4 * Copyright (c) 2003-2005 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, write to the Free Software
18 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston MA 02110-1301 USA
21 #include "qemu-common.h"
22 #ifdef CONFIG_USER_ONLY
34 #include "qemu-char.h"
40 #define MAX_PACKET_LENGTH 4096
42 #include "qemu_socket.h"
50 GDB_SIGNAL_UNKNOWN
= 143
53 #ifdef CONFIG_USER_ONLY
55 /* Map target signal numbers to GDB protocol signal numbers and vice
56 * versa. For user emulation's currently supported systems, we can
57 * assume most signals are defined.
60 static int gdb_signal_table
[] = {
220 /* In system mode we only need SIGINT and SIGTRAP; other signals
221 are not yet supported. */
228 static int gdb_signal_table
[] = {
238 #ifdef CONFIG_USER_ONLY
239 static int target_signal_to_gdb (int sig
)
242 for (i
= 0; i
< ARRAY_SIZE (gdb_signal_table
); i
++)
243 if (gdb_signal_table
[i
] == sig
)
245 return GDB_SIGNAL_UNKNOWN
;
249 static int gdb_signal_to_target (int sig
)
251 if (sig
< ARRAY_SIZE (gdb_signal_table
))
252 return gdb_signal_table
[sig
];
259 typedef struct GDBRegisterState
{
265 struct GDBRegisterState
*next
;
276 typedef struct GDBState
{
277 CPUState
*c_cpu
; /* current CPU for step/continue ops */
278 CPUState
*g_cpu
; /* current CPU for other ops */
279 CPUState
*query_cpu
; /* for q{f|s}ThreadInfo */
280 enum RSState state
; /* parsing state */
281 char line_buf
[MAX_PACKET_LENGTH
];
284 uint8_t last_packet
[MAX_PACKET_LENGTH
+ 4];
287 #ifdef CONFIG_USER_ONLY
291 CharDriverState
*chr
;
292 CharDriverState
*mon_chr
;
296 /* By default use no IRQs and no timers while single stepping so as to
297 * make single stepping like an ICE HW step.
299 static int sstep_flags
= SSTEP_ENABLE
|SSTEP_NOIRQ
|SSTEP_NOTIMER
;
301 static GDBState
*gdbserver_state
;
303 /* This is an ugly hack to cope with both new and old gdb.
304 If gdb sends qXfer:features:read then assume we're talking to a newish
305 gdb that understands target descriptions. */
306 static int gdb_has_xml
;
308 #ifdef CONFIG_USER_ONLY
309 /* XXX: This is not thread safe. Do we care? */
310 static int gdbserver_fd
= -1;
312 static int get_char(GDBState
*s
)
318 ret
= recv(s
->fd
, &ch
, 1, 0);
320 if (errno
== ECONNRESET
)
322 if (errno
!= EINTR
&& errno
!= EAGAIN
)
324 } else if (ret
== 0) {
336 static gdb_syscall_complete_cb gdb_current_syscall_cb
;
344 /* If gdb is connected when the first semihosting syscall occurs then use
345 remote gdb syscalls. Otherwise use native file IO. */
346 int use_gdb_syscalls(void)
348 if (gdb_syscall_mode
== GDB_SYS_UNKNOWN
) {
349 gdb_syscall_mode
= (gdbserver_state
? GDB_SYS_ENABLED
352 return gdb_syscall_mode
== GDB_SYS_ENABLED
;
355 /* Resume execution. */
356 static inline void gdb_continue(GDBState
*s
)
358 #ifdef CONFIG_USER_ONLY
359 s
->running_state
= 1;
365 static void put_buffer(GDBState
*s
, const uint8_t *buf
, int len
)
367 #ifdef CONFIG_USER_ONLY
371 ret
= send(s
->fd
, buf
, len
, 0);
373 if (errno
!= EINTR
&& errno
!= EAGAIN
)
381 qemu_chr_write(s
->chr
, buf
, len
);
385 static inline int fromhex(int v
)
387 if (v
>= '0' && v
<= '9')
389 else if (v
>= 'A' && v
<= 'F')
391 else if (v
>= 'a' && v
<= 'f')
397 static inline int tohex(int v
)
405 static void memtohex(char *buf
, const uint8_t *mem
, int len
)
410 for(i
= 0; i
< len
; i
++) {
412 *q
++ = tohex(c
>> 4);
413 *q
++ = tohex(c
& 0xf);
418 static void hextomem(uint8_t *mem
, const char *buf
, int len
)
422 for(i
= 0; i
< len
; i
++) {
423 mem
[i
] = (fromhex(buf
[0]) << 4) | fromhex(buf
[1]);
428 /* return -1 if error, 0 if OK */
429 static int put_packet_binary(GDBState
*s
, const char *buf
, int len
)
440 for(i
= 0; i
< len
; i
++) {
444 *(p
++) = tohex((csum
>> 4) & 0xf);
445 *(p
++) = tohex((csum
) & 0xf);
447 s
->last_packet_len
= p
- s
->last_packet
;
448 put_buffer(s
, (uint8_t *)s
->last_packet
, s
->last_packet_len
);
450 #ifdef CONFIG_USER_ONLY
463 /* return -1 if error, 0 if OK */
464 static int put_packet(GDBState
*s
, const char *buf
)
467 printf("reply='%s'\n", buf
);
470 return put_packet_binary(s
, buf
, strlen(buf
));
473 /* The GDB remote protocol transfers values in target byte order. This means
474 we can use the raw memory access routines to access the value buffer.
475 Conveniently, these also handle the case where the buffer is mis-aligned.
477 #define GET_REG8(val) do { \
478 stb_p(mem_buf, val); \
481 #define GET_REG16(val) do { \
482 stw_p(mem_buf, val); \
485 #define GET_REG32(val) do { \
486 stl_p(mem_buf, val); \
489 #define GET_REG64(val) do { \
490 stq_p(mem_buf, val); \
494 #if TARGET_LONG_BITS == 64
495 #define GET_REGL(val) GET_REG64(val)
496 #define ldtul_p(addr) ldq_p(addr)
498 #define GET_REGL(val) GET_REG32(val)
499 #define ldtul_p(addr) ldl_p(addr)
502 #if defined(TARGET_I386)
505 static const int gpr_map
[16] = {
506 R_EAX
, R_EBX
, R_ECX
, R_EDX
, R_ESI
, R_EDI
, R_EBP
, R_ESP
,
507 8, 9, 10, 11, 12, 13, 14, 15
510 static const int gpr_map
[8] = {0, 1, 2, 3, 4, 5, 6, 7};
513 #define NUM_CORE_REGS (CPU_NB_REGS * 2 + 25)
515 static int cpu_gdb_read_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
517 if (n
< CPU_NB_REGS
) {
518 GET_REGL(env
->regs
[gpr_map
[n
]]);
519 } else if (n
>= CPU_NB_REGS
+ 8 && n
< CPU_NB_REGS
+ 16) {
520 /* FIXME: byteswap float values. */
521 #ifdef USE_X86LDOUBLE
522 memcpy(mem_buf
, &env
->fpregs
[n
- (CPU_NB_REGS
+ 8)], 10);
524 memset(mem_buf
, 0, 10);
527 } else if (n
>= CPU_NB_REGS
+ 24) {
528 n
-= CPU_NB_REGS
+ 24;
529 if (n
< CPU_NB_REGS
) {
530 stq_p(mem_buf
, env
->xmm_regs
[n
].XMM_Q(0));
531 stq_p(mem_buf
+ 8, env
->xmm_regs
[n
].XMM_Q(1));
533 } else if (n
== CPU_NB_REGS
) {
534 GET_REG32(env
->mxcsr
);
539 case 0: GET_REGL(env
->eip
);
540 case 1: GET_REG32(env
->eflags
);
541 case 2: GET_REG32(env
->segs
[R_CS
].selector
);
542 case 3: GET_REG32(env
->segs
[R_SS
].selector
);
543 case 4: GET_REG32(env
->segs
[R_DS
].selector
);
544 case 5: GET_REG32(env
->segs
[R_ES
].selector
);
545 case 6: GET_REG32(env
->segs
[R_FS
].selector
);
546 case 7: GET_REG32(env
->segs
[R_GS
].selector
);
547 /* 8...15 x87 regs. */
548 case 16: GET_REG32(env
->fpuc
);
549 case 17: GET_REG32((env
->fpus
& ~0x3800) | (env
->fpstt
& 0x7) << 11);
550 case 18: GET_REG32(0); /* ftag */
551 case 19: GET_REG32(0); /* fiseg */
552 case 20: GET_REG32(0); /* fioff */
553 case 21: GET_REG32(0); /* foseg */
554 case 22: GET_REG32(0); /* fooff */
555 case 23: GET_REG32(0); /* fop */
562 static int cpu_gdb_write_register(CPUState
*env
, uint8_t *mem_buf
, int i
)
566 if (i
< CPU_NB_REGS
) {
567 env
->regs
[gpr_map
[i
]] = ldtul_p(mem_buf
);
568 return sizeof(target_ulong
);
569 } else if (i
>= CPU_NB_REGS
+ 8 && i
< CPU_NB_REGS
+ 16) {
570 i
-= CPU_NB_REGS
+ 8;
571 #ifdef USE_X86LDOUBLE
572 memcpy(&env
->fpregs
[i
], mem_buf
, 10);
575 } else if (i
>= CPU_NB_REGS
+ 24) {
576 i
-= CPU_NB_REGS
+ 24;
577 if (i
< CPU_NB_REGS
) {
578 env
->xmm_regs
[i
].XMM_Q(0) = ldq_p(mem_buf
);
579 env
->xmm_regs
[i
].XMM_Q(1) = ldq_p(mem_buf
+ 8);
581 } else if (i
== CPU_NB_REGS
) {
582 env
->mxcsr
= ldl_p(mem_buf
);
588 case 0: env
->eip
= ldtul_p(mem_buf
); return sizeof(target_ulong
);
589 case 1: env
->eflags
= ldl_p(mem_buf
); return 4;
590 #if defined(CONFIG_USER_ONLY)
591 #define LOAD_SEG(index, sreg)\
592 tmp = ldl_p(mem_buf);\
593 if (tmp != env->segs[sreg].selector)\
594 cpu_x86_load_seg(env, sreg, tmp);
596 /* FIXME: Honor segment registers. Needs to avoid raising an exception
597 when the selector is invalid. */
598 #define LOAD_SEG(index, sreg) do {} while(0)
600 case 2: LOAD_SEG(10, R_CS
); return 4;
601 case 3: LOAD_SEG(11, R_SS
); return 4;
602 case 4: LOAD_SEG(12, R_DS
); return 4;
603 case 5: LOAD_SEG(13, R_ES
); return 4;
604 case 6: LOAD_SEG(14, R_FS
); return 4;
605 case 7: LOAD_SEG(15, R_GS
); return 4;
606 /* 8...15 x87 regs. */
607 case 16: env
->fpuc
= ldl_p(mem_buf
); return 4;
609 tmp
= ldl_p(mem_buf
);
610 env
->fpstt
= (tmp
>> 11) & 7;
611 env
->fpus
= tmp
& ~0x3800;
613 case 18: /* ftag */ return 4;
614 case 19: /* fiseg */ return 4;
615 case 20: /* fioff */ return 4;
616 case 21: /* foseg */ return 4;
617 case 22: /* fooff */ return 4;
618 case 23: /* fop */ return 4;
622 /* Unrecognised register. */
626 #elif defined (TARGET_PPC)
628 /* Old gdb always expects FP registers. Newer (xml-aware) gdb only
629 expects whatever the target description contains. Due to a
630 historical mishap the FP registers appear in between core integer
631 regs and PC, MSR, CR, and so forth. We hack round this by giving the
632 FP regs zero size when talking to a newer gdb. */
633 #define NUM_CORE_REGS 71
634 #if defined (TARGET_PPC64)
635 #define GDB_CORE_XML "power64-core.xml"
637 #define GDB_CORE_XML "power-core.xml"
640 static int cpu_gdb_read_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
644 GET_REGL(env
->gpr
[n
]);
649 stfq_p(mem_buf
, env
->fpr
[n
-32]);
653 case 64: GET_REGL(env
->nip
);
654 case 65: GET_REGL(env
->msr
);
659 for (i
= 0; i
< 8; i
++)
660 cr
|= env
->crf
[i
] << (32 - ((i
+ 1) * 4));
663 case 67: GET_REGL(env
->lr
);
664 case 68: GET_REGL(env
->ctr
);
665 case 69: GET_REGL(env
->xer
);
670 GET_REG32(0); /* fpscr */
677 static int cpu_gdb_write_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
681 env
->gpr
[n
] = ldtul_p(mem_buf
);
682 return sizeof(target_ulong
);
687 env
->fpr
[n
-32] = ldfq_p(mem_buf
);
692 env
->nip
= ldtul_p(mem_buf
);
693 return sizeof(target_ulong
);
695 ppc_store_msr(env
, ldtul_p(mem_buf
));
696 return sizeof(target_ulong
);
699 uint32_t cr
= ldl_p(mem_buf
);
701 for (i
= 0; i
< 8; i
++)
702 env
->crf
[i
] = (cr
>> (32 - ((i
+ 1) * 4))) & 0xF;
706 env
->lr
= ldtul_p(mem_buf
);
707 return sizeof(target_ulong
);
709 env
->ctr
= ldtul_p(mem_buf
);
710 return sizeof(target_ulong
);
712 env
->xer
= ldtul_p(mem_buf
);
713 return sizeof(target_ulong
);
724 #elif defined (TARGET_SPARC)
726 #if defined(TARGET_SPARC64) && !defined(TARGET_ABI32)
727 #define NUM_CORE_REGS 86
729 #define NUM_CORE_REGS 72
733 #define GET_REGA(val) GET_REG32(val)
735 #define GET_REGA(val) GET_REGL(val)
738 static int cpu_gdb_read_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
742 GET_REGA(env
->gregs
[n
]);
745 /* register window */
746 GET_REGA(env
->regwptr
[n
- 8]);
748 #if defined(TARGET_ABI32) || !defined(TARGET_SPARC64)
751 GET_REG32(*((uint32_t *)&env
->fpr
[n
- 32]));
753 /* Y, PSR, WIM, TBR, PC, NPC, FPSR, CPSR */
755 case 64: GET_REGA(env
->y
);
756 case 65: GET_REGA(GET_PSR(env
));
757 case 66: GET_REGA(env
->wim
);
758 case 67: GET_REGA(env
->tbr
);
759 case 68: GET_REGA(env
->pc
);
760 case 69: GET_REGA(env
->npc
);
761 case 70: GET_REGA(env
->fsr
);
762 case 71: GET_REGA(0); /* csr */
763 default: GET_REGA(0);
768 GET_REG32(*((uint32_t *)&env
->fpr
[n
- 32]));
771 /* f32-f62 (double width, even numbers only) */
774 val
= (uint64_t)*((uint32_t *)&env
->fpr
[(n
- 64) * 2 + 32]) << 32;
775 val
|= *((uint32_t *)&env
->fpr
[(n
- 64) * 2 + 33]);
779 case 80: GET_REGL(env
->pc
);
780 case 81: GET_REGL(env
->npc
);
781 case 82: GET_REGL(((uint64_t)GET_CCR(env
) << 32) |
782 ((env
->asi
& 0xff) << 24) |
783 ((env
->pstate
& 0xfff) << 8) |
785 case 83: GET_REGL(env
->fsr
);
786 case 84: GET_REGL(env
->fprs
);
787 case 85: GET_REGL(env
->y
);
793 static int cpu_gdb_write_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
795 #if defined(TARGET_ABI32)
798 tmp
= ldl_p(mem_buf
);
802 tmp
= ldtul_p(mem_buf
);
809 /* register window */
810 env
->regwptr
[n
- 8] = tmp
;
812 #if defined(TARGET_ABI32) || !defined(TARGET_SPARC64)
815 *((uint32_t *)&env
->fpr
[n
- 32]) = tmp
;
817 /* Y, PSR, WIM, TBR, PC, NPC, FPSR, CPSR */
819 case 64: env
->y
= tmp
; break;
820 case 65: PUT_PSR(env
, tmp
); break;
821 case 66: env
->wim
= tmp
; break;
822 case 67: env
->tbr
= tmp
; break;
823 case 68: env
->pc
= tmp
; break;
824 case 69: env
->npc
= tmp
; break;
825 case 70: env
->fsr
= tmp
; break;
833 env
->fpr
[n
] = ldfl_p(mem_buf
);
836 /* f32-f62 (double width, even numbers only) */
837 *((uint32_t *)&env
->fpr
[(n
- 64) * 2 + 32]) = tmp
>> 32;
838 *((uint32_t *)&env
->fpr
[(n
- 64) * 2 + 33]) = tmp
;
841 case 80: env
->pc
= tmp
; break;
842 case 81: env
->npc
= tmp
; break;
844 PUT_CCR(env
, tmp
>> 32);
845 env
->asi
= (tmp
>> 24) & 0xff;
846 env
->pstate
= (tmp
>> 8) & 0xfff;
847 PUT_CWP64(env
, tmp
& 0xff);
849 case 83: env
->fsr
= tmp
; break;
850 case 84: env
->fprs
= tmp
; break;
851 case 85: env
->y
= tmp
; break;
858 #elif defined (TARGET_ARM)
860 /* Old gdb always expect FPA registers. Newer (xml-aware) gdb only expect
861 whatever the target description contains. Due to a historical mishap
862 the FPA registers appear in between core integer regs and the CPSR.
863 We hack round this by giving the FPA regs zero size when talking to a
865 #define NUM_CORE_REGS 26
866 #define GDB_CORE_XML "arm-core.xml"
868 static int cpu_gdb_read_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
871 /* Core integer register. */
872 GET_REG32(env
->regs
[n
]);
878 memset(mem_buf
, 0, 12);
883 /* FPA status register. */
889 GET_REG32(cpsr_read(env
));
891 /* Unknown register. */
895 static int cpu_gdb_write_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
899 tmp
= ldl_p(mem_buf
);
901 /* Mask out low bit of PC to workaround gdb bugs. This will probably
902 cause problems if we ever implement the Jazelle DBX extensions. */
907 /* Core integer register. */
911 if (n
< 24) { /* 16-23 */
912 /* FPA registers (ignored). */
919 /* FPA status register (ignored). */
925 cpsr_write (env
, tmp
, 0xffffffff);
928 /* Unknown register. */
932 #elif defined (TARGET_M68K)
934 #define NUM_CORE_REGS 18
936 #define GDB_CORE_XML "cf-core.xml"
938 static int cpu_gdb_read_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
942 GET_REG32(env
->dregs
[n
]);
945 GET_REG32(env
->aregs
[n
- 8]);
948 case 16: GET_REG32(env
->sr
);
949 case 17: GET_REG32(env
->pc
);
952 /* FP registers not included here because they vary between
953 ColdFire and m68k. Use XML bits for these. */
957 static int cpu_gdb_write_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
961 tmp
= ldl_p(mem_buf
);
968 env
->aregs
[n
- 8] = tmp
;
971 case 16: env
->sr
= tmp
; break;
972 case 17: env
->pc
= tmp
; break;
978 #elif defined (TARGET_MIPS)
980 #define NUM_CORE_REGS 73
982 static int cpu_gdb_read_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
985 GET_REGL(env
->active_tc
.gpr
[n
]);
987 if (env
->CP0_Config1
& (1 << CP0C1_FP
)) {
988 if (n
>= 38 && n
< 70) {
989 if (env
->CP0_Status
& (1 << CP0St_FR
))
990 GET_REGL(env
->active_fpu
.fpr
[n
- 38].d
);
992 GET_REGL(env
->active_fpu
.fpr
[n
- 38].w
[FP_ENDIAN_IDX
]);
995 case 70: GET_REGL((int32_t)env
->active_fpu
.fcr31
);
996 case 71: GET_REGL((int32_t)env
->active_fpu
.fcr0
);
1000 case 32: GET_REGL((int32_t)env
->CP0_Status
);
1001 case 33: GET_REGL(env
->active_tc
.LO
[0]);
1002 case 34: GET_REGL(env
->active_tc
.HI
[0]);
1003 case 35: GET_REGL(env
->CP0_BadVAddr
);
1004 case 36: GET_REGL((int32_t)env
->CP0_Cause
);
1005 case 37: GET_REGL(env
->active_tc
.PC
);
1006 case 72: GET_REGL(0); /* fp */
1007 case 89: GET_REGL((int32_t)env
->CP0_PRid
);
1009 if (n
>= 73 && n
<= 88) {
1010 /* 16 embedded regs. */
1017 /* convert MIPS rounding mode in FCR31 to IEEE library */
1018 static unsigned int ieee_rm
[] =
1020 float_round_nearest_even
,
1021 float_round_to_zero
,
1025 #define RESTORE_ROUNDING_MODE \
1026 set_float_rounding_mode(ieee_rm[env->active_fpu.fcr31 & 3], &env->active_fpu.fp_status)
1028 static int cpu_gdb_write_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
1032 tmp
= ldtul_p(mem_buf
);
1035 env
->active_tc
.gpr
[n
] = tmp
;
1036 return sizeof(target_ulong
);
1038 if (env
->CP0_Config1
& (1 << CP0C1_FP
)
1039 && n
>= 38 && n
< 73) {
1041 if (env
->CP0_Status
& (1 << CP0St_FR
))
1042 env
->active_fpu
.fpr
[n
- 38].d
= tmp
;
1044 env
->active_fpu
.fpr
[n
- 38].w
[FP_ENDIAN_IDX
] = tmp
;
1048 env
->active_fpu
.fcr31
= tmp
& 0xFF83FFFF;
1049 /* set rounding mode */
1050 RESTORE_ROUNDING_MODE
;
1051 #ifndef CONFIG_SOFTFLOAT
1052 /* no floating point exception for native float */
1053 SET_FP_ENABLE(env
->active_fpu
.fcr31
, 0);
1056 case 71: env
->active_fpu
.fcr0
= tmp
; break;
1058 return sizeof(target_ulong
);
1061 case 32: env
->CP0_Status
= tmp
; break;
1062 case 33: env
->active_tc
.LO
[0] = tmp
; break;
1063 case 34: env
->active_tc
.HI
[0] = tmp
; break;
1064 case 35: env
->CP0_BadVAddr
= tmp
; break;
1065 case 36: env
->CP0_Cause
= tmp
; break;
1066 case 37: env
->active_tc
.PC
= tmp
; break;
1067 case 72: /* fp, ignored */ break;
1071 /* Other registers are readonly. Ignore writes. */
1075 return sizeof(target_ulong
);
1077 #elif defined (TARGET_SH4)
1079 /* Hint: Use "set architecture sh4" in GDB to see fpu registers */
1080 /* FIXME: We should use XML for this. */
1082 #define NUM_CORE_REGS 59
1084 static int cpu_gdb_read_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
1087 if ((env
->sr
& (SR_MD
| SR_RB
)) == (SR_MD
| SR_RB
)) {
1088 GET_REGL(env
->gregs
[n
+ 16]);
1090 GET_REGL(env
->gregs
[n
]);
1092 } else if (n
< 16) {
1093 GET_REGL(env
->gregs
[n
- 8]);
1094 } else if (n
>= 25 && n
< 41) {
1095 GET_REGL(env
->fregs
[(n
- 25) + ((env
->fpscr
& FPSCR_FR
) ? 16 : 0)]);
1096 } else if (n
>= 43 && n
< 51) {
1097 GET_REGL(env
->gregs
[n
- 43]);
1098 } else if (n
>= 51 && n
< 59) {
1099 GET_REGL(env
->gregs
[n
- (51 - 16)]);
1102 case 16: GET_REGL(env
->pc
);
1103 case 17: GET_REGL(env
->pr
);
1104 case 18: GET_REGL(env
->gbr
);
1105 case 19: GET_REGL(env
->vbr
);
1106 case 20: GET_REGL(env
->mach
);
1107 case 21: GET_REGL(env
->macl
);
1108 case 22: GET_REGL(env
->sr
);
1109 case 23: GET_REGL(env
->fpul
);
1110 case 24: GET_REGL(env
->fpscr
);
1111 case 41: GET_REGL(env
->ssr
);
1112 case 42: GET_REGL(env
->spc
);
1118 static int cpu_gdb_write_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
1122 tmp
= ldl_p(mem_buf
);
1125 if ((env
->sr
& (SR_MD
| SR_RB
)) == (SR_MD
| SR_RB
)) {
1126 env
->gregs
[n
+ 16] = tmp
;
1128 env
->gregs
[n
] = tmp
;
1131 } else if (n
< 16) {
1132 env
->gregs
[n
- 8] = tmp
;
1134 } else if (n
>= 25 && n
< 41) {
1135 env
->fregs
[(n
- 25) + ((env
->fpscr
& FPSCR_FR
) ? 16 : 0)] = tmp
;
1136 } else if (n
>= 43 && n
< 51) {
1137 env
->gregs
[n
- 43] = tmp
;
1139 } else if (n
>= 51 && n
< 59) {
1140 env
->gregs
[n
- (51 - 16)] = tmp
;
1144 case 16: env
->pc
= tmp
;
1145 case 17: env
->pr
= tmp
;
1146 case 18: env
->gbr
= tmp
;
1147 case 19: env
->vbr
= tmp
;
1148 case 20: env
->mach
= tmp
;
1149 case 21: env
->macl
= tmp
;
1150 case 22: env
->sr
= tmp
;
1151 case 23: env
->fpul
= tmp
;
1152 case 24: env
->fpscr
= tmp
;
1153 case 41: env
->ssr
= tmp
;
1154 case 42: env
->spc
= tmp
;
1160 #elif defined (TARGET_CRIS)
1162 #define NUM_CORE_REGS 49
1164 static int cpu_gdb_read_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
1168 srs
= env
->pregs
[PR_SRS
];
1170 GET_REG32(env
->regs
[n
]);
1173 if (n
>= 21 && n
< 32) {
1174 GET_REG32(env
->pregs
[n
- 16]);
1176 if (n
>= 33 && n
< 49) {
1177 GET_REG32(env
->sregs
[srs
][n
- 33]);
1180 case 16: GET_REG8(env
->pregs
[0]);
1181 case 17: GET_REG8(env
->pregs
[1]);
1182 case 18: GET_REG32(env
->pregs
[2]);
1183 case 19: GET_REG8(srs
);
1184 case 20: GET_REG16(env
->pregs
[4]);
1185 case 32: GET_REG32(env
->pc
);
1191 static int cpu_gdb_write_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
1198 tmp
= ldl_p(mem_buf
);
1204 if (n
>= 21 && n
< 32) {
1205 env
->pregs
[n
- 16] = tmp
;
1208 /* FIXME: Should support function regs be writable? */
1212 case 18: env
->pregs
[PR_PID
] = tmp
; break;
1215 case 32: env
->pc
= tmp
; break;
1220 #elif defined (TARGET_ALPHA)
1222 #define NUM_CORE_REGS 65
1224 static int cpu_gdb_read_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
1227 GET_REGL(env
->ir
[n
]);
1235 val
=*((uint64_t *)&env
->fir
[n
-32]);
1239 GET_REGL(env
->fpcr
);
1251 static int cpu_gdb_write_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
1254 tmp
= ldtul_p(mem_buf
);
1260 if (n
> 31 && n
< 63) {
1261 env
->fir
[n
- 32] = ldfl_p(mem_buf
);
1272 #define NUM_CORE_REGS 0
1274 static int cpu_gdb_read_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
1279 static int cpu_gdb_write_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
1286 static int num_g_regs
= NUM_CORE_REGS
;
1289 /* Encode data using the encoding for 'x' packets. */
1290 static int memtox(char *buf
, const char *mem
, int len
)
1298 case '#': case '$': case '*': case '}':
1310 static const char *get_feature_xml(const char *p
, const char **newp
)
1312 extern const char *const xml_builtin
[][2];
1316 static char target_xml
[1024];
1319 while (p
[len
] && p
[len
] != ':')
1324 if (strncmp(p
, "target.xml", len
) == 0) {
1325 /* Generate the XML description for this CPU. */
1326 if (!target_xml
[0]) {
1327 GDBRegisterState
*r
;
1329 snprintf(target_xml
, sizeof(target_xml
),
1330 "<?xml version=\"1.0\"?>"
1331 "<!DOCTYPE target SYSTEM \"gdb-target.dtd\">"
1333 "<xi:include href=\"%s\"/>",
1336 for (r
= first_cpu
->gdb_regs
; r
; r
= r
->next
) {
1337 pstrcat(target_xml
, sizeof(target_xml
), "<xi:include href=\"");
1338 pstrcat(target_xml
, sizeof(target_xml
), r
->xml
);
1339 pstrcat(target_xml
, sizeof(target_xml
), "\"/>");
1341 pstrcat(target_xml
, sizeof(target_xml
), "</target>");
1345 for (i
= 0; ; i
++) {
1346 name
= xml_builtin
[i
][0];
1347 if (!name
|| (strncmp(name
, p
, len
) == 0 && strlen(name
) == len
))
1350 return name
? xml_builtin
[i
][1] : NULL
;
1354 static int gdb_read_register(CPUState
*env
, uint8_t *mem_buf
, int reg
)
1356 GDBRegisterState
*r
;
1358 if (reg
< NUM_CORE_REGS
)
1359 return cpu_gdb_read_register(env
, mem_buf
, reg
);
1361 for (r
= env
->gdb_regs
; r
; r
= r
->next
) {
1362 if (r
->base_reg
<= reg
&& reg
< r
->base_reg
+ r
->num_regs
) {
1363 return r
->get_reg(env
, mem_buf
, reg
- r
->base_reg
);
1369 static int gdb_write_register(CPUState
*env
, uint8_t *mem_buf
, int reg
)
1371 GDBRegisterState
*r
;
1373 if (reg
< NUM_CORE_REGS
)
1374 return cpu_gdb_write_register(env
, mem_buf
, reg
);
1376 for (r
= env
->gdb_regs
; r
; r
= r
->next
) {
1377 if (r
->base_reg
<= reg
&& reg
< r
->base_reg
+ r
->num_regs
) {
1378 return r
->set_reg(env
, mem_buf
, reg
- r
->base_reg
);
1384 /* Register a supplemental set of CPU registers. If g_pos is nonzero it
1385 specifies the first register number and these registers are included in
1386 a standard "g" packet. Direction is relative to gdb, i.e. get_reg is
1387 gdb reading a CPU register, and set_reg is gdb modifying a CPU register.
1390 void gdb_register_coprocessor(CPUState
* env
,
1391 gdb_reg_cb get_reg
, gdb_reg_cb set_reg
,
1392 int num_regs
, const char *xml
, int g_pos
)
1394 GDBRegisterState
*s
;
1395 GDBRegisterState
**p
;
1396 static int last_reg
= NUM_CORE_REGS
;
1398 s
= (GDBRegisterState
*)qemu_mallocz(sizeof(GDBRegisterState
));
1399 s
->base_reg
= last_reg
;
1400 s
->num_regs
= num_regs
;
1401 s
->get_reg
= get_reg
;
1402 s
->set_reg
= set_reg
;
1406 /* Check for duplicates. */
1407 if (strcmp((*p
)->xml
, xml
) == 0)
1411 /* Add to end of list. */
1412 last_reg
+= num_regs
;
1415 if (g_pos
!= s
->base_reg
) {
1416 fprintf(stderr
, "Error: Bad gdb register numbering for '%s'\n"
1417 "Expected %d got %d\n", xml
, g_pos
, s
->base_reg
);
1419 num_g_regs
= last_reg
;
1424 #ifndef CONFIG_USER_ONLY
1425 static const int xlat_gdb_type
[] = {
1426 [GDB_WATCHPOINT_WRITE
] = BP_GDB
| BP_MEM_WRITE
,
1427 [GDB_WATCHPOINT_READ
] = BP_GDB
| BP_MEM_READ
,
1428 [GDB_WATCHPOINT_ACCESS
] = BP_GDB
| BP_MEM_ACCESS
,
1432 static int gdb_breakpoint_insert(target_ulong addr
, target_ulong len
, int type
)
1438 return kvm_insert_breakpoint(gdbserver_state
->c_cpu
, addr
, len
, type
);
1441 case GDB_BREAKPOINT_SW
:
1442 case GDB_BREAKPOINT_HW
:
1443 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
1444 err
= cpu_breakpoint_insert(env
, addr
, BP_GDB
, NULL
);
1449 #ifndef CONFIG_USER_ONLY
1450 case GDB_WATCHPOINT_WRITE
:
1451 case GDB_WATCHPOINT_READ
:
1452 case GDB_WATCHPOINT_ACCESS
:
1453 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
1454 err
= cpu_watchpoint_insert(env
, addr
, len
, xlat_gdb_type
[type
],
1466 static int gdb_breakpoint_remove(target_ulong addr
, target_ulong len
, int type
)
1472 return kvm_remove_breakpoint(gdbserver_state
->c_cpu
, addr
, len
, type
);
1475 case GDB_BREAKPOINT_SW
:
1476 case GDB_BREAKPOINT_HW
:
1477 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
1478 err
= cpu_breakpoint_remove(env
, addr
, BP_GDB
);
1483 #ifndef CONFIG_USER_ONLY
1484 case GDB_WATCHPOINT_WRITE
:
1485 case GDB_WATCHPOINT_READ
:
1486 case GDB_WATCHPOINT_ACCESS
:
1487 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
1488 err
= cpu_watchpoint_remove(env
, addr
, len
, xlat_gdb_type
[type
]);
1499 static void gdb_breakpoint_remove_all(void)
1503 if (kvm_enabled()) {
1504 kvm_remove_all_breakpoints(gdbserver_state
->c_cpu
);
1508 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
1509 cpu_breakpoint_remove_all(env
, BP_GDB
);
1510 #ifndef CONFIG_USER_ONLY
1511 cpu_watchpoint_remove_all(env
, BP_GDB
);
1516 static void gdb_set_cpu_pc(GDBState
*s
, target_ulong pc
)
1518 #if defined(TARGET_I386)
1520 cpu_synchronize_state(s
->c_cpu
, 1);
1521 #elif defined (TARGET_PPC)
1523 #elif defined (TARGET_SPARC)
1525 s
->c_cpu
->npc
= pc
+ 4;
1526 #elif defined (TARGET_ARM)
1527 s
->c_cpu
->regs
[15] = pc
;
1528 #elif defined (TARGET_SH4)
1530 #elif defined (TARGET_MIPS)
1531 s
->c_cpu
->active_tc
.PC
= pc
;
1532 #elif defined (TARGET_CRIS)
1534 #elif defined (TARGET_ALPHA)
1539 static int gdb_handle_packet(GDBState
*s
, const char *line_buf
)
1543 int ch
, reg_size
, type
, res
, thread
;
1544 char buf
[MAX_PACKET_LENGTH
];
1545 uint8_t mem_buf
[MAX_PACKET_LENGTH
];
1547 target_ulong addr
, len
;
1550 printf("command='%s'\n", line_buf
);
1556 /* TODO: Make this return the correct value for user-mode. */
1557 snprintf(buf
, sizeof(buf
), "T%02xthread:%02x;", GDB_SIGNAL_TRAP
,
1558 s
->c_cpu
->cpu_index
+1);
1560 /* Remove all the breakpoints when this query is issued,
1561 * because gdb is doing and initial connect and the state
1562 * should be cleaned up.
1564 gdb_breakpoint_remove_all();
1568 addr
= strtoull(p
, (char **)&p
, 16);
1569 gdb_set_cpu_pc(s
, addr
);
1575 s
->signal
= gdb_signal_to_target (strtoul(p
, (char **)&p
, 16));
1576 if (s
->signal
== -1)
1581 /* Kill the target */
1582 fprintf(stderr
, "\nQEMU: Terminated via GDBstub\n");
1586 gdb_breakpoint_remove_all();
1588 put_packet(s
, "OK");
1592 addr
= strtoull(p
, (char **)&p
, 16);
1593 gdb_set_cpu_pc(s
, addr
);
1595 cpu_single_step(s
->c_cpu
, sstep_flags
);
1603 ret
= strtoull(p
, (char **)&p
, 16);
1606 err
= strtoull(p
, (char **)&p
, 16);
1613 if (gdb_current_syscall_cb
)
1614 gdb_current_syscall_cb(s
->c_cpu
, ret
, err
);
1616 put_packet(s
, "T02");
1623 cpu_synchronize_state(s
->g_cpu
, 0);
1625 for (addr
= 0; addr
< num_g_regs
; addr
++) {
1626 reg_size
= gdb_read_register(s
->g_cpu
, mem_buf
+ len
, addr
);
1629 memtohex(buf
, mem_buf
, len
);
1633 registers
= mem_buf
;
1634 len
= strlen(p
) / 2;
1635 hextomem((uint8_t *)registers
, p
, len
);
1636 for (addr
= 0; addr
< num_g_regs
&& len
> 0; addr
++) {
1637 reg_size
= gdb_write_register(s
->g_cpu
, registers
, addr
);
1639 registers
+= reg_size
;
1641 cpu_synchronize_state(s
->g_cpu
, 1);
1642 put_packet(s
, "OK");
1645 addr
= strtoull(p
, (char **)&p
, 16);
1648 len
= strtoull(p
, NULL
, 16);
1649 if (cpu_memory_rw_debug(s
->g_cpu
, addr
, mem_buf
, len
, 0) != 0) {
1650 put_packet (s
, "E14");
1652 memtohex(buf
, mem_buf
, len
);
1657 addr
= strtoull(p
, (char **)&p
, 16);
1660 len
= strtoull(p
, (char **)&p
, 16);
1663 hextomem(mem_buf
, p
, len
);
1664 if (cpu_memory_rw_debug(s
->g_cpu
, addr
, mem_buf
, len
, 1) != 0)
1665 put_packet(s
, "E14");
1667 put_packet(s
, "OK");
1670 /* Older gdb are really dumb, and don't use 'g' if 'p' is avaialable.
1671 This works, but can be very slow. Anything new enough to
1672 understand XML also knows how to use this properly. */
1674 goto unknown_command
;
1675 addr
= strtoull(p
, (char **)&p
, 16);
1676 reg_size
= gdb_read_register(s
->g_cpu
, mem_buf
, addr
);
1678 memtohex(buf
, mem_buf
, reg_size
);
1681 put_packet(s
, "E14");
1686 goto unknown_command
;
1687 addr
= strtoull(p
, (char **)&p
, 16);
1690 reg_size
= strlen(p
) / 2;
1691 hextomem(mem_buf
, p
, reg_size
);
1692 gdb_write_register(s
->g_cpu
, mem_buf
, addr
);
1693 put_packet(s
, "OK");
1697 type
= strtoul(p
, (char **)&p
, 16);
1700 addr
= strtoull(p
, (char **)&p
, 16);
1703 len
= strtoull(p
, (char **)&p
, 16);
1705 res
= gdb_breakpoint_insert(addr
, len
, type
);
1707 res
= gdb_breakpoint_remove(addr
, len
, type
);
1709 put_packet(s
, "OK");
1710 else if (res
== -ENOSYS
)
1713 put_packet(s
, "E22");
1717 thread
= strtoull(p
, (char **)&p
, 16);
1718 if (thread
== -1 || thread
== 0) {
1719 put_packet(s
, "OK");
1722 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
)
1723 if (env
->cpu_index
+ 1 == thread
)
1726 put_packet(s
, "E22");
1732 put_packet(s
, "OK");
1736 put_packet(s
, "OK");
1739 put_packet(s
, "E22");
1744 thread
= strtoull(p
, (char **)&p
, 16);
1745 #ifndef CONFIG_USER_ONLY
1746 if (thread
> 0 && thread
< smp_cpus
+ 1)
1750 put_packet(s
, "OK");
1752 put_packet(s
, "E22");
1756 /* parse any 'q' packets here */
1757 if (!strcmp(p
,"qemu.sstepbits")) {
1758 /* Query Breakpoint bit definitions */
1759 snprintf(buf
, sizeof(buf
), "ENABLE=%x,NOIRQ=%x,NOTIMER=%x",
1765 } else if (strncmp(p
,"qemu.sstep",10) == 0) {
1766 /* Display or change the sstep_flags */
1769 /* Display current setting */
1770 snprintf(buf
, sizeof(buf
), "0x%x", sstep_flags
);
1775 type
= strtoul(p
, (char **)&p
, 16);
1777 put_packet(s
, "OK");
1779 } else if (strcmp(p
,"C") == 0) {
1780 /* "Current thread" remains vague in the spec, so always return
1781 * the first CPU (gdb returns the first thread). */
1782 put_packet(s
, "QC1");
1784 } else if (strcmp(p
,"fThreadInfo") == 0) {
1785 s
->query_cpu
= first_cpu
;
1786 goto report_cpuinfo
;
1787 } else if (strcmp(p
,"sThreadInfo") == 0) {
1790 snprintf(buf
, sizeof(buf
), "m%x", s
->query_cpu
->cpu_index
+1);
1792 s
->query_cpu
= s
->query_cpu
->next_cpu
;
1796 } else if (strncmp(p
,"ThreadExtraInfo,", 16) == 0) {
1797 thread
= strtoull(p
+16, (char **)&p
, 16);
1798 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
)
1799 if (env
->cpu_index
+ 1 == thread
) {
1800 cpu_synchronize_state(env
, 0);
1801 len
= snprintf((char *)mem_buf
, sizeof(mem_buf
),
1802 "CPU#%d [%s]", env
->cpu_index
,
1803 env
->halted
? "halted " : "running");
1804 memtohex(buf
, mem_buf
, len
);
1810 #ifdef CONFIG_USER_ONLY
1811 else if (strncmp(p
, "Offsets", 7) == 0) {
1812 TaskState
*ts
= s
->c_cpu
->opaque
;
1814 snprintf(buf
, sizeof(buf
),
1815 "Text=" TARGET_ABI_FMT_lx
";Data=" TARGET_ABI_FMT_lx
1816 ";Bss=" TARGET_ABI_FMT_lx
,
1817 ts
->info
->code_offset
,
1818 ts
->info
->data_offset
,
1819 ts
->info
->data_offset
);
1823 #else /* !CONFIG_USER_ONLY */
1824 else if (strncmp(p
, "Rcmd,", 5) == 0) {
1825 int len
= strlen(p
+ 5);
1827 if ((len
% 2) != 0) {
1828 put_packet(s
, "E01");
1831 hextomem(mem_buf
, p
+ 5, len
);
1834 qemu_chr_read(s
->mon_chr
, mem_buf
, len
);
1835 put_packet(s
, "OK");
1838 #endif /* !CONFIG_USER_ONLY */
1839 if (strncmp(p
, "Supported", 9) == 0) {
1840 snprintf(buf
, sizeof(buf
), "PacketSize=%x", MAX_PACKET_LENGTH
);
1842 pstrcat(buf
, sizeof(buf
), ";qXfer:features:read+");
1848 if (strncmp(p
, "Xfer:features:read:", 19) == 0) {
1850 target_ulong total_len
;
1854 xml
= get_feature_xml(p
, &p
);
1856 snprintf(buf
, sizeof(buf
), "E00");
1863 addr
= strtoul(p
, (char **)&p
, 16);
1866 len
= strtoul(p
, (char **)&p
, 16);
1868 total_len
= strlen(xml
);
1869 if (addr
> total_len
) {
1870 snprintf(buf
, sizeof(buf
), "E00");
1874 if (len
> (MAX_PACKET_LENGTH
- 5) / 2)
1875 len
= (MAX_PACKET_LENGTH
- 5) / 2;
1876 if (len
< total_len
- addr
) {
1878 len
= memtox(buf
+ 1, xml
+ addr
, len
);
1881 len
= memtox(buf
+ 1, xml
+ addr
, total_len
- addr
);
1883 put_packet_binary(s
, buf
, len
+ 1);
1887 /* Unrecognised 'q' command. */
1888 goto unknown_command
;
1892 /* put empty packet */
1900 void gdb_set_stop_cpu(CPUState
*env
)
1902 gdbserver_state
->c_cpu
= env
;
1903 gdbserver_state
->g_cpu
= env
;
1906 #ifndef CONFIG_USER_ONLY
1907 static void gdb_vm_state_change(void *opaque
, int running
, int reason
)
1909 GDBState
*s
= gdbserver_state
;
1910 CPUState
*env
= s
->c_cpu
;
1915 if (running
|| (reason
!= EXCP_DEBUG
&& reason
!= EXCP_INTERRUPT
) ||
1916 s
->state
== RS_INACTIVE
|| s
->state
== RS_SYSCALL
)
1919 /* disable single step if it was enable */
1920 cpu_single_step(env
, 0);
1922 if (reason
== EXCP_DEBUG
) {
1923 if (env
->watchpoint_hit
) {
1924 switch (env
->watchpoint_hit
->flags
& BP_MEM_ACCESS
) {
1935 snprintf(buf
, sizeof(buf
),
1936 "T%02xthread:%02x;%swatch:" TARGET_FMT_lx
";",
1937 GDB_SIGNAL_TRAP
, env
->cpu_index
+1, type
,
1938 env
->watchpoint_hit
->vaddr
);
1940 env
->watchpoint_hit
= NULL
;
1944 ret
= GDB_SIGNAL_TRAP
;
1946 ret
= GDB_SIGNAL_INT
;
1948 snprintf(buf
, sizeof(buf
), "T%02xthread:%02x;", ret
, env
->cpu_index
+1);
1953 /* Send a gdb syscall request.
1954 This accepts limited printf-style format specifiers, specifically:
1955 %x - target_ulong argument printed in hex.
1956 %lx - 64-bit argument printed in hex.
1957 %s - string pointer (target_ulong) and length (int) pair. */
1958 void gdb_do_syscall(gdb_syscall_complete_cb cb
, const char *fmt
, ...)
1967 s
= gdbserver_state
;
1970 gdb_current_syscall_cb
= cb
;
1971 s
->state
= RS_SYSCALL
;
1972 #ifndef CONFIG_USER_ONLY
1973 vm_stop(EXCP_DEBUG
);
1984 addr
= va_arg(va
, target_ulong
);
1985 p
+= snprintf(p
, &buf
[sizeof(buf
)] - p
, TARGET_FMT_lx
, addr
);
1988 if (*(fmt
++) != 'x')
1990 i64
= va_arg(va
, uint64_t);
1991 p
+= snprintf(p
, &buf
[sizeof(buf
)] - p
, "%" PRIx64
, i64
);
1994 addr
= va_arg(va
, target_ulong
);
1995 p
+= snprintf(p
, &buf
[sizeof(buf
)] - p
, TARGET_FMT_lx
"/%x",
1996 addr
, va_arg(va
, int));
2000 fprintf(stderr
, "gdbstub: Bad syscall format string '%s'\n",
2011 #ifdef CONFIG_USER_ONLY
2012 gdb_handlesig(s
->c_cpu
, 0);
2018 static void gdb_read_byte(GDBState
*s
, int ch
)
2023 #ifndef CONFIG_USER_ONLY
2024 if (s
->last_packet_len
) {
2025 /* Waiting for a response to the last packet. If we see the start
2026 of a new command then abandon the previous response. */
2029 printf("Got NACK, retransmitting\n");
2031 put_buffer(s
, (uint8_t *)s
->last_packet
, s
->last_packet_len
);
2035 printf("Got ACK\n");
2037 printf("Got '%c' when expecting ACK/NACK\n", ch
);
2039 if (ch
== '+' || ch
== '$')
2040 s
->last_packet_len
= 0;
2045 /* when the CPU is running, we cannot do anything except stop
2046 it when receiving a char */
2047 vm_stop(EXCP_INTERRUPT
);
2054 s
->line_buf_index
= 0;
2055 s
->state
= RS_GETLINE
;
2060 s
->state
= RS_CHKSUM1
;
2061 } else if (s
->line_buf_index
>= sizeof(s
->line_buf
) - 1) {
2064 s
->line_buf
[s
->line_buf_index
++] = ch
;
2068 s
->line_buf
[s
->line_buf_index
] = '\0';
2069 s
->line_csum
= fromhex(ch
) << 4;
2070 s
->state
= RS_CHKSUM2
;
2073 s
->line_csum
|= fromhex(ch
);
2075 for(i
= 0; i
< s
->line_buf_index
; i
++) {
2076 csum
+= s
->line_buf
[i
];
2078 if (s
->line_csum
!= (csum
& 0xff)) {
2080 put_buffer(s
, &reply
, 1);
2084 put_buffer(s
, &reply
, 1);
2085 s
->state
= gdb_handle_packet(s
, s
->line_buf
);
2094 #ifdef CONFIG_USER_ONLY
2100 s
= gdbserver_state
;
2102 if (gdbserver_fd
< 0 || s
->fd
< 0)
2109 gdb_handlesig (CPUState
*env
, int sig
)
2115 s
= gdbserver_state
;
2116 if (gdbserver_fd
< 0 || s
->fd
< 0)
2119 /* disable single step if it was enabled */
2120 cpu_single_step(env
, 0);
2125 snprintf(buf
, sizeof(buf
), "S%02x", target_signal_to_gdb (sig
));
2128 /* put_packet() might have detected that the peer terminated the
2135 s
->running_state
= 0;
2136 while (s
->running_state
== 0) {
2137 n
= read (s
->fd
, buf
, 256);
2142 for (i
= 0; i
< n
; i
++)
2143 gdb_read_byte (s
, buf
[i
]);
2145 else if (n
== 0 || errno
!= EAGAIN
)
2147 /* XXX: Connection closed. Should probably wait for annother
2148 connection before continuing. */
2157 /* Tell the remote gdb that the process has exited. */
2158 void gdb_exit(CPUState
*env
, int code
)
2163 s
= gdbserver_state
;
2164 if (gdbserver_fd
< 0 || s
->fd
< 0)
2167 snprintf(buf
, sizeof(buf
), "W%02x", code
);
2171 /* Tell the remote gdb that the process has exited due to SIG. */
2172 void gdb_signalled(CPUState
*env
, int sig
)
2177 s
= gdbserver_state
;
2178 if (gdbserver_fd
< 0 || s
->fd
< 0)
2181 snprintf(buf
, sizeof(buf
), "X%02x", target_signal_to_gdb (sig
));
2185 static void gdb_accept(void)
2188 struct sockaddr_in sockaddr
;
2193 len
= sizeof(sockaddr
);
2194 fd
= accept(gdbserver_fd
, (struct sockaddr
*)&sockaddr
, &len
);
2195 if (fd
< 0 && errno
!= EINTR
) {
2198 } else if (fd
>= 0) {
2203 /* set short latency */
2205 setsockopt(fd
, IPPROTO_TCP
, TCP_NODELAY
, (char *)&val
, sizeof(val
));
2207 s
= qemu_mallocz(sizeof(GDBState
));
2208 s
->c_cpu
= first_cpu
;
2209 s
->g_cpu
= first_cpu
;
2213 gdbserver_state
= s
;
2215 fcntl(fd
, F_SETFL
, O_NONBLOCK
);
2218 static int gdbserver_open(int port
)
2220 struct sockaddr_in sockaddr
;
2223 fd
= socket(PF_INET
, SOCK_STREAM
, 0);
2229 /* allow fast reuse */
2231 setsockopt(fd
, SOL_SOCKET
, SO_REUSEADDR
, (char *)&val
, sizeof(val
));
2233 sockaddr
.sin_family
= AF_INET
;
2234 sockaddr
.sin_port
= htons(port
);
2235 sockaddr
.sin_addr
.s_addr
= 0;
2236 ret
= bind(fd
, (struct sockaddr
*)&sockaddr
, sizeof(sockaddr
));
2241 ret
= listen(fd
, 0);
2249 int gdbserver_start(int port
)
2251 gdbserver_fd
= gdbserver_open(port
);
2252 if (gdbserver_fd
< 0)
2254 /* accept connections */
2259 /* Disable gdb stub for child processes. */
2260 void gdbserver_fork(CPUState
*env
)
2262 GDBState
*s
= gdbserver_state
;
2263 if (gdbserver_fd
< 0 || s
->fd
< 0)
2267 cpu_breakpoint_remove_all(env
, BP_GDB
);
2268 cpu_watchpoint_remove_all(env
, BP_GDB
);
2271 static int gdb_chr_can_receive(void *opaque
)
2273 /* We can handle an arbitrarily large amount of data.
2274 Pick the maximum packet size, which is as good as anything. */
2275 return MAX_PACKET_LENGTH
;
2278 static void gdb_chr_receive(void *opaque
, const uint8_t *buf
, int size
)
2282 for (i
= 0; i
< size
; i
++) {
2283 gdb_read_byte(gdbserver_state
, buf
[i
]);
2287 static void gdb_chr_event(void *opaque
, int event
)
2290 case CHR_EVENT_RESET
:
2291 vm_stop(EXCP_INTERRUPT
);
2299 static void gdb_monitor_output(GDBState
*s
, const char *msg
, int len
)
2301 char buf
[MAX_PACKET_LENGTH
];
2304 if (len
> (MAX_PACKET_LENGTH
/2) - 1)
2305 len
= (MAX_PACKET_LENGTH
/2) - 1;
2306 memtohex(buf
+ 1, (uint8_t *)msg
, len
);
2310 static int gdb_monitor_write(CharDriverState
*chr
, const uint8_t *buf
, int len
)
2312 const char *p
= (const char *)buf
;
2315 max_sz
= (sizeof(gdbserver_state
->last_packet
) - 2) / 2;
2317 if (len
<= max_sz
) {
2318 gdb_monitor_output(gdbserver_state
, p
, len
);
2321 gdb_monitor_output(gdbserver_state
, p
, max_sz
);
2329 static void gdb_sigterm_handler(int signal
)
2332 vm_stop(EXCP_INTERRUPT
);
2336 int gdbserver_start(const char *device
)
2339 char gdbstub_device_name
[128];
2340 CharDriverState
*chr
= NULL
;
2341 CharDriverState
*mon_chr
;
2345 if (strcmp(device
, "none") != 0) {
2346 if (strstart(device
, "tcp:", NULL
)) {
2347 /* enforce required TCP attributes */
2348 snprintf(gdbstub_device_name
, sizeof(gdbstub_device_name
),
2349 "%s,nowait,nodelay,server", device
);
2350 device
= gdbstub_device_name
;
2353 else if (strcmp(device
, "stdio") == 0) {
2354 struct sigaction act
;
2356 memset(&act
, 0, sizeof(act
));
2357 act
.sa_handler
= gdb_sigterm_handler
;
2358 sigaction(SIGINT
, &act
, NULL
);
2361 chr
= qemu_chr_open("gdb", device
, NULL
);
2365 qemu_chr_add_handlers(chr
, gdb_chr_can_receive
, gdb_chr_receive
,
2366 gdb_chr_event
, NULL
);
2369 s
= gdbserver_state
;
2371 s
= qemu_mallocz(sizeof(GDBState
));
2372 gdbserver_state
= s
;
2374 qemu_add_vm_change_state_handler(gdb_vm_state_change
, NULL
);
2376 /* Initialize a monitor terminal for gdb */
2377 mon_chr
= qemu_mallocz(sizeof(*mon_chr
));
2378 mon_chr
->chr_write
= gdb_monitor_write
;
2379 monitor_init(mon_chr
, 0);
2382 qemu_chr_close(s
->chr
);
2383 mon_chr
= s
->mon_chr
;
2384 memset(s
, 0, sizeof(GDBState
));
2386 s
->c_cpu
= first_cpu
;
2387 s
->g_cpu
= first_cpu
;
2389 s
->state
= chr
? RS_IDLE
: RS_INACTIVE
;
2390 s
->mon_chr
= mon_chr
;