Pull qemu headers into libkvm
[qemu-kvm/fedora.git] / gdbstub.c
blob9d99f75408e052e830a7e366de60c8b783761048
1 /*
2 * gdb server stub
4 * Copyright (c) 2003-2005 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, write to the Free Software
18 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston MA 02110-1301 USA
20 #include "config.h"
21 #include "qemu-common.h"
22 #ifdef CONFIG_USER_ONLY
23 #include <stdlib.h>
24 #include <stdio.h>
25 #include <stdarg.h>
26 #include <string.h>
27 #include <errno.h>
28 #include <unistd.h>
29 #include <fcntl.h>
31 #include "qemu.h"
32 #else
33 #include "monitor.h"
34 #include "qemu-char.h"
35 #include "sysemu.h"
36 #include "gdbstub.h"
37 #endif
38 #include "qemu-kvm.h"
40 #define MAX_PACKET_LENGTH 4096
42 #include "qemu_socket.h"
43 #include "kvm.h"
46 enum {
47 GDB_SIGNAL_0 = 0,
48 GDB_SIGNAL_INT = 2,
49 GDB_SIGNAL_TRAP = 5,
50 GDB_SIGNAL_UNKNOWN = 143
53 #ifdef CONFIG_USER_ONLY
55 /* Map target signal numbers to GDB protocol signal numbers and vice
56 * versa. For user emulation's currently supported systems, we can
57 * assume most signals are defined.
60 static int gdb_signal_table[] = {
62 TARGET_SIGHUP,
63 TARGET_SIGINT,
64 TARGET_SIGQUIT,
65 TARGET_SIGILL,
66 TARGET_SIGTRAP,
67 TARGET_SIGABRT,
68 -1, /* SIGEMT */
69 TARGET_SIGFPE,
70 TARGET_SIGKILL,
71 TARGET_SIGBUS,
72 TARGET_SIGSEGV,
73 TARGET_SIGSYS,
74 TARGET_SIGPIPE,
75 TARGET_SIGALRM,
76 TARGET_SIGTERM,
77 TARGET_SIGURG,
78 TARGET_SIGSTOP,
79 TARGET_SIGTSTP,
80 TARGET_SIGCONT,
81 TARGET_SIGCHLD,
82 TARGET_SIGTTIN,
83 TARGET_SIGTTOU,
84 TARGET_SIGIO,
85 TARGET_SIGXCPU,
86 TARGET_SIGXFSZ,
87 TARGET_SIGVTALRM,
88 TARGET_SIGPROF,
89 TARGET_SIGWINCH,
90 -1, /* SIGLOST */
91 TARGET_SIGUSR1,
92 TARGET_SIGUSR2,
93 #ifdef TARGET_SIGPWR
94 TARGET_SIGPWR,
95 #else
96 -1,
97 #endif
98 -1, /* SIGPOLL */
99 -1,
110 #ifdef __SIGRTMIN
111 __SIGRTMIN + 1,
112 __SIGRTMIN + 2,
113 __SIGRTMIN + 3,
114 __SIGRTMIN + 4,
115 __SIGRTMIN + 5,
116 __SIGRTMIN + 6,
117 __SIGRTMIN + 7,
118 __SIGRTMIN + 8,
119 __SIGRTMIN + 9,
120 __SIGRTMIN + 10,
121 __SIGRTMIN + 11,
122 __SIGRTMIN + 12,
123 __SIGRTMIN + 13,
124 __SIGRTMIN + 14,
125 __SIGRTMIN + 15,
126 __SIGRTMIN + 16,
127 __SIGRTMIN + 17,
128 __SIGRTMIN + 18,
129 __SIGRTMIN + 19,
130 __SIGRTMIN + 20,
131 __SIGRTMIN + 21,
132 __SIGRTMIN + 22,
133 __SIGRTMIN + 23,
134 __SIGRTMIN + 24,
135 __SIGRTMIN + 25,
136 __SIGRTMIN + 26,
137 __SIGRTMIN + 27,
138 __SIGRTMIN + 28,
139 __SIGRTMIN + 29,
140 __SIGRTMIN + 30,
141 __SIGRTMIN + 31,
142 -1, /* SIGCANCEL */
143 __SIGRTMIN,
144 __SIGRTMIN + 32,
145 __SIGRTMIN + 33,
146 __SIGRTMIN + 34,
147 __SIGRTMIN + 35,
148 __SIGRTMIN + 36,
149 __SIGRTMIN + 37,
150 __SIGRTMIN + 38,
151 __SIGRTMIN + 39,
152 __SIGRTMIN + 40,
153 __SIGRTMIN + 41,
154 __SIGRTMIN + 42,
155 __SIGRTMIN + 43,
156 __SIGRTMIN + 44,
157 __SIGRTMIN + 45,
158 __SIGRTMIN + 46,
159 __SIGRTMIN + 47,
160 __SIGRTMIN + 48,
161 __SIGRTMIN + 49,
162 __SIGRTMIN + 50,
163 __SIGRTMIN + 51,
164 __SIGRTMIN + 52,
165 __SIGRTMIN + 53,
166 __SIGRTMIN + 54,
167 __SIGRTMIN + 55,
168 __SIGRTMIN + 56,
169 __SIGRTMIN + 57,
170 __SIGRTMIN + 58,
171 __SIGRTMIN + 59,
172 __SIGRTMIN + 60,
173 __SIGRTMIN + 61,
174 __SIGRTMIN + 62,
175 __SIGRTMIN + 63,
176 __SIGRTMIN + 64,
177 __SIGRTMIN + 65,
178 __SIGRTMIN + 66,
179 __SIGRTMIN + 67,
180 __SIGRTMIN + 68,
181 __SIGRTMIN + 69,
182 __SIGRTMIN + 70,
183 __SIGRTMIN + 71,
184 __SIGRTMIN + 72,
185 __SIGRTMIN + 73,
186 __SIGRTMIN + 74,
187 __SIGRTMIN + 75,
188 __SIGRTMIN + 76,
189 __SIGRTMIN + 77,
190 __SIGRTMIN + 78,
191 __SIGRTMIN + 79,
192 __SIGRTMIN + 80,
193 __SIGRTMIN + 81,
194 __SIGRTMIN + 82,
195 __SIGRTMIN + 83,
196 __SIGRTMIN + 84,
197 __SIGRTMIN + 85,
198 __SIGRTMIN + 86,
199 __SIGRTMIN + 87,
200 __SIGRTMIN + 88,
201 __SIGRTMIN + 89,
202 __SIGRTMIN + 90,
203 __SIGRTMIN + 91,
204 __SIGRTMIN + 92,
205 __SIGRTMIN + 93,
206 __SIGRTMIN + 94,
207 __SIGRTMIN + 95,
208 -1, /* SIGINFO */
209 -1, /* UNKNOWN */
210 -1, /* DEFAULT */
217 #endif
219 #else
220 /* In system mode we only need SIGINT and SIGTRAP; other signals
221 are not yet supported. */
223 enum {
224 TARGET_SIGINT = 2,
225 TARGET_SIGTRAP = 5
228 static int gdb_signal_table[] = {
231 TARGET_SIGINT,
234 TARGET_SIGTRAP
236 #endif
238 #ifdef CONFIG_USER_ONLY
239 static int target_signal_to_gdb (int sig)
241 int i;
242 for (i = 0; i < ARRAY_SIZE (gdb_signal_table); i++)
243 if (gdb_signal_table[i] == sig)
244 return i;
245 return GDB_SIGNAL_UNKNOWN;
247 #endif
249 static int gdb_signal_to_target (int sig)
251 if (sig < ARRAY_SIZE (gdb_signal_table))
252 return gdb_signal_table[sig];
253 else
254 return -1;
257 //#define DEBUG_GDB
259 typedef struct GDBRegisterState {
260 int base_reg;
261 int num_regs;
262 gdb_reg_cb get_reg;
263 gdb_reg_cb set_reg;
264 const char *xml;
265 struct GDBRegisterState *next;
266 } GDBRegisterState;
268 enum RSState {
269 RS_INACTIVE,
270 RS_IDLE,
271 RS_GETLINE,
272 RS_CHKSUM1,
273 RS_CHKSUM2,
274 RS_SYSCALL,
276 typedef struct GDBState {
277 CPUState *c_cpu; /* current CPU for step/continue ops */
278 CPUState *g_cpu; /* current CPU for other ops */
279 CPUState *query_cpu; /* for q{f|s}ThreadInfo */
280 enum RSState state; /* parsing state */
281 char line_buf[MAX_PACKET_LENGTH];
282 int line_buf_index;
283 int line_csum;
284 uint8_t last_packet[MAX_PACKET_LENGTH + 4];
285 int last_packet_len;
286 int signal;
287 #ifdef CONFIG_USER_ONLY
288 int fd;
289 int running_state;
290 #else
291 CharDriverState *chr;
292 CharDriverState *mon_chr;
293 #endif
294 } GDBState;
296 /* By default use no IRQs and no timers while single stepping so as to
297 * make single stepping like an ICE HW step.
299 static int sstep_flags = SSTEP_ENABLE|SSTEP_NOIRQ|SSTEP_NOTIMER;
301 static GDBState *gdbserver_state;
303 /* This is an ugly hack to cope with both new and old gdb.
304 If gdb sends qXfer:features:read then assume we're talking to a newish
305 gdb that understands target descriptions. */
306 static int gdb_has_xml;
308 #ifdef CONFIG_USER_ONLY
309 /* XXX: This is not thread safe. Do we care? */
310 static int gdbserver_fd = -1;
312 static int get_char(GDBState *s)
314 uint8_t ch;
315 int ret;
317 for(;;) {
318 ret = recv(s->fd, &ch, 1, 0);
319 if (ret < 0) {
320 if (errno == ECONNRESET)
321 s->fd = -1;
322 if (errno != EINTR && errno != EAGAIN)
323 return -1;
324 } else if (ret == 0) {
325 close(s->fd);
326 s->fd = -1;
327 return -1;
328 } else {
329 break;
332 return ch;
334 #endif
336 static gdb_syscall_complete_cb gdb_current_syscall_cb;
338 static enum {
339 GDB_SYS_UNKNOWN,
340 GDB_SYS_ENABLED,
341 GDB_SYS_DISABLED,
342 } gdb_syscall_mode;
344 /* If gdb is connected when the first semihosting syscall occurs then use
345 remote gdb syscalls. Otherwise use native file IO. */
346 int use_gdb_syscalls(void)
348 if (gdb_syscall_mode == GDB_SYS_UNKNOWN) {
349 gdb_syscall_mode = (gdbserver_state ? GDB_SYS_ENABLED
350 : GDB_SYS_DISABLED);
352 return gdb_syscall_mode == GDB_SYS_ENABLED;
355 /* Resume execution. */
356 static inline void gdb_continue(GDBState *s)
358 #ifdef CONFIG_USER_ONLY
359 s->running_state = 1;
360 #else
361 vm_start();
362 #endif
365 static void put_buffer(GDBState *s, const uint8_t *buf, int len)
367 #ifdef CONFIG_USER_ONLY
368 int ret;
370 while (len > 0) {
371 ret = send(s->fd, buf, len, 0);
372 if (ret < 0) {
373 if (errno != EINTR && errno != EAGAIN)
374 return;
375 } else {
376 buf += ret;
377 len -= ret;
380 #else
381 qemu_chr_write(s->chr, buf, len);
382 #endif
385 static inline int fromhex(int v)
387 if (v >= '0' && v <= '9')
388 return v - '0';
389 else if (v >= 'A' && v <= 'F')
390 return v - 'A' + 10;
391 else if (v >= 'a' && v <= 'f')
392 return v - 'a' + 10;
393 else
394 return 0;
397 static inline int tohex(int v)
399 if (v < 10)
400 return v + '0';
401 else
402 return v - 10 + 'a';
405 static void memtohex(char *buf, const uint8_t *mem, int len)
407 int i, c;
408 char *q;
409 q = buf;
410 for(i = 0; i < len; i++) {
411 c = mem[i];
412 *q++ = tohex(c >> 4);
413 *q++ = tohex(c & 0xf);
415 *q = '\0';
418 static void hextomem(uint8_t *mem, const char *buf, int len)
420 int i;
422 for(i = 0; i < len; i++) {
423 mem[i] = (fromhex(buf[0]) << 4) | fromhex(buf[1]);
424 buf += 2;
428 /* return -1 if error, 0 if OK */
429 static int put_packet_binary(GDBState *s, const char *buf, int len)
431 int csum, i;
432 uint8_t *p;
434 for(;;) {
435 p = s->last_packet;
436 *(p++) = '$';
437 memcpy(p, buf, len);
438 p += len;
439 csum = 0;
440 for(i = 0; i < len; i++) {
441 csum += buf[i];
443 *(p++) = '#';
444 *(p++) = tohex((csum >> 4) & 0xf);
445 *(p++) = tohex((csum) & 0xf);
447 s->last_packet_len = p - s->last_packet;
448 put_buffer(s, (uint8_t *)s->last_packet, s->last_packet_len);
450 #ifdef CONFIG_USER_ONLY
451 i = get_char(s);
452 if (i < 0)
453 return -1;
454 if (i == '+')
455 break;
456 #else
457 break;
458 #endif
460 return 0;
463 /* return -1 if error, 0 if OK */
464 static int put_packet(GDBState *s, const char *buf)
466 #ifdef DEBUG_GDB
467 printf("reply='%s'\n", buf);
468 #endif
470 return put_packet_binary(s, buf, strlen(buf));
473 /* The GDB remote protocol transfers values in target byte order. This means
474 we can use the raw memory access routines to access the value buffer.
475 Conveniently, these also handle the case where the buffer is mis-aligned.
477 #define GET_REG8(val) do { \
478 stb_p(mem_buf, val); \
479 return 1; \
480 } while(0)
481 #define GET_REG16(val) do { \
482 stw_p(mem_buf, val); \
483 return 2; \
484 } while(0)
485 #define GET_REG32(val) do { \
486 stl_p(mem_buf, val); \
487 return 4; \
488 } while(0)
489 #define GET_REG64(val) do { \
490 stq_p(mem_buf, val); \
491 return 8; \
492 } while(0)
494 #if TARGET_LONG_BITS == 64
495 #define GET_REGL(val) GET_REG64(val)
496 #define ldtul_p(addr) ldq_p(addr)
497 #else
498 #define GET_REGL(val) GET_REG32(val)
499 #define ldtul_p(addr) ldl_p(addr)
500 #endif
502 #if defined(TARGET_I386)
504 #ifdef TARGET_X86_64
505 static const int gpr_map[16] = {
506 R_EAX, R_EBX, R_ECX, R_EDX, R_ESI, R_EDI, R_EBP, R_ESP,
507 8, 9, 10, 11, 12, 13, 14, 15
509 #else
510 static const int gpr_map[8] = {0, 1, 2, 3, 4, 5, 6, 7};
511 #endif
513 #define NUM_CORE_REGS (CPU_NB_REGS * 2 + 25)
515 static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
517 if (n < CPU_NB_REGS) {
518 GET_REGL(env->regs[gpr_map[n]]);
519 } else if (n >= CPU_NB_REGS + 8 && n < CPU_NB_REGS + 16) {
520 /* FIXME: byteswap float values. */
521 #ifdef USE_X86LDOUBLE
522 memcpy(mem_buf, &env->fpregs[n - (CPU_NB_REGS + 8)], 10);
523 #else
524 memset(mem_buf, 0, 10);
525 #endif
526 return 10;
527 } else if (n >= CPU_NB_REGS + 24) {
528 n -= CPU_NB_REGS + 24;
529 if (n < CPU_NB_REGS) {
530 stq_p(mem_buf, env->xmm_regs[n].XMM_Q(0));
531 stq_p(mem_buf + 8, env->xmm_regs[n].XMM_Q(1));
532 return 16;
533 } else if (n == CPU_NB_REGS) {
534 GET_REG32(env->mxcsr);
536 } else {
537 n -= CPU_NB_REGS;
538 switch (n) {
539 case 0: GET_REGL(env->eip);
540 case 1: GET_REG32(env->eflags);
541 case 2: GET_REG32(env->segs[R_CS].selector);
542 case 3: GET_REG32(env->segs[R_SS].selector);
543 case 4: GET_REG32(env->segs[R_DS].selector);
544 case 5: GET_REG32(env->segs[R_ES].selector);
545 case 6: GET_REG32(env->segs[R_FS].selector);
546 case 7: GET_REG32(env->segs[R_GS].selector);
547 /* 8...15 x87 regs. */
548 case 16: GET_REG32(env->fpuc);
549 case 17: GET_REG32((env->fpus & ~0x3800) | (env->fpstt & 0x7) << 11);
550 case 18: GET_REG32(0); /* ftag */
551 case 19: GET_REG32(0); /* fiseg */
552 case 20: GET_REG32(0); /* fioff */
553 case 21: GET_REG32(0); /* foseg */
554 case 22: GET_REG32(0); /* fooff */
555 case 23: GET_REG32(0); /* fop */
556 /* 24+ xmm regs. */
559 return 0;
562 static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int i)
564 uint32_t tmp;
566 if (i < CPU_NB_REGS) {
567 env->regs[gpr_map[i]] = ldtul_p(mem_buf);
568 return sizeof(target_ulong);
569 } else if (i >= CPU_NB_REGS + 8 && i < CPU_NB_REGS + 16) {
570 i -= CPU_NB_REGS + 8;
571 #ifdef USE_X86LDOUBLE
572 memcpy(&env->fpregs[i], mem_buf, 10);
573 #endif
574 return 10;
575 } else if (i >= CPU_NB_REGS + 24) {
576 i -= CPU_NB_REGS + 24;
577 if (i < CPU_NB_REGS) {
578 env->xmm_regs[i].XMM_Q(0) = ldq_p(mem_buf);
579 env->xmm_regs[i].XMM_Q(1) = ldq_p(mem_buf + 8);
580 return 16;
581 } else if (i == CPU_NB_REGS) {
582 env->mxcsr = ldl_p(mem_buf);
583 return 4;
585 } else {
586 i -= CPU_NB_REGS;
587 switch (i) {
588 case 0: env->eip = ldtul_p(mem_buf); return sizeof(target_ulong);
589 case 1: env->eflags = ldl_p(mem_buf); return 4;
590 #if defined(CONFIG_USER_ONLY)
591 #define LOAD_SEG(index, sreg)\
592 tmp = ldl_p(mem_buf);\
593 if (tmp != env->segs[sreg].selector)\
594 cpu_x86_load_seg(env, sreg, tmp);
595 #else
596 /* FIXME: Honor segment registers. Needs to avoid raising an exception
597 when the selector is invalid. */
598 #define LOAD_SEG(index, sreg) do {} while(0)
599 #endif
600 case 2: LOAD_SEG(10, R_CS); return 4;
601 case 3: LOAD_SEG(11, R_SS); return 4;
602 case 4: LOAD_SEG(12, R_DS); return 4;
603 case 5: LOAD_SEG(13, R_ES); return 4;
604 case 6: LOAD_SEG(14, R_FS); return 4;
605 case 7: LOAD_SEG(15, R_GS); return 4;
606 /* 8...15 x87 regs. */
607 case 16: env->fpuc = ldl_p(mem_buf); return 4;
608 case 17:
609 tmp = ldl_p(mem_buf);
610 env->fpstt = (tmp >> 11) & 7;
611 env->fpus = tmp & ~0x3800;
612 return 4;
613 case 18: /* ftag */ return 4;
614 case 19: /* fiseg */ return 4;
615 case 20: /* fioff */ return 4;
616 case 21: /* foseg */ return 4;
617 case 22: /* fooff */ return 4;
618 case 23: /* fop */ return 4;
619 /* 24+ xmm regs. */
622 /* Unrecognised register. */
623 return 0;
626 #elif defined (TARGET_PPC)
628 /* Old gdb always expects FP registers. Newer (xml-aware) gdb only
629 expects whatever the target description contains. Due to a
630 historical mishap the FP registers appear in between core integer
631 regs and PC, MSR, CR, and so forth. We hack round this by giving the
632 FP regs zero size when talking to a newer gdb. */
633 #define NUM_CORE_REGS 71
634 #if defined (TARGET_PPC64)
635 #define GDB_CORE_XML "power64-core.xml"
636 #else
637 #define GDB_CORE_XML "power-core.xml"
638 #endif
640 static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
642 if (n < 32) {
643 /* gprs */
644 GET_REGL(env->gpr[n]);
645 } else if (n < 64) {
646 /* fprs */
647 if (gdb_has_xml)
648 return 0;
649 stfq_p(mem_buf, env->fpr[n-32]);
650 return 8;
651 } else {
652 switch (n) {
653 case 64: GET_REGL(env->nip);
654 case 65: GET_REGL(env->msr);
655 case 66:
657 uint32_t cr = 0;
658 int i;
659 for (i = 0; i < 8; i++)
660 cr |= env->crf[i] << (32 - ((i + 1) * 4));
661 GET_REG32(cr);
663 case 67: GET_REGL(env->lr);
664 case 68: GET_REGL(env->ctr);
665 case 69: GET_REGL(env->xer);
666 case 70:
668 if (gdb_has_xml)
669 return 0;
670 GET_REG32(0); /* fpscr */
674 return 0;
677 static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
679 if (n < 32) {
680 /* gprs */
681 env->gpr[n] = ldtul_p(mem_buf);
682 return sizeof(target_ulong);
683 } else if (n < 64) {
684 /* fprs */
685 if (gdb_has_xml)
686 return 0;
687 env->fpr[n-32] = ldfq_p(mem_buf);
688 return 8;
689 } else {
690 switch (n) {
691 case 64:
692 env->nip = ldtul_p(mem_buf);
693 return sizeof(target_ulong);
694 case 65:
695 ppc_store_msr(env, ldtul_p(mem_buf));
696 return sizeof(target_ulong);
697 case 66:
699 uint32_t cr = ldl_p(mem_buf);
700 int i;
701 for (i = 0; i < 8; i++)
702 env->crf[i] = (cr >> (32 - ((i + 1) * 4))) & 0xF;
703 return 4;
705 case 67:
706 env->lr = ldtul_p(mem_buf);
707 return sizeof(target_ulong);
708 case 68:
709 env->ctr = ldtul_p(mem_buf);
710 return sizeof(target_ulong);
711 case 69:
712 env->xer = ldtul_p(mem_buf);
713 return sizeof(target_ulong);
714 case 70:
715 /* fpscr */
716 if (gdb_has_xml)
717 return 0;
718 return 4;
721 return 0;
724 #elif defined (TARGET_SPARC)
726 #if defined(TARGET_SPARC64) && !defined(TARGET_ABI32)
727 #define NUM_CORE_REGS 86
728 #else
729 #define NUM_CORE_REGS 72
730 #endif
732 #ifdef TARGET_ABI32
733 #define GET_REGA(val) GET_REG32(val)
734 #else
735 #define GET_REGA(val) GET_REGL(val)
736 #endif
738 static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
740 if (n < 8) {
741 /* g0..g7 */
742 GET_REGA(env->gregs[n]);
744 if (n < 32) {
745 /* register window */
746 GET_REGA(env->regwptr[n - 8]);
748 #if defined(TARGET_ABI32) || !defined(TARGET_SPARC64)
749 if (n < 64) {
750 /* fprs */
751 GET_REG32(*((uint32_t *)&env->fpr[n - 32]));
753 /* Y, PSR, WIM, TBR, PC, NPC, FPSR, CPSR */
754 switch (n) {
755 case 64: GET_REGA(env->y);
756 case 65: GET_REGA(GET_PSR(env));
757 case 66: GET_REGA(env->wim);
758 case 67: GET_REGA(env->tbr);
759 case 68: GET_REGA(env->pc);
760 case 69: GET_REGA(env->npc);
761 case 70: GET_REGA(env->fsr);
762 case 71: GET_REGA(0); /* csr */
763 default: GET_REGA(0);
765 #else
766 if (n < 64) {
767 /* f0-f31 */
768 GET_REG32(*((uint32_t *)&env->fpr[n - 32]));
770 if (n < 80) {
771 /* f32-f62 (double width, even numbers only) */
772 uint64_t val;
774 val = (uint64_t)*((uint32_t *)&env->fpr[(n - 64) * 2 + 32]) << 32;
775 val |= *((uint32_t *)&env->fpr[(n - 64) * 2 + 33]);
776 GET_REG64(val);
778 switch (n) {
779 case 80: GET_REGL(env->pc);
780 case 81: GET_REGL(env->npc);
781 case 82: GET_REGL(((uint64_t)GET_CCR(env) << 32) |
782 ((env->asi & 0xff) << 24) |
783 ((env->pstate & 0xfff) << 8) |
784 GET_CWP64(env));
785 case 83: GET_REGL(env->fsr);
786 case 84: GET_REGL(env->fprs);
787 case 85: GET_REGL(env->y);
789 #endif
790 return 0;
793 static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
795 #if defined(TARGET_ABI32)
796 abi_ulong tmp;
798 tmp = ldl_p(mem_buf);
799 #else
800 target_ulong tmp;
802 tmp = ldtul_p(mem_buf);
803 #endif
805 if (n < 8) {
806 /* g0..g7 */
807 env->gregs[n] = tmp;
808 } else if (n < 32) {
809 /* register window */
810 env->regwptr[n - 8] = tmp;
812 #if defined(TARGET_ABI32) || !defined(TARGET_SPARC64)
813 else if (n < 64) {
814 /* fprs */
815 *((uint32_t *)&env->fpr[n - 32]) = tmp;
816 } else {
817 /* Y, PSR, WIM, TBR, PC, NPC, FPSR, CPSR */
818 switch (n) {
819 case 64: env->y = tmp; break;
820 case 65: PUT_PSR(env, tmp); break;
821 case 66: env->wim = tmp; break;
822 case 67: env->tbr = tmp; break;
823 case 68: env->pc = tmp; break;
824 case 69: env->npc = tmp; break;
825 case 70: env->fsr = tmp; break;
826 default: return 0;
829 return 4;
830 #else
831 else if (n < 64) {
832 /* f0-f31 */
833 env->fpr[n] = ldfl_p(mem_buf);
834 return 4;
835 } else if (n < 80) {
836 /* f32-f62 (double width, even numbers only) */
837 *((uint32_t *)&env->fpr[(n - 64) * 2 + 32]) = tmp >> 32;
838 *((uint32_t *)&env->fpr[(n - 64) * 2 + 33]) = tmp;
839 } else {
840 switch (n) {
841 case 80: env->pc = tmp; break;
842 case 81: env->npc = tmp; break;
843 case 82:
844 PUT_CCR(env, tmp >> 32);
845 env->asi = (tmp >> 24) & 0xff;
846 env->pstate = (tmp >> 8) & 0xfff;
847 PUT_CWP64(env, tmp & 0xff);
848 break;
849 case 83: env->fsr = tmp; break;
850 case 84: env->fprs = tmp; break;
851 case 85: env->y = tmp; break;
852 default: return 0;
855 return 8;
856 #endif
858 #elif defined (TARGET_ARM)
860 /* Old gdb always expect FPA registers. Newer (xml-aware) gdb only expect
861 whatever the target description contains. Due to a historical mishap
862 the FPA registers appear in between core integer regs and the CPSR.
863 We hack round this by giving the FPA regs zero size when talking to a
864 newer gdb. */
865 #define NUM_CORE_REGS 26
866 #define GDB_CORE_XML "arm-core.xml"
868 static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
870 if (n < 16) {
871 /* Core integer register. */
872 GET_REG32(env->regs[n]);
874 if (n < 24) {
875 /* FPA registers. */
876 if (gdb_has_xml)
877 return 0;
878 memset(mem_buf, 0, 12);
879 return 12;
881 switch (n) {
882 case 24:
883 /* FPA status register. */
884 if (gdb_has_xml)
885 return 0;
886 GET_REG32(0);
887 case 25:
888 /* CPSR */
889 GET_REG32(cpsr_read(env));
891 /* Unknown register. */
892 return 0;
895 static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
897 uint32_t tmp;
899 tmp = ldl_p(mem_buf);
901 /* Mask out low bit of PC to workaround gdb bugs. This will probably
902 cause problems if we ever implement the Jazelle DBX extensions. */
903 if (n == 15)
904 tmp &= ~1;
906 if (n < 16) {
907 /* Core integer register. */
908 env->regs[n] = tmp;
909 return 4;
911 if (n < 24) { /* 16-23 */
912 /* FPA registers (ignored). */
913 if (gdb_has_xml)
914 return 0;
915 return 12;
917 switch (n) {
918 case 24:
919 /* FPA status register (ignored). */
920 if (gdb_has_xml)
921 return 0;
922 return 4;
923 case 25:
924 /* CPSR */
925 cpsr_write (env, tmp, 0xffffffff);
926 return 4;
928 /* Unknown register. */
929 return 0;
932 #elif defined (TARGET_M68K)
934 #define NUM_CORE_REGS 18
936 #define GDB_CORE_XML "cf-core.xml"
938 static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
940 if (n < 8) {
941 /* D0-D7 */
942 GET_REG32(env->dregs[n]);
943 } else if (n < 16) {
944 /* A0-A7 */
945 GET_REG32(env->aregs[n - 8]);
946 } else {
947 switch (n) {
948 case 16: GET_REG32(env->sr);
949 case 17: GET_REG32(env->pc);
952 /* FP registers not included here because they vary between
953 ColdFire and m68k. Use XML bits for these. */
954 return 0;
957 static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
959 uint32_t tmp;
961 tmp = ldl_p(mem_buf);
963 if (n < 8) {
964 /* D0-D7 */
965 env->dregs[n] = tmp;
966 } else if (n < 8) {
967 /* A0-A7 */
968 env->aregs[n - 8] = tmp;
969 } else {
970 switch (n) {
971 case 16: env->sr = tmp; break;
972 case 17: env->pc = tmp; break;
973 default: return 0;
976 return 4;
978 #elif defined (TARGET_MIPS)
980 #define NUM_CORE_REGS 73
982 static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
984 if (n < 32) {
985 GET_REGL(env->active_tc.gpr[n]);
987 if (env->CP0_Config1 & (1 << CP0C1_FP)) {
988 if (n >= 38 && n < 70) {
989 if (env->CP0_Status & (1 << CP0St_FR))
990 GET_REGL(env->active_fpu.fpr[n - 38].d);
991 else
992 GET_REGL(env->active_fpu.fpr[n - 38].w[FP_ENDIAN_IDX]);
994 switch (n) {
995 case 70: GET_REGL((int32_t)env->active_fpu.fcr31);
996 case 71: GET_REGL((int32_t)env->active_fpu.fcr0);
999 switch (n) {
1000 case 32: GET_REGL((int32_t)env->CP0_Status);
1001 case 33: GET_REGL(env->active_tc.LO[0]);
1002 case 34: GET_REGL(env->active_tc.HI[0]);
1003 case 35: GET_REGL(env->CP0_BadVAddr);
1004 case 36: GET_REGL((int32_t)env->CP0_Cause);
1005 case 37: GET_REGL(env->active_tc.PC);
1006 case 72: GET_REGL(0); /* fp */
1007 case 89: GET_REGL((int32_t)env->CP0_PRid);
1009 if (n >= 73 && n <= 88) {
1010 /* 16 embedded regs. */
1011 GET_REGL(0);
1014 return 0;
1017 /* convert MIPS rounding mode in FCR31 to IEEE library */
1018 static unsigned int ieee_rm[] =
1020 float_round_nearest_even,
1021 float_round_to_zero,
1022 float_round_up,
1023 float_round_down
1025 #define RESTORE_ROUNDING_MODE \
1026 set_float_rounding_mode(ieee_rm[env->active_fpu.fcr31 & 3], &env->active_fpu.fp_status)
1028 static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
1030 target_ulong tmp;
1032 tmp = ldtul_p(mem_buf);
1034 if (n < 32) {
1035 env->active_tc.gpr[n] = tmp;
1036 return sizeof(target_ulong);
1038 if (env->CP0_Config1 & (1 << CP0C1_FP)
1039 && n >= 38 && n < 73) {
1040 if (n < 70) {
1041 if (env->CP0_Status & (1 << CP0St_FR))
1042 env->active_fpu.fpr[n - 38].d = tmp;
1043 else
1044 env->active_fpu.fpr[n - 38].w[FP_ENDIAN_IDX] = tmp;
1046 switch (n) {
1047 case 70:
1048 env->active_fpu.fcr31 = tmp & 0xFF83FFFF;
1049 /* set rounding mode */
1050 RESTORE_ROUNDING_MODE;
1051 #ifndef CONFIG_SOFTFLOAT
1052 /* no floating point exception for native float */
1053 SET_FP_ENABLE(env->active_fpu.fcr31, 0);
1054 #endif
1055 break;
1056 case 71: env->active_fpu.fcr0 = tmp; break;
1058 return sizeof(target_ulong);
1060 switch (n) {
1061 case 32: env->CP0_Status = tmp; break;
1062 case 33: env->active_tc.LO[0] = tmp; break;
1063 case 34: env->active_tc.HI[0] = tmp; break;
1064 case 35: env->CP0_BadVAddr = tmp; break;
1065 case 36: env->CP0_Cause = tmp; break;
1066 case 37: env->active_tc.PC = tmp; break;
1067 case 72: /* fp, ignored */ break;
1068 default:
1069 if (n > 89)
1070 return 0;
1071 /* Other registers are readonly. Ignore writes. */
1072 break;
1075 return sizeof(target_ulong);
1077 #elif defined (TARGET_SH4)
1079 /* Hint: Use "set architecture sh4" in GDB to see fpu registers */
1080 /* FIXME: We should use XML for this. */
1082 #define NUM_CORE_REGS 59
1084 static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
1086 if (n < 8) {
1087 if ((env->sr & (SR_MD | SR_RB)) == (SR_MD | SR_RB)) {
1088 GET_REGL(env->gregs[n + 16]);
1089 } else {
1090 GET_REGL(env->gregs[n]);
1092 } else if (n < 16) {
1093 GET_REGL(env->gregs[n - 8]);
1094 } else if (n >= 25 && n < 41) {
1095 GET_REGL(env->fregs[(n - 25) + ((env->fpscr & FPSCR_FR) ? 16 : 0)]);
1096 } else if (n >= 43 && n < 51) {
1097 GET_REGL(env->gregs[n - 43]);
1098 } else if (n >= 51 && n < 59) {
1099 GET_REGL(env->gregs[n - (51 - 16)]);
1101 switch (n) {
1102 case 16: GET_REGL(env->pc);
1103 case 17: GET_REGL(env->pr);
1104 case 18: GET_REGL(env->gbr);
1105 case 19: GET_REGL(env->vbr);
1106 case 20: GET_REGL(env->mach);
1107 case 21: GET_REGL(env->macl);
1108 case 22: GET_REGL(env->sr);
1109 case 23: GET_REGL(env->fpul);
1110 case 24: GET_REGL(env->fpscr);
1111 case 41: GET_REGL(env->ssr);
1112 case 42: GET_REGL(env->spc);
1115 return 0;
1118 static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
1120 uint32_t tmp;
1122 tmp = ldl_p(mem_buf);
1124 if (n < 8) {
1125 if ((env->sr & (SR_MD | SR_RB)) == (SR_MD | SR_RB)) {
1126 env->gregs[n + 16] = tmp;
1127 } else {
1128 env->gregs[n] = tmp;
1130 return 4;
1131 } else if (n < 16) {
1132 env->gregs[n - 8] = tmp;
1133 return 4;
1134 } else if (n >= 25 && n < 41) {
1135 env->fregs[(n - 25) + ((env->fpscr & FPSCR_FR) ? 16 : 0)] = tmp;
1136 } else if (n >= 43 && n < 51) {
1137 env->gregs[n - 43] = tmp;
1138 return 4;
1139 } else if (n >= 51 && n < 59) {
1140 env->gregs[n - (51 - 16)] = tmp;
1141 return 4;
1143 switch (n) {
1144 case 16: env->pc = tmp;
1145 case 17: env->pr = tmp;
1146 case 18: env->gbr = tmp;
1147 case 19: env->vbr = tmp;
1148 case 20: env->mach = tmp;
1149 case 21: env->macl = tmp;
1150 case 22: env->sr = tmp;
1151 case 23: env->fpul = tmp;
1152 case 24: env->fpscr = tmp;
1153 case 41: env->ssr = tmp;
1154 case 42: env->spc = tmp;
1155 default: return 0;
1158 return 4;
1160 #elif defined (TARGET_MICROBLAZE)
1162 #define NUM_CORE_REGS (32 + 5)
1164 static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
1166 if (n < 32) {
1167 GET_REG32(env->regs[n]);
1168 } else {
1169 GET_REG32(env->sregs[n - 32]);
1171 return 0;
1174 static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
1176 uint32_t tmp;
1178 if (n > NUM_CORE_REGS)
1179 return 0;
1181 tmp = ldl_p(mem_buf);
1183 if (n < 32) {
1184 env->regs[n] = tmp;
1185 } else {
1186 env->sregs[n - 32] = tmp;
1188 return 4;
1190 #elif defined (TARGET_CRIS)
1192 #define NUM_CORE_REGS 49
1194 static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
1196 uint8_t srs;
1198 srs = env->pregs[PR_SRS];
1199 if (n < 16) {
1200 GET_REG32(env->regs[n]);
1203 if (n >= 21 && n < 32) {
1204 GET_REG32(env->pregs[n - 16]);
1206 if (n >= 33 && n < 49) {
1207 GET_REG32(env->sregs[srs][n - 33]);
1209 switch (n) {
1210 case 16: GET_REG8(env->pregs[0]);
1211 case 17: GET_REG8(env->pregs[1]);
1212 case 18: GET_REG32(env->pregs[2]);
1213 case 19: GET_REG8(srs);
1214 case 20: GET_REG16(env->pregs[4]);
1215 case 32: GET_REG32(env->pc);
1218 return 0;
1221 static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
1223 uint32_t tmp;
1225 if (n > 49)
1226 return 0;
1228 tmp = ldl_p(mem_buf);
1230 if (n < 16) {
1231 env->regs[n] = tmp;
1234 if (n >= 21 && n < 32) {
1235 env->pregs[n - 16] = tmp;
1238 /* FIXME: Should support function regs be writable? */
1239 switch (n) {
1240 case 16: return 1;
1241 case 17: return 1;
1242 case 18: env->pregs[PR_PID] = tmp; break;
1243 case 19: return 1;
1244 case 20: return 2;
1245 case 32: env->pc = tmp; break;
1248 return 4;
1250 #elif defined (TARGET_ALPHA)
1252 #define NUM_CORE_REGS 65
1254 static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
1256 if (n < 31) {
1257 GET_REGL(env->ir[n]);
1259 else if (n == 31) {
1260 GET_REGL(0);
1262 else if (n<63) {
1263 uint64_t val;
1265 val=*((uint64_t *)&env->fir[n-32]);
1266 GET_REGL(val);
1268 else if (n==63) {
1269 GET_REGL(env->fpcr);
1271 else if (n==64) {
1272 GET_REGL(env->pc);
1274 else {
1275 GET_REGL(0);
1278 return 0;
1281 static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
1283 target_ulong tmp;
1284 tmp = ldtul_p(mem_buf);
1286 if (n < 31) {
1287 env->ir[n] = tmp;
1290 if (n > 31 && n < 63) {
1291 env->fir[n - 32] = ldfl_p(mem_buf);
1294 if (n == 64 ) {
1295 env->pc=tmp;
1298 return 8;
1300 #else
1302 #define NUM_CORE_REGS 0
1304 static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
1306 return 0;
1309 static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
1311 return 0;
1314 #endif
1316 static int num_g_regs = NUM_CORE_REGS;
1318 #ifdef GDB_CORE_XML
1319 /* Encode data using the encoding for 'x' packets. */
1320 static int memtox(char *buf, const char *mem, int len)
1322 char *p = buf;
1323 char c;
1325 while (len--) {
1326 c = *(mem++);
1327 switch (c) {
1328 case '#': case '$': case '*': case '}':
1329 *(p++) = '}';
1330 *(p++) = c ^ 0x20;
1331 break;
1332 default:
1333 *(p++) = c;
1334 break;
1337 return p - buf;
1340 static const char *get_feature_xml(const char *p, const char **newp)
1342 extern const char *const xml_builtin[][2];
1343 size_t len;
1344 int i;
1345 const char *name;
1346 static char target_xml[1024];
1348 len = 0;
1349 while (p[len] && p[len] != ':')
1350 len++;
1351 *newp = p + len;
1353 name = NULL;
1354 if (strncmp(p, "target.xml", len) == 0) {
1355 /* Generate the XML description for this CPU. */
1356 if (!target_xml[0]) {
1357 GDBRegisterState *r;
1359 snprintf(target_xml, sizeof(target_xml),
1360 "<?xml version=\"1.0\"?>"
1361 "<!DOCTYPE target SYSTEM \"gdb-target.dtd\">"
1362 "<target>"
1363 "<xi:include href=\"%s\"/>",
1364 GDB_CORE_XML);
1366 for (r = first_cpu->gdb_regs; r; r = r->next) {
1367 pstrcat(target_xml, sizeof(target_xml), "<xi:include href=\"");
1368 pstrcat(target_xml, sizeof(target_xml), r->xml);
1369 pstrcat(target_xml, sizeof(target_xml), "\"/>");
1371 pstrcat(target_xml, sizeof(target_xml), "</target>");
1373 return target_xml;
1375 for (i = 0; ; i++) {
1376 name = xml_builtin[i][0];
1377 if (!name || (strncmp(name, p, len) == 0 && strlen(name) == len))
1378 break;
1380 return name ? xml_builtin[i][1] : NULL;
1382 #endif
1384 static int gdb_read_register(CPUState *env, uint8_t *mem_buf, int reg)
1386 GDBRegisterState *r;
1388 if (reg < NUM_CORE_REGS)
1389 return cpu_gdb_read_register(env, mem_buf, reg);
1391 for (r = env->gdb_regs; r; r = r->next) {
1392 if (r->base_reg <= reg && reg < r->base_reg + r->num_regs) {
1393 return r->get_reg(env, mem_buf, reg - r->base_reg);
1396 return 0;
1399 static int gdb_write_register(CPUState *env, uint8_t *mem_buf, int reg)
1401 GDBRegisterState *r;
1403 if (reg < NUM_CORE_REGS)
1404 return cpu_gdb_write_register(env, mem_buf, reg);
1406 for (r = env->gdb_regs; r; r = r->next) {
1407 if (r->base_reg <= reg && reg < r->base_reg + r->num_regs) {
1408 return r->set_reg(env, mem_buf, reg - r->base_reg);
1411 return 0;
1414 /* Register a supplemental set of CPU registers. If g_pos is nonzero it
1415 specifies the first register number and these registers are included in
1416 a standard "g" packet. Direction is relative to gdb, i.e. get_reg is
1417 gdb reading a CPU register, and set_reg is gdb modifying a CPU register.
1420 void gdb_register_coprocessor(CPUState * env,
1421 gdb_reg_cb get_reg, gdb_reg_cb set_reg,
1422 int num_regs, const char *xml, int g_pos)
1424 GDBRegisterState *s;
1425 GDBRegisterState **p;
1426 static int last_reg = NUM_CORE_REGS;
1428 s = (GDBRegisterState *)qemu_mallocz(sizeof(GDBRegisterState));
1429 s->base_reg = last_reg;
1430 s->num_regs = num_regs;
1431 s->get_reg = get_reg;
1432 s->set_reg = set_reg;
1433 s->xml = xml;
1434 p = &env->gdb_regs;
1435 while (*p) {
1436 /* Check for duplicates. */
1437 if (strcmp((*p)->xml, xml) == 0)
1438 return;
1439 p = &(*p)->next;
1441 /* Add to end of list. */
1442 last_reg += num_regs;
1443 *p = s;
1444 if (g_pos) {
1445 if (g_pos != s->base_reg) {
1446 fprintf(stderr, "Error: Bad gdb register numbering for '%s'\n"
1447 "Expected %d got %d\n", xml, g_pos, s->base_reg);
1448 } else {
1449 num_g_regs = last_reg;
1454 #ifndef CONFIG_USER_ONLY
1455 static const int xlat_gdb_type[] = {
1456 [GDB_WATCHPOINT_WRITE] = BP_GDB | BP_MEM_WRITE,
1457 [GDB_WATCHPOINT_READ] = BP_GDB | BP_MEM_READ,
1458 [GDB_WATCHPOINT_ACCESS] = BP_GDB | BP_MEM_ACCESS,
1460 #endif
1462 static int gdb_breakpoint_insert(target_ulong addr, target_ulong len, int type)
1464 CPUState *env;
1465 int err = 0;
1467 if (kvm_enabled())
1468 return kvm_insert_breakpoint(gdbserver_state->c_cpu, addr, len, type);
1470 switch (type) {
1471 case GDB_BREAKPOINT_SW:
1472 case GDB_BREAKPOINT_HW:
1473 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1474 err = cpu_breakpoint_insert(env, addr, BP_GDB, NULL);
1475 if (err)
1476 break;
1478 return err;
1479 #ifndef CONFIG_USER_ONLY
1480 case GDB_WATCHPOINT_WRITE:
1481 case GDB_WATCHPOINT_READ:
1482 case GDB_WATCHPOINT_ACCESS:
1483 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1484 err = cpu_watchpoint_insert(env, addr, len, xlat_gdb_type[type],
1485 NULL);
1486 if (err)
1487 break;
1489 return err;
1490 #endif
1491 default:
1492 return -ENOSYS;
1496 static int gdb_breakpoint_remove(target_ulong addr, target_ulong len, int type)
1498 CPUState *env;
1499 int err = 0;
1501 if (kvm_enabled())
1502 return kvm_remove_breakpoint(gdbserver_state->c_cpu, addr, len, type);
1504 switch (type) {
1505 case GDB_BREAKPOINT_SW:
1506 case GDB_BREAKPOINT_HW:
1507 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1508 err = cpu_breakpoint_remove(env, addr, BP_GDB);
1509 if (err)
1510 break;
1512 return err;
1513 #ifndef CONFIG_USER_ONLY
1514 case GDB_WATCHPOINT_WRITE:
1515 case GDB_WATCHPOINT_READ:
1516 case GDB_WATCHPOINT_ACCESS:
1517 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1518 err = cpu_watchpoint_remove(env, addr, len, xlat_gdb_type[type]);
1519 if (err)
1520 break;
1522 return err;
1523 #endif
1524 default:
1525 return -ENOSYS;
1529 static void gdb_breakpoint_remove_all(void)
1531 CPUState *env;
1533 if (kvm_enabled()) {
1534 kvm_remove_all_breakpoints(gdbserver_state->c_cpu);
1535 return;
1538 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1539 cpu_breakpoint_remove_all(env, BP_GDB);
1540 #ifndef CONFIG_USER_ONLY
1541 cpu_watchpoint_remove_all(env, BP_GDB);
1542 #endif
1546 static void gdb_set_cpu_pc(GDBState *s, target_ulong pc)
1548 #if defined(TARGET_I386)
1549 s->c_cpu->eip = pc;
1550 cpu_synchronize_state(s->c_cpu, 1);
1551 #elif defined (TARGET_PPC)
1552 s->c_cpu->nip = pc;
1553 #elif defined (TARGET_SPARC)
1554 s->c_cpu->pc = pc;
1555 s->c_cpu->npc = pc + 4;
1556 #elif defined (TARGET_ARM)
1557 s->c_cpu->regs[15] = pc;
1558 #elif defined (TARGET_SH4)
1559 s->c_cpu->pc = pc;
1560 #elif defined (TARGET_MIPS)
1561 s->c_cpu->active_tc.PC = pc;
1562 #elif defined (TARGET_MICROBLAZE)
1563 s->c_cpu->sregs[SR_PC] = pc;
1564 #elif defined (TARGET_CRIS)
1565 s->c_cpu->pc = pc;
1566 #elif defined (TARGET_ALPHA)
1567 s->c_cpu->pc = pc;
1568 #endif
1571 static int gdb_handle_packet(GDBState *s, const char *line_buf)
1573 CPUState *env;
1574 const char *p;
1575 int ch, reg_size, type, res, thread;
1576 char buf[MAX_PACKET_LENGTH];
1577 uint8_t mem_buf[MAX_PACKET_LENGTH];
1578 uint8_t *registers;
1579 target_ulong addr, len;
1581 #ifdef DEBUG_GDB
1582 printf("command='%s'\n", line_buf);
1583 #endif
1584 p = line_buf;
1585 ch = *p++;
1586 switch(ch) {
1587 case '?':
1588 /* TODO: Make this return the correct value for user-mode. */
1589 snprintf(buf, sizeof(buf), "T%02xthread:%02x;", GDB_SIGNAL_TRAP,
1590 s->c_cpu->cpu_index+1);
1591 put_packet(s, buf);
1592 /* Remove all the breakpoints when this query is issued,
1593 * because gdb is doing and initial connect and the state
1594 * should be cleaned up.
1596 gdb_breakpoint_remove_all();
1597 break;
1598 case 'c':
1599 if (*p != '\0') {
1600 addr = strtoull(p, (char **)&p, 16);
1601 gdb_set_cpu_pc(s, addr);
1603 s->signal = 0;
1604 gdb_continue(s);
1605 return RS_IDLE;
1606 case 'C':
1607 s->signal = gdb_signal_to_target (strtoul(p, (char **)&p, 16));
1608 if (s->signal == -1)
1609 s->signal = 0;
1610 gdb_continue(s);
1611 return RS_IDLE;
1612 case 'k':
1613 /* Kill the target */
1614 fprintf(stderr, "\nQEMU: Terminated via GDBstub\n");
1615 exit(0);
1616 case 'D':
1617 /* Detach packet */
1618 gdb_breakpoint_remove_all();
1619 gdb_continue(s);
1620 put_packet(s, "OK");
1621 break;
1622 case 's':
1623 if (*p != '\0') {
1624 addr = strtoull(p, (char **)&p, 16);
1625 gdb_set_cpu_pc(s, addr);
1627 cpu_single_step(s->c_cpu, sstep_flags);
1628 gdb_continue(s);
1629 return RS_IDLE;
1630 case 'F':
1632 target_ulong ret;
1633 target_ulong err;
1635 ret = strtoull(p, (char **)&p, 16);
1636 if (*p == ',') {
1637 p++;
1638 err = strtoull(p, (char **)&p, 16);
1639 } else {
1640 err = 0;
1642 if (*p == ',')
1643 p++;
1644 type = *p;
1645 if (gdb_current_syscall_cb)
1646 gdb_current_syscall_cb(s->c_cpu, ret, err);
1647 if (type == 'C') {
1648 put_packet(s, "T02");
1649 } else {
1650 gdb_continue(s);
1653 break;
1654 case 'g':
1655 cpu_synchronize_state(s->g_cpu, 0);
1656 len = 0;
1657 for (addr = 0; addr < num_g_regs; addr++) {
1658 reg_size = gdb_read_register(s->g_cpu, mem_buf + len, addr);
1659 len += reg_size;
1661 memtohex(buf, mem_buf, len);
1662 put_packet(s, buf);
1663 break;
1664 case 'G':
1665 registers = mem_buf;
1666 len = strlen(p) / 2;
1667 hextomem((uint8_t *)registers, p, len);
1668 for (addr = 0; addr < num_g_regs && len > 0; addr++) {
1669 reg_size = gdb_write_register(s->g_cpu, registers, addr);
1670 len -= reg_size;
1671 registers += reg_size;
1673 cpu_synchronize_state(s->g_cpu, 1);
1674 put_packet(s, "OK");
1675 break;
1676 case 'm':
1677 addr = strtoull(p, (char **)&p, 16);
1678 if (*p == ',')
1679 p++;
1680 len = strtoull(p, NULL, 16);
1681 if (cpu_memory_rw_debug(s->g_cpu, addr, mem_buf, len, 0) != 0) {
1682 put_packet (s, "E14");
1683 } else {
1684 memtohex(buf, mem_buf, len);
1685 put_packet(s, buf);
1687 break;
1688 case 'M':
1689 addr = strtoull(p, (char **)&p, 16);
1690 if (*p == ',')
1691 p++;
1692 len = strtoull(p, (char **)&p, 16);
1693 if (*p == ':')
1694 p++;
1695 hextomem(mem_buf, p, len);
1696 if (cpu_memory_rw_debug(s->g_cpu, addr, mem_buf, len, 1) != 0)
1697 put_packet(s, "E14");
1698 else
1699 put_packet(s, "OK");
1700 break;
1701 case 'p':
1702 /* Older gdb are really dumb, and don't use 'g' if 'p' is avaialable.
1703 This works, but can be very slow. Anything new enough to
1704 understand XML also knows how to use this properly. */
1705 if (!gdb_has_xml)
1706 goto unknown_command;
1707 addr = strtoull(p, (char **)&p, 16);
1708 reg_size = gdb_read_register(s->g_cpu, mem_buf, addr);
1709 if (reg_size) {
1710 memtohex(buf, mem_buf, reg_size);
1711 put_packet(s, buf);
1712 } else {
1713 put_packet(s, "E14");
1715 break;
1716 case 'P':
1717 if (!gdb_has_xml)
1718 goto unknown_command;
1719 addr = strtoull(p, (char **)&p, 16);
1720 if (*p == '=')
1721 p++;
1722 reg_size = strlen(p) / 2;
1723 hextomem(mem_buf, p, reg_size);
1724 gdb_write_register(s->g_cpu, mem_buf, addr);
1725 put_packet(s, "OK");
1726 break;
1727 case 'Z':
1728 case 'z':
1729 type = strtoul(p, (char **)&p, 16);
1730 if (*p == ',')
1731 p++;
1732 addr = strtoull(p, (char **)&p, 16);
1733 if (*p == ',')
1734 p++;
1735 len = strtoull(p, (char **)&p, 16);
1736 if (ch == 'Z')
1737 res = gdb_breakpoint_insert(addr, len, type);
1738 else
1739 res = gdb_breakpoint_remove(addr, len, type);
1740 if (res >= 0)
1741 put_packet(s, "OK");
1742 else if (res == -ENOSYS)
1743 put_packet(s, "");
1744 else
1745 put_packet(s, "E22");
1746 break;
1747 case 'H':
1748 type = *p++;
1749 thread = strtoull(p, (char **)&p, 16);
1750 if (thread == -1 || thread == 0) {
1751 put_packet(s, "OK");
1752 break;
1754 for (env = first_cpu; env != NULL; env = env->next_cpu)
1755 if (env->cpu_index + 1 == thread)
1756 break;
1757 if (env == NULL) {
1758 put_packet(s, "E22");
1759 break;
1761 switch (type) {
1762 case 'c':
1763 s->c_cpu = env;
1764 put_packet(s, "OK");
1765 break;
1766 case 'g':
1767 s->g_cpu = env;
1768 put_packet(s, "OK");
1769 break;
1770 default:
1771 put_packet(s, "E22");
1772 break;
1774 break;
1775 case 'T':
1776 thread = strtoull(p, (char **)&p, 16);
1777 #ifndef CONFIG_USER_ONLY
1778 if (thread > 0 && thread < smp_cpus + 1)
1779 #else
1780 if (thread == 1)
1781 #endif
1782 put_packet(s, "OK");
1783 else
1784 put_packet(s, "E22");
1785 break;
1786 case 'q':
1787 case 'Q':
1788 /* parse any 'q' packets here */
1789 if (!strcmp(p,"qemu.sstepbits")) {
1790 /* Query Breakpoint bit definitions */
1791 snprintf(buf, sizeof(buf), "ENABLE=%x,NOIRQ=%x,NOTIMER=%x",
1792 SSTEP_ENABLE,
1793 SSTEP_NOIRQ,
1794 SSTEP_NOTIMER);
1795 put_packet(s, buf);
1796 break;
1797 } else if (strncmp(p,"qemu.sstep",10) == 0) {
1798 /* Display or change the sstep_flags */
1799 p += 10;
1800 if (*p != '=') {
1801 /* Display current setting */
1802 snprintf(buf, sizeof(buf), "0x%x", sstep_flags);
1803 put_packet(s, buf);
1804 break;
1806 p++;
1807 type = strtoul(p, (char **)&p, 16);
1808 sstep_flags = type;
1809 put_packet(s, "OK");
1810 break;
1811 } else if (strcmp(p,"C") == 0) {
1812 /* "Current thread" remains vague in the spec, so always return
1813 * the first CPU (gdb returns the first thread). */
1814 put_packet(s, "QC1");
1815 break;
1816 } else if (strcmp(p,"fThreadInfo") == 0) {
1817 s->query_cpu = first_cpu;
1818 goto report_cpuinfo;
1819 } else if (strcmp(p,"sThreadInfo") == 0) {
1820 report_cpuinfo:
1821 if (s->query_cpu) {
1822 snprintf(buf, sizeof(buf), "m%x", s->query_cpu->cpu_index+1);
1823 put_packet(s, buf);
1824 s->query_cpu = s->query_cpu->next_cpu;
1825 } else
1826 put_packet(s, "l");
1827 break;
1828 } else if (strncmp(p,"ThreadExtraInfo,", 16) == 0) {
1829 thread = strtoull(p+16, (char **)&p, 16);
1830 for (env = first_cpu; env != NULL; env = env->next_cpu)
1831 if (env->cpu_index + 1 == thread) {
1832 cpu_synchronize_state(env, 0);
1833 len = snprintf((char *)mem_buf, sizeof(mem_buf),
1834 "CPU#%d [%s]", env->cpu_index,
1835 env->halted ? "halted " : "running");
1836 memtohex(buf, mem_buf, len);
1837 put_packet(s, buf);
1838 break;
1840 break;
1842 #ifdef CONFIG_USER_ONLY
1843 else if (strncmp(p, "Offsets", 7) == 0) {
1844 TaskState *ts = s->c_cpu->opaque;
1846 snprintf(buf, sizeof(buf),
1847 "Text=" TARGET_ABI_FMT_lx ";Data=" TARGET_ABI_FMT_lx
1848 ";Bss=" TARGET_ABI_FMT_lx,
1849 ts->info->code_offset,
1850 ts->info->data_offset,
1851 ts->info->data_offset);
1852 put_packet(s, buf);
1853 break;
1855 #else /* !CONFIG_USER_ONLY */
1856 else if (strncmp(p, "Rcmd,", 5) == 0) {
1857 int len = strlen(p + 5);
1859 if ((len % 2) != 0) {
1860 put_packet(s, "E01");
1861 break;
1863 hextomem(mem_buf, p + 5, len);
1864 len = len / 2;
1865 mem_buf[len++] = 0;
1866 qemu_chr_read(s->mon_chr, mem_buf, len);
1867 put_packet(s, "OK");
1868 break;
1870 #endif /* !CONFIG_USER_ONLY */
1871 if (strncmp(p, "Supported", 9) == 0) {
1872 snprintf(buf, sizeof(buf), "PacketSize=%x", MAX_PACKET_LENGTH);
1873 #ifdef GDB_CORE_XML
1874 pstrcat(buf, sizeof(buf), ";qXfer:features:read+");
1875 #endif
1876 put_packet(s, buf);
1877 break;
1879 #ifdef GDB_CORE_XML
1880 if (strncmp(p, "Xfer:features:read:", 19) == 0) {
1881 const char *xml;
1882 target_ulong total_len;
1884 gdb_has_xml = 1;
1885 p += 19;
1886 xml = get_feature_xml(p, &p);
1887 if (!xml) {
1888 snprintf(buf, sizeof(buf), "E00");
1889 put_packet(s, buf);
1890 break;
1893 if (*p == ':')
1894 p++;
1895 addr = strtoul(p, (char **)&p, 16);
1896 if (*p == ',')
1897 p++;
1898 len = strtoul(p, (char **)&p, 16);
1900 total_len = strlen(xml);
1901 if (addr > total_len) {
1902 snprintf(buf, sizeof(buf), "E00");
1903 put_packet(s, buf);
1904 break;
1906 if (len > (MAX_PACKET_LENGTH - 5) / 2)
1907 len = (MAX_PACKET_LENGTH - 5) / 2;
1908 if (len < total_len - addr) {
1909 buf[0] = 'm';
1910 len = memtox(buf + 1, xml + addr, len);
1911 } else {
1912 buf[0] = 'l';
1913 len = memtox(buf + 1, xml + addr, total_len - addr);
1915 put_packet_binary(s, buf, len + 1);
1916 break;
1918 #endif
1919 /* Unrecognised 'q' command. */
1920 goto unknown_command;
1922 default:
1923 unknown_command:
1924 /* put empty packet */
1925 buf[0] = '\0';
1926 put_packet(s, buf);
1927 break;
1929 return RS_IDLE;
1932 void gdb_set_stop_cpu(CPUState *env)
1934 gdbserver_state->c_cpu = env;
1935 gdbserver_state->g_cpu = env;
1938 #ifndef CONFIG_USER_ONLY
1939 static void gdb_vm_state_change(void *opaque, int running, int reason)
1941 GDBState *s = gdbserver_state;
1942 CPUState *env = s->c_cpu;
1943 char buf[256];
1944 const char *type;
1945 int ret;
1947 if (running || (reason != EXCP_DEBUG && reason != EXCP_INTERRUPT) ||
1948 s->state == RS_INACTIVE || s->state == RS_SYSCALL)
1949 return;
1951 /* disable single step if it was enable */
1952 cpu_single_step(env, 0);
1954 if (reason == EXCP_DEBUG) {
1955 if (env->watchpoint_hit) {
1956 switch (env->watchpoint_hit->flags & BP_MEM_ACCESS) {
1957 case BP_MEM_READ:
1958 type = "r";
1959 break;
1960 case BP_MEM_ACCESS:
1961 type = "a";
1962 break;
1963 default:
1964 type = "";
1965 break;
1967 snprintf(buf, sizeof(buf),
1968 "T%02xthread:%02x;%swatch:" TARGET_FMT_lx ";",
1969 GDB_SIGNAL_TRAP, env->cpu_index+1, type,
1970 env->watchpoint_hit->vaddr);
1971 put_packet(s, buf);
1972 env->watchpoint_hit = NULL;
1973 return;
1975 tb_flush(env);
1976 ret = GDB_SIGNAL_TRAP;
1977 } else {
1978 ret = GDB_SIGNAL_INT;
1980 snprintf(buf, sizeof(buf), "T%02xthread:%02x;", ret, env->cpu_index+1);
1981 put_packet(s, buf);
1983 #endif
1985 /* Send a gdb syscall request.
1986 This accepts limited printf-style format specifiers, specifically:
1987 %x - target_ulong argument printed in hex.
1988 %lx - 64-bit argument printed in hex.
1989 %s - string pointer (target_ulong) and length (int) pair. */
1990 void gdb_do_syscall(gdb_syscall_complete_cb cb, const char *fmt, ...)
1992 va_list va;
1993 char buf[256];
1994 char *p;
1995 target_ulong addr;
1996 uint64_t i64;
1997 GDBState *s;
1999 s = gdbserver_state;
2000 if (!s)
2001 return;
2002 gdb_current_syscall_cb = cb;
2003 s->state = RS_SYSCALL;
2004 #ifndef CONFIG_USER_ONLY
2005 vm_stop(EXCP_DEBUG);
2006 #endif
2007 s->state = RS_IDLE;
2008 va_start(va, fmt);
2009 p = buf;
2010 *(p++) = 'F';
2011 while (*fmt) {
2012 if (*fmt == '%') {
2013 fmt++;
2014 switch (*fmt++) {
2015 case 'x':
2016 addr = va_arg(va, target_ulong);
2017 p += snprintf(p, &buf[sizeof(buf)] - p, TARGET_FMT_lx, addr);
2018 break;
2019 case 'l':
2020 if (*(fmt++) != 'x')
2021 goto bad_format;
2022 i64 = va_arg(va, uint64_t);
2023 p += snprintf(p, &buf[sizeof(buf)] - p, "%" PRIx64, i64);
2024 break;
2025 case 's':
2026 addr = va_arg(va, target_ulong);
2027 p += snprintf(p, &buf[sizeof(buf)] - p, TARGET_FMT_lx "/%x",
2028 addr, va_arg(va, int));
2029 break;
2030 default:
2031 bad_format:
2032 fprintf(stderr, "gdbstub: Bad syscall format string '%s'\n",
2033 fmt - 1);
2034 break;
2036 } else {
2037 *(p++) = *(fmt++);
2040 *p = 0;
2041 va_end(va);
2042 put_packet(s, buf);
2043 #ifdef CONFIG_USER_ONLY
2044 gdb_handlesig(s->c_cpu, 0);
2045 #else
2046 cpu_exit(s->c_cpu);
2047 #endif
2050 static void gdb_read_byte(GDBState *s, int ch)
2052 int i, csum;
2053 uint8_t reply;
2055 #ifndef CONFIG_USER_ONLY
2056 if (s->last_packet_len) {
2057 /* Waiting for a response to the last packet. If we see the start
2058 of a new command then abandon the previous response. */
2059 if (ch == '-') {
2060 #ifdef DEBUG_GDB
2061 printf("Got NACK, retransmitting\n");
2062 #endif
2063 put_buffer(s, (uint8_t *)s->last_packet, s->last_packet_len);
2065 #ifdef DEBUG_GDB
2066 else if (ch == '+')
2067 printf("Got ACK\n");
2068 else
2069 printf("Got '%c' when expecting ACK/NACK\n", ch);
2070 #endif
2071 if (ch == '+' || ch == '$')
2072 s->last_packet_len = 0;
2073 if (ch != '$')
2074 return;
2076 if (vm_running) {
2077 /* when the CPU is running, we cannot do anything except stop
2078 it when receiving a char */
2079 vm_stop(EXCP_INTERRUPT);
2080 } else
2081 #endif
2083 switch(s->state) {
2084 case RS_IDLE:
2085 if (ch == '$') {
2086 s->line_buf_index = 0;
2087 s->state = RS_GETLINE;
2089 break;
2090 case RS_GETLINE:
2091 if (ch == '#') {
2092 s->state = RS_CHKSUM1;
2093 } else if (s->line_buf_index >= sizeof(s->line_buf) - 1) {
2094 s->state = RS_IDLE;
2095 } else {
2096 s->line_buf[s->line_buf_index++] = ch;
2098 break;
2099 case RS_CHKSUM1:
2100 s->line_buf[s->line_buf_index] = '\0';
2101 s->line_csum = fromhex(ch) << 4;
2102 s->state = RS_CHKSUM2;
2103 break;
2104 case RS_CHKSUM2:
2105 s->line_csum |= fromhex(ch);
2106 csum = 0;
2107 for(i = 0; i < s->line_buf_index; i++) {
2108 csum += s->line_buf[i];
2110 if (s->line_csum != (csum & 0xff)) {
2111 reply = '-';
2112 put_buffer(s, &reply, 1);
2113 s->state = RS_IDLE;
2114 } else {
2115 reply = '+';
2116 put_buffer(s, &reply, 1);
2117 s->state = gdb_handle_packet(s, s->line_buf);
2119 break;
2120 default:
2121 abort();
2126 #ifdef CONFIG_USER_ONLY
2128 gdb_queuesig (void)
2130 GDBState *s;
2132 s = gdbserver_state;
2134 if (gdbserver_fd < 0 || s->fd < 0)
2135 return 0;
2136 else
2137 return 1;
2141 gdb_handlesig (CPUState *env, int sig)
2143 GDBState *s;
2144 char buf[256];
2145 int n;
2147 s = gdbserver_state;
2148 if (gdbserver_fd < 0 || s->fd < 0)
2149 return sig;
2151 /* disable single step if it was enabled */
2152 cpu_single_step(env, 0);
2153 tb_flush(env);
2155 if (sig != 0)
2157 snprintf(buf, sizeof(buf), "S%02x", target_signal_to_gdb (sig));
2158 put_packet(s, buf);
2160 /* put_packet() might have detected that the peer terminated the
2161 connection. */
2162 if (s->fd < 0)
2163 return sig;
2165 sig = 0;
2166 s->state = RS_IDLE;
2167 s->running_state = 0;
2168 while (s->running_state == 0) {
2169 n = read (s->fd, buf, 256);
2170 if (n > 0)
2172 int i;
2174 for (i = 0; i < n; i++)
2175 gdb_read_byte (s, buf[i]);
2177 else if (n == 0 || errno != EAGAIN)
2179 /* XXX: Connection closed. Should probably wait for annother
2180 connection before continuing. */
2181 return sig;
2184 sig = s->signal;
2185 s->signal = 0;
2186 return sig;
2189 /* Tell the remote gdb that the process has exited. */
2190 void gdb_exit(CPUState *env, int code)
2192 GDBState *s;
2193 char buf[4];
2195 s = gdbserver_state;
2196 if (gdbserver_fd < 0 || s->fd < 0)
2197 return;
2199 snprintf(buf, sizeof(buf), "W%02x", code);
2200 put_packet(s, buf);
2203 /* Tell the remote gdb that the process has exited due to SIG. */
2204 void gdb_signalled(CPUState *env, int sig)
2206 GDBState *s;
2207 char buf[4];
2209 s = gdbserver_state;
2210 if (gdbserver_fd < 0 || s->fd < 0)
2211 return;
2213 snprintf(buf, sizeof(buf), "X%02x", target_signal_to_gdb (sig));
2214 put_packet(s, buf);
2217 static void gdb_accept(void)
2219 GDBState *s;
2220 struct sockaddr_in sockaddr;
2221 socklen_t len;
2222 int val, fd;
2224 for(;;) {
2225 len = sizeof(sockaddr);
2226 fd = accept(gdbserver_fd, (struct sockaddr *)&sockaddr, &len);
2227 if (fd < 0 && errno != EINTR) {
2228 perror("accept");
2229 return;
2230 } else if (fd >= 0) {
2231 break;
2235 /* set short latency */
2236 val = 1;
2237 setsockopt(fd, IPPROTO_TCP, TCP_NODELAY, (char *)&val, sizeof(val));
2239 s = qemu_mallocz(sizeof(GDBState));
2240 s->c_cpu = first_cpu;
2241 s->g_cpu = first_cpu;
2242 s->fd = fd;
2243 gdb_has_xml = 0;
2245 gdbserver_state = s;
2247 fcntl(fd, F_SETFL, O_NONBLOCK);
2250 static int gdbserver_open(int port)
2252 struct sockaddr_in sockaddr;
2253 int fd, val, ret;
2255 fd = socket(PF_INET, SOCK_STREAM, 0);
2256 if (fd < 0) {
2257 perror("socket");
2258 return -1;
2261 /* allow fast reuse */
2262 val = 1;
2263 setsockopt(fd, SOL_SOCKET, SO_REUSEADDR, (char *)&val, sizeof(val));
2265 sockaddr.sin_family = AF_INET;
2266 sockaddr.sin_port = htons(port);
2267 sockaddr.sin_addr.s_addr = 0;
2268 ret = bind(fd, (struct sockaddr *)&sockaddr, sizeof(sockaddr));
2269 if (ret < 0) {
2270 perror("bind");
2271 return -1;
2273 ret = listen(fd, 0);
2274 if (ret < 0) {
2275 perror("listen");
2276 return -1;
2278 return fd;
2281 int gdbserver_start(int port)
2283 gdbserver_fd = gdbserver_open(port);
2284 if (gdbserver_fd < 0)
2285 return -1;
2286 /* accept connections */
2287 gdb_accept();
2288 return 0;
2291 /* Disable gdb stub for child processes. */
2292 void gdbserver_fork(CPUState *env)
2294 GDBState *s = gdbserver_state;
2295 if (gdbserver_fd < 0 || s->fd < 0)
2296 return;
2297 close(s->fd);
2298 s->fd = -1;
2299 cpu_breakpoint_remove_all(env, BP_GDB);
2300 cpu_watchpoint_remove_all(env, BP_GDB);
2302 #else
2303 static int gdb_chr_can_receive(void *opaque)
2305 /* We can handle an arbitrarily large amount of data.
2306 Pick the maximum packet size, which is as good as anything. */
2307 return MAX_PACKET_LENGTH;
2310 static void gdb_chr_receive(void *opaque, const uint8_t *buf, int size)
2312 int i;
2314 for (i = 0; i < size; i++) {
2315 gdb_read_byte(gdbserver_state, buf[i]);
2319 static void gdb_chr_event(void *opaque, int event)
2321 switch (event) {
2322 case CHR_EVENT_RESET:
2323 vm_stop(EXCP_INTERRUPT);
2324 gdb_has_xml = 0;
2325 break;
2326 default:
2327 break;
2331 static void gdb_monitor_output(GDBState *s, const char *msg, int len)
2333 char buf[MAX_PACKET_LENGTH];
2335 buf[0] = 'O';
2336 if (len > (MAX_PACKET_LENGTH/2) - 1)
2337 len = (MAX_PACKET_LENGTH/2) - 1;
2338 memtohex(buf + 1, (uint8_t *)msg, len);
2339 put_packet(s, buf);
2342 static int gdb_monitor_write(CharDriverState *chr, const uint8_t *buf, int len)
2344 const char *p = (const char *)buf;
2345 int max_sz;
2347 max_sz = (sizeof(gdbserver_state->last_packet) - 2) / 2;
2348 for (;;) {
2349 if (len <= max_sz) {
2350 gdb_monitor_output(gdbserver_state, p, len);
2351 break;
2353 gdb_monitor_output(gdbserver_state, p, max_sz);
2354 p += max_sz;
2355 len -= max_sz;
2357 return len;
2360 #ifndef _WIN32
2361 static void gdb_sigterm_handler(int signal)
2363 if (vm_running)
2364 vm_stop(EXCP_INTERRUPT);
2366 #endif
2368 int gdbserver_start(const char *device)
2370 GDBState *s;
2371 char gdbstub_device_name[128];
2372 CharDriverState *chr = NULL;
2373 CharDriverState *mon_chr;
2375 if (!device)
2376 return -1;
2377 if (strcmp(device, "none") != 0) {
2378 if (strstart(device, "tcp:", NULL)) {
2379 /* enforce required TCP attributes */
2380 snprintf(gdbstub_device_name, sizeof(gdbstub_device_name),
2381 "%s,nowait,nodelay,server", device);
2382 device = gdbstub_device_name;
2384 #ifndef _WIN32
2385 else if (strcmp(device, "stdio") == 0) {
2386 struct sigaction act;
2388 memset(&act, 0, sizeof(act));
2389 act.sa_handler = gdb_sigterm_handler;
2390 sigaction(SIGINT, &act, NULL);
2392 #endif
2393 chr = qemu_chr_open("gdb", device, NULL);
2394 if (!chr)
2395 return -1;
2397 qemu_chr_add_handlers(chr, gdb_chr_can_receive, gdb_chr_receive,
2398 gdb_chr_event, NULL);
2401 s = gdbserver_state;
2402 if (!s) {
2403 s = qemu_mallocz(sizeof(GDBState));
2404 gdbserver_state = s;
2406 qemu_add_vm_change_state_handler(gdb_vm_state_change, NULL);
2408 /* Initialize a monitor terminal for gdb */
2409 mon_chr = qemu_mallocz(sizeof(*mon_chr));
2410 mon_chr->chr_write = gdb_monitor_write;
2411 monitor_init(mon_chr, 0);
2412 } else {
2413 if (s->chr)
2414 qemu_chr_close(s->chr);
2415 mon_chr = s->mon_chr;
2416 memset(s, 0, sizeof(GDBState));
2418 s->c_cpu = first_cpu;
2419 s->g_cpu = first_cpu;
2420 s->chr = chr;
2421 s->state = chr ? RS_IDLE : RS_INACTIVE;
2422 s->mon_chr = mon_chr;
2424 return 0;
2426 #endif