Make AUD_init failure fatal
[qemu-kvm/fedora.git] / hw / stellaris.c
blob3a06c128ce76d9a4623cfb1e66837237fbe9f583
1 /*
2 * Luminary Micro Stellaris peripherals
4 * Copyright (c) 2006 CodeSourcery.
5 * Written by Paul Brook
7 * This code is licenced under the GPL.
8 */
10 #include "hw.h"
11 #include "arm-misc.h"
12 #include "primecell.h"
13 #include "devices.h"
14 #include "qemu-timer.h"
15 #include "i2c.h"
16 #include "net.h"
17 #include "sd.h"
18 #include "sysemu.h"
19 #include "boards.h"
21 #define GPIO_A 0
22 #define GPIO_B 1
23 #define GPIO_C 2
24 #define GPIO_D 3
25 #define GPIO_E 4
26 #define GPIO_F 5
27 #define GPIO_G 6
29 #define BP_OLED_I2C 0x01
30 #define BP_OLED_SSI 0x02
31 #define BP_GAMEPAD 0x04
33 typedef const struct {
34 const char *name;
35 uint32_t did0;
36 uint32_t did1;
37 uint32_t dc0;
38 uint32_t dc1;
39 uint32_t dc2;
40 uint32_t dc3;
41 uint32_t dc4;
42 uint32_t peripherals;
43 } stellaris_board_info;
45 /* General purpose timer module. */
47 typedef struct gptm_state {
48 uint32_t config;
49 uint32_t mode[2];
50 uint32_t control;
51 uint32_t state;
52 uint32_t mask;
53 uint32_t load[2];
54 uint32_t match[2];
55 uint32_t prescale[2];
56 uint32_t match_prescale[2];
57 uint32_t rtc;
58 int64_t tick[2];
59 struct gptm_state *opaque[2];
60 QEMUTimer *timer[2];
61 /* The timers have an alternate output used to trigger the ADC. */
62 qemu_irq trigger;
63 qemu_irq irq;
64 } gptm_state;
66 static void gptm_update_irq(gptm_state *s)
68 int level;
69 level = (s->state & s->mask) != 0;
70 qemu_set_irq(s->irq, level);
73 static void gptm_stop(gptm_state *s, int n)
75 qemu_del_timer(s->timer[n]);
78 static void gptm_reload(gptm_state *s, int n, int reset)
80 int64_t tick;
81 if (reset)
82 tick = qemu_get_clock(vm_clock);
83 else
84 tick = s->tick[n];
86 if (s->config == 0) {
87 /* 32-bit CountDown. */
88 uint32_t count;
89 count = s->load[0] | (s->load[1] << 16);
90 tick += (int64_t)count * system_clock_scale;
91 } else if (s->config == 1) {
92 /* 32-bit RTC. 1Hz tick. */
93 tick += ticks_per_sec;
94 } else if (s->mode[n] == 0xa) {
95 /* PWM mode. Not implemented. */
96 } else {
97 hw_error("TODO: 16-bit timer mode 0x%x\n", s->mode[n]);
99 s->tick[n] = tick;
100 qemu_mod_timer(s->timer[n], tick);
103 static void gptm_tick(void *opaque)
105 gptm_state **p = (gptm_state **)opaque;
106 gptm_state *s;
107 int n;
109 s = *p;
110 n = p - s->opaque;
111 if (s->config == 0) {
112 s->state |= 1;
113 if ((s->control & 0x20)) {
114 /* Output trigger. */
115 qemu_irq_raise(s->trigger);
116 qemu_irq_lower(s->trigger);
118 if (s->mode[0] & 1) {
119 /* One-shot. */
120 s->control &= ~1;
121 } else {
122 /* Periodic. */
123 gptm_reload(s, 0, 0);
125 } else if (s->config == 1) {
126 /* RTC. */
127 uint32_t match;
128 s->rtc++;
129 match = s->match[0] | (s->match[1] << 16);
130 if (s->rtc > match)
131 s->rtc = 0;
132 if (s->rtc == 0) {
133 s->state |= 8;
135 gptm_reload(s, 0, 0);
136 } else if (s->mode[n] == 0xa) {
137 /* PWM mode. Not implemented. */
138 } else {
139 hw_error("TODO: 16-bit timer mode 0x%x\n", s->mode[n]);
141 gptm_update_irq(s);
144 static uint32_t gptm_read(void *opaque, target_phys_addr_t offset)
146 gptm_state *s = (gptm_state *)opaque;
148 switch (offset) {
149 case 0x00: /* CFG */
150 return s->config;
151 case 0x04: /* TAMR */
152 return s->mode[0];
153 case 0x08: /* TBMR */
154 return s->mode[1];
155 case 0x0c: /* CTL */
156 return s->control;
157 case 0x18: /* IMR */
158 return s->mask;
159 case 0x1c: /* RIS */
160 return s->state;
161 case 0x20: /* MIS */
162 return s->state & s->mask;
163 case 0x24: /* CR */
164 return 0;
165 case 0x28: /* TAILR */
166 return s->load[0] | ((s->config < 4) ? (s->load[1] << 16) : 0);
167 case 0x2c: /* TBILR */
168 return s->load[1];
169 case 0x30: /* TAMARCHR */
170 return s->match[0] | ((s->config < 4) ? (s->match[1] << 16) : 0);
171 case 0x34: /* TBMATCHR */
172 return s->match[1];
173 case 0x38: /* TAPR */
174 return s->prescale[0];
175 case 0x3c: /* TBPR */
176 return s->prescale[1];
177 case 0x40: /* TAPMR */
178 return s->match_prescale[0];
179 case 0x44: /* TBPMR */
180 return s->match_prescale[1];
181 case 0x48: /* TAR */
182 if (s->control == 1)
183 return s->rtc;
184 case 0x4c: /* TBR */
185 hw_error("TODO: Timer value read\n");
186 default:
187 hw_error("gptm_read: Bad offset 0x%x\n", (int)offset);
188 return 0;
192 static void gptm_write(void *opaque, target_phys_addr_t offset, uint32_t value)
194 gptm_state *s = (gptm_state *)opaque;
195 uint32_t oldval;
197 /* The timers should be disabled before changing the configuration.
198 We take advantage of this and defer everything until the timer
199 is enabled. */
200 switch (offset) {
201 case 0x00: /* CFG */
202 s->config = value;
203 break;
204 case 0x04: /* TAMR */
205 s->mode[0] = value;
206 break;
207 case 0x08: /* TBMR */
208 s->mode[1] = value;
209 break;
210 case 0x0c: /* CTL */
211 oldval = s->control;
212 s->control = value;
213 /* TODO: Implement pause. */
214 if ((oldval ^ value) & 1) {
215 if (value & 1) {
216 gptm_reload(s, 0, 1);
217 } else {
218 gptm_stop(s, 0);
221 if (((oldval ^ value) & 0x100) && s->config >= 4) {
222 if (value & 0x100) {
223 gptm_reload(s, 1, 1);
224 } else {
225 gptm_stop(s, 1);
228 break;
229 case 0x18: /* IMR */
230 s->mask = value & 0x77;
231 gptm_update_irq(s);
232 break;
233 case 0x24: /* CR */
234 s->state &= ~value;
235 break;
236 case 0x28: /* TAILR */
237 s->load[0] = value & 0xffff;
238 if (s->config < 4) {
239 s->load[1] = value >> 16;
241 break;
242 case 0x2c: /* TBILR */
243 s->load[1] = value & 0xffff;
244 break;
245 case 0x30: /* TAMARCHR */
246 s->match[0] = value & 0xffff;
247 if (s->config < 4) {
248 s->match[1] = value >> 16;
250 break;
251 case 0x34: /* TBMATCHR */
252 s->match[1] = value >> 16;
253 break;
254 case 0x38: /* TAPR */
255 s->prescale[0] = value;
256 break;
257 case 0x3c: /* TBPR */
258 s->prescale[1] = value;
259 break;
260 case 0x40: /* TAPMR */
261 s->match_prescale[0] = value;
262 break;
263 case 0x44: /* TBPMR */
264 s->match_prescale[0] = value;
265 break;
266 default:
267 hw_error("gptm_write: Bad offset 0x%x\n", (int)offset);
269 gptm_update_irq(s);
272 static CPUReadMemoryFunc *gptm_readfn[] = {
273 gptm_read,
274 gptm_read,
275 gptm_read
278 static CPUWriteMemoryFunc *gptm_writefn[] = {
279 gptm_write,
280 gptm_write,
281 gptm_write
284 static void gptm_save(QEMUFile *f, void *opaque)
286 gptm_state *s = (gptm_state *)opaque;
288 qemu_put_be32(f, s->config);
289 qemu_put_be32(f, s->mode[0]);
290 qemu_put_be32(f, s->mode[1]);
291 qemu_put_be32(f, s->control);
292 qemu_put_be32(f, s->state);
293 qemu_put_be32(f, s->mask);
294 qemu_put_be32(f, s->mode[0]);
295 qemu_put_be32(f, s->mode[0]);
296 qemu_put_be32(f, s->load[0]);
297 qemu_put_be32(f, s->load[1]);
298 qemu_put_be32(f, s->match[0]);
299 qemu_put_be32(f, s->match[1]);
300 qemu_put_be32(f, s->prescale[0]);
301 qemu_put_be32(f, s->prescale[1]);
302 qemu_put_be32(f, s->match_prescale[0]);
303 qemu_put_be32(f, s->match_prescale[1]);
304 qemu_put_be32(f, s->rtc);
305 qemu_put_be64(f, s->tick[0]);
306 qemu_put_be64(f, s->tick[1]);
307 qemu_put_timer(f, s->timer[0]);
308 qemu_put_timer(f, s->timer[1]);
311 static int gptm_load(QEMUFile *f, void *opaque, int version_id)
313 gptm_state *s = (gptm_state *)opaque;
315 if (version_id != 1)
316 return -EINVAL;
318 s->config = qemu_get_be32(f);
319 s->mode[0] = qemu_get_be32(f);
320 s->mode[1] = qemu_get_be32(f);
321 s->control = qemu_get_be32(f);
322 s->state = qemu_get_be32(f);
323 s->mask = qemu_get_be32(f);
324 s->mode[0] = qemu_get_be32(f);
325 s->mode[0] = qemu_get_be32(f);
326 s->load[0] = qemu_get_be32(f);
327 s->load[1] = qemu_get_be32(f);
328 s->match[0] = qemu_get_be32(f);
329 s->match[1] = qemu_get_be32(f);
330 s->prescale[0] = qemu_get_be32(f);
331 s->prescale[1] = qemu_get_be32(f);
332 s->match_prescale[0] = qemu_get_be32(f);
333 s->match_prescale[1] = qemu_get_be32(f);
334 s->rtc = qemu_get_be32(f);
335 s->tick[0] = qemu_get_be64(f);
336 s->tick[1] = qemu_get_be64(f);
337 qemu_get_timer(f, s->timer[0]);
338 qemu_get_timer(f, s->timer[1]);
340 return 0;
343 static void stellaris_gptm_init(uint32_t base, qemu_irq irq, qemu_irq trigger)
345 int iomemtype;
346 gptm_state *s;
348 s = (gptm_state *)qemu_mallocz(sizeof(gptm_state));
349 s->irq = irq;
350 s->trigger = trigger;
351 s->opaque[0] = s->opaque[1] = s;
353 iomemtype = cpu_register_io_memory(0, gptm_readfn,
354 gptm_writefn, s);
355 cpu_register_physical_memory(base, 0x00001000, iomemtype);
356 s->timer[0] = qemu_new_timer(vm_clock, gptm_tick, &s->opaque[0]);
357 s->timer[1] = qemu_new_timer(vm_clock, gptm_tick, &s->opaque[1]);
358 register_savevm("stellaris_gptm", -1, 1, gptm_save, gptm_load, s);
362 /* System controller. */
364 typedef struct {
365 uint32_t pborctl;
366 uint32_t ldopctl;
367 uint32_t int_status;
368 uint32_t int_mask;
369 uint32_t resc;
370 uint32_t rcc;
371 uint32_t rcgc[3];
372 uint32_t scgc[3];
373 uint32_t dcgc[3];
374 uint32_t clkvclr;
375 uint32_t ldoarst;
376 uint32_t user0;
377 uint32_t user1;
378 qemu_irq irq;
379 stellaris_board_info *board;
380 } ssys_state;
382 static void ssys_update(ssys_state *s)
384 qemu_set_irq(s->irq, (s->int_status & s->int_mask) != 0);
387 static uint32_t pllcfg_sandstorm[16] = {
388 0x31c0, /* 1 Mhz */
389 0x1ae0, /* 1.8432 Mhz */
390 0x18c0, /* 2 Mhz */
391 0xd573, /* 2.4576 Mhz */
392 0x37a6, /* 3.57954 Mhz */
393 0x1ae2, /* 3.6864 Mhz */
394 0x0c40, /* 4 Mhz */
395 0x98bc, /* 4.906 Mhz */
396 0x935b, /* 4.9152 Mhz */
397 0x09c0, /* 5 Mhz */
398 0x4dee, /* 5.12 Mhz */
399 0x0c41, /* 6 Mhz */
400 0x75db, /* 6.144 Mhz */
401 0x1ae6, /* 7.3728 Mhz */
402 0x0600, /* 8 Mhz */
403 0x585b /* 8.192 Mhz */
406 static uint32_t pllcfg_fury[16] = {
407 0x3200, /* 1 Mhz */
408 0x1b20, /* 1.8432 Mhz */
409 0x1900, /* 2 Mhz */
410 0xf42b, /* 2.4576 Mhz */
411 0x37e3, /* 3.57954 Mhz */
412 0x1b21, /* 3.6864 Mhz */
413 0x0c80, /* 4 Mhz */
414 0x98ee, /* 4.906 Mhz */
415 0xd5b4, /* 4.9152 Mhz */
416 0x0a00, /* 5 Mhz */
417 0x4e27, /* 5.12 Mhz */
418 0x1902, /* 6 Mhz */
419 0xec1c, /* 6.144 Mhz */
420 0x1b23, /* 7.3728 Mhz */
421 0x0640, /* 8 Mhz */
422 0xb11c /* 8.192 Mhz */
425 static uint32_t ssys_read(void *opaque, target_phys_addr_t offset)
427 ssys_state *s = (ssys_state *)opaque;
429 switch (offset) {
430 case 0x000: /* DID0 */
431 return s->board->did0;
432 case 0x004: /* DID1 */
433 return s->board->did1;
434 case 0x008: /* DC0 */
435 return s->board->dc0;
436 case 0x010: /* DC1 */
437 return s->board->dc1;
438 case 0x014: /* DC2 */
439 return s->board->dc2;
440 case 0x018: /* DC3 */
441 return s->board->dc3;
442 case 0x01c: /* DC4 */
443 return s->board->dc4;
444 case 0x030: /* PBORCTL */
445 return s->pborctl;
446 case 0x034: /* LDOPCTL */
447 return s->ldopctl;
448 case 0x040: /* SRCR0 */
449 return 0;
450 case 0x044: /* SRCR1 */
451 return 0;
452 case 0x048: /* SRCR2 */
453 return 0;
454 case 0x050: /* RIS */
455 return s->int_status;
456 case 0x054: /* IMC */
457 return s->int_mask;
458 case 0x058: /* MISC */
459 return s->int_status & s->int_mask;
460 case 0x05c: /* RESC */
461 return s->resc;
462 case 0x060: /* RCC */
463 return s->rcc;
464 case 0x064: /* PLLCFG */
466 int xtal;
467 xtal = (s->rcc >> 6) & 0xf;
468 if (s->board->did0 & (1 << 16)) {
469 return pllcfg_fury[xtal];
470 } else {
471 return pllcfg_sandstorm[xtal];
474 case 0x100: /* RCGC0 */
475 return s->rcgc[0];
476 case 0x104: /* RCGC1 */
477 return s->rcgc[1];
478 case 0x108: /* RCGC2 */
479 return s->rcgc[2];
480 case 0x110: /* SCGC0 */
481 return s->scgc[0];
482 case 0x114: /* SCGC1 */
483 return s->scgc[1];
484 case 0x118: /* SCGC2 */
485 return s->scgc[2];
486 case 0x120: /* DCGC0 */
487 return s->dcgc[0];
488 case 0x124: /* DCGC1 */
489 return s->dcgc[1];
490 case 0x128: /* DCGC2 */
491 return s->dcgc[2];
492 case 0x150: /* CLKVCLR */
493 return s->clkvclr;
494 case 0x160: /* LDOARST */
495 return s->ldoarst;
496 case 0x1e0: /* USER0 */
497 return s->user0;
498 case 0x1e4: /* USER1 */
499 return s->user1;
500 default:
501 hw_error("ssys_read: Bad offset 0x%x\n", (int)offset);
502 return 0;
506 static void ssys_calculate_system_clock(ssys_state *s)
508 system_clock_scale = 5 * (((s->rcc >> 23) & 0xf) + 1);
511 static void ssys_write(void *opaque, target_phys_addr_t offset, uint32_t value)
513 ssys_state *s = (ssys_state *)opaque;
515 switch (offset) {
516 case 0x030: /* PBORCTL */
517 s->pborctl = value & 0xffff;
518 break;
519 case 0x034: /* LDOPCTL */
520 s->ldopctl = value & 0x1f;
521 break;
522 case 0x040: /* SRCR0 */
523 case 0x044: /* SRCR1 */
524 case 0x048: /* SRCR2 */
525 fprintf(stderr, "Peripheral reset not implemented\n");
526 break;
527 case 0x054: /* IMC */
528 s->int_mask = value & 0x7f;
529 break;
530 case 0x058: /* MISC */
531 s->int_status &= ~value;
532 break;
533 case 0x05c: /* RESC */
534 s->resc = value & 0x3f;
535 break;
536 case 0x060: /* RCC */
537 if ((s->rcc & (1 << 13)) != 0 && (value & (1 << 13)) == 0) {
538 /* PLL enable. */
539 s->int_status |= (1 << 6);
541 s->rcc = value;
542 ssys_calculate_system_clock(s);
543 break;
544 case 0x100: /* RCGC0 */
545 s->rcgc[0] = value;
546 break;
547 case 0x104: /* RCGC1 */
548 s->rcgc[1] = value;
549 break;
550 case 0x108: /* RCGC2 */
551 s->rcgc[2] = value;
552 break;
553 case 0x110: /* SCGC0 */
554 s->scgc[0] = value;
555 break;
556 case 0x114: /* SCGC1 */
557 s->scgc[1] = value;
558 break;
559 case 0x118: /* SCGC2 */
560 s->scgc[2] = value;
561 break;
562 case 0x120: /* DCGC0 */
563 s->dcgc[0] = value;
564 break;
565 case 0x124: /* DCGC1 */
566 s->dcgc[1] = value;
567 break;
568 case 0x128: /* DCGC2 */
569 s->dcgc[2] = value;
570 break;
571 case 0x150: /* CLKVCLR */
572 s->clkvclr = value;
573 break;
574 case 0x160: /* LDOARST */
575 s->ldoarst = value;
576 break;
577 default:
578 hw_error("ssys_write: Bad offset 0x%x\n", (int)offset);
580 ssys_update(s);
583 static CPUReadMemoryFunc *ssys_readfn[] = {
584 ssys_read,
585 ssys_read,
586 ssys_read
589 static CPUWriteMemoryFunc *ssys_writefn[] = {
590 ssys_write,
591 ssys_write,
592 ssys_write
595 static void ssys_reset(void *opaque)
597 ssys_state *s = (ssys_state *)opaque;
599 s->pborctl = 0x7ffd;
600 s->rcc = 0x078e3ac0;
601 s->rcgc[0] = 1;
602 s->scgc[0] = 1;
603 s->dcgc[0] = 1;
606 static void ssys_save(QEMUFile *f, void *opaque)
608 ssys_state *s = (ssys_state *)opaque;
610 qemu_put_be32(f, s->pborctl);
611 qemu_put_be32(f, s->ldopctl);
612 qemu_put_be32(f, s->int_mask);
613 qemu_put_be32(f, s->int_status);
614 qemu_put_be32(f, s->resc);
615 qemu_put_be32(f, s->rcc);
616 qemu_put_be32(f, s->rcgc[0]);
617 qemu_put_be32(f, s->rcgc[1]);
618 qemu_put_be32(f, s->rcgc[2]);
619 qemu_put_be32(f, s->scgc[0]);
620 qemu_put_be32(f, s->scgc[1]);
621 qemu_put_be32(f, s->scgc[2]);
622 qemu_put_be32(f, s->dcgc[0]);
623 qemu_put_be32(f, s->dcgc[1]);
624 qemu_put_be32(f, s->dcgc[2]);
625 qemu_put_be32(f, s->clkvclr);
626 qemu_put_be32(f, s->ldoarst);
629 static int ssys_load(QEMUFile *f, void *opaque, int version_id)
631 ssys_state *s = (ssys_state *)opaque;
633 if (version_id != 1)
634 return -EINVAL;
636 s->pborctl = qemu_get_be32(f);
637 s->ldopctl = qemu_get_be32(f);
638 s->int_mask = qemu_get_be32(f);
639 s->int_status = qemu_get_be32(f);
640 s->resc = qemu_get_be32(f);
641 s->rcc = qemu_get_be32(f);
642 s->rcgc[0] = qemu_get_be32(f);
643 s->rcgc[1] = qemu_get_be32(f);
644 s->rcgc[2] = qemu_get_be32(f);
645 s->scgc[0] = qemu_get_be32(f);
646 s->scgc[1] = qemu_get_be32(f);
647 s->scgc[2] = qemu_get_be32(f);
648 s->dcgc[0] = qemu_get_be32(f);
649 s->dcgc[1] = qemu_get_be32(f);
650 s->dcgc[2] = qemu_get_be32(f);
651 s->clkvclr = qemu_get_be32(f);
652 s->ldoarst = qemu_get_be32(f);
653 ssys_calculate_system_clock(s);
655 return 0;
658 static void stellaris_sys_init(uint32_t base, qemu_irq irq,
659 stellaris_board_info * board,
660 uint8_t *macaddr)
662 int iomemtype;
663 ssys_state *s;
665 s = (ssys_state *)qemu_mallocz(sizeof(ssys_state));
666 s->irq = irq;
667 s->board = board;
668 /* Most devices come preprogrammed with a MAC address in the user data. */
669 s->user0 = macaddr[0] | (macaddr[1] << 8) | (macaddr[2] << 16);
670 s->user1 = macaddr[3] | (macaddr[4] << 8) | (macaddr[5] << 16);
672 iomemtype = cpu_register_io_memory(0, ssys_readfn,
673 ssys_writefn, s);
674 cpu_register_physical_memory(base, 0x00001000, iomemtype);
675 ssys_reset(s);
676 register_savevm("stellaris_sys", -1, 1, ssys_save, ssys_load, s);
680 /* I2C controller. */
682 typedef struct {
683 i2c_bus *bus;
684 qemu_irq irq;
685 uint32_t msa;
686 uint32_t mcs;
687 uint32_t mdr;
688 uint32_t mtpr;
689 uint32_t mimr;
690 uint32_t mris;
691 uint32_t mcr;
692 } stellaris_i2c_state;
694 #define STELLARIS_I2C_MCS_BUSY 0x01
695 #define STELLARIS_I2C_MCS_ERROR 0x02
696 #define STELLARIS_I2C_MCS_ADRACK 0x04
697 #define STELLARIS_I2C_MCS_DATACK 0x08
698 #define STELLARIS_I2C_MCS_ARBLST 0x10
699 #define STELLARIS_I2C_MCS_IDLE 0x20
700 #define STELLARIS_I2C_MCS_BUSBSY 0x40
702 static uint32_t stellaris_i2c_read(void *opaque, target_phys_addr_t offset)
704 stellaris_i2c_state *s = (stellaris_i2c_state *)opaque;
706 switch (offset) {
707 case 0x00: /* MSA */
708 return s->msa;
709 case 0x04: /* MCS */
710 /* We don't emulate timing, so the controller is never busy. */
711 return s->mcs | STELLARIS_I2C_MCS_IDLE;
712 case 0x08: /* MDR */
713 return s->mdr;
714 case 0x0c: /* MTPR */
715 return s->mtpr;
716 case 0x10: /* MIMR */
717 return s->mimr;
718 case 0x14: /* MRIS */
719 return s->mris;
720 case 0x18: /* MMIS */
721 return s->mris & s->mimr;
722 case 0x20: /* MCR */
723 return s->mcr;
724 default:
725 hw_error("strllaris_i2c_read: Bad offset 0x%x\n", (int)offset);
726 return 0;
730 static void stellaris_i2c_update(stellaris_i2c_state *s)
732 int level;
734 level = (s->mris & s->mimr) != 0;
735 qemu_set_irq(s->irq, level);
738 static void stellaris_i2c_write(void *opaque, target_phys_addr_t offset,
739 uint32_t value)
741 stellaris_i2c_state *s = (stellaris_i2c_state *)opaque;
743 switch (offset) {
744 case 0x00: /* MSA */
745 s->msa = value & 0xff;
746 break;
747 case 0x04: /* MCS */
748 if ((s->mcr & 0x10) == 0) {
749 /* Disabled. Do nothing. */
750 break;
752 /* Grab the bus if this is starting a transfer. */
753 if ((value & 2) && (s->mcs & STELLARIS_I2C_MCS_BUSBSY) == 0) {
754 if (i2c_start_transfer(s->bus, s->msa >> 1, s->msa & 1)) {
755 s->mcs |= STELLARIS_I2C_MCS_ARBLST;
756 } else {
757 s->mcs &= ~STELLARIS_I2C_MCS_ARBLST;
758 s->mcs |= STELLARIS_I2C_MCS_BUSBSY;
761 /* If we don't have the bus then indicate an error. */
762 if (!i2c_bus_busy(s->bus)
763 || (s->mcs & STELLARIS_I2C_MCS_BUSBSY) == 0) {
764 s->mcs |= STELLARIS_I2C_MCS_ERROR;
765 break;
767 s->mcs &= ~STELLARIS_I2C_MCS_ERROR;
768 if (value & 1) {
769 /* Transfer a byte. */
770 /* TODO: Handle errors. */
771 if (s->msa & 1) {
772 /* Recv */
773 s->mdr = i2c_recv(s->bus) & 0xff;
774 } else {
775 /* Send */
776 i2c_send(s->bus, s->mdr);
778 /* Raise an interrupt. */
779 s->mris |= 1;
781 if (value & 4) {
782 /* Finish transfer. */
783 i2c_end_transfer(s->bus);
784 s->mcs &= ~STELLARIS_I2C_MCS_BUSBSY;
786 break;
787 case 0x08: /* MDR */
788 s->mdr = value & 0xff;
789 break;
790 case 0x0c: /* MTPR */
791 s->mtpr = value & 0xff;
792 break;
793 case 0x10: /* MIMR */
794 s->mimr = 1;
795 break;
796 case 0x1c: /* MICR */
797 s->mris &= ~value;
798 break;
799 case 0x20: /* MCR */
800 if (value & 1)
801 hw_error(
802 "stellaris_i2c_write: Loopback not implemented\n");
803 if (value & 0x20)
804 hw_error(
805 "stellaris_i2c_write: Slave mode not implemented\n");
806 s->mcr = value & 0x31;
807 break;
808 default:
809 hw_error("stellaris_i2c_write: Bad offset 0x%x\n",
810 (int)offset);
812 stellaris_i2c_update(s);
815 static void stellaris_i2c_reset(stellaris_i2c_state *s)
817 if (s->mcs & STELLARIS_I2C_MCS_BUSBSY)
818 i2c_end_transfer(s->bus);
820 s->msa = 0;
821 s->mcs = 0;
822 s->mdr = 0;
823 s->mtpr = 1;
824 s->mimr = 0;
825 s->mris = 0;
826 s->mcr = 0;
827 stellaris_i2c_update(s);
830 static CPUReadMemoryFunc *stellaris_i2c_readfn[] = {
831 stellaris_i2c_read,
832 stellaris_i2c_read,
833 stellaris_i2c_read
836 static CPUWriteMemoryFunc *stellaris_i2c_writefn[] = {
837 stellaris_i2c_write,
838 stellaris_i2c_write,
839 stellaris_i2c_write
842 static void stellaris_i2c_save(QEMUFile *f, void *opaque)
844 stellaris_i2c_state *s = (stellaris_i2c_state *)opaque;
846 qemu_put_be32(f, s->msa);
847 qemu_put_be32(f, s->mcs);
848 qemu_put_be32(f, s->mdr);
849 qemu_put_be32(f, s->mtpr);
850 qemu_put_be32(f, s->mimr);
851 qemu_put_be32(f, s->mris);
852 qemu_put_be32(f, s->mcr);
855 static int stellaris_i2c_load(QEMUFile *f, void *opaque, int version_id)
857 stellaris_i2c_state *s = (stellaris_i2c_state *)opaque;
859 if (version_id != 1)
860 return -EINVAL;
862 s->msa = qemu_get_be32(f);
863 s->mcs = qemu_get_be32(f);
864 s->mdr = qemu_get_be32(f);
865 s->mtpr = qemu_get_be32(f);
866 s->mimr = qemu_get_be32(f);
867 s->mris = qemu_get_be32(f);
868 s->mcr = qemu_get_be32(f);
870 return 0;
873 static void stellaris_i2c_init(uint32_t base, qemu_irq irq, i2c_bus *bus)
875 stellaris_i2c_state *s;
876 int iomemtype;
878 s = (stellaris_i2c_state *)qemu_mallocz(sizeof(stellaris_i2c_state));
879 s->irq = irq;
880 s->bus = bus;
882 iomemtype = cpu_register_io_memory(0, stellaris_i2c_readfn,
883 stellaris_i2c_writefn, s);
884 cpu_register_physical_memory(base, 0x00001000, iomemtype);
885 /* ??? For now we only implement the master interface. */
886 stellaris_i2c_reset(s);
887 register_savevm("stellaris_i2c", -1, 1,
888 stellaris_i2c_save, stellaris_i2c_load, s);
891 /* Analogue to Digital Converter. This is only partially implemented,
892 enough for applications that use a combined ADC and timer tick. */
894 #define STELLARIS_ADC_EM_CONTROLLER 0
895 #define STELLARIS_ADC_EM_COMP 1
896 #define STELLARIS_ADC_EM_EXTERNAL 4
897 #define STELLARIS_ADC_EM_TIMER 5
898 #define STELLARIS_ADC_EM_PWM0 6
899 #define STELLARIS_ADC_EM_PWM1 7
900 #define STELLARIS_ADC_EM_PWM2 8
902 #define STELLARIS_ADC_FIFO_EMPTY 0x0100
903 #define STELLARIS_ADC_FIFO_FULL 0x1000
905 typedef struct
907 uint32_t actss;
908 uint32_t ris;
909 uint32_t im;
910 uint32_t emux;
911 uint32_t ostat;
912 uint32_t ustat;
913 uint32_t sspri;
914 uint32_t sac;
915 struct {
916 uint32_t state;
917 uint32_t data[16];
918 } fifo[4];
919 uint32_t ssmux[4];
920 uint32_t ssctl[4];
921 uint32_t noise;
922 qemu_irq irq;
923 } stellaris_adc_state;
925 static uint32_t stellaris_adc_fifo_read(stellaris_adc_state *s, int n)
927 int tail;
929 tail = s->fifo[n].state & 0xf;
930 if (s->fifo[n].state & STELLARIS_ADC_FIFO_EMPTY) {
931 s->ustat |= 1 << n;
932 } else {
933 s->fifo[n].state = (s->fifo[n].state & ~0xf) | ((tail + 1) & 0xf);
934 s->fifo[n].state &= ~STELLARIS_ADC_FIFO_FULL;
935 if (tail + 1 == ((s->fifo[n].state >> 4) & 0xf))
936 s->fifo[n].state |= STELLARIS_ADC_FIFO_EMPTY;
938 return s->fifo[n].data[tail];
941 static void stellaris_adc_fifo_write(stellaris_adc_state *s, int n,
942 uint32_t value)
944 int head;
946 head = (s->fifo[n].state >> 4) & 0xf;
947 if (s->fifo[n].state & STELLARIS_ADC_FIFO_FULL) {
948 s->ostat |= 1 << n;
949 return;
951 s->fifo[n].data[head] = value;
952 head = (head + 1) & 0xf;
953 s->fifo[n].state &= ~STELLARIS_ADC_FIFO_EMPTY;
954 s->fifo[n].state = (s->fifo[n].state & ~0xf0) | (head << 4);
955 if ((s->fifo[n].state & 0xf) == head)
956 s->fifo[n].state |= STELLARIS_ADC_FIFO_FULL;
959 static void stellaris_adc_update(stellaris_adc_state *s)
961 int level;
963 level = (s->ris & s->im) != 0;
964 qemu_set_irq(s->irq, level);
967 static void stellaris_adc_trigger(void *opaque, int irq, int level)
969 stellaris_adc_state *s = (stellaris_adc_state *)opaque;
971 if ((s->actss & 1) == 0) {
972 return;
975 /* Some applications use the ADC as a random number source, so introduce
976 some variation into the signal. */
977 s->noise = s->noise * 314159 + 1;
978 /* ??? actual inputs not implemented. Return an arbitrary value. */
979 stellaris_adc_fifo_write(s, 0, 0x200 + ((s->noise >> 16) & 7));
980 s->ris |= 1;
981 stellaris_adc_update(s);
984 static void stellaris_adc_reset(stellaris_adc_state *s)
986 int n;
988 for (n = 0; n < 4; n++) {
989 s->ssmux[n] = 0;
990 s->ssctl[n] = 0;
991 s->fifo[n].state = STELLARIS_ADC_FIFO_EMPTY;
995 static uint32_t stellaris_adc_read(void *opaque, target_phys_addr_t offset)
997 stellaris_adc_state *s = (stellaris_adc_state *)opaque;
999 /* TODO: Implement this. */
1000 if (offset >= 0x40 && offset < 0xc0) {
1001 int n;
1002 n = (offset - 0x40) >> 5;
1003 switch (offset & 0x1f) {
1004 case 0x00: /* SSMUX */
1005 return s->ssmux[n];
1006 case 0x04: /* SSCTL */
1007 return s->ssctl[n];
1008 case 0x08: /* SSFIFO */
1009 return stellaris_adc_fifo_read(s, n);
1010 case 0x0c: /* SSFSTAT */
1011 return s->fifo[n].state;
1012 default:
1013 break;
1016 switch (offset) {
1017 case 0x00: /* ACTSS */
1018 return s->actss;
1019 case 0x04: /* RIS */
1020 return s->ris;
1021 case 0x08: /* IM */
1022 return s->im;
1023 case 0x0c: /* ISC */
1024 return s->ris & s->im;
1025 case 0x10: /* OSTAT */
1026 return s->ostat;
1027 case 0x14: /* EMUX */
1028 return s->emux;
1029 case 0x18: /* USTAT */
1030 return s->ustat;
1031 case 0x20: /* SSPRI */
1032 return s->sspri;
1033 case 0x30: /* SAC */
1034 return s->sac;
1035 default:
1036 hw_error("strllaris_adc_read: Bad offset 0x%x\n",
1037 (int)offset);
1038 return 0;
1042 static void stellaris_adc_write(void *opaque, target_phys_addr_t offset,
1043 uint32_t value)
1045 stellaris_adc_state *s = (stellaris_adc_state *)opaque;
1047 /* TODO: Implement this. */
1048 if (offset >= 0x40 && offset < 0xc0) {
1049 int n;
1050 n = (offset - 0x40) >> 5;
1051 switch (offset & 0x1f) {
1052 case 0x00: /* SSMUX */
1053 s->ssmux[n] = value & 0x33333333;
1054 return;
1055 case 0x04: /* SSCTL */
1056 if (value != 6) {
1057 hw_error("ADC: Unimplemented sequence %x\n",
1058 value);
1060 s->ssctl[n] = value;
1061 return;
1062 default:
1063 break;
1066 switch (offset) {
1067 case 0x00: /* ACTSS */
1068 s->actss = value & 0xf;
1069 if (value & 0xe) {
1070 hw_error("Not implemented: ADC sequencers 1-3\n");
1072 break;
1073 case 0x08: /* IM */
1074 s->im = value;
1075 break;
1076 case 0x0c: /* ISC */
1077 s->ris &= ~value;
1078 break;
1079 case 0x10: /* OSTAT */
1080 s->ostat &= ~value;
1081 break;
1082 case 0x14: /* EMUX */
1083 s->emux = value;
1084 break;
1085 case 0x18: /* USTAT */
1086 s->ustat &= ~value;
1087 break;
1088 case 0x20: /* SSPRI */
1089 s->sspri = value;
1090 break;
1091 case 0x28: /* PSSI */
1092 hw_error("Not implemented: ADC sample initiate\n");
1093 break;
1094 case 0x30: /* SAC */
1095 s->sac = value;
1096 break;
1097 default:
1098 hw_error("stellaris_adc_write: Bad offset 0x%x\n", (int)offset);
1100 stellaris_adc_update(s);
1103 static CPUReadMemoryFunc *stellaris_adc_readfn[] = {
1104 stellaris_adc_read,
1105 stellaris_adc_read,
1106 stellaris_adc_read
1109 static CPUWriteMemoryFunc *stellaris_adc_writefn[] = {
1110 stellaris_adc_write,
1111 stellaris_adc_write,
1112 stellaris_adc_write
1115 static void stellaris_adc_save(QEMUFile *f, void *opaque)
1117 stellaris_adc_state *s = (stellaris_adc_state *)opaque;
1118 int i;
1119 int j;
1121 qemu_put_be32(f, s->actss);
1122 qemu_put_be32(f, s->ris);
1123 qemu_put_be32(f, s->im);
1124 qemu_put_be32(f, s->emux);
1125 qemu_put_be32(f, s->ostat);
1126 qemu_put_be32(f, s->ustat);
1127 qemu_put_be32(f, s->sspri);
1128 qemu_put_be32(f, s->sac);
1129 for (i = 0; i < 4; i++) {
1130 qemu_put_be32(f, s->fifo[i].state);
1131 for (j = 0; j < 16; j++) {
1132 qemu_put_be32(f, s->fifo[i].data[j]);
1134 qemu_put_be32(f, s->ssmux[i]);
1135 qemu_put_be32(f, s->ssctl[i]);
1137 qemu_put_be32(f, s->noise);
1140 static int stellaris_adc_load(QEMUFile *f, void *opaque, int version_id)
1142 stellaris_adc_state *s = (stellaris_adc_state *)opaque;
1143 int i;
1144 int j;
1146 if (version_id != 1)
1147 return -EINVAL;
1149 s->actss = qemu_get_be32(f);
1150 s->ris = qemu_get_be32(f);
1151 s->im = qemu_get_be32(f);
1152 s->emux = qemu_get_be32(f);
1153 s->ostat = qemu_get_be32(f);
1154 s->ustat = qemu_get_be32(f);
1155 s->sspri = qemu_get_be32(f);
1156 s->sac = qemu_get_be32(f);
1157 for (i = 0; i < 4; i++) {
1158 s->fifo[i].state = qemu_get_be32(f);
1159 for (j = 0; j < 16; j++) {
1160 s->fifo[i].data[j] = qemu_get_be32(f);
1162 s->ssmux[i] = qemu_get_be32(f);
1163 s->ssctl[i] = qemu_get_be32(f);
1165 s->noise = qemu_get_be32(f);
1167 return 0;
1170 static qemu_irq stellaris_adc_init(uint32_t base, qemu_irq irq)
1172 stellaris_adc_state *s;
1173 int iomemtype;
1174 qemu_irq *qi;
1176 s = (stellaris_adc_state *)qemu_mallocz(sizeof(stellaris_adc_state));
1177 s->irq = irq;
1179 iomemtype = cpu_register_io_memory(0, stellaris_adc_readfn,
1180 stellaris_adc_writefn, s);
1181 cpu_register_physical_memory(base, 0x00001000, iomemtype);
1182 stellaris_adc_reset(s);
1183 qi = qemu_allocate_irqs(stellaris_adc_trigger, s, 1);
1184 register_savevm("stellaris_adc", -1, 1,
1185 stellaris_adc_save, stellaris_adc_load, s);
1186 return qi[0];
1189 /* Some boards have both an OLED controller and SD card connected to
1190 the same SSI port, with the SD card chip select connected to a
1191 GPIO pin. Technically the OLED chip select is connected to the SSI
1192 Fss pin. We do not bother emulating that as both devices should
1193 never be selected simultaneously, and our OLED controller ignores stray
1194 0xff commands that occur when deselecting the SD card. */
1196 typedef struct {
1197 ssi_xfer_cb xfer_cb[2];
1198 void *opaque[2];
1199 qemu_irq irq;
1200 int current_dev;
1201 } stellaris_ssi_bus_state;
1203 static void stellaris_ssi_bus_select(void *opaque, int irq, int level)
1205 stellaris_ssi_bus_state *s = (stellaris_ssi_bus_state *)opaque;
1207 s->current_dev = level;
1210 static int stellaris_ssi_bus_xfer(void *opaque, int val)
1212 stellaris_ssi_bus_state *s = (stellaris_ssi_bus_state *)opaque;
1214 return s->xfer_cb[s->current_dev](s->opaque[s->current_dev], val);
1217 static void stellaris_ssi_bus_save(QEMUFile *f, void *opaque)
1219 stellaris_ssi_bus_state *s = (stellaris_ssi_bus_state *)opaque;
1221 qemu_put_be32(f, s->current_dev);
1224 static int stellaris_ssi_bus_load(QEMUFile *f, void *opaque, int version_id)
1226 stellaris_ssi_bus_state *s = (stellaris_ssi_bus_state *)opaque;
1228 if (version_id != 1)
1229 return -EINVAL;
1231 s->current_dev = qemu_get_be32(f);
1233 return 0;
1236 static void *stellaris_ssi_bus_init(qemu_irq *irqp,
1237 ssi_xfer_cb cb0, void *opaque0,
1238 ssi_xfer_cb cb1, void *opaque1)
1240 qemu_irq *qi;
1241 stellaris_ssi_bus_state *s;
1243 s = (stellaris_ssi_bus_state *)qemu_mallocz(sizeof(stellaris_ssi_bus_state));
1244 s->xfer_cb[0] = cb0;
1245 s->opaque[0] = opaque0;
1246 s->xfer_cb[1] = cb1;
1247 s->opaque[1] = opaque1;
1248 qi = qemu_allocate_irqs(stellaris_ssi_bus_select, s, 1);
1249 *irqp = *qi;
1250 register_savevm("stellaris_ssi_bus", -1, 1,
1251 stellaris_ssi_bus_save, stellaris_ssi_bus_load, s);
1252 return s;
1255 /* Board init. */
1256 static stellaris_board_info stellaris_boards[] = {
1257 { "LM3S811EVB",
1259 0x0032000e,
1260 0x001f001f, /* dc0 */
1261 0x001132bf,
1262 0x01071013,
1263 0x3f0f01ff,
1264 0x0000001f,
1265 BP_OLED_I2C
1267 { "LM3S6965EVB",
1268 0x10010002,
1269 0x1073402e,
1270 0x00ff007f, /* dc0 */
1271 0x001133ff,
1272 0x030f5317,
1273 0x0f0f87ff,
1274 0x5000007f,
1275 BP_OLED_SSI | BP_GAMEPAD
1279 static void stellaris_init(const char *kernel_filename, const char *cpu_model,
1280 stellaris_board_info *board)
1282 static const int uart_irq[] = {5, 6, 33, 34};
1283 static const int timer_irq[] = {19, 21, 23, 35};
1284 static const uint32_t gpio_addr[7] =
1285 { 0x40004000, 0x40005000, 0x40006000, 0x40007000,
1286 0x40024000, 0x40025000, 0x40026000};
1287 static const int gpio_irq[7] = {0, 1, 2, 3, 4, 30, 31};
1289 qemu_irq *pic;
1290 qemu_irq *gpio_in[7];
1291 qemu_irq *gpio_out[7];
1292 qemu_irq adc;
1293 int sram_size;
1294 int flash_size;
1295 i2c_bus *i2c;
1296 int i;
1298 flash_size = ((board->dc0 & 0xffff) + 1) << 1;
1299 sram_size = (board->dc0 >> 18) + 1;
1300 pic = armv7m_init(flash_size, sram_size, kernel_filename, cpu_model);
1302 if (board->dc1 & (1 << 16)) {
1303 adc = stellaris_adc_init(0x40038000, pic[14]);
1304 } else {
1305 adc = NULL;
1307 for (i = 0; i < 4; i++) {
1308 if (board->dc2 & (0x10000 << i)) {
1309 stellaris_gptm_init(0x40030000 + i * 0x1000,
1310 pic[timer_irq[i]], adc);
1314 stellaris_sys_init(0x400fe000, pic[28], board, nd_table[0].macaddr);
1316 for (i = 0; i < 7; i++) {
1317 if (board->dc4 & (1 << i)) {
1318 gpio_in[i] = pl061_init(gpio_addr[i], pic[gpio_irq[i]],
1319 &gpio_out[i]);
1323 if (board->dc2 & (1 << 12)) {
1324 i2c = i2c_init_bus();
1325 stellaris_i2c_init(0x40020000, pic[8], i2c);
1326 if (board->peripherals & BP_OLED_I2C) {
1327 ssd0303_init(i2c, 0x3d);
1331 for (i = 0; i < 4; i++) {
1332 if (board->dc2 & (1 << i)) {
1333 pl011_init(0x4000c000 + i * 0x1000, pic[uart_irq[i]],
1334 serial_hds[i], PL011_LUMINARY);
1337 if (board->dc2 & (1 << 4)) {
1338 if (board->peripherals & BP_OLED_SSI) {
1339 void * oled;
1340 void * sd;
1341 void *ssi_bus;
1342 int index;
1344 oled = ssd0323_init(&gpio_out[GPIO_C][7]);
1345 index = drive_get_index(IF_SD, 0, 0);
1346 sd = ssi_sd_init(drives_table[index].bdrv);
1348 ssi_bus = stellaris_ssi_bus_init(&gpio_out[GPIO_D][0],
1349 ssi_sd_xfer, sd,
1350 ssd0323_xfer_ssi, oled);
1352 pl022_init(0x40008000, pic[7], stellaris_ssi_bus_xfer, ssi_bus);
1353 /* Make sure the select pin is high. */
1354 qemu_irq_raise(gpio_out[GPIO_D][0]);
1355 } else {
1356 pl022_init(0x40008000, pic[7], NULL, NULL);
1359 if (board->dc4 & (1 << 28))
1360 stellaris_enet_init(&nd_table[0], 0x40048000, pic[42]);
1361 if (board->peripherals & BP_GAMEPAD) {
1362 qemu_irq gpad_irq[5];
1363 static const int gpad_keycode[5] = { 0xc8, 0xd0, 0xcb, 0xcd, 0x1d };
1365 gpad_irq[0] = qemu_irq_invert(gpio_in[GPIO_E][0]); /* up */
1366 gpad_irq[1] = qemu_irq_invert(gpio_in[GPIO_E][1]); /* down */
1367 gpad_irq[2] = qemu_irq_invert(gpio_in[GPIO_E][2]); /* left */
1368 gpad_irq[3] = qemu_irq_invert(gpio_in[GPIO_E][3]); /* right */
1369 gpad_irq[4] = qemu_irq_invert(gpio_in[GPIO_F][1]); /* select */
1371 stellaris_gamepad_init(5, gpad_irq, gpad_keycode);
1375 /* FIXME: Figure out how to generate these from stellaris_boards. */
1376 static void lm3s811evb_init(ram_addr_t ram_size, int vga_ram_size,
1377 const char *boot_device,
1378 const char *kernel_filename, const char *kernel_cmdline,
1379 const char *initrd_filename, const char *cpu_model)
1381 stellaris_init(kernel_filename, cpu_model, &stellaris_boards[0]);
1384 static void lm3s6965evb_init(ram_addr_t ram_size, int vga_ram_size,
1385 const char *boot_device,
1386 const char *kernel_filename, const char *kernel_cmdline,
1387 const char *initrd_filename, const char *cpu_model)
1389 stellaris_init(kernel_filename, cpu_model, &stellaris_boards[1]);
1392 QEMUMachine lm3s811evb_machine = {
1393 .name = "lm3s811evb",
1394 .desc = "Stellaris LM3S811EVB",
1395 .init = lm3s811evb_init,
1398 QEMUMachine lm3s6965evb_machine = {
1399 .name = "lm3s6965evb",
1400 .desc = "Stellaris LM3S6965EVB",
1401 .init = lm3s6965evb_init,