SMBus qdev conversion
[qemu-kvm/fedora.git] / hw / fmopl.c
blob52cf35e3f9425fd7b0fdc5b89bb0885898449474
1 /*
2 **
3 ** File: fmopl.c -- software implementation of FM sound generator
4 **
5 ** Copyright (C) 1999,2000 Tatsuyuki Satoh , MultiArcadeMachineEmurator development
6 **
7 ** Version 0.37a
8 **
9 */
12 preliminary :
13 Problem :
14 note:
17 /* This version of fmopl.c is a fork of the MAME one, relicensed under the LGPL.
19 * This library is free software; you can redistribute it and/or
20 * modify it under the terms of the GNU Lesser General Public
21 * License as published by the Free Software Foundation; either
22 * version 2.1 of the License, or (at your option) any later version.
24 * This library is distributed in the hope that it will be useful,
25 * but WITHOUT ANY WARRANTY; without even the implied warranty of
26 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
27 * Lesser General Public License for more details.
29 * You should have received a copy of the GNU Lesser General Public
30 * License along with this library; if not, write to the Free Software
31 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston MA 02110-1301 USA
34 #define INLINE static inline
35 #define HAS_YM3812 1
37 #include <stdio.h>
38 #include <stdlib.h>
39 #include <string.h>
40 #include <stdarg.h>
41 #include <math.h>
42 //#include "driver.h" /* use M.A.M.E. */
43 #include "fmopl.h"
45 #ifndef PI
46 #define PI 3.14159265358979323846
47 #endif
49 /* -------------------- for debug --------------------- */
50 /* #define OPL_OUTPUT_LOG */
51 #ifdef OPL_OUTPUT_LOG
52 static FILE *opl_dbg_fp = NULL;
53 static FM_OPL *opl_dbg_opl[16];
54 static int opl_dbg_maxchip,opl_dbg_chip;
55 #endif
57 /* -------------------- preliminary define section --------------------- */
58 /* attack/decay rate time rate */
59 #define OPL_ARRATE 141280 /* RATE 4 = 2826.24ms @ 3.6MHz */
60 #define OPL_DRRATE 1956000 /* RATE 4 = 39280.64ms @ 3.6MHz */
62 #define DELTAT_MIXING_LEVEL (1) /* DELTA-T ADPCM MIXING LEVEL */
64 #define FREQ_BITS 24 /* frequency turn */
66 /* counter bits = 20 , octerve 7 */
67 #define FREQ_RATE (1<<(FREQ_BITS-20))
68 #define TL_BITS (FREQ_BITS+2)
70 /* final output shift , limit minimum and maximum */
71 #define OPL_OUTSB (TL_BITS+3-16) /* OPL output final shift 16bit */
72 #define OPL_MAXOUT (0x7fff<<OPL_OUTSB)
73 #define OPL_MINOUT (-0x8000<<OPL_OUTSB)
75 /* -------------------- quality selection --------------------- */
77 /* sinwave entries */
78 /* used static memory = SIN_ENT * 4 (byte) */
79 #define SIN_ENT 2048
81 /* output level entries (envelope,sinwave) */
82 /* envelope counter lower bits */
83 #define ENV_BITS 16
84 /* envelope output entries */
85 #define EG_ENT 4096
86 /* used dynamic memory = EG_ENT*4*4(byte)or EG_ENT*6*4(byte) */
87 /* used static memory = EG_ENT*4 (byte) */
89 #define EG_OFF ((2*EG_ENT)<<ENV_BITS) /* OFF */
90 #define EG_DED EG_OFF
91 #define EG_DST (EG_ENT<<ENV_BITS) /* DECAY START */
92 #define EG_AED EG_DST
93 #define EG_AST 0 /* ATTACK START */
95 #define EG_STEP (96.0/EG_ENT) /* OPL is 0.1875 dB step */
97 /* LFO table entries */
98 #define VIB_ENT 512
99 #define VIB_SHIFT (32-9)
100 #define AMS_ENT 512
101 #define AMS_SHIFT (32-9)
103 #define VIB_RATE 256
105 /* -------------------- local defines , macros --------------------- */
107 /* register number to channel number , slot offset */
108 #define SLOT1 0
109 #define SLOT2 1
111 /* envelope phase */
112 #define ENV_MOD_RR 0x00
113 #define ENV_MOD_DR 0x01
114 #define ENV_MOD_AR 0x02
116 /* -------------------- tables --------------------- */
117 static const int slot_array[32]=
119 0, 2, 4, 1, 3, 5,-1,-1,
120 6, 8,10, 7, 9,11,-1,-1,
121 12,14,16,13,15,17,-1,-1,
122 -1,-1,-1,-1,-1,-1,-1,-1
125 /* key scale level */
126 /* table is 3dB/OCT , DV converts this in TL step at 6dB/OCT */
127 #define DV (EG_STEP/2)
128 static const UINT32 KSL_TABLE[8*16]=
130 /* OCT 0 */
131 0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV,
132 0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV,
133 0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV,
134 0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV,
135 /* OCT 1 */
136 0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV,
137 0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV,
138 0.000/DV, 0.750/DV, 1.125/DV, 1.500/DV,
139 1.875/DV, 2.250/DV, 2.625/DV, 3.000/DV,
140 /* OCT 2 */
141 0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV,
142 0.000/DV, 1.125/DV, 1.875/DV, 2.625/DV,
143 3.000/DV, 3.750/DV, 4.125/DV, 4.500/DV,
144 4.875/DV, 5.250/DV, 5.625/DV, 6.000/DV,
145 /* OCT 3 */
146 0.000/DV, 0.000/DV, 0.000/DV, 1.875/DV,
147 3.000/DV, 4.125/DV, 4.875/DV, 5.625/DV,
148 6.000/DV, 6.750/DV, 7.125/DV, 7.500/DV,
149 7.875/DV, 8.250/DV, 8.625/DV, 9.000/DV,
150 /* OCT 4 */
151 0.000/DV, 0.000/DV, 3.000/DV, 4.875/DV,
152 6.000/DV, 7.125/DV, 7.875/DV, 8.625/DV,
153 9.000/DV, 9.750/DV,10.125/DV,10.500/DV,
154 10.875/DV,11.250/DV,11.625/DV,12.000/DV,
155 /* OCT 5 */
156 0.000/DV, 3.000/DV, 6.000/DV, 7.875/DV,
157 9.000/DV,10.125/DV,10.875/DV,11.625/DV,
158 12.000/DV,12.750/DV,13.125/DV,13.500/DV,
159 13.875/DV,14.250/DV,14.625/DV,15.000/DV,
160 /* OCT 6 */
161 0.000/DV, 6.000/DV, 9.000/DV,10.875/DV,
162 12.000/DV,13.125/DV,13.875/DV,14.625/DV,
163 15.000/DV,15.750/DV,16.125/DV,16.500/DV,
164 16.875/DV,17.250/DV,17.625/DV,18.000/DV,
165 /* OCT 7 */
166 0.000/DV, 9.000/DV,12.000/DV,13.875/DV,
167 15.000/DV,16.125/DV,16.875/DV,17.625/DV,
168 18.000/DV,18.750/DV,19.125/DV,19.500/DV,
169 19.875/DV,20.250/DV,20.625/DV,21.000/DV
171 #undef DV
173 /* sustain lebel table (3db per step) */
174 /* 0 - 15: 0, 3, 6, 9,12,15,18,21,24,27,30,33,36,39,42,93 (dB)*/
175 #define SC(db) (db*((3/EG_STEP)*(1<<ENV_BITS)))+EG_DST
176 static const INT32 SL_TABLE[16]={
177 SC( 0),SC( 1),SC( 2),SC(3 ),SC(4 ),SC(5 ),SC(6 ),SC( 7),
178 SC( 8),SC( 9),SC(10),SC(11),SC(12),SC(13),SC(14),SC(31)
180 #undef SC
182 #define TL_MAX (EG_ENT*2) /* limit(tl + ksr + envelope) + sinwave */
183 /* TotalLevel : 48 24 12 6 3 1.5 0.75 (dB) */
184 /* TL_TABLE[ 0 to TL_MAX ] : plus section */
185 /* TL_TABLE[ TL_MAX to TL_MAX+TL_MAX-1 ] : minus section */
186 static INT32 *TL_TABLE;
188 /* pointers to TL_TABLE with sinwave output offset */
189 static INT32 **SIN_TABLE;
191 /* LFO table */
192 static INT32 *AMS_TABLE;
193 static INT32 *VIB_TABLE;
195 /* envelope output curve table */
196 /* attack + decay + OFF */
197 static INT32 ENV_CURVE[2*EG_ENT+1];
199 /* multiple table */
200 #define ML 2
201 static const UINT32 MUL_TABLE[16]= {
202 /* 1/2, 1, 2, 3, 4, 5, 6, 7, 8, 9,10,11,12,13,14,15 */
203 0.50*ML, 1.00*ML, 2.00*ML, 3.00*ML, 4.00*ML, 5.00*ML, 6.00*ML, 7.00*ML,
204 8.00*ML, 9.00*ML,10.00*ML,10.00*ML,12.00*ML,12.00*ML,15.00*ML,15.00*ML
206 #undef ML
208 /* dummy attack / decay rate ( when rate == 0 ) */
209 static INT32 RATE_0[16]=
210 {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};
212 /* -------------------- static state --------------------- */
214 /* lock level of common table */
215 static int num_lock = 0;
217 /* work table */
218 static void *cur_chip = NULL; /* current chip point */
219 /* currenct chip state */
220 /* static OPLSAMPLE *bufL,*bufR; */
221 static OPL_CH *S_CH;
222 static OPL_CH *E_CH;
223 OPL_SLOT *SLOT7_1,*SLOT7_2,*SLOT8_1,*SLOT8_2;
225 static INT32 outd[1];
226 static INT32 ams;
227 static INT32 vib;
228 INT32 *ams_table;
229 INT32 *vib_table;
230 static INT32 amsIncr;
231 static INT32 vibIncr;
232 static INT32 feedback2; /* connect for SLOT 2 */
234 /* log output level */
235 #define LOG_ERR 3 /* ERROR */
236 #define LOG_WAR 2 /* WARNING */
237 #define LOG_INF 1 /* INFORMATION */
239 //#define LOG_LEVEL LOG_INF
240 #define LOG_LEVEL LOG_ERR
242 //#define LOG(n,x) if( (n)>=LOG_LEVEL ) logerror x
243 #define LOG(n,x)
245 /* --------------------- subroutines --------------------- */
247 INLINE int Limit( int val, int max, int min ) {
248 if ( val > max )
249 val = max;
250 else if ( val < min )
251 val = min;
253 return val;
256 /* status set and IRQ handling */
257 INLINE void OPL_STATUS_SET(FM_OPL *OPL,int flag)
259 /* set status flag */
260 OPL->status |= flag;
261 if(!(OPL->status & 0x80))
263 if(OPL->status & OPL->statusmask)
264 { /* IRQ on */
265 OPL->status |= 0x80;
266 /* callback user interrupt handler (IRQ is OFF to ON) */
267 if(OPL->IRQHandler) (OPL->IRQHandler)(OPL->IRQParam,1);
272 /* status reset and IRQ handling */
273 INLINE void OPL_STATUS_RESET(FM_OPL *OPL,int flag)
275 /* reset status flag */
276 OPL->status &=~flag;
277 if((OPL->status & 0x80))
279 if (!(OPL->status & OPL->statusmask) )
281 OPL->status &= 0x7f;
282 /* callback user interrupt handler (IRQ is ON to OFF) */
283 if(OPL->IRQHandler) (OPL->IRQHandler)(OPL->IRQParam,0);
288 /* IRQ mask set */
289 INLINE void OPL_STATUSMASK_SET(FM_OPL *OPL,int flag)
291 OPL->statusmask = flag;
292 /* IRQ handling check */
293 OPL_STATUS_SET(OPL,0);
294 OPL_STATUS_RESET(OPL,0);
297 /* ----- key on ----- */
298 INLINE void OPL_KEYON(OPL_SLOT *SLOT)
300 /* sin wave restart */
301 SLOT->Cnt = 0;
302 /* set attack */
303 SLOT->evm = ENV_MOD_AR;
304 SLOT->evs = SLOT->evsa;
305 SLOT->evc = EG_AST;
306 SLOT->eve = EG_AED;
308 /* ----- key off ----- */
309 INLINE void OPL_KEYOFF(OPL_SLOT *SLOT)
311 if( SLOT->evm > ENV_MOD_RR)
313 /* set envelope counter from envleope output */
314 SLOT->evm = ENV_MOD_RR;
315 if( !(SLOT->evc&EG_DST) )
316 //SLOT->evc = (ENV_CURVE[SLOT->evc>>ENV_BITS]<<ENV_BITS) + EG_DST;
317 SLOT->evc = EG_DST;
318 SLOT->eve = EG_DED;
319 SLOT->evs = SLOT->evsr;
323 /* ---------- calcrate Envelope Generator & Phase Generator ---------- */
324 /* return : envelope output */
325 INLINE UINT32 OPL_CALC_SLOT( OPL_SLOT *SLOT )
327 /* calcrate envelope generator */
328 if( (SLOT->evc+=SLOT->evs) >= SLOT->eve )
330 switch( SLOT->evm ){
331 case ENV_MOD_AR: /* ATTACK -> DECAY1 */
332 /* next DR */
333 SLOT->evm = ENV_MOD_DR;
334 SLOT->evc = EG_DST;
335 SLOT->eve = SLOT->SL;
336 SLOT->evs = SLOT->evsd;
337 break;
338 case ENV_MOD_DR: /* DECAY -> SL or RR */
339 SLOT->evc = SLOT->SL;
340 SLOT->eve = EG_DED;
341 if(SLOT->eg_typ)
343 SLOT->evs = 0;
345 else
347 SLOT->evm = ENV_MOD_RR;
348 SLOT->evs = SLOT->evsr;
350 break;
351 case ENV_MOD_RR: /* RR -> OFF */
352 SLOT->evc = EG_OFF;
353 SLOT->eve = EG_OFF+1;
354 SLOT->evs = 0;
355 break;
358 /* calcrate envelope */
359 return SLOT->TLL+ENV_CURVE[SLOT->evc>>ENV_BITS]+(SLOT->ams ? ams : 0);
362 /* set algorythm connection */
363 static void set_algorythm( OPL_CH *CH)
365 INT32 *carrier = &outd[0];
366 CH->connect1 = CH->CON ? carrier : &feedback2;
367 CH->connect2 = carrier;
370 /* ---------- frequency counter for operater update ---------- */
371 INLINE void CALC_FCSLOT(OPL_CH *CH,OPL_SLOT *SLOT)
373 int ksr;
375 /* frequency step counter */
376 SLOT->Incr = CH->fc * SLOT->mul;
377 ksr = CH->kcode >> SLOT->KSR;
379 if( SLOT->ksr != ksr )
381 SLOT->ksr = ksr;
382 /* attack , decay rate recalcration */
383 SLOT->evsa = SLOT->AR[ksr];
384 SLOT->evsd = SLOT->DR[ksr];
385 SLOT->evsr = SLOT->RR[ksr];
387 SLOT->TLL = SLOT->TL + (CH->ksl_base>>SLOT->ksl);
390 /* set multi,am,vib,EG-TYP,KSR,mul */
391 INLINE void set_mul(FM_OPL *OPL,int slot,int v)
393 OPL_CH *CH = &OPL->P_CH[slot/2];
394 OPL_SLOT *SLOT = &CH->SLOT[slot&1];
396 SLOT->mul = MUL_TABLE[v&0x0f];
397 SLOT->KSR = (v&0x10) ? 0 : 2;
398 SLOT->eg_typ = (v&0x20)>>5;
399 SLOT->vib = (v&0x40);
400 SLOT->ams = (v&0x80);
401 CALC_FCSLOT(CH,SLOT);
404 /* set ksl & tl */
405 INLINE void set_ksl_tl(FM_OPL *OPL,int slot,int v)
407 OPL_CH *CH = &OPL->P_CH[slot/2];
408 OPL_SLOT *SLOT = &CH->SLOT[slot&1];
409 int ksl = v>>6; /* 0 / 1.5 / 3 / 6 db/OCT */
411 SLOT->ksl = ksl ? 3-ksl : 31;
412 SLOT->TL = (v&0x3f)*(0.75/EG_STEP); /* 0.75db step */
414 if( !(OPL->mode&0x80) )
415 { /* not CSM latch total level */
416 SLOT->TLL = SLOT->TL + (CH->ksl_base>>SLOT->ksl);
420 /* set attack rate & decay rate */
421 INLINE void set_ar_dr(FM_OPL *OPL,int slot,int v)
423 OPL_CH *CH = &OPL->P_CH[slot/2];
424 OPL_SLOT *SLOT = &CH->SLOT[slot&1];
425 int ar = v>>4;
426 int dr = v&0x0f;
428 SLOT->AR = ar ? &OPL->AR_TABLE[ar<<2] : RATE_0;
429 SLOT->evsa = SLOT->AR[SLOT->ksr];
430 if( SLOT->evm == ENV_MOD_AR ) SLOT->evs = SLOT->evsa;
432 SLOT->DR = dr ? &OPL->DR_TABLE[dr<<2] : RATE_0;
433 SLOT->evsd = SLOT->DR[SLOT->ksr];
434 if( SLOT->evm == ENV_MOD_DR ) SLOT->evs = SLOT->evsd;
437 /* set sustain level & release rate */
438 INLINE void set_sl_rr(FM_OPL *OPL,int slot,int v)
440 OPL_CH *CH = &OPL->P_CH[slot/2];
441 OPL_SLOT *SLOT = &CH->SLOT[slot&1];
442 int sl = v>>4;
443 int rr = v & 0x0f;
445 SLOT->SL = SL_TABLE[sl];
446 if( SLOT->evm == ENV_MOD_DR ) SLOT->eve = SLOT->SL;
447 SLOT->RR = &OPL->DR_TABLE[rr<<2];
448 SLOT->evsr = SLOT->RR[SLOT->ksr];
449 if( SLOT->evm == ENV_MOD_RR ) SLOT->evs = SLOT->evsr;
452 /* operator output calcrator */
453 #define OP_OUT(slot,env,con) slot->wavetable[((slot->Cnt+con)/(0x1000000/SIN_ENT))&(SIN_ENT-1)][env]
454 /* ---------- calcrate one of channel ---------- */
455 INLINE void OPL_CALC_CH( OPL_CH *CH )
457 UINT32 env_out;
458 OPL_SLOT *SLOT;
460 feedback2 = 0;
461 /* SLOT 1 */
462 SLOT = &CH->SLOT[SLOT1];
463 env_out=OPL_CALC_SLOT(SLOT);
464 if( env_out < EG_ENT-1 )
466 /* PG */
467 if(SLOT->vib) SLOT->Cnt += (SLOT->Incr*vib/VIB_RATE);
468 else SLOT->Cnt += SLOT->Incr;
469 /* connectoion */
470 if(CH->FB)
472 int feedback1 = (CH->op1_out[0]+CH->op1_out[1])>>CH->FB;
473 CH->op1_out[1] = CH->op1_out[0];
474 *CH->connect1 += CH->op1_out[0] = OP_OUT(SLOT,env_out,feedback1);
476 else
478 *CH->connect1 += OP_OUT(SLOT,env_out,0);
480 }else
482 CH->op1_out[1] = CH->op1_out[0];
483 CH->op1_out[0] = 0;
485 /* SLOT 2 */
486 SLOT = &CH->SLOT[SLOT2];
487 env_out=OPL_CALC_SLOT(SLOT);
488 if( env_out < EG_ENT-1 )
490 /* PG */
491 if(SLOT->vib) SLOT->Cnt += (SLOT->Incr*vib/VIB_RATE);
492 else SLOT->Cnt += SLOT->Incr;
493 /* connectoion */
494 outd[0] += OP_OUT(SLOT,env_out, feedback2);
498 /* ---------- calcrate rythm block ---------- */
499 #define WHITE_NOISE_db 6.0
500 INLINE void OPL_CALC_RH( OPL_CH *CH )
502 UINT32 env_tam,env_sd,env_top,env_hh;
503 int whitenoise = (rand()&1)*(WHITE_NOISE_db/EG_STEP);
504 INT32 tone8;
506 OPL_SLOT *SLOT;
507 int env_out;
509 /* BD : same as FM serial mode and output level is large */
510 feedback2 = 0;
511 /* SLOT 1 */
512 SLOT = &CH[6].SLOT[SLOT1];
513 env_out=OPL_CALC_SLOT(SLOT);
514 if( env_out < EG_ENT-1 )
516 /* PG */
517 if(SLOT->vib) SLOT->Cnt += (SLOT->Incr*vib/VIB_RATE);
518 else SLOT->Cnt += SLOT->Incr;
519 /* connectoion */
520 if(CH[6].FB)
522 int feedback1 = (CH[6].op1_out[0]+CH[6].op1_out[1])>>CH[6].FB;
523 CH[6].op1_out[1] = CH[6].op1_out[0];
524 feedback2 = CH[6].op1_out[0] = OP_OUT(SLOT,env_out,feedback1);
526 else
528 feedback2 = OP_OUT(SLOT,env_out,0);
530 }else
532 feedback2 = 0;
533 CH[6].op1_out[1] = CH[6].op1_out[0];
534 CH[6].op1_out[0] = 0;
536 /* SLOT 2 */
537 SLOT = &CH[6].SLOT[SLOT2];
538 env_out=OPL_CALC_SLOT(SLOT);
539 if( env_out < EG_ENT-1 )
541 /* PG */
542 if(SLOT->vib) SLOT->Cnt += (SLOT->Incr*vib/VIB_RATE);
543 else SLOT->Cnt += SLOT->Incr;
544 /* connectoion */
545 outd[0] += OP_OUT(SLOT,env_out, feedback2)*2;
548 // SD (17) = mul14[fnum7] + white noise
549 // TAM (15) = mul15[fnum8]
550 // TOP (18) = fnum6(mul18[fnum8]+whitenoise)
551 // HH (14) = fnum7(mul18[fnum8]+whitenoise) + white noise
552 env_sd =OPL_CALC_SLOT(SLOT7_2) + whitenoise;
553 env_tam=OPL_CALC_SLOT(SLOT8_1);
554 env_top=OPL_CALC_SLOT(SLOT8_2);
555 env_hh =OPL_CALC_SLOT(SLOT7_1) + whitenoise;
557 /* PG */
558 if(SLOT7_1->vib) SLOT7_1->Cnt += (2*SLOT7_1->Incr*vib/VIB_RATE);
559 else SLOT7_1->Cnt += 2*SLOT7_1->Incr;
560 if(SLOT7_2->vib) SLOT7_2->Cnt += ((CH[7].fc*8)*vib/VIB_RATE);
561 else SLOT7_2->Cnt += (CH[7].fc*8);
562 if(SLOT8_1->vib) SLOT8_1->Cnt += (SLOT8_1->Incr*vib/VIB_RATE);
563 else SLOT8_1->Cnt += SLOT8_1->Incr;
564 if(SLOT8_2->vib) SLOT8_2->Cnt += ((CH[8].fc*48)*vib/VIB_RATE);
565 else SLOT8_2->Cnt += (CH[8].fc*48);
567 tone8 = OP_OUT(SLOT8_2,whitenoise,0 );
569 /* SD */
570 if( env_sd < EG_ENT-1 )
571 outd[0] += OP_OUT(SLOT7_1,env_sd, 0)*8;
572 /* TAM */
573 if( env_tam < EG_ENT-1 )
574 outd[0] += OP_OUT(SLOT8_1,env_tam, 0)*2;
575 /* TOP-CY */
576 if( env_top < EG_ENT-1 )
577 outd[0] += OP_OUT(SLOT7_2,env_top,tone8)*2;
578 /* HH */
579 if( env_hh < EG_ENT-1 )
580 outd[0] += OP_OUT(SLOT7_2,env_hh,tone8)*2;
583 /* ----------- initialize time tabls ----------- */
584 static void init_timetables( FM_OPL *OPL , int ARRATE , int DRRATE )
586 int i;
587 double rate;
589 /* make attack rate & decay rate tables */
590 for (i = 0;i < 4;i++) OPL->AR_TABLE[i] = OPL->DR_TABLE[i] = 0;
591 for (i = 4;i <= 60;i++){
592 rate = OPL->freqbase; /* frequency rate */
593 if( i < 60 ) rate *= 1.0+(i&3)*0.25; /* b0-1 : x1 , x1.25 , x1.5 , x1.75 */
594 rate *= 1<<((i>>2)-1); /* b2-5 : shift bit */
595 rate *= (double)(EG_ENT<<ENV_BITS);
596 OPL->AR_TABLE[i] = rate / ARRATE;
597 OPL->DR_TABLE[i] = rate / DRRATE;
599 for (i = 60;i < 76;i++)
601 OPL->AR_TABLE[i] = EG_AED-1;
602 OPL->DR_TABLE[i] = OPL->DR_TABLE[60];
604 #if 0
605 for (i = 0;i < 64 ;i++){ /* make for overflow area */
606 LOG(LOG_WAR,("rate %2d , ar %f ms , dr %f ms \n",i,
607 ((double)(EG_ENT<<ENV_BITS) / OPL->AR_TABLE[i]) * (1000.0 / OPL->rate),
608 ((double)(EG_ENT<<ENV_BITS) / OPL->DR_TABLE[i]) * (1000.0 / OPL->rate) ));
610 #endif
613 /* ---------- generic table initialize ---------- */
614 static int OPLOpenTable( void )
616 int s,t;
617 double rate;
618 int i,j;
619 double pom;
621 /* allocate dynamic tables */
622 if( (TL_TABLE = malloc(TL_MAX*2*sizeof(INT32))) == NULL)
623 return 0;
624 if( (SIN_TABLE = malloc(SIN_ENT*4 *sizeof(INT32 *))) == NULL)
626 free(TL_TABLE);
627 return 0;
629 if( (AMS_TABLE = malloc(AMS_ENT*2 *sizeof(INT32))) == NULL)
631 free(TL_TABLE);
632 free(SIN_TABLE);
633 return 0;
635 if( (VIB_TABLE = malloc(VIB_ENT*2 *sizeof(INT32))) == NULL)
637 free(TL_TABLE);
638 free(SIN_TABLE);
639 free(AMS_TABLE);
640 return 0;
642 /* make total level table */
643 for (t = 0;t < EG_ENT-1 ;t++){
644 rate = ((1<<TL_BITS)-1)/pow(10,EG_STEP*t/20); /* dB -> voltage */
645 TL_TABLE[ t] = (int)rate;
646 TL_TABLE[TL_MAX+t] = -TL_TABLE[t];
647 /* LOG(LOG_INF,("TotalLevel(%3d) = %x\n",t,TL_TABLE[t]));*/
649 /* fill volume off area */
650 for ( t = EG_ENT-1; t < TL_MAX ;t++){
651 TL_TABLE[t] = TL_TABLE[TL_MAX+t] = 0;
654 /* make sinwave table (total level offet) */
655 /* degree 0 = degree 180 = off */
656 SIN_TABLE[0] = SIN_TABLE[SIN_ENT/2] = &TL_TABLE[EG_ENT-1];
657 for (s = 1;s <= SIN_ENT/4;s++){
658 pom = sin(2*PI*s/SIN_ENT); /* sin */
659 pom = 20*log10(1/pom); /* decibel */
660 j = pom / EG_STEP; /* TL_TABLE steps */
662 /* degree 0 - 90 , degree 180 - 90 : plus section */
663 SIN_TABLE[ s] = SIN_TABLE[SIN_ENT/2-s] = &TL_TABLE[j];
664 /* degree 180 - 270 , degree 360 - 270 : minus section */
665 SIN_TABLE[SIN_ENT/2+s] = SIN_TABLE[SIN_ENT -s] = &TL_TABLE[TL_MAX+j];
666 /* LOG(LOG_INF,("sin(%3d) = %f:%f db\n",s,pom,(double)j * EG_STEP));*/
668 for (s = 0;s < SIN_ENT;s++)
670 SIN_TABLE[SIN_ENT*1+s] = s<(SIN_ENT/2) ? SIN_TABLE[s] : &TL_TABLE[EG_ENT];
671 SIN_TABLE[SIN_ENT*2+s] = SIN_TABLE[s % (SIN_ENT/2)];
672 SIN_TABLE[SIN_ENT*3+s] = (s/(SIN_ENT/4))&1 ? &TL_TABLE[EG_ENT] : SIN_TABLE[SIN_ENT*2+s];
675 /* envelope counter -> envelope output table */
676 for (i=0; i<EG_ENT; i++)
678 /* ATTACK curve */
679 pom = pow( ((double)(EG_ENT-1-i)/EG_ENT) , 8 ) * EG_ENT;
680 /* if( pom >= EG_ENT ) pom = EG_ENT-1; */
681 ENV_CURVE[i] = (int)pom;
682 /* DECAY ,RELEASE curve */
683 ENV_CURVE[(EG_DST>>ENV_BITS)+i]= i;
685 /* off */
686 ENV_CURVE[EG_OFF>>ENV_BITS]= EG_ENT-1;
687 /* make LFO ams table */
688 for (i=0; i<AMS_ENT; i++)
690 pom = (1.0+sin(2*PI*i/AMS_ENT))/2; /* sin */
691 AMS_TABLE[i] = (1.0/EG_STEP)*pom; /* 1dB */
692 AMS_TABLE[AMS_ENT+i] = (4.8/EG_STEP)*pom; /* 4.8dB */
694 /* make LFO vibrate table */
695 for (i=0; i<VIB_ENT; i++)
697 /* 100cent = 1seminote = 6% ?? */
698 pom = (double)VIB_RATE*0.06*sin(2*PI*i/VIB_ENT); /* +-100sect step */
699 VIB_TABLE[i] = VIB_RATE + (pom*0.07); /* +- 7cent */
700 VIB_TABLE[VIB_ENT+i] = VIB_RATE + (pom*0.14); /* +-14cent */
701 /* LOG(LOG_INF,("vib %d=%d\n",i,VIB_TABLE[VIB_ENT+i])); */
703 return 1;
707 static void OPLCloseTable( void )
709 free(TL_TABLE);
710 free(SIN_TABLE);
711 free(AMS_TABLE);
712 free(VIB_TABLE);
715 /* CSM Key Controll */
716 INLINE void CSMKeyControll(OPL_CH *CH)
718 OPL_SLOT *slot1 = &CH->SLOT[SLOT1];
719 OPL_SLOT *slot2 = &CH->SLOT[SLOT2];
720 /* all key off */
721 OPL_KEYOFF(slot1);
722 OPL_KEYOFF(slot2);
723 /* total level latch */
724 slot1->TLL = slot1->TL + (CH->ksl_base>>slot1->ksl);
725 slot1->TLL = slot1->TL + (CH->ksl_base>>slot1->ksl);
726 /* key on */
727 CH->op1_out[0] = CH->op1_out[1] = 0;
728 OPL_KEYON(slot1);
729 OPL_KEYON(slot2);
732 /* ---------- opl initialize ---------- */
733 static void OPL_initalize(FM_OPL *OPL)
735 int fn;
737 /* frequency base */
738 OPL->freqbase = (OPL->rate) ? ((double)OPL->clock / OPL->rate) / 72 : 0;
739 /* Timer base time */
740 OPL->TimerBase = 1.0/((double)OPL->clock / 72.0 );
741 /* make time tables */
742 init_timetables( OPL , OPL_ARRATE , OPL_DRRATE );
743 /* make fnumber -> increment counter table */
744 for( fn=0 ; fn < 1024 ; fn++ )
746 OPL->FN_TABLE[fn] = OPL->freqbase * fn * FREQ_RATE * (1<<7) / 2;
748 /* LFO freq.table */
749 OPL->amsIncr = OPL->rate ? (double)AMS_ENT*(1<<AMS_SHIFT) / OPL->rate * 3.7 * ((double)OPL->clock/3600000) : 0;
750 OPL->vibIncr = OPL->rate ? (double)VIB_ENT*(1<<VIB_SHIFT) / OPL->rate * 6.4 * ((double)OPL->clock/3600000) : 0;
753 /* ---------- write a OPL registers ---------- */
754 static void OPLWriteReg(FM_OPL *OPL, int r, int v)
756 OPL_CH *CH;
757 int slot;
758 int block_fnum;
760 switch(r&0xe0)
762 case 0x00: /* 00-1f:controll */
763 switch(r&0x1f)
765 case 0x01:
766 /* wave selector enable */
767 if(OPL->type&OPL_TYPE_WAVESEL)
769 OPL->wavesel = v&0x20;
770 if(!OPL->wavesel)
772 /* preset compatible mode */
773 int c;
774 for(c=0;c<OPL->max_ch;c++)
776 OPL->P_CH[c].SLOT[SLOT1].wavetable = &SIN_TABLE[0];
777 OPL->P_CH[c].SLOT[SLOT2].wavetable = &SIN_TABLE[0];
781 return;
782 case 0x02: /* Timer 1 */
783 OPL->T[0] = (256-v)*4;
784 break;
785 case 0x03: /* Timer 2 */
786 OPL->T[1] = (256-v)*16;
787 return;
788 case 0x04: /* IRQ clear / mask and Timer enable */
789 if(v&0x80)
790 { /* IRQ flag clear */
791 OPL_STATUS_RESET(OPL,0x7f);
793 else
794 { /* set IRQ mask ,timer enable*/
795 UINT8 st1 = v&1;
796 UINT8 st2 = (v>>1)&1;
797 /* IRQRST,T1MSK,t2MSK,EOSMSK,BRMSK,x,ST2,ST1 */
798 OPL_STATUS_RESET(OPL,v&0x78);
799 OPL_STATUSMASK_SET(OPL,((~v)&0x78)|0x01);
800 /* timer 2 */
801 if(OPL->st[1] != st2)
803 double interval = st2 ? (double)OPL->T[1]*OPL->TimerBase : 0.0;
804 OPL->st[1] = st2;
805 if (OPL->TimerHandler) (OPL->TimerHandler)(OPL->TimerParam+1,interval);
807 /* timer 1 */
808 if(OPL->st[0] != st1)
810 double interval = st1 ? (double)OPL->T[0]*OPL->TimerBase : 0.0;
811 OPL->st[0] = st1;
812 if (OPL->TimerHandler) (OPL->TimerHandler)(OPL->TimerParam+0,interval);
815 return;
816 #if BUILD_Y8950
817 case 0x06: /* Key Board OUT */
818 if(OPL->type&OPL_TYPE_KEYBOARD)
820 if(OPL->keyboardhandler_w)
821 OPL->keyboardhandler_w(OPL->keyboard_param,v);
822 else
823 LOG(LOG_WAR,("OPL:write unmapped KEYBOARD port\n"));
825 return;
826 case 0x07: /* DELTA-T controll : START,REC,MEMDATA,REPT,SPOFF,x,x,RST */
827 if(OPL->type&OPL_TYPE_ADPCM)
828 YM_DELTAT_ADPCM_Write(OPL->deltat,r-0x07,v);
829 return;
830 case 0x08: /* MODE,DELTA-T : CSM,NOTESEL,x,x,smpl,da/ad,64k,rom */
831 OPL->mode = v;
832 v&=0x1f; /* for DELTA-T unit */
833 case 0x09: /* START ADD */
834 case 0x0a:
835 case 0x0b: /* STOP ADD */
836 case 0x0c:
837 case 0x0d: /* PRESCALE */
838 case 0x0e:
839 case 0x0f: /* ADPCM data */
840 case 0x10: /* DELTA-N */
841 case 0x11: /* DELTA-N */
842 case 0x12: /* EG-CTRL */
843 if(OPL->type&OPL_TYPE_ADPCM)
844 YM_DELTAT_ADPCM_Write(OPL->deltat,r-0x07,v);
845 return;
846 #if 0
847 case 0x15: /* DAC data */
848 case 0x16:
849 case 0x17: /* SHIFT */
850 return;
851 case 0x18: /* I/O CTRL (Direction) */
852 if(OPL->type&OPL_TYPE_IO)
853 OPL->portDirection = v&0x0f;
854 return;
855 case 0x19: /* I/O DATA */
856 if(OPL->type&OPL_TYPE_IO)
858 OPL->portLatch = v;
859 if(OPL->porthandler_w)
860 OPL->porthandler_w(OPL->port_param,v&OPL->portDirection);
862 return;
863 case 0x1a: /* PCM data */
864 return;
865 #endif
866 #endif
868 break;
869 case 0x20: /* am,vib,ksr,eg type,mul */
870 slot = slot_array[r&0x1f];
871 if(slot == -1) return;
872 set_mul(OPL,slot,v);
873 return;
874 case 0x40:
875 slot = slot_array[r&0x1f];
876 if(slot == -1) return;
877 set_ksl_tl(OPL,slot,v);
878 return;
879 case 0x60:
880 slot = slot_array[r&0x1f];
881 if(slot == -1) return;
882 set_ar_dr(OPL,slot,v);
883 return;
884 case 0x80:
885 slot = slot_array[r&0x1f];
886 if(slot == -1) return;
887 set_sl_rr(OPL,slot,v);
888 return;
889 case 0xa0:
890 switch(r)
892 case 0xbd:
893 /* amsep,vibdep,r,bd,sd,tom,tc,hh */
895 UINT8 rkey = OPL->rythm^v;
896 OPL->ams_table = &AMS_TABLE[v&0x80 ? AMS_ENT : 0];
897 OPL->vib_table = &VIB_TABLE[v&0x40 ? VIB_ENT : 0];
898 OPL->rythm = v&0x3f;
899 if(OPL->rythm&0x20)
901 #if 0
902 usrintf_showmessage("OPL Rythm mode select");
903 #endif
904 /* BD key on/off */
905 if(rkey&0x10)
907 if(v&0x10)
909 OPL->P_CH[6].op1_out[0] = OPL->P_CH[6].op1_out[1] = 0;
910 OPL_KEYON(&OPL->P_CH[6].SLOT[SLOT1]);
911 OPL_KEYON(&OPL->P_CH[6].SLOT[SLOT2]);
913 else
915 OPL_KEYOFF(&OPL->P_CH[6].SLOT[SLOT1]);
916 OPL_KEYOFF(&OPL->P_CH[6].SLOT[SLOT2]);
919 /* SD key on/off */
920 if(rkey&0x08)
922 if(v&0x08) OPL_KEYON(&OPL->P_CH[7].SLOT[SLOT2]);
923 else OPL_KEYOFF(&OPL->P_CH[7].SLOT[SLOT2]);
924 }/* TAM key on/off */
925 if(rkey&0x04)
927 if(v&0x04) OPL_KEYON(&OPL->P_CH[8].SLOT[SLOT1]);
928 else OPL_KEYOFF(&OPL->P_CH[8].SLOT[SLOT1]);
930 /* TOP-CY key on/off */
931 if(rkey&0x02)
933 if(v&0x02) OPL_KEYON(&OPL->P_CH[8].SLOT[SLOT2]);
934 else OPL_KEYOFF(&OPL->P_CH[8].SLOT[SLOT2]);
936 /* HH key on/off */
937 if(rkey&0x01)
939 if(v&0x01) OPL_KEYON(&OPL->P_CH[7].SLOT[SLOT1]);
940 else OPL_KEYOFF(&OPL->P_CH[7].SLOT[SLOT1]);
944 return;
946 /* keyon,block,fnum */
947 if( (r&0x0f) > 8) return;
948 CH = &OPL->P_CH[r&0x0f];
949 if(!(r&0x10))
950 { /* a0-a8 */
951 block_fnum = (CH->block_fnum&0x1f00) | v;
953 else
954 { /* b0-b8 */
955 int keyon = (v>>5)&1;
956 block_fnum = ((v&0x1f)<<8) | (CH->block_fnum&0xff);
957 if(CH->keyon != keyon)
959 if( (CH->keyon=keyon) )
961 CH->op1_out[0] = CH->op1_out[1] = 0;
962 OPL_KEYON(&CH->SLOT[SLOT1]);
963 OPL_KEYON(&CH->SLOT[SLOT2]);
965 else
967 OPL_KEYOFF(&CH->SLOT[SLOT1]);
968 OPL_KEYOFF(&CH->SLOT[SLOT2]);
972 /* update */
973 if(CH->block_fnum != block_fnum)
975 int blockRv = 7-(block_fnum>>10);
976 int fnum = block_fnum&0x3ff;
977 CH->block_fnum = block_fnum;
979 CH->ksl_base = KSL_TABLE[block_fnum>>6];
980 CH->fc = OPL->FN_TABLE[fnum]>>blockRv;
981 CH->kcode = CH->block_fnum>>9;
982 if( (OPL->mode&0x40) && CH->block_fnum&0x100) CH->kcode |=1;
983 CALC_FCSLOT(CH,&CH->SLOT[SLOT1]);
984 CALC_FCSLOT(CH,&CH->SLOT[SLOT2]);
986 return;
987 case 0xc0:
988 /* FB,C */
989 if( (r&0x0f) > 8) return;
990 CH = &OPL->P_CH[r&0x0f];
992 int feedback = (v>>1)&7;
993 CH->FB = feedback ? (8+1) - feedback : 0;
994 CH->CON = v&1;
995 set_algorythm(CH);
997 return;
998 case 0xe0: /* wave type */
999 slot = slot_array[r&0x1f];
1000 if(slot == -1) return;
1001 CH = &OPL->P_CH[slot/2];
1002 if(OPL->wavesel)
1004 /* LOG(LOG_INF,("OPL SLOT %d wave select %d\n",slot,v&3)); */
1005 CH->SLOT[slot&1].wavetable = &SIN_TABLE[(v&0x03)*SIN_ENT];
1007 return;
1011 /* lock/unlock for common table */
1012 static int OPL_LockTable(void)
1014 num_lock++;
1015 if(num_lock>1) return 0;
1016 /* first time */
1017 cur_chip = NULL;
1018 /* allocate total level table (128kb space) */
1019 if( !OPLOpenTable() )
1021 num_lock--;
1022 return -1;
1024 return 0;
1027 static void OPL_UnLockTable(void)
1029 if(num_lock) num_lock--;
1030 if(num_lock) return;
1031 /* last time */
1032 cur_chip = NULL;
1033 OPLCloseTable();
1036 #if (BUILD_YM3812 || BUILD_YM3526)
1037 /*******************************************************************************/
1038 /* YM3812 local section */
1039 /*******************************************************************************/
1041 /* ---------- update one of chip ----------- */
1042 void YM3812UpdateOne(FM_OPL *OPL, INT16 *buffer, int length)
1044 int i;
1045 int data;
1046 OPLSAMPLE *buf = buffer;
1047 UINT32 amsCnt = OPL->amsCnt;
1048 UINT32 vibCnt = OPL->vibCnt;
1049 UINT8 rythm = OPL->rythm&0x20;
1050 OPL_CH *CH,*R_CH;
1052 if( (void *)OPL != cur_chip ){
1053 cur_chip = (void *)OPL;
1054 /* channel pointers */
1055 S_CH = OPL->P_CH;
1056 E_CH = &S_CH[9];
1057 /* rythm slot */
1058 SLOT7_1 = &S_CH[7].SLOT[SLOT1];
1059 SLOT7_2 = &S_CH[7].SLOT[SLOT2];
1060 SLOT8_1 = &S_CH[8].SLOT[SLOT1];
1061 SLOT8_2 = &S_CH[8].SLOT[SLOT2];
1062 /* LFO state */
1063 amsIncr = OPL->amsIncr;
1064 vibIncr = OPL->vibIncr;
1065 ams_table = OPL->ams_table;
1066 vib_table = OPL->vib_table;
1068 R_CH = rythm ? &S_CH[6] : E_CH;
1069 for( i=0; i < length ; i++ )
1071 /* channel A channel B channel C */
1072 /* LFO */
1073 ams = ams_table[(amsCnt+=amsIncr)>>AMS_SHIFT];
1074 vib = vib_table[(vibCnt+=vibIncr)>>VIB_SHIFT];
1075 outd[0] = 0;
1076 /* FM part */
1077 for(CH=S_CH ; CH < R_CH ; CH++)
1078 OPL_CALC_CH(CH);
1079 /* Rythn part */
1080 if(rythm)
1081 OPL_CALC_RH(S_CH);
1082 /* limit check */
1083 data = Limit( outd[0] , OPL_MAXOUT, OPL_MINOUT );
1084 /* store to sound buffer */
1085 buf[i] = data >> OPL_OUTSB;
1088 OPL->amsCnt = amsCnt;
1089 OPL->vibCnt = vibCnt;
1090 #ifdef OPL_OUTPUT_LOG
1091 if(opl_dbg_fp)
1093 for(opl_dbg_chip=0;opl_dbg_chip<opl_dbg_maxchip;opl_dbg_chip++)
1094 if( opl_dbg_opl[opl_dbg_chip] == OPL) break;
1095 fprintf(opl_dbg_fp,"%c%c%c",0x20+opl_dbg_chip,length&0xff,length/256);
1097 #endif
1099 #endif /* (BUILD_YM3812 || BUILD_YM3526) */
1101 #if BUILD_Y8950
1103 void Y8950UpdateOne(FM_OPL *OPL, INT16 *buffer, int length)
1105 int i;
1106 int data;
1107 OPLSAMPLE *buf = buffer;
1108 UINT32 amsCnt = OPL->amsCnt;
1109 UINT32 vibCnt = OPL->vibCnt;
1110 UINT8 rythm = OPL->rythm&0x20;
1111 OPL_CH *CH,*R_CH;
1112 YM_DELTAT *DELTAT = OPL->deltat;
1114 /* setup DELTA-T unit */
1115 YM_DELTAT_DECODE_PRESET(DELTAT);
1117 if( (void *)OPL != cur_chip ){
1118 cur_chip = (void *)OPL;
1119 /* channel pointers */
1120 S_CH = OPL->P_CH;
1121 E_CH = &S_CH[9];
1122 /* rythm slot */
1123 SLOT7_1 = &S_CH[7].SLOT[SLOT1];
1124 SLOT7_2 = &S_CH[7].SLOT[SLOT2];
1125 SLOT8_1 = &S_CH[8].SLOT[SLOT1];
1126 SLOT8_2 = &S_CH[8].SLOT[SLOT2];
1127 /* LFO state */
1128 amsIncr = OPL->amsIncr;
1129 vibIncr = OPL->vibIncr;
1130 ams_table = OPL->ams_table;
1131 vib_table = OPL->vib_table;
1133 R_CH = rythm ? &S_CH[6] : E_CH;
1134 for( i=0; i < length ; i++ )
1136 /* channel A channel B channel C */
1137 /* LFO */
1138 ams = ams_table[(amsCnt+=amsIncr)>>AMS_SHIFT];
1139 vib = vib_table[(vibCnt+=vibIncr)>>VIB_SHIFT];
1140 outd[0] = 0;
1141 /* deltaT ADPCM */
1142 if( DELTAT->portstate )
1143 YM_DELTAT_ADPCM_CALC(DELTAT);
1144 /* FM part */
1145 for(CH=S_CH ; CH < R_CH ; CH++)
1146 OPL_CALC_CH(CH);
1147 /* Rythn part */
1148 if(rythm)
1149 OPL_CALC_RH(S_CH);
1150 /* limit check */
1151 data = Limit( outd[0] , OPL_MAXOUT, OPL_MINOUT );
1152 /* store to sound buffer */
1153 buf[i] = data >> OPL_OUTSB;
1155 OPL->amsCnt = amsCnt;
1156 OPL->vibCnt = vibCnt;
1157 /* deltaT START flag */
1158 if( !DELTAT->portstate )
1159 OPL->status &= 0xfe;
1161 #endif
1163 /* ---------- reset one of chip ---------- */
1164 void OPLResetChip(FM_OPL *OPL)
1166 int c,s;
1167 int i;
1169 /* reset chip */
1170 OPL->mode = 0; /* normal mode */
1171 OPL_STATUS_RESET(OPL,0x7f);
1172 /* reset with register write */
1173 OPLWriteReg(OPL,0x01,0); /* wabesel disable */
1174 OPLWriteReg(OPL,0x02,0); /* Timer1 */
1175 OPLWriteReg(OPL,0x03,0); /* Timer2 */
1176 OPLWriteReg(OPL,0x04,0); /* IRQ mask clear */
1177 for(i = 0xff ; i >= 0x20 ; i-- ) OPLWriteReg(OPL,i,0);
1178 /* reset OPerator paramater */
1179 for( c = 0 ; c < OPL->max_ch ; c++ )
1181 OPL_CH *CH = &OPL->P_CH[c];
1182 /* OPL->P_CH[c].PAN = OPN_CENTER; */
1183 for(s = 0 ; s < 2 ; s++ )
1185 /* wave table */
1186 CH->SLOT[s].wavetable = &SIN_TABLE[0];
1187 /* CH->SLOT[s].evm = ENV_MOD_RR; */
1188 CH->SLOT[s].evc = EG_OFF;
1189 CH->SLOT[s].eve = EG_OFF+1;
1190 CH->SLOT[s].evs = 0;
1193 #if BUILD_Y8950
1194 if(OPL->type&OPL_TYPE_ADPCM)
1196 YM_DELTAT *DELTAT = OPL->deltat;
1198 DELTAT->freqbase = OPL->freqbase;
1199 DELTAT->output_pointer = outd;
1200 DELTAT->portshift = 5;
1201 DELTAT->output_range = DELTAT_MIXING_LEVEL<<TL_BITS;
1202 YM_DELTAT_ADPCM_Reset(DELTAT,0);
1204 #endif
1207 /* ---------- Create one of vietual YM3812 ---------- */
1208 /* 'rate' is sampling rate and 'bufsiz' is the size of the */
1209 FM_OPL *OPLCreate(int type, int clock, int rate)
1211 char *ptr;
1212 FM_OPL *OPL;
1213 int state_size;
1214 int max_ch = 9; /* normaly 9 channels */
1216 if( OPL_LockTable() ==-1) return NULL;
1217 /* allocate OPL state space */
1218 state_size = sizeof(FM_OPL);
1219 state_size += sizeof(OPL_CH)*max_ch;
1220 #if BUILD_Y8950
1221 if(type&OPL_TYPE_ADPCM) state_size+= sizeof(YM_DELTAT);
1222 #endif
1223 /* allocate memory block */
1224 ptr = malloc(state_size);
1225 if(ptr==NULL) return NULL;
1226 /* clear */
1227 memset(ptr,0,state_size);
1228 OPL = (FM_OPL *)ptr; ptr+=sizeof(FM_OPL);
1229 OPL->P_CH = (OPL_CH *)ptr; ptr+=sizeof(OPL_CH)*max_ch;
1230 #if BUILD_Y8950
1231 if(type&OPL_TYPE_ADPCM) OPL->deltat = (YM_DELTAT *)ptr; ptr+=sizeof(YM_DELTAT);
1232 #endif
1233 /* set channel state pointer */
1234 OPL->type = type;
1235 OPL->clock = clock;
1236 OPL->rate = rate;
1237 OPL->max_ch = max_ch;
1238 /* init grobal tables */
1239 OPL_initalize(OPL);
1240 /* reset chip */
1241 OPLResetChip(OPL);
1242 #ifdef OPL_OUTPUT_LOG
1243 if(!opl_dbg_fp)
1245 opl_dbg_fp = fopen("opllog.opl","wb");
1246 opl_dbg_maxchip = 0;
1248 if(opl_dbg_fp)
1250 opl_dbg_opl[opl_dbg_maxchip] = OPL;
1251 fprintf(opl_dbg_fp,"%c%c%c%c%c%c",0x00+opl_dbg_maxchip,
1252 type,
1253 clock&0xff,
1254 (clock/0x100)&0xff,
1255 (clock/0x10000)&0xff,
1256 (clock/0x1000000)&0xff);
1257 opl_dbg_maxchip++;
1259 #endif
1260 return OPL;
1263 /* ---------- Destroy one of vietual YM3812 ---------- */
1264 void OPLDestroy(FM_OPL *OPL)
1266 #ifdef OPL_OUTPUT_LOG
1267 if(opl_dbg_fp)
1269 fclose(opl_dbg_fp);
1270 opl_dbg_fp = NULL;
1272 #endif
1273 OPL_UnLockTable();
1274 free(OPL);
1277 /* ---------- Option handlers ---------- */
1279 void OPLSetTimerHandler(FM_OPL *OPL,OPL_TIMERHANDLER TimerHandler,int channelOffset)
1281 OPL->TimerHandler = TimerHandler;
1282 OPL->TimerParam = channelOffset;
1284 void OPLSetIRQHandler(FM_OPL *OPL,OPL_IRQHANDLER IRQHandler,int param)
1286 OPL->IRQHandler = IRQHandler;
1287 OPL->IRQParam = param;
1289 void OPLSetUpdateHandler(FM_OPL *OPL,OPL_UPDATEHANDLER UpdateHandler,int param)
1291 OPL->UpdateHandler = UpdateHandler;
1292 OPL->UpdateParam = param;
1294 #if BUILD_Y8950
1295 void OPLSetPortHandler(FM_OPL *OPL,OPL_PORTHANDLER_W PortHandler_w,OPL_PORTHANDLER_R PortHandler_r,int param)
1297 OPL->porthandler_w = PortHandler_w;
1298 OPL->porthandler_r = PortHandler_r;
1299 OPL->port_param = param;
1302 void OPLSetKeyboardHandler(FM_OPL *OPL,OPL_PORTHANDLER_W KeyboardHandler_w,OPL_PORTHANDLER_R KeyboardHandler_r,int param)
1304 OPL->keyboardhandler_w = KeyboardHandler_w;
1305 OPL->keyboardhandler_r = KeyboardHandler_r;
1306 OPL->keyboard_param = param;
1308 #endif
1309 /* ---------- YM3812 I/O interface ---------- */
1310 int OPLWrite(FM_OPL *OPL,int a,int v)
1312 if( !(a&1) )
1313 { /* address port */
1314 OPL->address = v & 0xff;
1316 else
1317 { /* data port */
1318 if(OPL->UpdateHandler) OPL->UpdateHandler(OPL->UpdateParam,0);
1319 #ifdef OPL_OUTPUT_LOG
1320 if(opl_dbg_fp)
1322 for(opl_dbg_chip=0;opl_dbg_chip<opl_dbg_maxchip;opl_dbg_chip++)
1323 if( opl_dbg_opl[opl_dbg_chip] == OPL) break;
1324 fprintf(opl_dbg_fp,"%c%c%c",0x10+opl_dbg_chip,OPL->address,v);
1326 #endif
1327 OPLWriteReg(OPL,OPL->address,v);
1329 return OPL->status>>7;
1332 unsigned char OPLRead(FM_OPL *OPL,int a)
1334 if( !(a&1) )
1335 { /* status port */
1336 return OPL->status & (OPL->statusmask|0x80);
1338 /* data port */
1339 switch(OPL->address)
1341 case 0x05: /* KeyBoard IN */
1342 if(OPL->type&OPL_TYPE_KEYBOARD)
1344 if(OPL->keyboardhandler_r)
1345 return OPL->keyboardhandler_r(OPL->keyboard_param);
1346 else
1347 LOG(LOG_WAR,("OPL:read unmapped KEYBOARD port\n"));
1349 return 0;
1350 #if 0
1351 case 0x0f: /* ADPCM-DATA */
1352 return 0;
1353 #endif
1354 case 0x19: /* I/O DATA */
1355 if(OPL->type&OPL_TYPE_IO)
1357 if(OPL->porthandler_r)
1358 return OPL->porthandler_r(OPL->port_param);
1359 else
1360 LOG(LOG_WAR,("OPL:read unmapped I/O port\n"));
1362 return 0;
1363 case 0x1a: /* PCM-DATA */
1364 return 0;
1366 return 0;
1369 int OPLTimerOver(FM_OPL *OPL,int c)
1371 if( c )
1372 { /* Timer B */
1373 OPL_STATUS_SET(OPL,0x20);
1375 else
1376 { /* Timer A */
1377 OPL_STATUS_SET(OPL,0x40);
1378 /* CSM mode key,TL controll */
1379 if( OPL->mode & 0x80 )
1380 { /* CSM mode total level latch and auto key on */
1381 int ch;
1382 if(OPL->UpdateHandler) OPL->UpdateHandler(OPL->UpdateParam,0);
1383 for(ch=0;ch<9;ch++)
1384 CSMKeyControll( &OPL->P_CH[ch] );
1387 /* reload timer */
1388 if (OPL->TimerHandler) (OPL->TimerHandler)(OPL->TimerParam+c,(double)OPL->T[c]*OPL->TimerBase);
1389 return OPL->status>>7;