2 * MIPS emulation helpers for qemu.
4 * Copyright (c) 2004-2005 Jocelyn Mayer
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, write to the Free Software
18 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston MA 02110-1301 USA
23 #include "host-utils.h"
26 /*****************************************************************************/
27 /* Exceptions processing helpers */
29 void helper_raise_exception_err (uint32_t exception
, int error_code
)
32 if (exception
< 0x100)
33 qemu_log("%s: %d %d\n", __func__
, exception
, error_code
);
35 env
->exception_index
= exception
;
36 env
->error_code
= error_code
;
40 void helper_raise_exception (uint32_t exception
)
42 helper_raise_exception_err(exception
, 0);
45 void helper_interrupt_restart (void)
47 if (!(env
->CP0_Status
& (1 << CP0St_EXL
)) &&
48 !(env
->CP0_Status
& (1 << CP0St_ERL
)) &&
49 !(env
->hflags
& MIPS_HFLAG_DM
) &&
50 (env
->CP0_Status
& (1 << CP0St_IE
)) &&
51 (env
->CP0_Status
& env
->CP0_Cause
& CP0Ca_IP_mask
)) {
52 env
->CP0_Cause
&= ~(0x1f << CP0Ca_EC
);
53 helper_raise_exception(EXCP_EXT_INTERRUPT
);
57 #if !defined(CONFIG_USER_ONLY)
58 static void do_restore_state (void *pc_ptr
)
61 unsigned long pc
= (unsigned long) pc_ptr
;
65 cpu_restore_state (tb
, env
, pc
, NULL
);
70 target_ulong
helper_clo (target_ulong arg1
)
75 target_ulong
helper_clz (target_ulong arg1
)
80 #if defined(TARGET_MIPS64)
81 target_ulong
helper_dclo (target_ulong arg1
)
86 target_ulong
helper_dclz (target_ulong arg1
)
90 #endif /* TARGET_MIPS64 */
92 /* 64 bits arithmetic for 32 bits hosts */
93 static inline uint64_t get_HILO (void)
95 return ((uint64_t)(env
->active_tc
.HI
[0]) << 32) | (uint32_t)env
->active_tc
.LO
[0];
98 static inline void set_HILO (uint64_t HILO
)
100 env
->active_tc
.LO
[0] = (int32_t)HILO
;
101 env
->active_tc
.HI
[0] = (int32_t)(HILO
>> 32);
104 static inline void set_HIT0_LO (target_ulong arg1
, uint64_t HILO
)
106 env
->active_tc
.LO
[0] = (int32_t)(HILO
& 0xFFFFFFFF);
107 arg1
= env
->active_tc
.HI
[0] = (int32_t)(HILO
>> 32);
110 static inline void set_HI_LOT0 (target_ulong arg1
, uint64_t HILO
)
112 arg1
= env
->active_tc
.LO
[0] = (int32_t)(HILO
& 0xFFFFFFFF);
113 env
->active_tc
.HI
[0] = (int32_t)(HILO
>> 32);
116 /* Multiplication variants of the vr54xx. */
117 target_ulong
helper_muls (target_ulong arg1
, target_ulong arg2
)
119 set_HI_LOT0(arg1
, 0 - ((int64_t)(int32_t)arg1
* (int64_t)(int32_t)arg2
));
124 target_ulong
helper_mulsu (target_ulong arg1
, target_ulong arg2
)
126 set_HI_LOT0(arg1
, 0 - ((uint64_t)(uint32_t)arg1
* (uint64_t)(uint32_t)arg2
));
131 target_ulong
helper_macc (target_ulong arg1
, target_ulong arg2
)
133 set_HI_LOT0(arg1
, ((int64_t)get_HILO()) + ((int64_t)(int32_t)arg1
* (int64_t)(int32_t)arg2
));
138 target_ulong
helper_macchi (target_ulong arg1
, target_ulong arg2
)
140 set_HIT0_LO(arg1
, ((int64_t)get_HILO()) + ((int64_t)(int32_t)arg1
* (int64_t)(int32_t)arg2
));
145 target_ulong
helper_maccu (target_ulong arg1
, target_ulong arg2
)
147 set_HI_LOT0(arg1
, ((uint64_t)get_HILO()) + ((uint64_t)(uint32_t)arg1
* (uint64_t)(uint32_t)arg2
));
152 target_ulong
helper_macchiu (target_ulong arg1
, target_ulong arg2
)
154 set_HIT0_LO(arg1
, ((uint64_t)get_HILO()) + ((uint64_t)(uint32_t)arg1
* (uint64_t)(uint32_t)arg2
));
159 target_ulong
helper_msac (target_ulong arg1
, target_ulong arg2
)
161 set_HI_LOT0(arg1
, ((int64_t)get_HILO()) - ((int64_t)(int32_t)arg1
* (int64_t)(int32_t)arg2
));
166 target_ulong
helper_msachi (target_ulong arg1
, target_ulong arg2
)
168 set_HIT0_LO(arg1
, ((int64_t)get_HILO()) - ((int64_t)(int32_t)arg1
* (int64_t)(int32_t)arg2
));
173 target_ulong
helper_msacu (target_ulong arg1
, target_ulong arg2
)
175 set_HI_LOT0(arg1
, ((uint64_t)get_HILO()) - ((uint64_t)(uint32_t)arg1
* (uint64_t)(uint32_t)arg2
));
180 target_ulong
helper_msachiu (target_ulong arg1
, target_ulong arg2
)
182 set_HIT0_LO(arg1
, ((uint64_t)get_HILO()) - ((uint64_t)(uint32_t)arg1
* (uint64_t)(uint32_t)arg2
));
187 target_ulong
helper_mulhi (target_ulong arg1
, target_ulong arg2
)
189 set_HIT0_LO(arg1
, (int64_t)(int32_t)arg1
* (int64_t)(int32_t)arg2
);
194 target_ulong
helper_mulhiu (target_ulong arg1
, target_ulong arg2
)
196 set_HIT0_LO(arg1
, (uint64_t)(uint32_t)arg1
* (uint64_t)(uint32_t)arg2
);
201 target_ulong
helper_mulshi (target_ulong arg1
, target_ulong arg2
)
203 set_HIT0_LO(arg1
, 0 - ((int64_t)(int32_t)arg1
* (int64_t)(int32_t)arg2
));
208 target_ulong
helper_mulshiu (target_ulong arg1
, target_ulong arg2
)
210 set_HIT0_LO(arg1
, 0 - ((uint64_t)(uint32_t)arg1
* (uint64_t)(uint32_t)arg2
));
216 void helper_dmult (target_ulong arg1
, target_ulong arg2
)
218 muls64(&(env
->active_tc
.LO
[0]), &(env
->active_tc
.HI
[0]), arg1
, arg2
);
221 void helper_dmultu (target_ulong arg1
, target_ulong arg2
)
223 mulu64(&(env
->active_tc
.LO
[0]), &(env
->active_tc
.HI
[0]), arg1
, arg2
);
227 #ifdef TARGET_WORDS_BIGENDIAN
228 #define GET_LMASK(v) ((v) & 3)
229 #define GET_OFFSET(addr, offset) (addr + (offset))
231 #define GET_LMASK(v) (((v) & 3) ^ 3)
232 #define GET_OFFSET(addr, offset) (addr - (offset))
235 target_ulong
helper_lwl(target_ulong arg1
, target_ulong arg2
, int mem_idx
)
239 #ifdef CONFIG_USER_ONLY
240 #define ldfun ldub_raw
242 int (*ldfun
)(target_ulong
);
246 case 0: ldfun
= ldub_kernel
; break;
247 case 1: ldfun
= ldub_super
; break;
249 case 2: ldfun
= ldub_user
; break;
253 arg1
= (arg1
& 0x00FFFFFF) | (tmp
<< 24);
255 if (GET_LMASK(arg2
) <= 2) {
256 tmp
= ldfun(GET_OFFSET(arg2
, 1));
257 arg1
= (arg1
& 0xFF00FFFF) | (tmp
<< 16);
260 if (GET_LMASK(arg2
) <= 1) {
261 tmp
= ldfun(GET_OFFSET(arg2
, 2));
262 arg1
= (arg1
& 0xFFFF00FF) | (tmp
<< 8);
265 if (GET_LMASK(arg2
) == 0) {
266 tmp
= ldfun(GET_OFFSET(arg2
, 3));
267 arg1
= (arg1
& 0xFFFFFF00) | tmp
;
269 return (int32_t)arg1
;
272 target_ulong
helper_lwr(target_ulong arg1
, target_ulong arg2
, int mem_idx
)
276 #ifdef CONFIG_USER_ONLY
277 #define ldfun ldub_raw
279 int (*ldfun
)(target_ulong
);
283 case 0: ldfun
= ldub_kernel
; break;
284 case 1: ldfun
= ldub_super
; break;
286 case 2: ldfun
= ldub_user
; break;
290 arg1
= (arg1
& 0xFFFFFF00) | tmp
;
292 if (GET_LMASK(arg2
) >= 1) {
293 tmp
= ldfun(GET_OFFSET(arg2
, -1));
294 arg1
= (arg1
& 0xFFFF00FF) | (tmp
<< 8);
297 if (GET_LMASK(arg2
) >= 2) {
298 tmp
= ldfun(GET_OFFSET(arg2
, -2));
299 arg1
= (arg1
& 0xFF00FFFF) | (tmp
<< 16);
302 if (GET_LMASK(arg2
) == 3) {
303 tmp
= ldfun(GET_OFFSET(arg2
, -3));
304 arg1
= (arg1
& 0x00FFFFFF) | (tmp
<< 24);
306 return (int32_t)arg1
;
309 void helper_swl(target_ulong arg1
, target_ulong arg2
, int mem_idx
)
311 #ifdef CONFIG_USER_ONLY
312 #define stfun stb_raw
314 void (*stfun
)(target_ulong
, int);
318 case 0: stfun
= stb_kernel
; break;
319 case 1: stfun
= stb_super
; break;
321 case 2: stfun
= stb_user
; break;
324 stfun(arg2
, (uint8_t)(arg1
>> 24));
326 if (GET_LMASK(arg2
) <= 2)
327 stfun(GET_OFFSET(arg2
, 1), (uint8_t)(arg1
>> 16));
329 if (GET_LMASK(arg2
) <= 1)
330 stfun(GET_OFFSET(arg2
, 2), (uint8_t)(arg1
>> 8));
332 if (GET_LMASK(arg2
) == 0)
333 stfun(GET_OFFSET(arg2
, 3), (uint8_t)arg1
);
336 void helper_swr(target_ulong arg1
, target_ulong arg2
, int mem_idx
)
338 #ifdef CONFIG_USER_ONLY
339 #define stfun stb_raw
341 void (*stfun
)(target_ulong
, int);
345 case 0: stfun
= stb_kernel
; break;
346 case 1: stfun
= stb_super
; break;
348 case 2: stfun
= stb_user
; break;
351 stfun(arg2
, (uint8_t)arg1
);
353 if (GET_LMASK(arg2
) >= 1)
354 stfun(GET_OFFSET(arg2
, -1), (uint8_t)(arg1
>> 8));
356 if (GET_LMASK(arg2
) >= 2)
357 stfun(GET_OFFSET(arg2
, -2), (uint8_t)(arg1
>> 16));
359 if (GET_LMASK(arg2
) == 3)
360 stfun(GET_OFFSET(arg2
, -3), (uint8_t)(arg1
>> 24));
363 #if defined(TARGET_MIPS64)
364 /* "half" load and stores. We must do the memory access inline,
365 or fault handling won't work. */
367 #ifdef TARGET_WORDS_BIGENDIAN
368 #define GET_LMASK64(v) ((v) & 7)
370 #define GET_LMASK64(v) (((v) & 7) ^ 7)
373 target_ulong
helper_ldl(target_ulong arg1
, target_ulong arg2
, int mem_idx
)
377 #ifdef CONFIG_USER_ONLY
378 #define ldfun ldub_raw
380 int (*ldfun
)(target_ulong
);
384 case 0: ldfun
= ldub_kernel
; break;
385 case 1: ldfun
= ldub_super
; break;
387 case 2: ldfun
= ldub_user
; break;
391 arg1
= (arg1
& 0x00FFFFFFFFFFFFFFULL
) | (tmp
<< 56);
393 if (GET_LMASK64(arg2
) <= 6) {
394 tmp
= ldfun(GET_OFFSET(arg2
, 1));
395 arg1
= (arg1
& 0xFF00FFFFFFFFFFFFULL
) | (tmp
<< 48);
398 if (GET_LMASK64(arg2
) <= 5) {
399 tmp
= ldfun(GET_OFFSET(arg2
, 2));
400 arg1
= (arg1
& 0xFFFF00FFFFFFFFFFULL
) | (tmp
<< 40);
403 if (GET_LMASK64(arg2
) <= 4) {
404 tmp
= ldfun(GET_OFFSET(arg2
, 3));
405 arg1
= (arg1
& 0xFFFFFF00FFFFFFFFULL
) | (tmp
<< 32);
408 if (GET_LMASK64(arg2
) <= 3) {
409 tmp
= ldfun(GET_OFFSET(arg2
, 4));
410 arg1
= (arg1
& 0xFFFFFFFF00FFFFFFULL
) | (tmp
<< 24);
413 if (GET_LMASK64(arg2
) <= 2) {
414 tmp
= ldfun(GET_OFFSET(arg2
, 5));
415 arg1
= (arg1
& 0xFFFFFFFFFF00FFFFULL
) | (tmp
<< 16);
418 if (GET_LMASK64(arg2
) <= 1) {
419 tmp
= ldfun(GET_OFFSET(arg2
, 6));
420 arg1
= (arg1
& 0xFFFFFFFFFFFF00FFULL
) | (tmp
<< 8);
423 if (GET_LMASK64(arg2
) == 0) {
424 tmp
= ldfun(GET_OFFSET(arg2
, 7));
425 arg1
= (arg1
& 0xFFFFFFFFFFFFFF00ULL
) | tmp
;
431 target_ulong
helper_ldr(target_ulong arg1
, target_ulong arg2
, int mem_idx
)
435 #ifdef CONFIG_USER_ONLY
436 #define ldfun ldub_raw
438 int (*ldfun
)(target_ulong
);
442 case 0: ldfun
= ldub_kernel
; break;
443 case 1: ldfun
= ldub_super
; break;
445 case 2: ldfun
= ldub_user
; break;
449 arg1
= (arg1
& 0xFFFFFFFFFFFFFF00ULL
) | tmp
;
451 if (GET_LMASK64(arg2
) >= 1) {
452 tmp
= ldfun(GET_OFFSET(arg2
, -1));
453 arg1
= (arg1
& 0xFFFFFFFFFFFF00FFULL
) | (tmp
<< 8);
456 if (GET_LMASK64(arg2
) >= 2) {
457 tmp
= ldfun(GET_OFFSET(arg2
, -2));
458 arg1
= (arg1
& 0xFFFFFFFFFF00FFFFULL
) | (tmp
<< 16);
461 if (GET_LMASK64(arg2
) >= 3) {
462 tmp
= ldfun(GET_OFFSET(arg2
, -3));
463 arg1
= (arg1
& 0xFFFFFFFF00FFFFFFULL
) | (tmp
<< 24);
466 if (GET_LMASK64(arg2
) >= 4) {
467 tmp
= ldfun(GET_OFFSET(arg2
, -4));
468 arg1
= (arg1
& 0xFFFFFF00FFFFFFFFULL
) | (tmp
<< 32);
471 if (GET_LMASK64(arg2
) >= 5) {
472 tmp
= ldfun(GET_OFFSET(arg2
, -5));
473 arg1
= (arg1
& 0xFFFF00FFFFFFFFFFULL
) | (tmp
<< 40);
476 if (GET_LMASK64(arg2
) >= 6) {
477 tmp
= ldfun(GET_OFFSET(arg2
, -6));
478 arg1
= (arg1
& 0xFF00FFFFFFFFFFFFULL
) | (tmp
<< 48);
481 if (GET_LMASK64(arg2
) == 7) {
482 tmp
= ldfun(GET_OFFSET(arg2
, -7));
483 arg1
= (arg1
& 0x00FFFFFFFFFFFFFFULL
) | (tmp
<< 56);
489 void helper_sdl(target_ulong arg1
, target_ulong arg2
, int mem_idx
)
491 #ifdef CONFIG_USER_ONLY
492 #define stfun stb_raw
494 void (*stfun
)(target_ulong
, int);
498 case 0: stfun
= stb_kernel
; break;
499 case 1: stfun
= stb_super
; break;
501 case 2: stfun
= stb_user
; break;
504 stfun(arg2
, (uint8_t)(arg1
>> 56));
506 if (GET_LMASK64(arg2
) <= 6)
507 stfun(GET_OFFSET(arg2
, 1), (uint8_t)(arg1
>> 48));
509 if (GET_LMASK64(arg2
) <= 5)
510 stfun(GET_OFFSET(arg2
, 2), (uint8_t)(arg1
>> 40));
512 if (GET_LMASK64(arg2
) <= 4)
513 stfun(GET_OFFSET(arg2
, 3), (uint8_t)(arg1
>> 32));
515 if (GET_LMASK64(arg2
) <= 3)
516 stfun(GET_OFFSET(arg2
, 4), (uint8_t)(arg1
>> 24));
518 if (GET_LMASK64(arg2
) <= 2)
519 stfun(GET_OFFSET(arg2
, 5), (uint8_t)(arg1
>> 16));
521 if (GET_LMASK64(arg2
) <= 1)
522 stfun(GET_OFFSET(arg2
, 6), (uint8_t)(arg1
>> 8));
524 if (GET_LMASK64(arg2
) <= 0)
525 stfun(GET_OFFSET(arg2
, 7), (uint8_t)arg1
);
528 void helper_sdr(target_ulong arg1
, target_ulong arg2
, int mem_idx
)
530 #ifdef CONFIG_USER_ONLY
531 #define stfun stb_raw
533 void (*stfun
)(target_ulong
, int);
537 case 0: stfun
= stb_kernel
; break;
538 case 1: stfun
= stb_super
; break;
540 case 2: stfun
= stb_user
; break;
543 stfun(arg2
, (uint8_t)arg1
);
545 if (GET_LMASK64(arg2
) >= 1)
546 stfun(GET_OFFSET(arg2
, -1), (uint8_t)(arg1
>> 8));
548 if (GET_LMASK64(arg2
) >= 2)
549 stfun(GET_OFFSET(arg2
, -2), (uint8_t)(arg1
>> 16));
551 if (GET_LMASK64(arg2
) >= 3)
552 stfun(GET_OFFSET(arg2
, -3), (uint8_t)(arg1
>> 24));
554 if (GET_LMASK64(arg2
) >= 4)
555 stfun(GET_OFFSET(arg2
, -4), (uint8_t)(arg1
>> 32));
557 if (GET_LMASK64(arg2
) >= 5)
558 stfun(GET_OFFSET(arg2
, -5), (uint8_t)(arg1
>> 40));
560 if (GET_LMASK64(arg2
) >= 6)
561 stfun(GET_OFFSET(arg2
, -6), (uint8_t)(arg1
>> 48));
563 if (GET_LMASK64(arg2
) == 7)
564 stfun(GET_OFFSET(arg2
, -7), (uint8_t)(arg1
>> 56));
566 #endif /* TARGET_MIPS64 */
568 #ifndef CONFIG_USER_ONLY
570 target_ulong
helper_mfc0_mvpcontrol (void)
572 return env
->mvp
->CP0_MVPControl
;
575 target_ulong
helper_mfc0_mvpconf0 (void)
577 return env
->mvp
->CP0_MVPConf0
;
580 target_ulong
helper_mfc0_mvpconf1 (void)
582 return env
->mvp
->CP0_MVPConf1
;
585 target_ulong
helper_mfc0_random (void)
587 return (int32_t)cpu_mips_get_random(env
);
590 target_ulong
helper_mfc0_tcstatus (void)
592 return env
->active_tc
.CP0_TCStatus
;
595 target_ulong
helper_mftc0_tcstatus(void)
597 int other_tc
= env
->CP0_VPEControl
& (0xff << CP0VPECo_TargTC
);
599 if (other_tc
== env
->current_tc
)
600 return env
->active_tc
.CP0_TCStatus
;
602 return env
->tcs
[other_tc
].CP0_TCStatus
;
605 target_ulong
helper_mfc0_tcbind (void)
607 return env
->active_tc
.CP0_TCBind
;
610 target_ulong
helper_mftc0_tcbind(void)
612 int other_tc
= env
->CP0_VPEControl
& (0xff << CP0VPECo_TargTC
);
614 if (other_tc
== env
->current_tc
)
615 return env
->active_tc
.CP0_TCBind
;
617 return env
->tcs
[other_tc
].CP0_TCBind
;
620 target_ulong
helper_mfc0_tcrestart (void)
622 return env
->active_tc
.PC
;
625 target_ulong
helper_mftc0_tcrestart(void)
627 int other_tc
= env
->CP0_VPEControl
& (0xff << CP0VPECo_TargTC
);
629 if (other_tc
== env
->current_tc
)
630 return env
->active_tc
.PC
;
632 return env
->tcs
[other_tc
].PC
;
635 target_ulong
helper_mfc0_tchalt (void)
637 return env
->active_tc
.CP0_TCHalt
;
640 target_ulong
helper_mftc0_tchalt(void)
642 int other_tc
= env
->CP0_VPEControl
& (0xff << CP0VPECo_TargTC
);
644 if (other_tc
== env
->current_tc
)
645 return env
->active_tc
.CP0_TCHalt
;
647 return env
->tcs
[other_tc
].CP0_TCHalt
;
650 target_ulong
helper_mfc0_tccontext (void)
652 return env
->active_tc
.CP0_TCContext
;
655 target_ulong
helper_mftc0_tccontext(void)
657 int other_tc
= env
->CP0_VPEControl
& (0xff << CP0VPECo_TargTC
);
659 if (other_tc
== env
->current_tc
)
660 return env
->active_tc
.CP0_TCContext
;
662 return env
->tcs
[other_tc
].CP0_TCContext
;
665 target_ulong
helper_mfc0_tcschedule (void)
667 return env
->active_tc
.CP0_TCSchedule
;
670 target_ulong
helper_mftc0_tcschedule(void)
672 int other_tc
= env
->CP0_VPEControl
& (0xff << CP0VPECo_TargTC
);
674 if (other_tc
== env
->current_tc
)
675 return env
->active_tc
.CP0_TCSchedule
;
677 return env
->tcs
[other_tc
].CP0_TCSchedule
;
680 target_ulong
helper_mfc0_tcschefback (void)
682 return env
->active_tc
.CP0_TCScheFBack
;
685 target_ulong
helper_mftc0_tcschefback(void)
687 int other_tc
= env
->CP0_VPEControl
& (0xff << CP0VPECo_TargTC
);
689 if (other_tc
== env
->current_tc
)
690 return env
->active_tc
.CP0_TCScheFBack
;
692 return env
->tcs
[other_tc
].CP0_TCScheFBack
;
695 target_ulong
helper_mfc0_count (void)
697 return (int32_t)cpu_mips_get_count(env
);
700 target_ulong
helper_mftc0_entryhi(void)
702 int other_tc
= env
->CP0_VPEControl
& (0xff << CP0VPECo_TargTC
);
705 if (other_tc
== env
->current_tc
)
706 tcstatus
= env
->active_tc
.CP0_TCStatus
;
708 tcstatus
= env
->tcs
[other_tc
].CP0_TCStatus
;
710 return (env
->CP0_EntryHi
& ~0xff) | (tcstatus
& 0xff);
713 target_ulong
helper_mftc0_status(void)
715 int other_tc
= env
->CP0_VPEControl
& (0xff << CP0VPECo_TargTC
);
719 if (other_tc
== env
->current_tc
)
720 tcstatus
= env
->active_tc
.CP0_TCStatus
;
722 tcstatus
= env
->tcs
[other_tc
].CP0_TCStatus
;
724 t0
= env
->CP0_Status
& ~0xf1000018;
725 t0
|= tcstatus
& (0xf << CP0TCSt_TCU0
);
726 t0
|= (tcstatus
& (1 << CP0TCSt_TMX
)) >> (CP0TCSt_TMX
- CP0St_MX
);
727 t0
|= (tcstatus
& (0x3 << CP0TCSt_TKSU
)) >> (CP0TCSt_TKSU
- CP0St_KSU
);
732 target_ulong
helper_mfc0_lladdr (void)
734 return (int32_t)env
->CP0_LLAddr
>> 4;
737 target_ulong
helper_mfc0_watchlo (uint32_t sel
)
739 return (int32_t)env
->CP0_WatchLo
[sel
];
742 target_ulong
helper_mfc0_watchhi (uint32_t sel
)
744 return env
->CP0_WatchHi
[sel
];
747 target_ulong
helper_mfc0_debug (void)
749 target_ulong t0
= env
->CP0_Debug
;
750 if (env
->hflags
& MIPS_HFLAG_DM
)
756 target_ulong
helper_mftc0_debug(void)
758 int other_tc
= env
->CP0_VPEControl
& (0xff << CP0VPECo_TargTC
);
761 if (other_tc
== env
->current_tc
)
762 tcstatus
= env
->active_tc
.CP0_Debug_tcstatus
;
764 tcstatus
= env
->tcs
[other_tc
].CP0_Debug_tcstatus
;
766 /* XXX: Might be wrong, check with EJTAG spec. */
767 return (env
->CP0_Debug
& ~((1 << CP0DB_SSt
) | (1 << CP0DB_Halt
))) |
768 (tcstatus
& ((1 << CP0DB_SSt
) | (1 << CP0DB_Halt
)));
771 #if defined(TARGET_MIPS64)
772 target_ulong
helper_dmfc0_tcrestart (void)
774 return env
->active_tc
.PC
;
777 target_ulong
helper_dmfc0_tchalt (void)
779 return env
->active_tc
.CP0_TCHalt
;
782 target_ulong
helper_dmfc0_tccontext (void)
784 return env
->active_tc
.CP0_TCContext
;
787 target_ulong
helper_dmfc0_tcschedule (void)
789 return env
->active_tc
.CP0_TCSchedule
;
792 target_ulong
helper_dmfc0_tcschefback (void)
794 return env
->active_tc
.CP0_TCScheFBack
;
797 target_ulong
helper_dmfc0_lladdr (void)
799 return env
->CP0_LLAddr
>> 4;
802 target_ulong
helper_dmfc0_watchlo (uint32_t sel
)
804 return env
->CP0_WatchLo
[sel
];
806 #endif /* TARGET_MIPS64 */
808 void helper_mtc0_index (target_ulong arg1
)
811 unsigned int tmp
= env
->tlb
->nb_tlb
;
817 env
->CP0_Index
= (env
->CP0_Index
& 0x80000000) | (arg1
& (num
- 1));
820 void helper_mtc0_mvpcontrol (target_ulong arg1
)
825 if (env
->CP0_VPEConf0
& (1 << CP0VPEC0_MVP
))
826 mask
|= (1 << CP0MVPCo_CPA
) | (1 << CP0MVPCo_VPC
) |
828 if (env
->mvp
->CP0_MVPControl
& (1 << CP0MVPCo_VPC
))
829 mask
|= (1 << CP0MVPCo_STLB
);
830 newval
= (env
->mvp
->CP0_MVPControl
& ~mask
) | (arg1
& mask
);
832 // TODO: Enable/disable shared TLB, enable/disable VPEs.
834 env
->mvp
->CP0_MVPControl
= newval
;
837 void helper_mtc0_vpecontrol (target_ulong arg1
)
842 mask
= (1 << CP0VPECo_YSI
) | (1 << CP0VPECo_GSI
) |
843 (1 << CP0VPECo_TE
) | (0xff << CP0VPECo_TargTC
);
844 newval
= (env
->CP0_VPEControl
& ~mask
) | (arg1
& mask
);
846 /* Yield scheduler intercept not implemented. */
847 /* Gating storage scheduler intercept not implemented. */
849 // TODO: Enable/disable TCs.
851 env
->CP0_VPEControl
= newval
;
854 void helper_mtc0_vpeconf0 (target_ulong arg1
)
859 if (env
->CP0_VPEConf0
& (1 << CP0VPEC0_MVP
)) {
860 if (env
->CP0_VPEConf0
& (1 << CP0VPEC0_VPA
))
861 mask
|= (0xff << CP0VPEC0_XTC
);
862 mask
|= (1 << CP0VPEC0_MVP
) | (1 << CP0VPEC0_VPA
);
864 newval
= (env
->CP0_VPEConf0
& ~mask
) | (arg1
& mask
);
866 // TODO: TC exclusive handling due to ERL/EXL.
868 env
->CP0_VPEConf0
= newval
;
871 void helper_mtc0_vpeconf1 (target_ulong arg1
)
876 if (env
->mvp
->CP0_MVPControl
& (1 << CP0MVPCo_VPC
))
877 mask
|= (0xff << CP0VPEC1_NCX
) | (0xff << CP0VPEC1_NCP2
) |
878 (0xff << CP0VPEC1_NCP1
);
879 newval
= (env
->CP0_VPEConf1
& ~mask
) | (arg1
& mask
);
881 /* UDI not implemented. */
882 /* CP2 not implemented. */
884 // TODO: Handle FPU (CP1) binding.
886 env
->CP0_VPEConf1
= newval
;
889 void helper_mtc0_yqmask (target_ulong arg1
)
891 /* Yield qualifier inputs not implemented. */
892 env
->CP0_YQMask
= 0x00000000;
895 void helper_mtc0_vpeopt (target_ulong arg1
)
897 env
->CP0_VPEOpt
= arg1
& 0x0000ffff;
900 void helper_mtc0_entrylo0 (target_ulong arg1
)
902 /* Large physaddr (PABITS) not implemented */
903 /* 1k pages not implemented */
904 env
->CP0_EntryLo0
= arg1
& 0x3FFFFFFF;
907 void helper_mtc0_tcstatus (target_ulong arg1
)
909 uint32_t mask
= env
->CP0_TCStatus_rw_bitmask
;
912 newval
= (env
->active_tc
.CP0_TCStatus
& ~mask
) | (arg1
& mask
);
914 // TODO: Sync with CP0_Status.
916 env
->active_tc
.CP0_TCStatus
= newval
;
919 void helper_mttc0_tcstatus (target_ulong arg1
)
921 int other_tc
= env
->CP0_VPEControl
& (0xff << CP0VPECo_TargTC
);
923 // TODO: Sync with CP0_Status.
925 if (other_tc
== env
->current_tc
)
926 env
->active_tc
.CP0_TCStatus
= arg1
;
928 env
->tcs
[other_tc
].CP0_TCStatus
= arg1
;
931 void helper_mtc0_tcbind (target_ulong arg1
)
933 uint32_t mask
= (1 << CP0TCBd_TBE
);
936 if (env
->mvp
->CP0_MVPControl
& (1 << CP0MVPCo_VPC
))
937 mask
|= (1 << CP0TCBd_CurVPE
);
938 newval
= (env
->active_tc
.CP0_TCBind
& ~mask
) | (arg1
& mask
);
939 env
->active_tc
.CP0_TCBind
= newval
;
942 void helper_mttc0_tcbind (target_ulong arg1
)
944 int other_tc
= env
->CP0_VPEControl
& (0xff << CP0VPECo_TargTC
);
945 uint32_t mask
= (1 << CP0TCBd_TBE
);
948 if (env
->mvp
->CP0_MVPControl
& (1 << CP0MVPCo_VPC
))
949 mask
|= (1 << CP0TCBd_CurVPE
);
950 if (other_tc
== env
->current_tc
) {
951 newval
= (env
->active_tc
.CP0_TCBind
& ~mask
) | (arg1
& mask
);
952 env
->active_tc
.CP0_TCBind
= newval
;
954 newval
= (env
->tcs
[other_tc
].CP0_TCBind
& ~mask
) | (arg1
& mask
);
955 env
->tcs
[other_tc
].CP0_TCBind
= newval
;
959 void helper_mtc0_tcrestart (target_ulong arg1
)
961 env
->active_tc
.PC
= arg1
;
962 env
->active_tc
.CP0_TCStatus
&= ~(1 << CP0TCSt_TDS
);
963 env
->CP0_LLAddr
= 0ULL;
964 /* MIPS16 not implemented. */
967 void helper_mttc0_tcrestart (target_ulong arg1
)
969 int other_tc
= env
->CP0_VPEControl
& (0xff << CP0VPECo_TargTC
);
971 if (other_tc
== env
->current_tc
) {
972 env
->active_tc
.PC
= arg1
;
973 env
->active_tc
.CP0_TCStatus
&= ~(1 << CP0TCSt_TDS
);
974 env
->CP0_LLAddr
= 0ULL;
975 /* MIPS16 not implemented. */
977 env
->tcs
[other_tc
].PC
= arg1
;
978 env
->tcs
[other_tc
].CP0_TCStatus
&= ~(1 << CP0TCSt_TDS
);
979 env
->CP0_LLAddr
= 0ULL;
980 /* MIPS16 not implemented. */
984 void helper_mtc0_tchalt (target_ulong arg1
)
986 env
->active_tc
.CP0_TCHalt
= arg1
& 0x1;
988 // TODO: Halt TC / Restart (if allocated+active) TC.
991 void helper_mttc0_tchalt (target_ulong arg1
)
993 int other_tc
= env
->CP0_VPEControl
& (0xff << CP0VPECo_TargTC
);
995 // TODO: Halt TC / Restart (if allocated+active) TC.
997 if (other_tc
== env
->current_tc
)
998 env
->active_tc
.CP0_TCHalt
= arg1
;
1000 env
->tcs
[other_tc
].CP0_TCHalt
= arg1
;
1003 void helper_mtc0_tccontext (target_ulong arg1
)
1005 env
->active_tc
.CP0_TCContext
= arg1
;
1008 void helper_mttc0_tccontext (target_ulong arg1
)
1010 int other_tc
= env
->CP0_VPEControl
& (0xff << CP0VPECo_TargTC
);
1012 if (other_tc
== env
->current_tc
)
1013 env
->active_tc
.CP0_TCContext
= arg1
;
1015 env
->tcs
[other_tc
].CP0_TCContext
= arg1
;
1018 void helper_mtc0_tcschedule (target_ulong arg1
)
1020 env
->active_tc
.CP0_TCSchedule
= arg1
;
1023 void helper_mttc0_tcschedule (target_ulong arg1
)
1025 int other_tc
= env
->CP0_VPEControl
& (0xff << CP0VPECo_TargTC
);
1027 if (other_tc
== env
->current_tc
)
1028 env
->active_tc
.CP0_TCSchedule
= arg1
;
1030 env
->tcs
[other_tc
].CP0_TCSchedule
= arg1
;
1033 void helper_mtc0_tcschefback (target_ulong arg1
)
1035 env
->active_tc
.CP0_TCScheFBack
= arg1
;
1038 void helper_mttc0_tcschefback (target_ulong arg1
)
1040 int other_tc
= env
->CP0_VPEControl
& (0xff << CP0VPECo_TargTC
);
1042 if (other_tc
== env
->current_tc
)
1043 env
->active_tc
.CP0_TCScheFBack
= arg1
;
1045 env
->tcs
[other_tc
].CP0_TCScheFBack
= arg1
;
1048 void helper_mtc0_entrylo1 (target_ulong arg1
)
1050 /* Large physaddr (PABITS) not implemented */
1051 /* 1k pages not implemented */
1052 env
->CP0_EntryLo1
= arg1
& 0x3FFFFFFF;
1055 void helper_mtc0_context (target_ulong arg1
)
1057 env
->CP0_Context
= (env
->CP0_Context
& 0x007FFFFF) | (arg1
& ~0x007FFFFF);
1060 void helper_mtc0_pagemask (target_ulong arg1
)
1062 /* 1k pages not implemented */
1063 env
->CP0_PageMask
= arg1
& (0x1FFFFFFF & (TARGET_PAGE_MASK
<< 1));
1066 void helper_mtc0_pagegrain (target_ulong arg1
)
1068 /* SmartMIPS not implemented */
1069 /* Large physaddr (PABITS) not implemented */
1070 /* 1k pages not implemented */
1071 env
->CP0_PageGrain
= 0;
1074 void helper_mtc0_wired (target_ulong arg1
)
1076 env
->CP0_Wired
= arg1
% env
->tlb
->nb_tlb
;
1079 void helper_mtc0_srsconf0 (target_ulong arg1
)
1081 env
->CP0_SRSConf0
|= arg1
& env
->CP0_SRSConf0_rw_bitmask
;
1084 void helper_mtc0_srsconf1 (target_ulong arg1
)
1086 env
->CP0_SRSConf1
|= arg1
& env
->CP0_SRSConf1_rw_bitmask
;
1089 void helper_mtc0_srsconf2 (target_ulong arg1
)
1091 env
->CP0_SRSConf2
|= arg1
& env
->CP0_SRSConf2_rw_bitmask
;
1094 void helper_mtc0_srsconf3 (target_ulong arg1
)
1096 env
->CP0_SRSConf3
|= arg1
& env
->CP0_SRSConf3_rw_bitmask
;
1099 void helper_mtc0_srsconf4 (target_ulong arg1
)
1101 env
->CP0_SRSConf4
|= arg1
& env
->CP0_SRSConf4_rw_bitmask
;
1104 void helper_mtc0_hwrena (target_ulong arg1
)
1106 env
->CP0_HWREna
= arg1
& 0x0000000F;
1109 void helper_mtc0_count (target_ulong arg1
)
1111 cpu_mips_store_count(env
, arg1
);
1114 void helper_mtc0_entryhi (target_ulong arg1
)
1116 target_ulong old
, val
;
1118 /* 1k pages not implemented */
1119 val
= arg1
& ((TARGET_PAGE_MASK
<< 1) | 0xFF);
1120 #if defined(TARGET_MIPS64)
1121 val
&= env
->SEGMask
;
1123 old
= env
->CP0_EntryHi
;
1124 env
->CP0_EntryHi
= val
;
1125 if (env
->CP0_Config3
& (1 << CP0C3_MT
)) {
1126 uint32_t tcst
= env
->active_tc
.CP0_TCStatus
& ~0xff;
1127 env
->active_tc
.CP0_TCStatus
= tcst
| (val
& 0xff);
1129 /* If the ASID changes, flush qemu's TLB. */
1130 if ((old
& 0xFF) != (val
& 0xFF))
1131 cpu_mips_tlb_flush(env
, 1);
1134 void helper_mttc0_entryhi(target_ulong arg1
)
1136 int other_tc
= env
->CP0_VPEControl
& (0xff << CP0VPECo_TargTC
);
1139 env
->CP0_EntryHi
= (env
->CP0_EntryHi
& 0xff) | (arg1
& ~0xff);
1140 if (other_tc
== env
->current_tc
) {
1141 tcstatus
= (env
->active_tc
.CP0_TCStatus
& ~0xff) | (arg1
& 0xff);
1142 env
->active_tc
.CP0_TCStatus
= tcstatus
;
1144 tcstatus
= (env
->tcs
[other_tc
].CP0_TCStatus
& ~0xff) | (arg1
& 0xff);
1145 env
->tcs
[other_tc
].CP0_TCStatus
= tcstatus
;
1149 void helper_mtc0_compare (target_ulong arg1
)
1151 cpu_mips_store_compare(env
, arg1
);
1154 void helper_mtc0_status (target_ulong arg1
)
1157 uint32_t mask
= env
->CP0_Status_rw_bitmask
;
1160 old
= env
->CP0_Status
;
1161 env
->CP0_Status
= (env
->CP0_Status
& ~mask
) | val
;
1162 compute_hflags(env
);
1163 if (qemu_loglevel_mask(CPU_LOG_EXEC
)) {
1164 qemu_log("Status %08x (%08x) => %08x (%08x) Cause %08x",
1165 old
, old
& env
->CP0_Cause
& CP0Ca_IP_mask
,
1166 val
, val
& env
->CP0_Cause
& CP0Ca_IP_mask
,
1168 switch (env
->hflags
& MIPS_HFLAG_KSU
) {
1169 case MIPS_HFLAG_UM
: qemu_log(", UM\n"); break;
1170 case MIPS_HFLAG_SM
: qemu_log(", SM\n"); break;
1171 case MIPS_HFLAG_KM
: qemu_log("\n"); break;
1172 default: cpu_abort(env
, "Invalid MMU mode!\n"); break;
1175 cpu_mips_update_irq(env
);
1178 void helper_mttc0_status(target_ulong arg1
)
1180 int other_tc
= env
->CP0_VPEControl
& (0xff << CP0VPECo_TargTC
);
1181 int32_t tcstatus
= env
->tcs
[other_tc
].CP0_TCStatus
;
1183 env
->CP0_Status
= arg1
& ~0xf1000018;
1184 tcstatus
= (tcstatus
& ~(0xf << CP0TCSt_TCU0
)) | (arg1
& (0xf << CP0St_CU0
));
1185 tcstatus
= (tcstatus
& ~(1 << CP0TCSt_TMX
)) | ((arg1
& (1 << CP0St_MX
)) << (CP0TCSt_TMX
- CP0St_MX
));
1186 tcstatus
= (tcstatus
& ~(0x3 << CP0TCSt_TKSU
)) | ((arg1
& (0x3 << CP0St_KSU
)) << (CP0TCSt_TKSU
- CP0St_KSU
));
1187 if (other_tc
== env
->current_tc
)
1188 env
->active_tc
.CP0_TCStatus
= tcstatus
;
1190 env
->tcs
[other_tc
].CP0_TCStatus
= tcstatus
;
1193 void helper_mtc0_intctl (target_ulong arg1
)
1195 /* vectored interrupts not implemented, no performance counters. */
1196 env
->CP0_IntCtl
= (env
->CP0_IntCtl
& ~0x000002e0) | (arg1
& 0x000002e0);
1199 void helper_mtc0_srsctl (target_ulong arg1
)
1201 uint32_t mask
= (0xf << CP0SRSCtl_ESS
) | (0xf << CP0SRSCtl_PSS
);
1202 env
->CP0_SRSCtl
= (env
->CP0_SRSCtl
& ~mask
) | (arg1
& mask
);
1205 void helper_mtc0_cause (target_ulong arg1
)
1207 uint32_t mask
= 0x00C00300;
1208 uint32_t old
= env
->CP0_Cause
;
1210 if (env
->insn_flags
& ISA_MIPS32R2
)
1211 mask
|= 1 << CP0Ca_DC
;
1213 env
->CP0_Cause
= (env
->CP0_Cause
& ~mask
) | (arg1
& mask
);
1215 if ((old
^ env
->CP0_Cause
) & (1 << CP0Ca_DC
)) {
1216 if (env
->CP0_Cause
& (1 << CP0Ca_DC
))
1217 cpu_mips_stop_count(env
);
1219 cpu_mips_start_count(env
);
1222 /* Handle the software interrupt as an hardware one, as they
1224 if (arg1
& CP0Ca_IP_mask
) {
1225 cpu_mips_update_irq(env
);
1229 void helper_mtc0_ebase (target_ulong arg1
)
1231 /* vectored interrupts not implemented */
1232 /* Multi-CPU not implemented */
1233 env
->CP0_EBase
= 0x80000000 | (arg1
& 0x3FFFF000);
1236 void helper_mtc0_config0 (target_ulong arg1
)
1238 env
->CP0_Config0
= (env
->CP0_Config0
& 0x81FFFFF8) | (arg1
& 0x00000007);
1241 void helper_mtc0_config2 (target_ulong arg1
)
1243 /* tertiary/secondary caches not implemented */
1244 env
->CP0_Config2
= (env
->CP0_Config2
& 0x8FFF0FFF);
1247 void helper_mtc0_watchlo (target_ulong arg1
, uint32_t sel
)
1249 /* Watch exceptions for instructions, data loads, data stores
1251 env
->CP0_WatchLo
[sel
] = (arg1
& ~0x7);
1254 void helper_mtc0_watchhi (target_ulong arg1
, uint32_t sel
)
1256 env
->CP0_WatchHi
[sel
] = (arg1
& 0x40FF0FF8);
1257 env
->CP0_WatchHi
[sel
] &= ~(env
->CP0_WatchHi
[sel
] & arg1
& 0x7);
1260 void helper_mtc0_xcontext (target_ulong arg1
)
1262 target_ulong mask
= (1ULL << (env
->SEGBITS
- 7)) - 1;
1263 env
->CP0_XContext
= (env
->CP0_XContext
& mask
) | (arg1
& ~mask
);
1266 void helper_mtc0_framemask (target_ulong arg1
)
1268 env
->CP0_Framemask
= arg1
; /* XXX */
1271 void helper_mtc0_debug (target_ulong arg1
)
1273 env
->CP0_Debug
= (env
->CP0_Debug
& 0x8C03FC1F) | (arg1
& 0x13300120);
1274 if (arg1
& (1 << CP0DB_DM
))
1275 env
->hflags
|= MIPS_HFLAG_DM
;
1277 env
->hflags
&= ~MIPS_HFLAG_DM
;
1280 void helper_mttc0_debug(target_ulong arg1
)
1282 int other_tc
= env
->CP0_VPEControl
& (0xff << CP0VPECo_TargTC
);
1283 uint32_t val
= arg1
& ((1 << CP0DB_SSt
) | (1 << CP0DB_Halt
));
1285 /* XXX: Might be wrong, check with EJTAG spec. */
1286 if (other_tc
== env
->current_tc
)
1287 env
->active_tc
.CP0_Debug_tcstatus
= val
;
1289 env
->tcs
[other_tc
].CP0_Debug_tcstatus
= val
;
1290 env
->CP0_Debug
= (env
->CP0_Debug
& ((1 << CP0DB_SSt
) | (1 << CP0DB_Halt
))) |
1291 (arg1
& ~((1 << CP0DB_SSt
) | (1 << CP0DB_Halt
)));
1294 void helper_mtc0_performance0 (target_ulong arg1
)
1296 env
->CP0_Performance0
= arg1
& 0x000007ff;
1299 void helper_mtc0_taglo (target_ulong arg1
)
1301 env
->CP0_TagLo
= arg1
& 0xFFFFFCF6;
1304 void helper_mtc0_datalo (target_ulong arg1
)
1306 env
->CP0_DataLo
= arg1
; /* XXX */
1309 void helper_mtc0_taghi (target_ulong arg1
)
1311 env
->CP0_TagHi
= arg1
; /* XXX */
1314 void helper_mtc0_datahi (target_ulong arg1
)
1316 env
->CP0_DataHi
= arg1
; /* XXX */
1319 /* MIPS MT functions */
1320 target_ulong
helper_mftgpr(uint32_t sel
)
1322 int other_tc
= env
->CP0_VPEControl
& (0xff << CP0VPECo_TargTC
);
1324 if (other_tc
== env
->current_tc
)
1325 return env
->active_tc
.gpr
[sel
];
1327 return env
->tcs
[other_tc
].gpr
[sel
];
1330 target_ulong
helper_mftlo(uint32_t sel
)
1332 int other_tc
= env
->CP0_VPEControl
& (0xff << CP0VPECo_TargTC
);
1334 if (other_tc
== env
->current_tc
)
1335 return env
->active_tc
.LO
[sel
];
1337 return env
->tcs
[other_tc
].LO
[sel
];
1340 target_ulong
helper_mfthi(uint32_t sel
)
1342 int other_tc
= env
->CP0_VPEControl
& (0xff << CP0VPECo_TargTC
);
1344 if (other_tc
== env
->current_tc
)
1345 return env
->active_tc
.HI
[sel
];
1347 return env
->tcs
[other_tc
].HI
[sel
];
1350 target_ulong
helper_mftacx(uint32_t sel
)
1352 int other_tc
= env
->CP0_VPEControl
& (0xff << CP0VPECo_TargTC
);
1354 if (other_tc
== env
->current_tc
)
1355 return env
->active_tc
.ACX
[sel
];
1357 return env
->tcs
[other_tc
].ACX
[sel
];
1360 target_ulong
helper_mftdsp(void)
1362 int other_tc
= env
->CP0_VPEControl
& (0xff << CP0VPECo_TargTC
);
1364 if (other_tc
== env
->current_tc
)
1365 return env
->active_tc
.DSPControl
;
1367 return env
->tcs
[other_tc
].DSPControl
;
1370 void helper_mttgpr(target_ulong arg1
, uint32_t sel
)
1372 int other_tc
= env
->CP0_VPEControl
& (0xff << CP0VPECo_TargTC
);
1374 if (other_tc
== env
->current_tc
)
1375 env
->active_tc
.gpr
[sel
] = arg1
;
1377 env
->tcs
[other_tc
].gpr
[sel
] = arg1
;
1380 void helper_mttlo(target_ulong arg1
, uint32_t sel
)
1382 int other_tc
= env
->CP0_VPEControl
& (0xff << CP0VPECo_TargTC
);
1384 if (other_tc
== env
->current_tc
)
1385 env
->active_tc
.LO
[sel
] = arg1
;
1387 env
->tcs
[other_tc
].LO
[sel
] = arg1
;
1390 void helper_mtthi(target_ulong arg1
, uint32_t sel
)
1392 int other_tc
= env
->CP0_VPEControl
& (0xff << CP0VPECo_TargTC
);
1394 if (other_tc
== env
->current_tc
)
1395 env
->active_tc
.HI
[sel
] = arg1
;
1397 env
->tcs
[other_tc
].HI
[sel
] = arg1
;
1400 void helper_mttacx(target_ulong arg1
, uint32_t sel
)
1402 int other_tc
= env
->CP0_VPEControl
& (0xff << CP0VPECo_TargTC
);
1404 if (other_tc
== env
->current_tc
)
1405 env
->active_tc
.ACX
[sel
] = arg1
;
1407 env
->tcs
[other_tc
].ACX
[sel
] = arg1
;
1410 void helper_mttdsp(target_ulong arg1
)
1412 int other_tc
= env
->CP0_VPEControl
& (0xff << CP0VPECo_TargTC
);
1414 if (other_tc
== env
->current_tc
)
1415 env
->active_tc
.DSPControl
= arg1
;
1417 env
->tcs
[other_tc
].DSPControl
= arg1
;
1420 /* MIPS MT functions */
1421 target_ulong
helper_dmt(target_ulong arg1
)
1430 target_ulong
helper_emt(target_ulong arg1
)
1439 target_ulong
helper_dvpe(target_ulong arg1
)
1448 target_ulong
helper_evpe(target_ulong arg1
)
1456 #endif /* !CONFIG_USER_ONLY */
1458 void helper_fork(target_ulong arg1
, target_ulong arg2
)
1460 // arg1 = rt, arg2 = rs
1462 // TODO: store to TC register
1465 target_ulong
helper_yield(target_ulong arg1
)
1468 /* No scheduling policy implemented. */
1470 if (env
->CP0_VPEControl
& (1 << CP0VPECo_YSI
) &&
1471 env
->active_tc
.CP0_TCStatus
& (1 << CP0TCSt_DT
)) {
1472 env
->CP0_VPEControl
&= ~(0x7 << CP0VPECo_EXCPT
);
1473 env
->CP0_VPEControl
|= 4 << CP0VPECo_EXCPT
;
1474 helper_raise_exception(EXCP_THREAD
);
1477 } else if (arg1
== 0) {
1478 if (0 /* TODO: TC underflow */) {
1479 env
->CP0_VPEControl
&= ~(0x7 << CP0VPECo_EXCPT
);
1480 helper_raise_exception(EXCP_THREAD
);
1482 // TODO: Deallocate TC
1484 } else if (arg1
> 0) {
1485 /* Yield qualifier inputs not implemented. */
1486 env
->CP0_VPEControl
&= ~(0x7 << CP0VPECo_EXCPT
);
1487 env
->CP0_VPEControl
|= 2 << CP0VPECo_EXCPT
;
1488 helper_raise_exception(EXCP_THREAD
);
1490 return env
->CP0_YQMask
;
1493 #ifndef CONFIG_USER_ONLY
1494 /* TLB management */
1495 void cpu_mips_tlb_flush (CPUState
*env
, int flush_global
)
1497 /* Flush qemu's TLB and discard all shadowed entries. */
1498 tlb_flush (env
, flush_global
);
1499 env
->tlb
->tlb_in_use
= env
->tlb
->nb_tlb
;
1502 static void r4k_mips_tlb_flush_extra (CPUState
*env
, int first
)
1504 /* Discard entries from env->tlb[first] onwards. */
1505 while (env
->tlb
->tlb_in_use
> first
) {
1506 r4k_invalidate_tlb(env
, --env
->tlb
->tlb_in_use
, 0);
1510 static void r4k_fill_tlb (int idx
)
1514 /* XXX: detect conflicting TLBs and raise a MCHECK exception when needed */
1515 tlb
= &env
->tlb
->mmu
.r4k
.tlb
[idx
];
1516 tlb
->VPN
= env
->CP0_EntryHi
& (TARGET_PAGE_MASK
<< 1);
1517 #if defined(TARGET_MIPS64)
1518 tlb
->VPN
&= env
->SEGMask
;
1520 tlb
->ASID
= env
->CP0_EntryHi
& 0xFF;
1521 tlb
->PageMask
= env
->CP0_PageMask
;
1522 tlb
->G
= env
->CP0_EntryLo0
& env
->CP0_EntryLo1
& 1;
1523 tlb
->V0
= (env
->CP0_EntryLo0
& 2) != 0;
1524 tlb
->D0
= (env
->CP0_EntryLo0
& 4) != 0;
1525 tlb
->C0
= (env
->CP0_EntryLo0
>> 3) & 0x7;
1526 tlb
->PFN
[0] = (env
->CP0_EntryLo0
>> 6) << 12;
1527 tlb
->V1
= (env
->CP0_EntryLo1
& 2) != 0;
1528 tlb
->D1
= (env
->CP0_EntryLo1
& 4) != 0;
1529 tlb
->C1
= (env
->CP0_EntryLo1
>> 3) & 0x7;
1530 tlb
->PFN
[1] = (env
->CP0_EntryLo1
>> 6) << 12;
1533 void r4k_helper_tlbwi (void)
1537 idx
= (env
->CP0_Index
& ~0x80000000) % env
->tlb
->nb_tlb
;
1539 /* Discard cached TLB entries. We could avoid doing this if the
1540 tlbwi is just upgrading access permissions on the current entry;
1541 that might be a further win. */
1542 r4k_mips_tlb_flush_extra (env
, env
->tlb
->nb_tlb
);
1544 r4k_invalidate_tlb(env
, idx
, 0);
1548 void r4k_helper_tlbwr (void)
1550 int r
= cpu_mips_get_random(env
);
1552 r4k_invalidate_tlb(env
, r
, 1);
1556 void r4k_helper_tlbp (void)
1565 ASID
= env
->CP0_EntryHi
& 0xFF;
1566 for (i
= 0; i
< env
->tlb
->nb_tlb
; i
++) {
1567 tlb
= &env
->tlb
->mmu
.r4k
.tlb
[i
];
1568 /* 1k pages are not supported. */
1569 mask
= tlb
->PageMask
| ~(TARGET_PAGE_MASK
<< 1);
1570 tag
= env
->CP0_EntryHi
& ~mask
;
1571 VPN
= tlb
->VPN
& ~mask
;
1572 /* Check ASID, virtual page number & size */
1573 if ((tlb
->G
== 1 || tlb
->ASID
== ASID
) && VPN
== tag
) {
1579 if (i
== env
->tlb
->nb_tlb
) {
1580 /* No match. Discard any shadow entries, if any of them match. */
1581 for (i
= env
->tlb
->nb_tlb
; i
< env
->tlb
->tlb_in_use
; i
++) {
1582 tlb
= &env
->tlb
->mmu
.r4k
.tlb
[i
];
1583 /* 1k pages are not supported. */
1584 mask
= tlb
->PageMask
| ~(TARGET_PAGE_MASK
<< 1);
1585 tag
= env
->CP0_EntryHi
& ~mask
;
1586 VPN
= tlb
->VPN
& ~mask
;
1587 /* Check ASID, virtual page number & size */
1588 if ((tlb
->G
== 1 || tlb
->ASID
== ASID
) && VPN
== tag
) {
1589 r4k_mips_tlb_flush_extra (env
, i
);
1594 env
->CP0_Index
|= 0x80000000;
1598 void r4k_helper_tlbr (void)
1604 ASID
= env
->CP0_EntryHi
& 0xFF;
1605 idx
= (env
->CP0_Index
& ~0x80000000) % env
->tlb
->nb_tlb
;
1606 tlb
= &env
->tlb
->mmu
.r4k
.tlb
[idx
];
1608 /* If this will change the current ASID, flush qemu's TLB. */
1609 if (ASID
!= tlb
->ASID
)
1610 cpu_mips_tlb_flush (env
, 1);
1612 r4k_mips_tlb_flush_extra(env
, env
->tlb
->nb_tlb
);
1614 env
->CP0_EntryHi
= tlb
->VPN
| tlb
->ASID
;
1615 env
->CP0_PageMask
= tlb
->PageMask
;
1616 env
->CP0_EntryLo0
= tlb
->G
| (tlb
->V0
<< 1) | (tlb
->D0
<< 2) |
1617 (tlb
->C0
<< 3) | (tlb
->PFN
[0] >> 6);
1618 env
->CP0_EntryLo1
= tlb
->G
| (tlb
->V1
<< 1) | (tlb
->D1
<< 2) |
1619 (tlb
->C1
<< 3) | (tlb
->PFN
[1] >> 6);
1622 void helper_tlbwi(void)
1624 env
->tlb
->helper_tlbwi();
1627 void helper_tlbwr(void)
1629 env
->tlb
->helper_tlbwr();
1632 void helper_tlbp(void)
1634 env
->tlb
->helper_tlbp();
1637 void helper_tlbr(void)
1639 env
->tlb
->helper_tlbr();
1643 target_ulong
helper_di (void)
1645 target_ulong t0
= env
->CP0_Status
;
1647 env
->CP0_Status
= t0
& ~(1 << CP0St_IE
);
1648 cpu_mips_update_irq(env
);
1653 target_ulong
helper_ei (void)
1655 target_ulong t0
= env
->CP0_Status
;
1657 env
->CP0_Status
= t0
| (1 << CP0St_IE
);
1658 cpu_mips_update_irq(env
);
1663 static void debug_pre_eret (void)
1665 if (qemu_loglevel_mask(CPU_LOG_EXEC
)) {
1666 qemu_log("ERET: PC " TARGET_FMT_lx
" EPC " TARGET_FMT_lx
,
1667 env
->active_tc
.PC
, env
->CP0_EPC
);
1668 if (env
->CP0_Status
& (1 << CP0St_ERL
))
1669 qemu_log(" ErrorEPC " TARGET_FMT_lx
, env
->CP0_ErrorEPC
);
1670 if (env
->hflags
& MIPS_HFLAG_DM
)
1671 qemu_log(" DEPC " TARGET_FMT_lx
, env
->CP0_DEPC
);
1676 static void debug_post_eret (void)
1678 if (qemu_loglevel_mask(CPU_LOG_EXEC
)) {
1679 qemu_log(" => PC " TARGET_FMT_lx
" EPC " TARGET_FMT_lx
,
1680 env
->active_tc
.PC
, env
->CP0_EPC
);
1681 if (env
->CP0_Status
& (1 << CP0St_ERL
))
1682 qemu_log(" ErrorEPC " TARGET_FMT_lx
, env
->CP0_ErrorEPC
);
1683 if (env
->hflags
& MIPS_HFLAG_DM
)
1684 qemu_log(" DEPC " TARGET_FMT_lx
, env
->CP0_DEPC
);
1685 switch (env
->hflags
& MIPS_HFLAG_KSU
) {
1686 case MIPS_HFLAG_UM
: qemu_log(", UM\n"); break;
1687 case MIPS_HFLAG_SM
: qemu_log(", SM\n"); break;
1688 case MIPS_HFLAG_KM
: qemu_log("\n"); break;
1689 default: cpu_abort(env
, "Invalid MMU mode!\n"); break;
1694 void helper_eret (void)
1697 if (env
->CP0_Status
& (1 << CP0St_ERL
)) {
1698 env
->active_tc
.PC
= env
->CP0_ErrorEPC
;
1699 env
->CP0_Status
&= ~(1 << CP0St_ERL
);
1701 env
->active_tc
.PC
= env
->CP0_EPC
;
1702 env
->CP0_Status
&= ~(1 << CP0St_EXL
);
1704 compute_hflags(env
);
1706 env
->CP0_LLAddr
= 1;
1709 void helper_deret (void)
1712 env
->active_tc
.PC
= env
->CP0_DEPC
;
1713 env
->hflags
&= MIPS_HFLAG_DM
;
1714 compute_hflags(env
);
1716 env
->CP0_LLAddr
= 1;
1718 #endif /* !CONFIG_USER_ONLY */
1720 target_ulong
helper_rdhwr_cpunum(void)
1722 if ((env
->hflags
& MIPS_HFLAG_CP0
) ||
1723 (env
->CP0_HWREna
& (1 << 0)))
1724 return env
->CP0_EBase
& 0x3ff;
1726 helper_raise_exception(EXCP_RI
);
1731 target_ulong
helper_rdhwr_synci_step(void)
1733 if ((env
->hflags
& MIPS_HFLAG_CP0
) ||
1734 (env
->CP0_HWREna
& (1 << 1)))
1735 return env
->SYNCI_Step
;
1737 helper_raise_exception(EXCP_RI
);
1742 target_ulong
helper_rdhwr_cc(void)
1744 if ((env
->hflags
& MIPS_HFLAG_CP0
) ||
1745 (env
->CP0_HWREna
& (1 << 2)))
1746 return env
->CP0_Count
;
1748 helper_raise_exception(EXCP_RI
);
1753 target_ulong
helper_rdhwr_ccres(void)
1755 if ((env
->hflags
& MIPS_HFLAG_CP0
) ||
1756 (env
->CP0_HWREna
& (1 << 3)))
1759 helper_raise_exception(EXCP_RI
);
1764 void helper_pmon (int function
)
1768 case 2: /* TODO: char inbyte(int waitflag); */
1769 if (env
->active_tc
.gpr
[4] == 0)
1770 env
->active_tc
.gpr
[2] = -1;
1772 case 11: /* TODO: char inbyte (void); */
1773 env
->active_tc
.gpr
[2] = -1;
1777 printf("%c", (char)(env
->active_tc
.gpr
[4] & 0xFF));
1783 unsigned char *fmt
= (void *)(unsigned long)env
->active_tc
.gpr
[4];
1790 void helper_wait (void)
1793 helper_raise_exception(EXCP_HLT
);
1796 #if !defined(CONFIG_USER_ONLY)
1798 static void do_unaligned_access (target_ulong addr
, int is_write
, int is_user
, void *retaddr
);
1800 #define MMUSUFFIX _mmu
1801 #define ALIGNED_ONLY
1804 #include "softmmu_template.h"
1807 #include "softmmu_template.h"
1810 #include "softmmu_template.h"
1813 #include "softmmu_template.h"
1815 static void do_unaligned_access (target_ulong addr
, int is_write
, int is_user
, void *retaddr
)
1817 env
->CP0_BadVAddr
= addr
;
1818 do_restore_state (retaddr
);
1819 helper_raise_exception ((is_write
== 1) ? EXCP_AdES
: EXCP_AdEL
);
1822 void tlb_fill (target_ulong addr
, int is_write
, int mmu_idx
, void *retaddr
)
1824 TranslationBlock
*tb
;
1825 CPUState
*saved_env
;
1829 /* XXX: hack to restore env in all cases, even if not called from
1832 env
= cpu_single_env
;
1833 ret
= cpu_mips_handle_mmu_fault(env
, addr
, is_write
, mmu_idx
, 1);
1836 /* now we have a real cpu fault */
1837 pc
= (unsigned long)retaddr
;
1838 tb
= tb_find_pc(pc
);
1840 /* the PC is inside the translated code. It means that we have
1841 a virtual CPU fault */
1842 cpu_restore_state(tb
, env
, pc
, NULL
);
1845 helper_raise_exception_err(env
->exception_index
, env
->error_code
);
1850 void do_unassigned_access(target_phys_addr_t addr
, int is_write
, int is_exec
,
1851 int unused
, int size
)
1854 helper_raise_exception(EXCP_IBE
);
1856 helper_raise_exception(EXCP_DBE
);
1858 #endif /* !CONFIG_USER_ONLY */
1860 /* Complex FPU operations which may need stack space. */
1862 #define FLOAT_ONE32 make_float32(0x3f8 << 20)
1863 #define FLOAT_ONE64 make_float64(0x3ffULL << 52)
1864 #define FLOAT_TWO32 make_float32(1 << 30)
1865 #define FLOAT_TWO64 make_float64(1ULL << 62)
1866 #define FLOAT_QNAN32 0x7fbfffff
1867 #define FLOAT_QNAN64 0x7ff7ffffffffffffULL
1868 #define FLOAT_SNAN32 0x7fffffff
1869 #define FLOAT_SNAN64 0x7fffffffffffffffULL
1871 /* convert MIPS rounding mode in FCR31 to IEEE library */
1872 unsigned int ieee_rm
[] = {
1873 float_round_nearest_even
,
1874 float_round_to_zero
,
1879 #define RESTORE_ROUNDING_MODE \
1880 set_float_rounding_mode(ieee_rm[env->active_fpu.fcr31 & 3], &env->active_fpu.fp_status)
1882 #define RESTORE_FLUSH_MODE \
1883 set_flush_to_zero((env->active_fpu.fcr31 & (1 << 24)) != 0, &env->active_fpu.fp_status);
1885 target_ulong
helper_cfc1 (uint32_t reg
)
1891 arg1
= (int32_t)env
->active_fpu
.fcr0
;
1894 arg1
= ((env
->active_fpu
.fcr31
>> 24) & 0xfe) | ((env
->active_fpu
.fcr31
>> 23) & 0x1);
1897 arg1
= env
->active_fpu
.fcr31
& 0x0003f07c;
1900 arg1
= (env
->active_fpu
.fcr31
& 0x00000f83) | ((env
->active_fpu
.fcr31
>> 22) & 0x4);
1903 arg1
= (int32_t)env
->active_fpu
.fcr31
;
1910 void helper_ctc1 (target_ulong arg1
, uint32_t reg
)
1914 if (arg1
& 0xffffff00)
1916 env
->active_fpu
.fcr31
= (env
->active_fpu
.fcr31
& 0x017fffff) | ((arg1
& 0xfe) << 24) |
1917 ((arg1
& 0x1) << 23);
1920 if (arg1
& 0x007c0000)
1922 env
->active_fpu
.fcr31
= (env
->active_fpu
.fcr31
& 0xfffc0f83) | (arg1
& 0x0003f07c);
1925 if (arg1
& 0x007c0000)
1927 env
->active_fpu
.fcr31
= (env
->active_fpu
.fcr31
& 0xfefff07c) | (arg1
& 0x00000f83) |
1928 ((arg1
& 0x4) << 22);
1931 if (arg1
& 0x007c0000)
1933 env
->active_fpu
.fcr31
= arg1
;
1938 /* set rounding mode */
1939 RESTORE_ROUNDING_MODE
;
1940 /* set flush-to-zero mode */
1942 set_float_exception_flags(0, &env
->active_fpu
.fp_status
);
1943 if ((GET_FP_ENABLE(env
->active_fpu
.fcr31
) | 0x20) & GET_FP_CAUSE(env
->active_fpu
.fcr31
))
1944 helper_raise_exception(EXCP_FPE
);
1947 static inline char ieee_ex_to_mips(char xcpt
)
1949 return (xcpt
& float_flag_inexact
) >> 5 |
1950 (xcpt
& float_flag_underflow
) >> 3 |
1951 (xcpt
& float_flag_overflow
) >> 1 |
1952 (xcpt
& float_flag_divbyzero
) << 1 |
1953 (xcpt
& float_flag_invalid
) << 4;
1956 static inline char mips_ex_to_ieee(char xcpt
)
1958 return (xcpt
& FP_INEXACT
) << 5 |
1959 (xcpt
& FP_UNDERFLOW
) << 3 |
1960 (xcpt
& FP_OVERFLOW
) << 1 |
1961 (xcpt
& FP_DIV0
) >> 1 |
1962 (xcpt
& FP_INVALID
) >> 4;
1965 static inline void update_fcr31(void)
1967 int tmp
= ieee_ex_to_mips(get_float_exception_flags(&env
->active_fpu
.fp_status
));
1969 SET_FP_CAUSE(env
->active_fpu
.fcr31
, tmp
);
1970 if (GET_FP_ENABLE(env
->active_fpu
.fcr31
) & tmp
)
1971 helper_raise_exception(EXCP_FPE
);
1973 UPDATE_FP_FLAGS(env
->active_fpu
.fcr31
, tmp
);
1977 Single precition routines have a "s" suffix, double precision a
1978 "d" suffix, 32bit integer "w", 64bit integer "l", paired single "ps",
1979 paired single lower "pl", paired single upper "pu". */
1981 /* unary operations, modifying fp status */
1982 uint64_t helper_float_sqrt_d(uint64_t fdt0
)
1984 return float64_sqrt(fdt0
, &env
->active_fpu
.fp_status
);
1987 uint32_t helper_float_sqrt_s(uint32_t fst0
)
1989 return float32_sqrt(fst0
, &env
->active_fpu
.fp_status
);
1992 uint64_t helper_float_cvtd_s(uint32_t fst0
)
1996 set_float_exception_flags(0, &env
->active_fpu
.fp_status
);
1997 fdt2
= float32_to_float64(fst0
, &env
->active_fpu
.fp_status
);
2002 uint64_t helper_float_cvtd_w(uint32_t wt0
)
2006 set_float_exception_flags(0, &env
->active_fpu
.fp_status
);
2007 fdt2
= int32_to_float64(wt0
, &env
->active_fpu
.fp_status
);
2012 uint64_t helper_float_cvtd_l(uint64_t dt0
)
2016 set_float_exception_flags(0, &env
->active_fpu
.fp_status
);
2017 fdt2
= int64_to_float64(dt0
, &env
->active_fpu
.fp_status
);
2022 uint64_t helper_float_cvtl_d(uint64_t fdt0
)
2026 set_float_exception_flags(0, &env
->active_fpu
.fp_status
);
2027 dt2
= float64_to_int64(fdt0
, &env
->active_fpu
.fp_status
);
2029 if (GET_FP_CAUSE(env
->active_fpu
.fcr31
) & (FP_OVERFLOW
| FP_INVALID
))
2034 uint64_t helper_float_cvtl_s(uint32_t fst0
)
2038 set_float_exception_flags(0, &env
->active_fpu
.fp_status
);
2039 dt2
= float32_to_int64(fst0
, &env
->active_fpu
.fp_status
);
2041 if (GET_FP_CAUSE(env
->active_fpu
.fcr31
) & (FP_OVERFLOW
| FP_INVALID
))
2046 uint64_t helper_float_cvtps_pw(uint64_t dt0
)
2051 set_float_exception_flags(0, &env
->active_fpu
.fp_status
);
2052 fst2
= int32_to_float32(dt0
& 0XFFFFFFFF, &env
->active_fpu
.fp_status
);
2053 fsth2
= int32_to_float32(dt0
>> 32, &env
->active_fpu
.fp_status
);
2055 return ((uint64_t)fsth2
<< 32) | fst2
;
2058 uint64_t helper_float_cvtpw_ps(uint64_t fdt0
)
2063 set_float_exception_flags(0, &env
->active_fpu
.fp_status
);
2064 wt2
= float32_to_int32(fdt0
& 0XFFFFFFFF, &env
->active_fpu
.fp_status
);
2065 wth2
= float32_to_int32(fdt0
>> 32, &env
->active_fpu
.fp_status
);
2067 if (GET_FP_CAUSE(env
->active_fpu
.fcr31
) & (FP_OVERFLOW
| FP_INVALID
)) {
2069 wth2
= FLOAT_SNAN32
;
2071 return ((uint64_t)wth2
<< 32) | wt2
;
2074 uint32_t helper_float_cvts_d(uint64_t fdt0
)
2078 set_float_exception_flags(0, &env
->active_fpu
.fp_status
);
2079 fst2
= float64_to_float32(fdt0
, &env
->active_fpu
.fp_status
);
2084 uint32_t helper_float_cvts_w(uint32_t wt0
)
2088 set_float_exception_flags(0, &env
->active_fpu
.fp_status
);
2089 fst2
= int32_to_float32(wt0
, &env
->active_fpu
.fp_status
);
2094 uint32_t helper_float_cvts_l(uint64_t dt0
)
2098 set_float_exception_flags(0, &env
->active_fpu
.fp_status
);
2099 fst2
= int64_to_float32(dt0
, &env
->active_fpu
.fp_status
);
2104 uint32_t helper_float_cvts_pl(uint32_t wt0
)
2108 set_float_exception_flags(0, &env
->active_fpu
.fp_status
);
2114 uint32_t helper_float_cvts_pu(uint32_t wth0
)
2118 set_float_exception_flags(0, &env
->active_fpu
.fp_status
);
2124 uint32_t helper_float_cvtw_s(uint32_t fst0
)
2128 set_float_exception_flags(0, &env
->active_fpu
.fp_status
);
2129 wt2
= float32_to_int32(fst0
, &env
->active_fpu
.fp_status
);
2131 if (GET_FP_CAUSE(env
->active_fpu
.fcr31
) & (FP_OVERFLOW
| FP_INVALID
))
2136 uint32_t helper_float_cvtw_d(uint64_t fdt0
)
2140 set_float_exception_flags(0, &env
->active_fpu
.fp_status
);
2141 wt2
= float64_to_int32(fdt0
, &env
->active_fpu
.fp_status
);
2143 if (GET_FP_CAUSE(env
->active_fpu
.fcr31
) & (FP_OVERFLOW
| FP_INVALID
))
2148 uint64_t helper_float_roundl_d(uint64_t fdt0
)
2152 set_float_rounding_mode(float_round_nearest_even
, &env
->active_fpu
.fp_status
);
2153 dt2
= float64_to_int64(fdt0
, &env
->active_fpu
.fp_status
);
2154 RESTORE_ROUNDING_MODE
;
2156 if (GET_FP_CAUSE(env
->active_fpu
.fcr31
) & (FP_OVERFLOW
| FP_INVALID
))
2161 uint64_t helper_float_roundl_s(uint32_t fst0
)
2165 set_float_rounding_mode(float_round_nearest_even
, &env
->active_fpu
.fp_status
);
2166 dt2
= float32_to_int64(fst0
, &env
->active_fpu
.fp_status
);
2167 RESTORE_ROUNDING_MODE
;
2169 if (GET_FP_CAUSE(env
->active_fpu
.fcr31
) & (FP_OVERFLOW
| FP_INVALID
))
2174 uint32_t helper_float_roundw_d(uint64_t fdt0
)
2178 set_float_rounding_mode(float_round_nearest_even
, &env
->active_fpu
.fp_status
);
2179 wt2
= float64_to_int32(fdt0
, &env
->active_fpu
.fp_status
);
2180 RESTORE_ROUNDING_MODE
;
2182 if (GET_FP_CAUSE(env
->active_fpu
.fcr31
) & (FP_OVERFLOW
| FP_INVALID
))
2187 uint32_t helper_float_roundw_s(uint32_t fst0
)
2191 set_float_rounding_mode(float_round_nearest_even
, &env
->active_fpu
.fp_status
);
2192 wt2
= float32_to_int32(fst0
, &env
->active_fpu
.fp_status
);
2193 RESTORE_ROUNDING_MODE
;
2195 if (GET_FP_CAUSE(env
->active_fpu
.fcr31
) & (FP_OVERFLOW
| FP_INVALID
))
2200 uint64_t helper_float_truncl_d(uint64_t fdt0
)
2204 dt2
= float64_to_int64_round_to_zero(fdt0
, &env
->active_fpu
.fp_status
);
2206 if (GET_FP_CAUSE(env
->active_fpu
.fcr31
) & (FP_OVERFLOW
| FP_INVALID
))
2211 uint64_t helper_float_truncl_s(uint32_t fst0
)
2215 dt2
= float32_to_int64_round_to_zero(fst0
, &env
->active_fpu
.fp_status
);
2217 if (GET_FP_CAUSE(env
->active_fpu
.fcr31
) & (FP_OVERFLOW
| FP_INVALID
))
2222 uint32_t helper_float_truncw_d(uint64_t fdt0
)
2226 wt2
= float64_to_int32_round_to_zero(fdt0
, &env
->active_fpu
.fp_status
);
2228 if (GET_FP_CAUSE(env
->active_fpu
.fcr31
) & (FP_OVERFLOW
| FP_INVALID
))
2233 uint32_t helper_float_truncw_s(uint32_t fst0
)
2237 wt2
= float32_to_int32_round_to_zero(fst0
, &env
->active_fpu
.fp_status
);
2239 if (GET_FP_CAUSE(env
->active_fpu
.fcr31
) & (FP_OVERFLOW
| FP_INVALID
))
2244 uint64_t helper_float_ceill_d(uint64_t fdt0
)
2248 set_float_rounding_mode(float_round_up
, &env
->active_fpu
.fp_status
);
2249 dt2
= float64_to_int64(fdt0
, &env
->active_fpu
.fp_status
);
2250 RESTORE_ROUNDING_MODE
;
2252 if (GET_FP_CAUSE(env
->active_fpu
.fcr31
) & (FP_OVERFLOW
| FP_INVALID
))
2257 uint64_t helper_float_ceill_s(uint32_t fst0
)
2261 set_float_rounding_mode(float_round_up
, &env
->active_fpu
.fp_status
);
2262 dt2
= float32_to_int64(fst0
, &env
->active_fpu
.fp_status
);
2263 RESTORE_ROUNDING_MODE
;
2265 if (GET_FP_CAUSE(env
->active_fpu
.fcr31
) & (FP_OVERFLOW
| FP_INVALID
))
2270 uint32_t helper_float_ceilw_d(uint64_t fdt0
)
2274 set_float_rounding_mode(float_round_up
, &env
->active_fpu
.fp_status
);
2275 wt2
= float64_to_int32(fdt0
, &env
->active_fpu
.fp_status
);
2276 RESTORE_ROUNDING_MODE
;
2278 if (GET_FP_CAUSE(env
->active_fpu
.fcr31
) & (FP_OVERFLOW
| FP_INVALID
))
2283 uint32_t helper_float_ceilw_s(uint32_t fst0
)
2287 set_float_rounding_mode(float_round_up
, &env
->active_fpu
.fp_status
);
2288 wt2
= float32_to_int32(fst0
, &env
->active_fpu
.fp_status
);
2289 RESTORE_ROUNDING_MODE
;
2291 if (GET_FP_CAUSE(env
->active_fpu
.fcr31
) & (FP_OVERFLOW
| FP_INVALID
))
2296 uint64_t helper_float_floorl_d(uint64_t fdt0
)
2300 set_float_rounding_mode(float_round_down
, &env
->active_fpu
.fp_status
);
2301 dt2
= float64_to_int64(fdt0
, &env
->active_fpu
.fp_status
);
2302 RESTORE_ROUNDING_MODE
;
2304 if (GET_FP_CAUSE(env
->active_fpu
.fcr31
) & (FP_OVERFLOW
| FP_INVALID
))
2309 uint64_t helper_float_floorl_s(uint32_t fst0
)
2313 set_float_rounding_mode(float_round_down
, &env
->active_fpu
.fp_status
);
2314 dt2
= float32_to_int64(fst0
, &env
->active_fpu
.fp_status
);
2315 RESTORE_ROUNDING_MODE
;
2317 if (GET_FP_CAUSE(env
->active_fpu
.fcr31
) & (FP_OVERFLOW
| FP_INVALID
))
2322 uint32_t helper_float_floorw_d(uint64_t fdt0
)
2326 set_float_rounding_mode(float_round_down
, &env
->active_fpu
.fp_status
);
2327 wt2
= float64_to_int32(fdt0
, &env
->active_fpu
.fp_status
);
2328 RESTORE_ROUNDING_MODE
;
2330 if (GET_FP_CAUSE(env
->active_fpu
.fcr31
) & (FP_OVERFLOW
| FP_INVALID
))
2335 uint32_t helper_float_floorw_s(uint32_t fst0
)
2339 set_float_rounding_mode(float_round_down
, &env
->active_fpu
.fp_status
);
2340 wt2
= float32_to_int32(fst0
, &env
->active_fpu
.fp_status
);
2341 RESTORE_ROUNDING_MODE
;
2343 if (GET_FP_CAUSE(env
->active_fpu
.fcr31
) & (FP_OVERFLOW
| FP_INVALID
))
2348 /* unary operations, not modifying fp status */
2349 #define FLOAT_UNOP(name) \
2350 uint64_t helper_float_ ## name ## _d(uint64_t fdt0) \
2352 return float64_ ## name(fdt0); \
2354 uint32_t helper_float_ ## name ## _s(uint32_t fst0) \
2356 return float32_ ## name(fst0); \
2358 uint64_t helper_float_ ## name ## _ps(uint64_t fdt0) \
2363 wt0 = float32_ ## name(fdt0 & 0XFFFFFFFF); \
2364 wth0 = float32_ ## name(fdt0 >> 32); \
2365 return ((uint64_t)wth0 << 32) | wt0; \
2371 /* MIPS specific unary operations */
2372 uint64_t helper_float_recip_d(uint64_t fdt0
)
2376 set_float_exception_flags(0, &env
->active_fpu
.fp_status
);
2377 fdt2
= float64_div(FLOAT_ONE64
, fdt0
, &env
->active_fpu
.fp_status
);
2382 uint32_t helper_float_recip_s(uint32_t fst0
)
2386 set_float_exception_flags(0, &env
->active_fpu
.fp_status
);
2387 fst2
= float32_div(FLOAT_ONE32
, fst0
, &env
->active_fpu
.fp_status
);
2392 uint64_t helper_float_rsqrt_d(uint64_t fdt0
)
2396 set_float_exception_flags(0, &env
->active_fpu
.fp_status
);
2397 fdt2
= float64_sqrt(fdt0
, &env
->active_fpu
.fp_status
);
2398 fdt2
= float64_div(FLOAT_ONE64
, fdt2
, &env
->active_fpu
.fp_status
);
2403 uint32_t helper_float_rsqrt_s(uint32_t fst0
)
2407 set_float_exception_flags(0, &env
->active_fpu
.fp_status
);
2408 fst2
= float32_sqrt(fst0
, &env
->active_fpu
.fp_status
);
2409 fst2
= float32_div(FLOAT_ONE32
, fst2
, &env
->active_fpu
.fp_status
);
2414 uint64_t helper_float_recip1_d(uint64_t fdt0
)
2418 set_float_exception_flags(0, &env
->active_fpu
.fp_status
);
2419 fdt2
= float64_div(FLOAT_ONE64
, fdt0
, &env
->active_fpu
.fp_status
);
2424 uint32_t helper_float_recip1_s(uint32_t fst0
)
2428 set_float_exception_flags(0, &env
->active_fpu
.fp_status
);
2429 fst2
= float32_div(FLOAT_ONE32
, fst0
, &env
->active_fpu
.fp_status
);
2434 uint64_t helper_float_recip1_ps(uint64_t fdt0
)
2439 set_float_exception_flags(0, &env
->active_fpu
.fp_status
);
2440 fst2
= float32_div(FLOAT_ONE32
, fdt0
& 0XFFFFFFFF, &env
->active_fpu
.fp_status
);
2441 fsth2
= float32_div(FLOAT_ONE32
, fdt0
>> 32, &env
->active_fpu
.fp_status
);
2443 return ((uint64_t)fsth2
<< 32) | fst2
;
2446 uint64_t helper_float_rsqrt1_d(uint64_t fdt0
)
2450 set_float_exception_flags(0, &env
->active_fpu
.fp_status
);
2451 fdt2
= float64_sqrt(fdt0
, &env
->active_fpu
.fp_status
);
2452 fdt2
= float64_div(FLOAT_ONE64
, fdt2
, &env
->active_fpu
.fp_status
);
2457 uint32_t helper_float_rsqrt1_s(uint32_t fst0
)
2461 set_float_exception_flags(0, &env
->active_fpu
.fp_status
);
2462 fst2
= float32_sqrt(fst0
, &env
->active_fpu
.fp_status
);
2463 fst2
= float32_div(FLOAT_ONE32
, fst2
, &env
->active_fpu
.fp_status
);
2468 uint64_t helper_float_rsqrt1_ps(uint64_t fdt0
)
2473 set_float_exception_flags(0, &env
->active_fpu
.fp_status
);
2474 fst2
= float32_sqrt(fdt0
& 0XFFFFFFFF, &env
->active_fpu
.fp_status
);
2475 fsth2
= float32_sqrt(fdt0
>> 32, &env
->active_fpu
.fp_status
);
2476 fst2
= float32_div(FLOAT_ONE32
, fst2
, &env
->active_fpu
.fp_status
);
2477 fsth2
= float32_div(FLOAT_ONE32
, fsth2
, &env
->active_fpu
.fp_status
);
2479 return ((uint64_t)fsth2
<< 32) | fst2
;
2482 #define FLOAT_OP(name, p) void helper_float_##name##_##p(void)
2484 /* binary operations */
2485 #define FLOAT_BINOP(name) \
2486 uint64_t helper_float_ ## name ## _d(uint64_t fdt0, uint64_t fdt1) \
2490 set_float_exception_flags(0, &env->active_fpu.fp_status); \
2491 dt2 = float64_ ## name (fdt0, fdt1, &env->active_fpu.fp_status); \
2493 if (GET_FP_CAUSE(env->active_fpu.fcr31) & FP_INVALID) \
2494 dt2 = FLOAT_QNAN64; \
2498 uint32_t helper_float_ ## name ## _s(uint32_t fst0, uint32_t fst1) \
2502 set_float_exception_flags(0, &env->active_fpu.fp_status); \
2503 wt2 = float32_ ## name (fst0, fst1, &env->active_fpu.fp_status); \
2505 if (GET_FP_CAUSE(env->active_fpu.fcr31) & FP_INVALID) \
2506 wt2 = FLOAT_QNAN32; \
2510 uint64_t helper_float_ ## name ## _ps(uint64_t fdt0, uint64_t fdt1) \
2512 uint32_t fst0 = fdt0 & 0XFFFFFFFF; \
2513 uint32_t fsth0 = fdt0 >> 32; \
2514 uint32_t fst1 = fdt1 & 0XFFFFFFFF; \
2515 uint32_t fsth1 = fdt1 >> 32; \
2519 set_float_exception_flags(0, &env->active_fpu.fp_status); \
2520 wt2 = float32_ ## name (fst0, fst1, &env->active_fpu.fp_status); \
2521 wth2 = float32_ ## name (fsth0, fsth1, &env->active_fpu.fp_status); \
2523 if (GET_FP_CAUSE(env->active_fpu.fcr31) & FP_INVALID) { \
2524 wt2 = FLOAT_QNAN32; \
2525 wth2 = FLOAT_QNAN32; \
2527 return ((uint64_t)wth2 << 32) | wt2; \
2536 /* ternary operations */
2537 #define FLOAT_TERNOP(name1, name2) \
2538 uint64_t helper_float_ ## name1 ## name2 ## _d(uint64_t fdt0, uint64_t fdt1, \
2541 fdt0 = float64_ ## name1 (fdt0, fdt1, &env->active_fpu.fp_status); \
2542 return float64_ ## name2 (fdt0, fdt2, &env->active_fpu.fp_status); \
2545 uint32_t helper_float_ ## name1 ## name2 ## _s(uint32_t fst0, uint32_t fst1, \
2548 fst0 = float32_ ## name1 (fst0, fst1, &env->active_fpu.fp_status); \
2549 return float32_ ## name2 (fst0, fst2, &env->active_fpu.fp_status); \
2552 uint64_t helper_float_ ## name1 ## name2 ## _ps(uint64_t fdt0, uint64_t fdt1, \
2555 uint32_t fst0 = fdt0 & 0XFFFFFFFF; \
2556 uint32_t fsth0 = fdt0 >> 32; \
2557 uint32_t fst1 = fdt1 & 0XFFFFFFFF; \
2558 uint32_t fsth1 = fdt1 >> 32; \
2559 uint32_t fst2 = fdt2 & 0XFFFFFFFF; \
2560 uint32_t fsth2 = fdt2 >> 32; \
2562 fst0 = float32_ ## name1 (fst0, fst1, &env->active_fpu.fp_status); \
2563 fsth0 = float32_ ## name1 (fsth0, fsth1, &env->active_fpu.fp_status); \
2564 fst2 = float32_ ## name2 (fst0, fst2, &env->active_fpu.fp_status); \
2565 fsth2 = float32_ ## name2 (fsth0, fsth2, &env->active_fpu.fp_status); \
2566 return ((uint64_t)fsth2 << 32) | fst2; \
2569 FLOAT_TERNOP(mul
, add
)
2570 FLOAT_TERNOP(mul
, sub
)
2573 /* negated ternary operations */
2574 #define FLOAT_NTERNOP(name1, name2) \
2575 uint64_t helper_float_n ## name1 ## name2 ## _d(uint64_t fdt0, uint64_t fdt1, \
2578 fdt0 = float64_ ## name1 (fdt0, fdt1, &env->active_fpu.fp_status); \
2579 fdt2 = float64_ ## name2 (fdt0, fdt2, &env->active_fpu.fp_status); \
2580 return float64_chs(fdt2); \
2583 uint32_t helper_float_n ## name1 ## name2 ## _s(uint32_t fst0, uint32_t fst1, \
2586 fst0 = float32_ ## name1 (fst0, fst1, &env->active_fpu.fp_status); \
2587 fst2 = float32_ ## name2 (fst0, fst2, &env->active_fpu.fp_status); \
2588 return float32_chs(fst2); \
2591 uint64_t helper_float_n ## name1 ## name2 ## _ps(uint64_t fdt0, uint64_t fdt1,\
2594 uint32_t fst0 = fdt0 & 0XFFFFFFFF; \
2595 uint32_t fsth0 = fdt0 >> 32; \
2596 uint32_t fst1 = fdt1 & 0XFFFFFFFF; \
2597 uint32_t fsth1 = fdt1 >> 32; \
2598 uint32_t fst2 = fdt2 & 0XFFFFFFFF; \
2599 uint32_t fsth2 = fdt2 >> 32; \
2601 fst0 = float32_ ## name1 (fst0, fst1, &env->active_fpu.fp_status); \
2602 fsth0 = float32_ ## name1 (fsth0, fsth1, &env->active_fpu.fp_status); \
2603 fst2 = float32_ ## name2 (fst0, fst2, &env->active_fpu.fp_status); \
2604 fsth2 = float32_ ## name2 (fsth0, fsth2, &env->active_fpu.fp_status); \
2605 fst2 = float32_chs(fst2); \
2606 fsth2 = float32_chs(fsth2); \
2607 return ((uint64_t)fsth2 << 32) | fst2; \
2610 FLOAT_NTERNOP(mul
, add
)
2611 FLOAT_NTERNOP(mul
, sub
)
2612 #undef FLOAT_NTERNOP
2614 /* MIPS specific binary operations */
2615 uint64_t helper_float_recip2_d(uint64_t fdt0
, uint64_t fdt2
)
2617 set_float_exception_flags(0, &env
->active_fpu
.fp_status
);
2618 fdt2
= float64_mul(fdt0
, fdt2
, &env
->active_fpu
.fp_status
);
2619 fdt2
= float64_chs(float64_sub(fdt2
, FLOAT_ONE64
, &env
->active_fpu
.fp_status
));
2624 uint32_t helper_float_recip2_s(uint32_t fst0
, uint32_t fst2
)
2626 set_float_exception_flags(0, &env
->active_fpu
.fp_status
);
2627 fst2
= float32_mul(fst0
, fst2
, &env
->active_fpu
.fp_status
);
2628 fst2
= float32_chs(float32_sub(fst2
, FLOAT_ONE32
, &env
->active_fpu
.fp_status
));
2633 uint64_t helper_float_recip2_ps(uint64_t fdt0
, uint64_t fdt2
)
2635 uint32_t fst0
= fdt0
& 0XFFFFFFFF;
2636 uint32_t fsth0
= fdt0
>> 32;
2637 uint32_t fst2
= fdt2
& 0XFFFFFFFF;
2638 uint32_t fsth2
= fdt2
>> 32;
2640 set_float_exception_flags(0, &env
->active_fpu
.fp_status
);
2641 fst2
= float32_mul(fst0
, fst2
, &env
->active_fpu
.fp_status
);
2642 fsth2
= float32_mul(fsth0
, fsth2
, &env
->active_fpu
.fp_status
);
2643 fst2
= float32_chs(float32_sub(fst2
, FLOAT_ONE32
, &env
->active_fpu
.fp_status
));
2644 fsth2
= float32_chs(float32_sub(fsth2
, FLOAT_ONE32
, &env
->active_fpu
.fp_status
));
2646 return ((uint64_t)fsth2
<< 32) | fst2
;
2649 uint64_t helper_float_rsqrt2_d(uint64_t fdt0
, uint64_t fdt2
)
2651 set_float_exception_flags(0, &env
->active_fpu
.fp_status
);
2652 fdt2
= float64_mul(fdt0
, fdt2
, &env
->active_fpu
.fp_status
);
2653 fdt2
= float64_sub(fdt2
, FLOAT_ONE64
, &env
->active_fpu
.fp_status
);
2654 fdt2
= float64_chs(float64_div(fdt2
, FLOAT_TWO64
, &env
->active_fpu
.fp_status
));
2659 uint32_t helper_float_rsqrt2_s(uint32_t fst0
, uint32_t fst2
)
2661 set_float_exception_flags(0, &env
->active_fpu
.fp_status
);
2662 fst2
= float32_mul(fst0
, fst2
, &env
->active_fpu
.fp_status
);
2663 fst2
= float32_sub(fst2
, FLOAT_ONE32
, &env
->active_fpu
.fp_status
);
2664 fst2
= float32_chs(float32_div(fst2
, FLOAT_TWO32
, &env
->active_fpu
.fp_status
));
2669 uint64_t helper_float_rsqrt2_ps(uint64_t fdt0
, uint64_t fdt2
)
2671 uint32_t fst0
= fdt0
& 0XFFFFFFFF;
2672 uint32_t fsth0
= fdt0
>> 32;
2673 uint32_t fst2
= fdt2
& 0XFFFFFFFF;
2674 uint32_t fsth2
= fdt2
>> 32;
2676 set_float_exception_flags(0, &env
->active_fpu
.fp_status
);
2677 fst2
= float32_mul(fst0
, fst2
, &env
->active_fpu
.fp_status
);
2678 fsth2
= float32_mul(fsth0
, fsth2
, &env
->active_fpu
.fp_status
);
2679 fst2
= float32_sub(fst2
, FLOAT_ONE32
, &env
->active_fpu
.fp_status
);
2680 fsth2
= float32_sub(fsth2
, FLOAT_ONE32
, &env
->active_fpu
.fp_status
);
2681 fst2
= float32_chs(float32_div(fst2
, FLOAT_TWO32
, &env
->active_fpu
.fp_status
));
2682 fsth2
= float32_chs(float32_div(fsth2
, FLOAT_TWO32
, &env
->active_fpu
.fp_status
));
2684 return ((uint64_t)fsth2
<< 32) | fst2
;
2687 uint64_t helper_float_addr_ps(uint64_t fdt0
, uint64_t fdt1
)
2689 uint32_t fst0
= fdt0
& 0XFFFFFFFF;
2690 uint32_t fsth0
= fdt0
>> 32;
2691 uint32_t fst1
= fdt1
& 0XFFFFFFFF;
2692 uint32_t fsth1
= fdt1
>> 32;
2696 set_float_exception_flags(0, &env
->active_fpu
.fp_status
);
2697 fst2
= float32_add (fst0
, fsth0
, &env
->active_fpu
.fp_status
);
2698 fsth2
= float32_add (fst1
, fsth1
, &env
->active_fpu
.fp_status
);
2700 return ((uint64_t)fsth2
<< 32) | fst2
;
2703 uint64_t helper_float_mulr_ps(uint64_t fdt0
, uint64_t fdt1
)
2705 uint32_t fst0
= fdt0
& 0XFFFFFFFF;
2706 uint32_t fsth0
= fdt0
>> 32;
2707 uint32_t fst1
= fdt1
& 0XFFFFFFFF;
2708 uint32_t fsth1
= fdt1
>> 32;
2712 set_float_exception_flags(0, &env
->active_fpu
.fp_status
);
2713 fst2
= float32_mul (fst0
, fsth0
, &env
->active_fpu
.fp_status
);
2714 fsth2
= float32_mul (fst1
, fsth1
, &env
->active_fpu
.fp_status
);
2716 return ((uint64_t)fsth2
<< 32) | fst2
;
2719 /* compare operations */
2720 #define FOP_COND_D(op, cond) \
2721 void helper_cmp_d_ ## op (uint64_t fdt0, uint64_t fdt1, int cc) \
2726 SET_FP_COND(cc, env->active_fpu); \
2728 CLEAR_FP_COND(cc, env->active_fpu); \
2730 void helper_cmpabs_d_ ## op (uint64_t fdt0, uint64_t fdt1, int cc) \
2733 fdt0 = float64_abs(fdt0); \
2734 fdt1 = float64_abs(fdt1); \
2738 SET_FP_COND(cc, env->active_fpu); \
2740 CLEAR_FP_COND(cc, env->active_fpu); \
2743 static int float64_is_unordered(int sig
, float64 a
, float64 b STATUS_PARAM
)
2745 if (float64_is_signaling_nan(a
) ||
2746 float64_is_signaling_nan(b
) ||
2747 (sig
&& (float64_is_nan(a
) || float64_is_nan(b
)))) {
2748 float_raise(float_flag_invalid
, status
);
2750 } else if (float64_is_nan(a
) || float64_is_nan(b
)) {
2757 /* NOTE: the comma operator will make "cond" to eval to false,
2758 * but float*_is_unordered() is still called. */
2759 FOP_COND_D(f
, (float64_is_unordered(0, fdt1
, fdt0
, &env
->active_fpu
.fp_status
), 0))
2760 FOP_COND_D(un
, float64_is_unordered(0, fdt1
, fdt0
, &env
->active_fpu
.fp_status
))
2761 FOP_COND_D(eq
, !float64_is_unordered(0, fdt1
, fdt0
, &env
->active_fpu
.fp_status
) && float64_eq(fdt0
, fdt1
, &env
->active_fpu
.fp_status
))
2762 FOP_COND_D(ueq
, float64_is_unordered(0, fdt1
, fdt0
, &env
->active_fpu
.fp_status
) || float64_eq(fdt0
, fdt1
, &env
->active_fpu
.fp_status
))
2763 FOP_COND_D(olt
, !float64_is_unordered(0, fdt1
, fdt0
, &env
->active_fpu
.fp_status
) && float64_lt(fdt0
, fdt1
, &env
->active_fpu
.fp_status
))
2764 FOP_COND_D(ult
, float64_is_unordered(0, fdt1
, fdt0
, &env
->active_fpu
.fp_status
) || float64_lt(fdt0
, fdt1
, &env
->active_fpu
.fp_status
))
2765 FOP_COND_D(ole
, !float64_is_unordered(0, fdt1
, fdt0
, &env
->active_fpu
.fp_status
) && float64_le(fdt0
, fdt1
, &env
->active_fpu
.fp_status
))
2766 FOP_COND_D(ule
, float64_is_unordered(0, fdt1
, fdt0
, &env
->active_fpu
.fp_status
) || float64_le(fdt0
, fdt1
, &env
->active_fpu
.fp_status
))
2767 /* NOTE: the comma operator will make "cond" to eval to false,
2768 * but float*_is_unordered() is still called. */
2769 FOP_COND_D(sf
, (float64_is_unordered(1, fdt1
, fdt0
, &env
->active_fpu
.fp_status
), 0))
2770 FOP_COND_D(ngle
,float64_is_unordered(1, fdt1
, fdt0
, &env
->active_fpu
.fp_status
))
2771 FOP_COND_D(seq
, !float64_is_unordered(1, fdt1
, fdt0
, &env
->active_fpu
.fp_status
) && float64_eq(fdt0
, fdt1
, &env
->active_fpu
.fp_status
))
2772 FOP_COND_D(ngl
, float64_is_unordered(1, fdt1
, fdt0
, &env
->active_fpu
.fp_status
) || float64_eq(fdt0
, fdt1
, &env
->active_fpu
.fp_status
))
2773 FOP_COND_D(lt
, !float64_is_unordered(1, fdt1
, fdt0
, &env
->active_fpu
.fp_status
) && float64_lt(fdt0
, fdt1
, &env
->active_fpu
.fp_status
))
2774 FOP_COND_D(nge
, float64_is_unordered(1, fdt1
, fdt0
, &env
->active_fpu
.fp_status
) || float64_lt(fdt0
, fdt1
, &env
->active_fpu
.fp_status
))
2775 FOP_COND_D(le
, !float64_is_unordered(1, fdt1
, fdt0
, &env
->active_fpu
.fp_status
) && float64_le(fdt0
, fdt1
, &env
->active_fpu
.fp_status
))
2776 FOP_COND_D(ngt
, float64_is_unordered(1, fdt1
, fdt0
, &env
->active_fpu
.fp_status
) || float64_le(fdt0
, fdt1
, &env
->active_fpu
.fp_status
))
2778 #define FOP_COND_S(op, cond) \
2779 void helper_cmp_s_ ## op (uint32_t fst0, uint32_t fst1, int cc) \
2784 SET_FP_COND(cc, env->active_fpu); \
2786 CLEAR_FP_COND(cc, env->active_fpu); \
2788 void helper_cmpabs_s_ ## op (uint32_t fst0, uint32_t fst1, int cc) \
2791 fst0 = float32_abs(fst0); \
2792 fst1 = float32_abs(fst1); \
2796 SET_FP_COND(cc, env->active_fpu); \
2798 CLEAR_FP_COND(cc, env->active_fpu); \
2801 static flag
float32_is_unordered(int sig
, float32 a
, float32 b STATUS_PARAM
)
2803 if (float32_is_signaling_nan(a
) ||
2804 float32_is_signaling_nan(b
) ||
2805 (sig
&& (float32_is_nan(a
) || float32_is_nan(b
)))) {
2806 float_raise(float_flag_invalid
, status
);
2808 } else if (float32_is_nan(a
) || float32_is_nan(b
)) {
2815 /* NOTE: the comma operator will make "cond" to eval to false,
2816 * but float*_is_unordered() is still called. */
2817 FOP_COND_S(f
, (float32_is_unordered(0, fst1
, fst0
, &env
->active_fpu
.fp_status
), 0))
2818 FOP_COND_S(un
, float32_is_unordered(0, fst1
, fst0
, &env
->active_fpu
.fp_status
))
2819 FOP_COND_S(eq
, !float32_is_unordered(0, fst1
, fst0
, &env
->active_fpu
.fp_status
) && float32_eq(fst0
, fst1
, &env
->active_fpu
.fp_status
))
2820 FOP_COND_S(ueq
, float32_is_unordered(0, fst1
, fst0
, &env
->active_fpu
.fp_status
) || float32_eq(fst0
, fst1
, &env
->active_fpu
.fp_status
))
2821 FOP_COND_S(olt
, !float32_is_unordered(0, fst1
, fst0
, &env
->active_fpu
.fp_status
) && float32_lt(fst0
, fst1
, &env
->active_fpu
.fp_status
))
2822 FOP_COND_S(ult
, float32_is_unordered(0, fst1
, fst0
, &env
->active_fpu
.fp_status
) || float32_lt(fst0
, fst1
, &env
->active_fpu
.fp_status
))
2823 FOP_COND_S(ole
, !float32_is_unordered(0, fst1
, fst0
, &env
->active_fpu
.fp_status
) && float32_le(fst0
, fst1
, &env
->active_fpu
.fp_status
))
2824 FOP_COND_S(ule
, float32_is_unordered(0, fst1
, fst0
, &env
->active_fpu
.fp_status
) || float32_le(fst0
, fst1
, &env
->active_fpu
.fp_status
))
2825 /* NOTE: the comma operator will make "cond" to eval to false,
2826 * but float*_is_unordered() is still called. */
2827 FOP_COND_S(sf
, (float32_is_unordered(1, fst1
, fst0
, &env
->active_fpu
.fp_status
), 0))
2828 FOP_COND_S(ngle
,float32_is_unordered(1, fst1
, fst0
, &env
->active_fpu
.fp_status
))
2829 FOP_COND_S(seq
, !float32_is_unordered(1, fst1
, fst0
, &env
->active_fpu
.fp_status
) && float32_eq(fst0
, fst1
, &env
->active_fpu
.fp_status
))
2830 FOP_COND_S(ngl
, float32_is_unordered(1, fst1
, fst0
, &env
->active_fpu
.fp_status
) || float32_eq(fst0
, fst1
, &env
->active_fpu
.fp_status
))
2831 FOP_COND_S(lt
, !float32_is_unordered(1, fst1
, fst0
, &env
->active_fpu
.fp_status
) && float32_lt(fst0
, fst1
, &env
->active_fpu
.fp_status
))
2832 FOP_COND_S(nge
, float32_is_unordered(1, fst1
, fst0
, &env
->active_fpu
.fp_status
) || float32_lt(fst0
, fst1
, &env
->active_fpu
.fp_status
))
2833 FOP_COND_S(le
, !float32_is_unordered(1, fst1
, fst0
, &env
->active_fpu
.fp_status
) && float32_le(fst0
, fst1
, &env
->active_fpu
.fp_status
))
2834 FOP_COND_S(ngt
, float32_is_unordered(1, fst1
, fst0
, &env
->active_fpu
.fp_status
) || float32_le(fst0
, fst1
, &env
->active_fpu
.fp_status
))
2836 #define FOP_COND_PS(op, condl, condh) \
2837 void helper_cmp_ps_ ## op (uint64_t fdt0, uint64_t fdt1, int cc) \
2839 uint32_t fst0 = float32_abs(fdt0 & 0XFFFFFFFF); \
2840 uint32_t fsth0 = float32_abs(fdt0 >> 32); \
2841 uint32_t fst1 = float32_abs(fdt1 & 0XFFFFFFFF); \
2842 uint32_t fsth1 = float32_abs(fdt1 >> 32); \
2848 SET_FP_COND(cc, env->active_fpu); \
2850 CLEAR_FP_COND(cc, env->active_fpu); \
2852 SET_FP_COND(cc + 1, env->active_fpu); \
2854 CLEAR_FP_COND(cc + 1, env->active_fpu); \
2856 void helper_cmpabs_ps_ ## op (uint64_t fdt0, uint64_t fdt1, int cc) \
2858 uint32_t fst0 = float32_abs(fdt0 & 0XFFFFFFFF); \
2859 uint32_t fsth0 = float32_abs(fdt0 >> 32); \
2860 uint32_t fst1 = float32_abs(fdt1 & 0XFFFFFFFF); \
2861 uint32_t fsth1 = float32_abs(fdt1 >> 32); \
2867 SET_FP_COND(cc, env->active_fpu); \
2869 CLEAR_FP_COND(cc, env->active_fpu); \
2871 SET_FP_COND(cc + 1, env->active_fpu); \
2873 CLEAR_FP_COND(cc + 1, env->active_fpu); \
2876 /* NOTE: the comma operator will make "cond" to eval to false,
2877 * but float*_is_unordered() is still called. */
2878 FOP_COND_PS(f
, (float32_is_unordered(0, fst1
, fst0
, &env
->active_fpu
.fp_status
), 0),
2879 (float32_is_unordered(0, fsth1
, fsth0
, &env
->active_fpu
.fp_status
), 0))
2880 FOP_COND_PS(un
, float32_is_unordered(0, fst1
, fst0
, &env
->active_fpu
.fp_status
),
2881 float32_is_unordered(0, fsth1
, fsth0
, &env
->active_fpu
.fp_status
))
2882 FOP_COND_PS(eq
, !float32_is_unordered(0, fst1
, fst0
, &env
->active_fpu
.fp_status
) && float32_eq(fst0
, fst1
, &env
->active_fpu
.fp_status
),
2883 !float32_is_unordered(0, fsth1
, fsth0
, &env
->active_fpu
.fp_status
) && float32_eq(fsth0
, fsth1
, &env
->active_fpu
.fp_status
))
2884 FOP_COND_PS(ueq
, float32_is_unordered(0, fst1
, fst0
, &env
->active_fpu
.fp_status
) || float32_eq(fst0
, fst1
, &env
->active_fpu
.fp_status
),
2885 float32_is_unordered(0, fsth1
, fsth0
, &env
->active_fpu
.fp_status
) || float32_eq(fsth0
, fsth1
, &env
->active_fpu
.fp_status
))
2886 FOP_COND_PS(olt
, !float32_is_unordered(0, fst1
, fst0
, &env
->active_fpu
.fp_status
) && float32_lt(fst0
, fst1
, &env
->active_fpu
.fp_status
),
2887 !float32_is_unordered(0, fsth1
, fsth0
, &env
->active_fpu
.fp_status
) && float32_lt(fsth0
, fsth1
, &env
->active_fpu
.fp_status
))
2888 FOP_COND_PS(ult
, float32_is_unordered(0, fst1
, fst0
, &env
->active_fpu
.fp_status
) || float32_lt(fst0
, fst1
, &env
->active_fpu
.fp_status
),
2889 float32_is_unordered(0, fsth1
, fsth0
, &env
->active_fpu
.fp_status
) || float32_lt(fsth0
, fsth1
, &env
->active_fpu
.fp_status
))
2890 FOP_COND_PS(ole
, !float32_is_unordered(0, fst1
, fst0
, &env
->active_fpu
.fp_status
) && float32_le(fst0
, fst1
, &env
->active_fpu
.fp_status
),
2891 !float32_is_unordered(0, fsth1
, fsth0
, &env
->active_fpu
.fp_status
) && float32_le(fsth0
, fsth1
, &env
->active_fpu
.fp_status
))
2892 FOP_COND_PS(ule
, float32_is_unordered(0, fst1
, fst0
, &env
->active_fpu
.fp_status
) || float32_le(fst0
, fst1
, &env
->active_fpu
.fp_status
),
2893 float32_is_unordered(0, fsth1
, fsth0
, &env
->active_fpu
.fp_status
) || float32_le(fsth0
, fsth1
, &env
->active_fpu
.fp_status
))
2894 /* NOTE: the comma operator will make "cond" to eval to false,
2895 * but float*_is_unordered() is still called. */
2896 FOP_COND_PS(sf
, (float32_is_unordered(1, fst1
, fst0
, &env
->active_fpu
.fp_status
), 0),
2897 (float32_is_unordered(1, fsth1
, fsth0
, &env
->active_fpu
.fp_status
), 0))
2898 FOP_COND_PS(ngle
,float32_is_unordered(1, fst1
, fst0
, &env
->active_fpu
.fp_status
),
2899 float32_is_unordered(1, fsth1
, fsth0
, &env
->active_fpu
.fp_status
))
2900 FOP_COND_PS(seq
, !float32_is_unordered(1, fst1
, fst0
, &env
->active_fpu
.fp_status
) && float32_eq(fst0
, fst1
, &env
->active_fpu
.fp_status
),
2901 !float32_is_unordered(1, fsth1
, fsth0
, &env
->active_fpu
.fp_status
) && float32_eq(fsth0
, fsth1
, &env
->active_fpu
.fp_status
))
2902 FOP_COND_PS(ngl
, float32_is_unordered(1, fst1
, fst0
, &env
->active_fpu
.fp_status
) || float32_eq(fst0
, fst1
, &env
->active_fpu
.fp_status
),
2903 float32_is_unordered(1, fsth1
, fsth0
, &env
->active_fpu
.fp_status
) || float32_eq(fsth0
, fsth1
, &env
->active_fpu
.fp_status
))
2904 FOP_COND_PS(lt
, !float32_is_unordered(1, fst1
, fst0
, &env
->active_fpu
.fp_status
) && float32_lt(fst0
, fst1
, &env
->active_fpu
.fp_status
),
2905 !float32_is_unordered(1, fsth1
, fsth0
, &env
->active_fpu
.fp_status
) && float32_lt(fsth0
, fsth1
, &env
->active_fpu
.fp_status
))
2906 FOP_COND_PS(nge
, float32_is_unordered(1, fst1
, fst0
, &env
->active_fpu
.fp_status
) || float32_lt(fst0
, fst1
, &env
->active_fpu
.fp_status
),
2907 float32_is_unordered(1, fsth1
, fsth0
, &env
->active_fpu
.fp_status
) || float32_lt(fsth0
, fsth1
, &env
->active_fpu
.fp_status
))
2908 FOP_COND_PS(le
, !float32_is_unordered(1, fst1
, fst0
, &env
->active_fpu
.fp_status
) && float32_le(fst0
, fst1
, &env
->active_fpu
.fp_status
),
2909 !float32_is_unordered(1, fsth1
, fsth0
, &env
->active_fpu
.fp_status
) && float32_le(fsth0
, fsth1
, &env
->active_fpu
.fp_status
))
2910 FOP_COND_PS(ngt
, float32_is_unordered(1, fst1
, fst0
, &env
->active_fpu
.fp_status
) || float32_le(fst0
, fst1
, &env
->active_fpu
.fp_status
),
2911 float32_is_unordered(1, fsth1
, fsth0
, &env
->active_fpu
.fp_status
) || float32_le(fsth0
, fsth1
, &env
->active_fpu
.fp_status
))