is to implement target specific function that copies registers
1760 * from given cpu into just specified register set. Prototype is:
1762 * static void elf_core_copy_regs(elf_gregset_t *regs, const CPUState *env);
1765 * regs - copy register values into here (allocated and zeroed by caller)
1766 * env - copy registers from here
1768 * Example for ARM target is provided in this file.
1771 /* An ELF note in memory */
1775 size_t namesz_rounded
;
1782 struct elf_siginfo
{
1783 int si_signo
; /* signal number */
1784 int si_code
; /* extra code */
1785 int si_errno
; /* errno */
1788 struct elf_prstatus
{
1789 struct elf_siginfo pr_info
; /* Info associated with signal */
1790 short pr_cursig
; /* Current signal */
1791 target_ulong pr_sigpend
; /* XXX */
1792 target_ulong pr_sighold
; /* XXX */
1793 target_pid_t pr_pid
;
1794 target_pid_t pr_ppid
;
1795 target_pid_t pr_pgrp
;
1796 target_pid_t pr_sid
;
1797 struct target_timeval pr_utime
; /* XXX User time */
1798 struct target_timeval pr_stime
; /* XXX System time */
1799 struct target_timeval pr_cutime
; /* XXX Cumulative user time */
1800 struct target_timeval pr_cstime
; /* XXX Cumulative system time */
1801 elf_gregset_t pr_reg
; /* GP registers */
1802 int pr_fpvalid
; /* XXX */
1805 #define ELF_PRARGSZ (80) /* Number of chars for args */
1807 struct elf_prpsinfo
{
1808 char pr_state
; /* numeric process state */
1809 char pr_sname
; /* char for pr_state */
1810 char pr_zomb
; /* zombie */
1811 char pr_nice
; /* nice val */
1812 target_ulong pr_flag
; /* flags */
1813 target_uid_t pr_uid
;
1814 target_gid_t pr_gid
;
1815 target_pid_t pr_pid
, pr_ppid
, pr_pgrp
, pr_sid
;
1817 char pr_fname
[16]; /* filename of executable */
1818 char pr_psargs
[ELF_PRARGSZ
]; /* initial part of arg list */
1821 /* Here is the structure in which status of each thread is captured. */
1822 struct elf_thread_status
{
1823 TAILQ_ENTRY(elf_thread_status
) ets_link
;
1824 struct elf_prstatus prstatus
; /* NT_PRSTATUS */
1826 elf_fpregset_t fpu
; /* NT_PRFPREG */
1827 struct task_struct
*thread
;
1828 elf_fpxregset_t xfpu
; /* ELF_CORE_XFPREG_TYPE */
1830 struct memelfnote notes
[1];
1834 struct elf_note_info
{
1835 struct memelfnote
*notes
;
1836 struct elf_prstatus
*prstatus
; /* NT_PRSTATUS */
1837 struct elf_prpsinfo
*psinfo
; /* NT_PRPSINFO */
1839 TAILQ_HEAD(thread_list_head
, elf_thread_status
) thread_list
;
1842 * Current version of ELF coredump doesn't support
1843 * dumping fp regs etc.
1845 elf_fpregset_t
*fpu
;
1846 elf_fpxregset_t
*xfpu
;
1847 int thread_status_size
;
1853 struct vm_area_struct
{
1854 abi_ulong vma_start
; /* start vaddr of memory region */
1855 abi_ulong vma_end
; /* end vaddr of memory region */
1856 abi_ulong vma_flags
; /* protection etc. flags for the region */
1857 TAILQ_ENTRY(vm_area_struct
) vma_link
;
1861 TAILQ_HEAD(, vm_area_struct
) mm_mmap
;
1862 int mm_count
; /* number of mappings */
1865 static struct mm_struct
*vma_init(void);
1866 static void vma_delete(struct mm_struct
*);
1867 static int vma_add_mapping(struct mm_struct
*, abi_ulong
,
1868 abi_ulong
, abi_ulong
);
1869 static int vma_get_mapping_count(const struct mm_struct
*);
1870 static struct vm_area_struct
*vma_first(const struct mm_struct
*);
1871 static struct vm_area_struct
*vma_next(struct vm_area_struct
*);
1872 static abi_ulong
vma_dump_size(const struct vm_area_struct
*);
1873 static int vma_walker(void *priv
, unsigned long start
, unsigned long end
,
1874 unsigned long flags
);
1876 static void fill_elf_header(struct elfhdr
*, int, uint16_t, uint32_t);
1877 static void fill_note(struct memelfnote
*, const char *, int,
1878 unsigned int, void *);
1879 static void fill_prstatus(struct elf_prstatus
*, const TaskState
*, int);
1880 static int fill_psinfo(struct elf_prpsinfo
*, const TaskState
*);
1881 static void fill_auxv_note(struct memelfnote
*, const TaskState
*);
1882 static void fill_elf_note_phdr(struct elf_phdr
*, int, off_t
);
1883 static size_t note_size(const struct memelfnote
*);
1884 static void free_note_info(struct elf_note_info
*);
1885 static int fill_note_info(struct elf_note_info
*, long, const CPUState
*);
1886 static void fill_thread_info(struct elf_note_info
*, const CPUState
*);
1887 static int core_dump_filename(const TaskState
*, char *, size_t);
1889 static int dump_write(int, const void *, size_t);
1890 static int write_note(struct memelfnote
*, int);
1891 static int write_note_info(struct elf_note_info
*, int);
1894 static void bswap_prstatus(struct elf_prstatus
*);
1895 static void bswap_psinfo(struct elf_prpsinfo
*);
1897 static void bswap_prstatus(struct elf_prstatus
*prstatus
)
1899 prstatus
->pr_info
.si_signo
= tswapl(prstatus
->pr_info
.si_signo
);
1900 prstatus
->pr_info
.si_code
= tswapl(prstatus
->pr_info
.si_code
);
1901 prstatus
->pr_info
.si_errno
= tswapl(prstatus
->pr_info
.si_errno
);
1902 prstatus
->pr_cursig
= tswap16(prstatus
->pr_cursig
);
1903 prstatus
->pr_sigpend
= tswapl(prstatus
->pr_sigpend
);
1904 prstatus
->pr_sighold
= tswapl(prstatus
->pr_sighold
);
1905 prstatus
->pr_pid
= tswap32(prstatus
->pr_pid
);
1906 prstatus
->pr_ppid
= tswap32(prstatus
->pr_ppid
);
1907 prstatus
->pr_pgrp
= tswap32(prstatus
->pr_pgrp
);
1908 prstatus
->pr_sid
= tswap32(prstatus
->pr_sid
);
1909 /* cpu times are not filled, so we skip them */
1910 /* regs should be in correct format already */
1911 prstatus
->pr_fpvalid
= tswap32(prstatus
->pr_fpvalid
);
1914 static void bswap_psinfo(struct elf_prpsinfo
*psinfo
)
1916 psinfo
->pr_flag
= tswapl(psinfo
->pr_flag
);
1917 psinfo
->pr_uid
= tswap16(psinfo
->pr_uid
);
1918 psinfo
->pr_gid
= tswap16(psinfo
->pr_gid
);
1919 psinfo
->pr_pid
= tswap32(psinfo
->pr_pid
);
1920 psinfo
->pr_ppid
= tswap32(psinfo
->pr_ppid
);
1921 psinfo
->pr_pgrp
= tswap32(psinfo
->pr_pgrp
);
1922 psinfo
->pr_sid
= tswap32(psinfo
->pr_sid
);
1924 #endif /* BSWAP_NEEDED */
1927 * Minimal support for linux memory regions. These are needed
1928 * when we are finding out what memory exactly belongs to
1929 * emulated process. No locks needed here, as long as
1930 * thread that received the signal is stopped.
1933 static struct mm_struct
*vma_init(void)
1935 struct mm_struct
*mm
;
1937 if ((mm
= qemu_malloc(sizeof (*mm
))) == NULL
)
1941 TAILQ_INIT(&mm
->mm_mmap
);
1946 static void vma_delete(struct mm_struct
*mm
)
1948 struct vm_area_struct
*vma
;
1950 while ((vma
= vma_first(mm
)) != NULL
) {
1951 TAILQ_REMOVE(&mm
->mm_mmap
, vma
, vma_link
);
1957 static int vma_add_mapping(struct mm_struct
*mm
, abi_ulong start
,
1958 abi_ulong end
, abi_ulong flags
)
1960 struct vm_area_struct
*vma
;
1962 if ((vma
= qemu_mallocz(sizeof (*vma
))) == NULL
)
1965 vma
->vma_start
= start
;
1967 vma
->vma_flags
= flags
;
1969 TAILQ_INSERT_TAIL(&mm
->mm_mmap
, vma
, vma_link
);
1975 static struct vm_area_struct
*vma_first(const struct mm_struct
*mm
)
1977 return (TAILQ_FIRST(&mm
->mm_mmap
));
1980 static struct vm_area_struct
*vma_next(struct vm_area_struct
*vma
)
1982 return (TAILQ_NEXT(vma
, vma_link
));
1985 static int vma_get_mapping_count(const struct mm_struct
*mm
)
1987 return (mm
->mm_count
);
1991 * Calculate file (dump) size of given memory region.
1993 static abi_ulong
vma_dump_size(const struct vm_area_struct
*vma
)
1995 /* if we cannot even read the first page, skip it */
1996 if (!access_ok(VERIFY_READ
, vma
->vma_start
, TARGET_PAGE_SIZE
))
2000 * Usually we don't dump executable pages as they contain
2001 * non-writable code that debugger can read directly from
2002 * target library etc. However, thread stacks are marked
2003 * also executable so we read in first page of given region
2004 * and check whether it contains elf header. If there is
2005 * no elf header, we dump it.
2007 if (vma
->vma_flags
& PROT_EXEC
) {
2008 char page
[TARGET_PAGE_SIZE
];
2010 copy_from_user(page
, vma
->vma_start
, sizeof (page
));
2011 if ((page
[EI_MAG0
] == ELFMAG0
) &&
2012 (page
[EI_MAG1
] == ELFMAG1
) &&
2013 (page
[EI_MAG2
] == ELFMAG2
) &&
2014 (page
[EI_MAG3
] == ELFMAG3
)) {
2016 * Mappings are possibly from ELF binary. Don't dump
2023 return (vma
->vma_end
- vma
->vma_start
);
2026 static int vma_walker(void *priv
, unsigned long start
, unsigned long end
,
2027 unsigned long flags
)
2029 struct mm_struct
*mm
= (struct mm_struct
*)priv
;
2032 * Don't dump anything that qemu has reserved for internal use.
2034 if (flags
& PAGE_RESERVED
)
2037 vma_add_mapping(mm
, start
, end
, flags
);
2041 static void fill_note(struct memelfnote
*note
, const char *name
, int type
,
2042 unsigned int sz
, void *data
)
2044 unsigned int namesz
;
2046 namesz
= strlen(name
) + 1;
2048 note
->namesz
= namesz
;
2049 note
->namesz_rounded
= roundup(namesz
, sizeof (int32_t));
2051 note
->datasz
= roundup(sz
, sizeof (int32_t));;
2055 * We calculate rounded up note size here as specified by
2058 note
->notesz
= sizeof (struct elf_note
) +
2059 note
->namesz_rounded
+ note
->datasz
;
2062 static void fill_elf_header(struct elfhdr
*elf
, int segs
, uint16_t machine
,
2065 (void) memset(elf
, 0, sizeof(*elf
));
2067 (void) memcpy(elf
->e_ident
, ELFMAG
, SELFMAG
);
2068 elf
->e_ident
[EI_CLASS
] = ELF_CLASS
;
2069 elf
->e_ident
[EI_DATA
] = ELF_DATA
;
2070 elf
->e_ident
[EI_VERSION
] = EV_CURRENT
;
2071 elf
->e_ident
[EI_OSABI
] = ELF_OSABI
;
2073 elf
->e_type
= ET_CORE
;
2074 elf
->e_machine
= machine
;
2075 elf
->e_version
= EV_CURRENT
;
2076 elf
->e_phoff
= sizeof(struct elfhdr
);
2077 elf
->e_flags
= flags
;
2078 elf
->e_ehsize
= sizeof(struct elfhdr
);
2079 elf
->e_phentsize
= sizeof(struct elf_phdr
);
2080 elf
->e_phnum
= segs
;
2087 static void fill_elf_note_phdr(struct elf_phdr
*phdr
, int sz
, off_t offset
)
2089 phdr
->p_type
= PT_NOTE
;
2090 phdr
->p_offset
= offset
;
2093 phdr
->p_filesz
= sz
;
2103 static size_t note_size(const struct memelfnote
*note
)
2105 return (note
->notesz
);
2108 static void fill_prstatus(struct elf_prstatus
*prstatus
,
2109 const TaskState
*ts
, int signr
)
2111 (void) memset(prstatus
, 0, sizeof (*prstatus
));
2112 prstatus
->pr_info
.si_signo
= prstatus
->pr_cursig
= signr
;
2113 prstatus
->pr_pid
= ts
->ts_tid
;
2114 prstatus
->pr_ppid
= getppid();
2115 prstatus
->pr_pgrp
= getpgrp();
2116 prstatus
->pr_sid
= getsid(0);
2119 bswap_prstatus(prstatus
);
2123 static int fill_psinfo(struct elf_prpsinfo
*psinfo
, const TaskState
*ts
)
2125 char *filename
, *base_filename
;
2126 unsigned int i
, len
;
2128 (void) memset(psinfo
, 0, sizeof (*psinfo
));
2130 len
= ts
->info
->arg_end
- ts
->info
->arg_start
;
2131 if (len
>= ELF_PRARGSZ
)
2132 len
= ELF_PRARGSZ
- 1;
2133 if (copy_from_user(&psinfo
->pr_psargs
, ts
->info
->arg_start
, len
))
2135 for (i
= 0; i
< len
; i
++)
2136 if (psinfo
->pr_psargs
[i
] == 0)
2137 psinfo
->pr_psargs
[i
] = ' ';
2138 psinfo
->pr_psargs
[len
] = 0;
2140 psinfo
->pr_pid
= getpid();
2141 psinfo
->pr_ppid
= getppid();
2142 psinfo
->pr_pgrp
= getpgrp();
2143 psinfo
->pr_sid
= getsid(0);
2144 psinfo
->pr_uid
= getuid();
2145 psinfo
->pr_gid
= getgid();
2147 filename
= strdup(ts
->bprm
->filename
);
2148 base_filename
= strdup(basename(filename
));
2149 (void) strncpy(psinfo
->pr_fname
, base_filename
,
2150 sizeof(psinfo
->pr_fname
));
2151 free(base_filename
);
2155 bswap_psinfo(psinfo
);
2160 static void fill_auxv_note(struct memelfnote
*note
, const TaskState
*ts
)
2162 elf_addr_t auxv
= (elf_addr_t
)ts
->info
->saved_auxv
;
2163 elf_addr_t orig_auxv
= auxv
;
2169 * Auxiliary vector is stored in target process stack. It contains
2170 * {type, value} pairs that we need to dump into note. This is not
2171 * strictly necessary but we do it here for sake of completeness.
2174 /* find out lenght of the vector, AT_NULL is terminator */
2177 get_user_ual(val
, auxv
);
2179 auxv
+= 2 * sizeof (elf_addr_t
);
2180 } while (val
!= AT_NULL
);
2181 len
= i
* sizeof (elf_addr_t
);
2183 /* read in whole auxv vector and copy it to memelfnote */
2184 ptr
= lock_user(VERIFY_READ
, orig_auxv
, len
, 0);
2186 fill_note(note
, "CORE", NT_AUXV
, len
, ptr
);
2187 unlock_user(ptr
, auxv
, len
);
2192 * Constructs name of coredump file. We have following convention
2194 * qemu_<basename-of-target-binary>_<date>-<time>_<pid>.core
2196 * Returns 0 in case of success, -1 otherwise (errno is set).
2198 static int core_dump_filename(const TaskState
*ts
, char *buf
,
2202 char *filename
= NULL
;
2203 char *base_filename
= NULL
;
2207 assert(bufsize
>= PATH_MAX
);
2209 if (gettimeofday(&tv
, NULL
) < 0) {
2210 (void) fprintf(stderr
, "unable to get current timestamp: %s",
2215 filename
= strdup(ts
->bprm
->filename
);
2216 base_filename
= strdup(basename(filename
));
2217 (void) strftime(timestamp
, sizeof (timestamp
), "%Y%m%d-%H%M%S",
2218 localtime_r(&tv
.tv_sec
, &tm
));
2219 (void) snprintf(buf
, bufsize
, "qemu_%s_%s_%d.core",
2220 base_filename
, timestamp
, (int)getpid());
2221 free(base_filename
);
2227 static int dump_write(int fd
, const void *ptr
, size_t size
)
2229 const char *bufp
= (const char *)ptr
;
2230 ssize_t bytes_written
, bytes_left
;
2231 struct rlimit dumpsize
;
2235 getrlimit(RLIMIT_CORE
, &dumpsize
);
2236 if ((pos
= lseek(fd
, 0, SEEK_CUR
))==-1) {
2237 if (errno
== ESPIPE
) { /* not a seekable stream */
2243 if (dumpsize
.rlim_cur
<= pos
) {
2245 } else if (dumpsize
.rlim_cur
== RLIM_INFINITY
) {
2248 size_t limit_left
=dumpsize
.rlim_cur
- pos
;
2249 bytes_left
= limit_left
>= size
? size
: limit_left
;
2254 * In normal conditions, single write(2) should do but
2255 * in case of socket etc. this mechanism is more portable.
2258 bytes_written
= write(fd
, bufp
, bytes_left
);
2259 if (bytes_written
< 0) {
2263 } else if (bytes_written
== 0) { /* eof */
2266 bufp
+= bytes_written
;
2267 bytes_left
-= bytes_written
;
2268 } while (bytes_left
> 0);
2273 static int write_note(struct memelfnote
*men
, int fd
)
2277 en
.n_namesz
= men
->namesz
;
2278 en
.n_type
= men
->type
;
2279 en
.n_descsz
= men
->datasz
;
2285 if (dump_write(fd
, &en
, sizeof(en
)) != 0)
2287 if (dump_write(fd
, men
->name
, men
->namesz_rounded
) != 0)
2289 if (dump_write(fd
, men
->data
, men
->datasz
) != 0)
2295 static void fill_thread_info(struct elf_note_info
*info
, const CPUState
*env
)
2297 TaskState
*ts
= (TaskState
*)env
->opaque
;
2298 struct elf_thread_status
*ets
;
2300 ets
= qemu_mallocz(sizeof (*ets
));
2301 ets
->num_notes
= 1; /* only prstatus is dumped */
2302 fill_prstatus(&ets
->prstatus
, ts
, 0);
2303 elf_core_copy_regs(&ets
->prstatus
.pr_reg
, env
);
2304 fill_note(&ets
->notes
[0], "CORE", NT_PRSTATUS
, sizeof (ets
->prstatus
),
2307 TAILQ_INSERT_TAIL(&info
->thread_list
, ets
, ets_link
);
2309 info
->notes_size
+= note_size(&ets
->notes
[0]);
2312 static int fill_note_info(struct elf_note_info
*info
,
2313 long signr
, const CPUState
*env
)
2316 CPUState
*cpu
= NULL
;
2317 TaskState
*ts
= (TaskState
*)env
->opaque
;
2320 (void) memset(info
, 0, sizeof (*info
));
2322 TAILQ_INIT(&info
->thread_list
);
2324 info
->notes
= qemu_mallocz(NUMNOTES
* sizeof (struct memelfnote
));
2325 if (info
->notes
== NULL
)
2327 info
->prstatus
= qemu_mallocz(sizeof (*info
->prstatus
));
2328 if (info
->prstatus
== NULL
)
2330 info
->psinfo
= qemu_mallocz(sizeof (*info
->psinfo
));
2331 if (info
->prstatus
== NULL
)
2335 * First fill in status (and registers) of current thread
2336 * including process info & aux vector.
2338 fill_prstatus(info
->prstatus
, ts
, signr
);
2339 elf_core_copy_regs(&info
->prstatus
->pr_reg
, env
);
2340 fill_note(&info
->notes
[0], "CORE", NT_PRSTATUS
,
2341 sizeof (*info
->prstatus
), info
->prstatus
);
2342 fill_psinfo(info
->psinfo
, ts
);
2343 fill_note(&info
->notes
[1], "CORE", NT_PRPSINFO
,
2344 sizeof (*info
->psinfo
), info
->psinfo
);
2345 fill_auxv_note(&info
->notes
[2], ts
);
2348 info
->notes_size
= 0;
2349 for (i
= 0; i
< info
->numnote
; i
++)
2350 info
->notes_size
+= note_size(&info
->notes
[i
]);
2352 /* read and fill status of all threads */
2354 for (cpu
= first_cpu
; cpu
!= NULL
; cpu
= cpu
->next_cpu
) {
2355 if (cpu
== thread_env
)
2357 fill_thread_info(info
, cpu
);
2364 static void free_note_info(struct elf_note_info
*info
)
2366 struct elf_thread_status
*ets
;
2368 while (!TAILQ_EMPTY(&info
->thread_list
)) {
2369 ets
= TAILQ_FIRST(&info
->thread_list
);
2370 TAILQ_REMOVE(&info
->thread_list
, ets
, ets_link
);
2374 qemu_free(info
->prstatus
);
2375 qemu_free(info
->psinfo
);
2376 qemu_free(info
->notes
);
2379 static int write_note_info(struct elf_note_info
*info
, int fd
)
2381 struct elf_thread_status
*ets
;
2384 /* write prstatus, psinfo and auxv for current thread */
2385 for (i
= 0; i
< info
->numnote
; i
++)
2386 if ((error
= write_note(&info
->notes
[i
], fd
)) != 0)
2389 /* write prstatus for each thread */
2390 for (ets
= info
->thread_list
.tqh_first
; ets
!= NULL
;
2391 ets
= ets
->ets_link
.tqe_next
) {
2392 if ((error
= write_note(&ets
->notes
[0], fd
)) != 0)
2400 * Write out ELF coredump.
2402 * See documentation of ELF object file format in:
2403 * http://www.caldera.com/developers/devspecs/gabi41.pdf
2405 * Coredump format in linux is following:
2407 * 0 +----------------------+ \
2408 * | ELF header | ET_CORE |
2409 * +----------------------+ |
2410 * | ELF program headers | |--- headers
2411 * | - NOTE section | |
2412 * | - PT_LOAD sections | |
2413 * +----------------------+ /
2418 * +----------------------+ <-- aligned to target page
2419 * | Process memory dump |
2424 * +----------------------+
2426 * NT_PRSTATUS -> struct elf_prstatus (per thread)
2427 * NT_PRSINFO -> struct elf_prpsinfo
2428 * NT_AUXV is array of { type, value } pairs (see fill_auxv_note()).
2430 * Format follows System V format as close as possible. Current
2431 * version limitations are as follows:
2432 * - no floating point registers are dumped
2434 * Function returns 0 in case of success, negative errno otherwise.
2436 * TODO: make this work also during runtime: it should be
2437 * possible to force coredump from running process and then
2438 * continue processing. For example qemu could set up SIGUSR2
2439 * handler (provided that target process haven't registered
2440 * handler for that) that does the dump when signal is received.
2442 static int elf_core_dump(int signr
, const CPUState
*env
)
2444 const TaskState
*ts
= (const TaskState
*)env
->opaque
;
2445 struct vm_area_struct
*vma
= NULL
;
2446 char corefile
[PATH_MAX
];
2447 struct elf_note_info info
;
2449 struct elf_phdr phdr
;
2450 struct rlimit dumpsize
;
2451 struct mm_struct
*mm
= NULL
;
2452 off_t offset
= 0, data_offset
= 0;
2457 getrlimit(RLIMIT_CORE
, &dumpsize
);
2458 if (dumpsize
.rlim_cur
== 0)
2461 if (core_dump_filename(ts
, corefile
, sizeof (corefile
)) < 0)
2464 if ((fd
= open(corefile
, O_WRONLY
| O_CREAT
,
2465 S_IRUSR
|S_IWUSR
|S_IRGRP
|S_IROTH
)) < 0)
2469 * Walk through target process memory mappings and
2470 * set up structure containing this information. After
2471 * this point vma_xxx functions can be used.
2473 if ((mm
= vma_init()) == NULL
)
2476 walk_memory_regions(mm
, vma_walker
);
2477 segs
= vma_get_mapping_count(mm
);
2480 * Construct valid coredump ELF header. We also
2481 * add one more segment for notes.
2483 fill_elf_header(&elf
, segs
+ 1, ELF_MACHINE
, 0);
2484 if (dump_write(fd
, &elf
, sizeof (elf
)) != 0)
2487 /* fill in in-memory version of notes */
2488 if (fill_note_info(&info
, signr
, env
) < 0)
2491 offset
+= sizeof (elf
); /* elf header */
2492 offset
+= (segs
+ 1) * sizeof (struct elf_phdr
); /* program headers */
2494 /* write out notes program header */
2495 fill_elf_note_phdr(&phdr
, info
.notes_size
, offset
);
2497 offset
+= info
.notes_size
;
2498 if (dump_write(fd
, &phdr
, sizeof (phdr
)) != 0)
2502 * ELF specification wants data to start at page boundary so
2505 offset
= roundup(offset
, ELF_EXEC_PAGESIZE
);
2508 * Write program headers for memory regions mapped in
2509 * the target process.
2511 for (vma
= vma_first(mm
); vma
!= NULL
; vma
= vma_next(vma
)) {
2512 (void) memset(&phdr
, 0, sizeof (phdr
));
2514 phdr
.p_type
= PT_LOAD
;
2515 phdr
.p_offset
= offset
;
2516 phdr
.p_vaddr
= vma
->vma_start
;
2518 phdr
.p_filesz
= vma_dump_size(vma
);
2519 offset
+= phdr
.p_filesz
;
2520 phdr
.p_memsz
= vma
->vma_end
- vma
->vma_start
;
2521 phdr
.p_flags
= vma
->vma_flags
& PROT_READ
? PF_R
: 0;
2522 if (vma
->vma_flags
& PROT_WRITE
)
2523 phdr
.p_flags
|= PF_W
;
2524 if (vma
->vma_flags
& PROT_EXEC
)
2525 phdr
.p_flags
|= PF_X
;
2526 phdr
.p_align
= ELF_EXEC_PAGESIZE
;
2528 dump_write(fd
, &phdr
, sizeof (phdr
));
2532 * Next we write notes just after program headers. No
2533 * alignment needed here.
2535 if (write_note_info(&info
, fd
) < 0)
2538 /* align data to page boundary */
2539 data_offset
= lseek(fd
, 0, SEEK_CUR
);
2540 data_offset
= TARGET_PAGE_ALIGN(data_offset
);
2541 if (lseek(fd
, data_offset
, SEEK_SET
) != data_offset
)
2545 * Finally we can dump process memory into corefile as well.
2547 for (vma
= vma_first(mm
); vma
!= NULL
; vma
= vma_next(vma
)) {
2551 end
= vma
->vma_start
+ vma_dump_size(vma
);
2553 for (addr
= vma
->vma_start
; addr
< end
;
2554 addr
+= TARGET_PAGE_SIZE
) {
2555 char page
[TARGET_PAGE_SIZE
];
2559 * Read in page from target process memory and
2560 * write it to coredump file.
2562 error
= copy_from_user(page
, addr
, sizeof (page
));
2564 (void) fprintf(stderr
, "unable to dump " TARGET_FMT_lx
"\n",
2569 if (dump_write(fd
, page
, TARGET_PAGE_SIZE
) < 0)
2575 free_note_info(&info
);
2585 #endif /* USE_ELF_CORE_DUMP */
2587 static int load_aout_interp(void * exptr
, int interp_fd
)
2589 printf("a.out interpreter not yet supported\n");
2593 void do_init_thread(struct target_pt_regs
*regs
, struct image_info
*infop
)
2595 init_thread(regs
, infop
);