new scsi-generic abstraction, use SG_IO (Christoph Hellwig)
[qemu-kvm/fedora.git] / target-sh4 / op_helper.c
blob84e1ad3317cac4cd5fe5c4ec75e326759d1a004b
1 /*
2 * SH4 emulation
4 * Copyright (c) 2005 Samuel Tardieu
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, write to the Free Software
18 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston MA 02110-1301 USA
20 #include <assert.h>
21 #include "exec.h"
22 #include "helper.h"
24 #ifndef CONFIG_USER_ONLY
26 #define MMUSUFFIX _mmu
28 #define SHIFT 0
29 #include "softmmu_template.h"
31 #define SHIFT 1
32 #include "softmmu_template.h"
34 #define SHIFT 2
35 #include "softmmu_template.h"
37 #define SHIFT 3
38 #include "softmmu_template.h"
40 void tlb_fill(target_ulong addr, int is_write, int mmu_idx, void *retaddr)
42 TranslationBlock *tb;
43 CPUState *saved_env;
44 unsigned long pc;
45 int ret;
47 /* XXX: hack to restore env in all cases, even if not called from
48 generated code */
49 saved_env = env;
50 env = cpu_single_env;
51 ret = cpu_sh4_handle_mmu_fault(env, addr, is_write, mmu_idx, 1);
52 if (ret) {
53 if (retaddr) {
54 /* now we have a real cpu fault */
55 pc = (unsigned long) retaddr;
56 tb = tb_find_pc(pc);
57 if (tb) {
58 /* the PC is inside the translated code. It means that we have
59 a virtual CPU fault */
60 cpu_restore_state(tb, env, pc, NULL);
63 cpu_loop_exit();
65 env = saved_env;
68 #endif
70 void helper_ldtlb(void)
72 #ifdef CONFIG_USER_ONLY
73 /* XXXXX */
74 assert(0);
75 #else
76 cpu_load_tlb(env);
77 #endif
80 void helper_raise_illegal_instruction(void)
82 env->exception_index = 0x180;
83 cpu_loop_exit();
86 void helper_raise_slot_illegal_instruction(void)
88 env->exception_index = 0x1a0;
89 cpu_loop_exit();
92 void helper_raise_fpu_disable(void)
94 env->exception_index = 0x800;
95 cpu_loop_exit();
98 void helper_raise_slot_fpu_disable(void)
100 env->exception_index = 0x820;
101 cpu_loop_exit();
104 void helper_debug(void)
106 env->exception_index = EXCP_DEBUG;
107 cpu_loop_exit();
110 void helper_sleep(uint32_t next_pc)
112 env->halted = 1;
113 env->exception_index = EXCP_HLT;
114 env->pc = next_pc;
115 cpu_loop_exit();
118 void helper_trapa(uint32_t tra)
120 env->tra = tra << 2;
121 env->exception_index = 0x160;
122 cpu_loop_exit();
125 uint32_t helper_addc(uint32_t arg0, uint32_t arg1)
127 uint32_t tmp0, tmp1;
129 tmp1 = arg0 + arg1;
130 tmp0 = arg1;
131 arg1 = tmp1 + (env->sr & 1);
132 if (tmp0 > tmp1)
133 env->sr |= SR_T;
134 else
135 env->sr &= ~SR_T;
136 if (tmp1 > arg1)
137 env->sr |= SR_T;
138 return arg1;
141 uint32_t helper_addv(uint32_t arg0, uint32_t arg1)
143 uint32_t dest, src, ans;
145 if ((int32_t) arg1 >= 0)
146 dest = 0;
147 else
148 dest = 1;
149 if ((int32_t) arg0 >= 0)
150 src = 0;
151 else
152 src = 1;
153 src += dest;
154 arg1 += arg0;
155 if ((int32_t) arg1 >= 0)
156 ans = 0;
157 else
158 ans = 1;
159 ans += dest;
160 if (src == 0 || src == 2) {
161 if (ans == 1)
162 env->sr |= SR_T;
163 else
164 env->sr &= ~SR_T;
165 } else
166 env->sr &= ~SR_T;
167 return arg1;
170 #define T (env->sr & SR_T)
171 #define Q (env->sr & SR_Q ? 1 : 0)
172 #define M (env->sr & SR_M ? 1 : 0)
173 #define SETT env->sr |= SR_T
174 #define CLRT env->sr &= ~SR_T
175 #define SETQ env->sr |= SR_Q
176 #define CLRQ env->sr &= ~SR_Q
177 #define SETM env->sr |= SR_M
178 #define CLRM env->sr &= ~SR_M
180 uint32_t helper_div1(uint32_t arg0, uint32_t arg1)
182 uint32_t tmp0, tmp2;
183 uint8_t old_q, tmp1 = 0xff;
185 //printf("div1 arg0=0x%08x arg1=0x%08x M=%d Q=%d T=%d\n", arg0, arg1, M, Q, T);
186 old_q = Q;
187 if ((0x80000000 & arg1) != 0)
188 SETQ;
189 else
190 CLRQ;
191 tmp2 = arg0;
192 arg1 <<= 1;
193 arg1 |= T;
194 switch (old_q) {
195 case 0:
196 switch (M) {
197 case 0:
198 tmp0 = arg1;
199 arg1 -= tmp2;
200 tmp1 = arg1 > tmp0;
201 switch (Q) {
202 case 0:
203 if (tmp1)
204 SETQ;
205 else
206 CLRQ;
207 break;
208 case 1:
209 if (tmp1 == 0)
210 SETQ;
211 else
212 CLRQ;
213 break;
215 break;
216 case 1:
217 tmp0 = arg1;
218 arg1 += tmp2;
219 tmp1 = arg1 < tmp0;
220 switch (Q) {
221 case 0:
222 if (tmp1 == 0)
223 SETQ;
224 else
225 CLRQ;
226 break;
227 case 1:
228 if (tmp1)
229 SETQ;
230 else
231 CLRQ;
232 break;
234 break;
236 break;
237 case 1:
238 switch (M) {
239 case 0:
240 tmp0 = arg1;
241 arg1 += tmp2;
242 tmp1 = arg1 < tmp0;
243 switch (Q) {
244 case 0:
245 if (tmp1)
246 SETQ;
247 else
248 CLRQ;
249 break;
250 case 1:
251 if (tmp1 == 0)
252 SETQ;
253 else
254 CLRQ;
255 break;
257 break;
258 case 1:
259 tmp0 = arg1;
260 arg1 -= tmp2;
261 tmp1 = arg1 > tmp0;
262 switch (Q) {
263 case 0:
264 if (tmp1 == 0)
265 SETQ;
266 else
267 CLRQ;
268 break;
269 case 1:
270 if (tmp1)
271 SETQ;
272 else
273 CLRQ;
274 break;
276 break;
278 break;
280 if (Q == M)
281 SETT;
282 else
283 CLRT;
284 //printf("Output: arg1=0x%08x M=%d Q=%d T=%d\n", arg1, M, Q, T);
285 return arg1;
288 void helper_macl(uint32_t arg0, uint32_t arg1)
290 int64_t res;
292 res = ((uint64_t) env->mach << 32) | env->macl;
293 res += (int64_t) (int32_t) arg0 *(int64_t) (int32_t) arg1;
294 env->mach = (res >> 32) & 0xffffffff;
295 env->macl = res & 0xffffffff;
296 if (env->sr & SR_S) {
297 if (res < 0)
298 env->mach |= 0xffff0000;
299 else
300 env->mach &= 0x00007fff;
304 void helper_macw(uint32_t arg0, uint32_t arg1)
306 int64_t res;
308 res = ((uint64_t) env->mach << 32) | env->macl;
309 res += (int64_t) (int16_t) arg0 *(int64_t) (int16_t) arg1;
310 env->mach = (res >> 32) & 0xffffffff;
311 env->macl = res & 0xffffffff;
312 if (env->sr & SR_S) {
313 if (res < -0x80000000) {
314 env->mach = 1;
315 env->macl = 0x80000000;
316 } else if (res > 0x000000007fffffff) {
317 env->mach = 1;
318 env->macl = 0x7fffffff;
323 uint32_t helper_negc(uint32_t arg)
325 uint32_t temp;
327 temp = -arg;
328 arg = temp - (env->sr & SR_T);
329 if (0 < temp)
330 env->sr |= SR_T;
331 else
332 env->sr &= ~SR_T;
333 if (temp < arg)
334 env->sr |= SR_T;
335 return arg;
338 uint32_t helper_subc(uint32_t arg0, uint32_t arg1)
340 uint32_t tmp0, tmp1;
342 tmp1 = arg1 - arg0;
343 tmp0 = arg1;
344 arg1 = tmp1 - (env->sr & SR_T);
345 if (tmp0 < tmp1)
346 env->sr |= SR_T;
347 else
348 env->sr &= ~SR_T;
349 if (tmp1 < arg1)
350 env->sr |= SR_T;
351 return arg1;
354 uint32_t helper_subv(uint32_t arg0, uint32_t arg1)
356 int32_t dest, src, ans;
358 if ((int32_t) arg1 >= 0)
359 dest = 0;
360 else
361 dest = 1;
362 if ((int32_t) arg0 >= 0)
363 src = 0;
364 else
365 src = 1;
366 src += dest;
367 arg1 -= arg0;
368 if ((int32_t) arg1 >= 0)
369 ans = 0;
370 else
371 ans = 1;
372 ans += dest;
373 if (src == 1) {
374 if (ans == 1)
375 env->sr |= SR_T;
376 else
377 env->sr &= ~SR_T;
378 } else
379 env->sr &= ~SR_T;
380 return arg1;
383 static inline void set_t(void)
385 env->sr |= SR_T;
388 static inline void clr_t(void)
390 env->sr &= ~SR_T;
393 void helper_ld_fpscr(uint32_t val)
395 env->fpscr = val & 0x003fffff;
396 if (val & 0x01)
397 set_float_rounding_mode(float_round_to_zero, &env->fp_status);
398 else
399 set_float_rounding_mode(float_round_nearest_even, &env->fp_status);
402 uint32_t helper_fabs_FT(uint32_t t0)
404 CPU_FloatU f;
405 f.l = t0;
406 f.f = float32_abs(f.f);
407 return f.l;
410 uint64_t helper_fabs_DT(uint64_t t0)
412 CPU_DoubleU d;
413 d.ll = t0;
414 d.d = float64_abs(d.d);
415 return d.ll;
418 uint32_t helper_fadd_FT(uint32_t t0, uint32_t t1)
420 CPU_FloatU f0, f1;
421 f0.l = t0;
422 f1.l = t1;
423 f0.f = float32_add(f0.f, f1.f, &env->fp_status);
424 return f0.l;
427 uint64_t helper_fadd_DT(uint64_t t0, uint64_t t1)
429 CPU_DoubleU d0, d1;
430 d0.ll = t0;
431 d1.ll = t1;
432 d0.d = float64_add(d0.d, d1.d, &env->fp_status);
433 return d0.ll;
436 void helper_fcmp_eq_FT(uint32_t t0, uint32_t t1)
438 CPU_FloatU f0, f1;
439 f0.l = t0;
440 f1.l = t1;
442 if (float32_compare(f0.f, f1.f, &env->fp_status) == 0)
443 set_t();
444 else
445 clr_t();
448 void helper_fcmp_eq_DT(uint64_t t0, uint64_t t1)
450 CPU_DoubleU d0, d1;
451 d0.ll = t0;
452 d1.ll = t1;
454 if (float64_compare(d0.d, d1.d, &env->fp_status) == 0)
455 set_t();
456 else
457 clr_t();
460 void helper_fcmp_gt_FT(uint32_t t0, uint32_t t1)
462 CPU_FloatU f0, f1;
463 f0.l = t0;
464 f1.l = t1;
466 if (float32_compare(f0.f, f1.f, &env->fp_status) == 1)
467 set_t();
468 else
469 clr_t();
472 void helper_fcmp_gt_DT(uint64_t t0, uint64_t t1)
474 CPU_DoubleU d0, d1;
475 d0.ll = t0;
476 d1.ll = t1;
478 if (float64_compare(d0.d, d1.d, &env->fp_status) == 1)
479 set_t();
480 else
481 clr_t();
484 uint64_t helper_fcnvsd_FT_DT(uint32_t t0)
486 CPU_DoubleU d;
487 CPU_FloatU f;
488 f.l = t0;
489 d.d = float32_to_float64(f.f, &env->fp_status);
490 return d.ll;
493 uint32_t helper_fcnvds_DT_FT(uint64_t t0)
495 CPU_DoubleU d;
496 CPU_FloatU f;
497 d.ll = t0;
498 f.f = float64_to_float32(d.d, &env->fp_status);
499 return f.l;
502 uint32_t helper_fdiv_FT(uint32_t t0, uint32_t t1)
504 CPU_FloatU f0, f1;
505 f0.l = t0;
506 f1.l = t1;
507 f0.f = float32_div(f0.f, f1.f, &env->fp_status);
508 return f0.l;
511 uint64_t helper_fdiv_DT(uint64_t t0, uint64_t t1)
513 CPU_DoubleU d0, d1;
514 d0.ll = t0;
515 d1.ll = t1;
516 d0.d = float64_div(d0.d, d1.d, &env->fp_status);
517 return d0.ll;
520 uint32_t helper_float_FT(uint32_t t0)
522 CPU_FloatU f;
523 f.f = int32_to_float32(t0, &env->fp_status);
524 return f.l;
527 uint64_t helper_float_DT(uint32_t t0)
529 CPU_DoubleU d;
530 d.d = int32_to_float64(t0, &env->fp_status);
531 return d.ll;
534 uint32_t helper_fmac_FT(uint32_t t0, uint32_t t1, uint32_t t2)
536 CPU_FloatU f0, f1, f2;
537 f0.l = t0;
538 f1.l = t1;
539 f2.l = t2;
540 f0.f = float32_mul(f0.f, f1.f, &env->fp_status);
541 f0.f = float32_add(f0.f, f2.f, &env->fp_status);
542 return f0.l;
545 uint32_t helper_fmul_FT(uint32_t t0, uint32_t t1)
547 CPU_FloatU f0, f1;
548 f0.l = t0;
549 f1.l = t1;
550 f0.f = float32_mul(f0.f, f1.f, &env->fp_status);
551 return f0.l;
554 uint64_t helper_fmul_DT(uint64_t t0, uint64_t t1)
556 CPU_DoubleU d0, d1;
557 d0.ll = t0;
558 d1.ll = t1;
559 d0.d = float64_mul(d0.d, d1.d, &env->fp_status);
560 return d0.ll;
563 uint32_t helper_fneg_T(uint32_t t0)
565 CPU_FloatU f;
566 f.l = t0;
567 f.f = float32_chs(f.f);
568 return f.l;
571 uint32_t helper_fsqrt_FT(uint32_t t0)
573 CPU_FloatU f;
574 f.l = t0;
575 f.f = float32_sqrt(f.f, &env->fp_status);
576 return f.l;
579 uint64_t helper_fsqrt_DT(uint64_t t0)
581 CPU_DoubleU d;
582 d.ll = t0;
583 d.d = float64_sqrt(d.d, &env->fp_status);
584 return d.ll;
587 uint32_t helper_fsub_FT(uint32_t t0, uint32_t t1)
589 CPU_FloatU f0, f1;
590 f0.l = t0;
591 f1.l = t1;
592 f0.f = float32_sub(f0.f, f1.f, &env->fp_status);
593 return f0.l;
596 uint64_t helper_fsub_DT(uint64_t t0, uint64_t t1)
598 CPU_DoubleU d0, d1;
599 d0.ll = t0;
600 d1.ll = t1;
601 d0.d = float64_sub(d0.d, d1.d, &env->fp_status);
602 return d0.ll;
605 uint32_t helper_ftrc_FT(uint32_t t0)
607 CPU_FloatU f;
608 f.l = t0;
609 return float32_to_int32_round_to_zero(f.f, &env->fp_status);
612 uint32_t helper_ftrc_DT(uint64_t t0)
614 CPU_DoubleU d;
615 d.ll = t0;
616 return float64_to_int32_round_to_zero(d.d, &env->fp_status);