build system: silent generation of doc files and qemu-options.h (Jan Kiszka)
[qemu-kvm/fedora.git] / hw / slavio_intctl.c
blob9ee5ff89b0118d6639409122828cb55c301225d6
1 /*
2 * QEMU Sparc SLAVIO interrupt controller emulation
4 * Copyright (c) 2003-2005 Fabrice Bellard
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
24 #include "hw.h"
25 #include "sun4m.h"
26 #include "monitor.h"
28 //#define DEBUG_IRQ_COUNT
29 //#define DEBUG_IRQ
31 #ifdef DEBUG_IRQ
32 #define DPRINTF(fmt, args...) \
33 do { printf("IRQ: " fmt , ##args); } while (0)
34 #else
35 #define DPRINTF(fmt, args...)
36 #endif
39 * Registers of interrupt controller in sun4m.
41 * This is the interrupt controller part of chip STP2001 (Slave I/O), also
42 * produced as NCR89C105. See
43 * http://www.ibiblio.org/pub/historic-linux/early-ports/Sparc/NCR/NCR89C105.txt
45 * There is a system master controller and one for each cpu.
49 #define MAX_CPUS 16
50 #define MAX_PILS 16
52 struct SLAVIO_CPUINTCTLState;
54 typedef struct SLAVIO_INTCTLState {
55 uint32_t intregm_pending;
56 uint32_t intregm_disabled;
57 uint32_t target_cpu;
58 #ifdef DEBUG_IRQ_COUNT
59 uint64_t irq_count[32];
60 #endif
61 qemu_irq *cpu_irqs[MAX_CPUS];
62 const uint32_t *intbit_to_level;
63 uint32_t cputimer_lbit, cputimer_mbit;
64 uint32_t pil_out[MAX_CPUS];
65 struct SLAVIO_CPUINTCTLState *slaves[MAX_CPUS];
66 } SLAVIO_INTCTLState;
68 typedef struct SLAVIO_CPUINTCTLState {
69 uint32_t intreg_pending;
70 SLAVIO_INTCTLState *master;
71 uint32_t cpu;
72 } SLAVIO_CPUINTCTLState;
74 #define INTCTL_MAXADDR 0xf
75 #define INTCTL_SIZE (INTCTL_MAXADDR + 1)
76 #define INTCTLM_SIZE 0x14
77 #define MASTER_IRQ_MASK ~0x0fa2007f
78 #define MASTER_DISABLE 0x80000000
79 #define CPU_SOFTIRQ_MASK 0xfffe0000
80 #define CPU_IRQ_INT15_IN 0x0004000
81 #define CPU_IRQ_INT15_MASK 0x80000000
83 static void slavio_check_interrupts(SLAVIO_INTCTLState *s);
85 // per-cpu interrupt controller
86 static uint32_t slavio_intctl_mem_readl(void *opaque, target_phys_addr_t addr)
88 SLAVIO_CPUINTCTLState *s = opaque;
89 uint32_t saddr, ret;
91 saddr = addr >> 2;
92 switch (saddr) {
93 case 0:
94 ret = s->intreg_pending;
95 break;
96 default:
97 ret = 0;
98 break;
100 DPRINTF("read cpu %d reg 0x" TARGET_FMT_plx " = %x\n", s->cpu, addr, ret);
102 return ret;
105 static void slavio_intctl_mem_writel(void *opaque, target_phys_addr_t addr,
106 uint32_t val)
108 SLAVIO_CPUINTCTLState *s = opaque;
109 uint32_t saddr;
111 saddr = addr >> 2;
112 DPRINTF("write cpu %d reg 0x" TARGET_FMT_plx " = %x\n", s->cpu, addr, val);
113 switch (saddr) {
114 case 1: // clear pending softints
115 if (val & CPU_IRQ_INT15_IN)
116 val |= CPU_IRQ_INT15_MASK;
117 val &= CPU_SOFTIRQ_MASK;
118 s->intreg_pending &= ~val;
119 slavio_check_interrupts(s->master);
120 DPRINTF("Cleared cpu %d irq mask %x, curmask %x\n", s->cpu, val,
121 s->intreg_pending);
122 break;
123 case 2: // set softint
124 val &= CPU_SOFTIRQ_MASK;
125 s->intreg_pending |= val;
126 slavio_check_interrupts(s->master);
127 DPRINTF("Set cpu %d irq mask %x, curmask %x\n", s->cpu, val,
128 s->intreg_pending);
129 break;
130 default:
131 break;
135 static CPUReadMemoryFunc *slavio_intctl_mem_read[3] = {
136 NULL,
137 NULL,
138 slavio_intctl_mem_readl,
141 static CPUWriteMemoryFunc *slavio_intctl_mem_write[3] = {
142 NULL,
143 NULL,
144 slavio_intctl_mem_writel,
147 // master system interrupt controller
148 static uint32_t slavio_intctlm_mem_readl(void *opaque, target_phys_addr_t addr)
150 SLAVIO_INTCTLState *s = opaque;
151 uint32_t saddr, ret;
153 saddr = addr >> 2;
154 switch (saddr) {
155 case 0:
156 ret = s->intregm_pending & ~MASTER_DISABLE;
157 break;
158 case 1:
159 ret = s->intregm_disabled & MASTER_IRQ_MASK;
160 break;
161 case 4:
162 ret = s->target_cpu;
163 break;
164 default:
165 ret = 0;
166 break;
168 DPRINTF("read system reg 0x" TARGET_FMT_plx " = %x\n", addr, ret);
170 return ret;
173 static void slavio_intctlm_mem_writel(void *opaque, target_phys_addr_t addr,
174 uint32_t val)
176 SLAVIO_INTCTLState *s = opaque;
177 uint32_t saddr;
179 saddr = addr >> 2;
180 DPRINTF("write system reg 0x" TARGET_FMT_plx " = %x\n", addr, val);
181 switch (saddr) {
182 case 2: // clear (enable)
183 // Force clear unused bits
184 val &= MASTER_IRQ_MASK;
185 s->intregm_disabled &= ~val;
186 DPRINTF("Enabled master irq mask %x, curmask %x\n", val,
187 s->intregm_disabled);
188 slavio_check_interrupts(s);
189 break;
190 case 3: // set (disable, clear pending)
191 // Force clear unused bits
192 val &= MASTER_IRQ_MASK;
193 s->intregm_disabled |= val;
194 s->intregm_pending &= ~val;
195 slavio_check_interrupts(s);
196 DPRINTF("Disabled master irq mask %x, curmask %x\n", val,
197 s->intregm_disabled);
198 break;
199 case 4:
200 s->target_cpu = val & (MAX_CPUS - 1);
201 slavio_check_interrupts(s);
202 DPRINTF("Set master irq cpu %d\n", s->target_cpu);
203 break;
204 default:
205 break;
209 static CPUReadMemoryFunc *slavio_intctlm_mem_read[3] = {
210 NULL,
211 NULL,
212 slavio_intctlm_mem_readl,
215 static CPUWriteMemoryFunc *slavio_intctlm_mem_write[3] = {
216 NULL,
217 NULL,
218 slavio_intctlm_mem_writel,
221 void slavio_pic_info(Monitor *mon, void *opaque)
223 SLAVIO_INTCTLState *s = opaque;
224 int i;
226 for (i = 0; i < MAX_CPUS; i++) {
227 monitor_printf(mon, "per-cpu %d: pending 0x%08x\n", i,
228 s->slaves[i]->intreg_pending);
230 monitor_printf(mon, "master: pending 0x%08x, disabled 0x%08x\n",
231 s->intregm_pending, s->intregm_disabled);
234 void slavio_irq_info(Monitor *mon, void *opaque)
236 #ifndef DEBUG_IRQ_COUNT
237 monitor_printf(mon, "irq statistic code not compiled.\n");
238 #else
239 SLAVIO_INTCTLState *s = opaque;
240 int i;
241 int64_t count;
243 monitor_printf(mon, "IRQ statistics:\n");
244 for (i = 0; i < 32; i++) {
245 count = s->irq_count[i];
246 if (count > 0)
247 monitor_printf(mon, "%2d: %" PRId64 "\n", i, count);
249 #endif
252 static void slavio_check_interrupts(SLAVIO_INTCTLState *s)
254 uint32_t pending = s->intregm_pending, pil_pending;
255 unsigned int i, j;
257 pending &= ~s->intregm_disabled;
259 DPRINTF("pending %x disabled %x\n", pending, s->intregm_disabled);
260 for (i = 0; i < MAX_CPUS; i++) {
261 pil_pending = 0;
262 if (pending && !(s->intregm_disabled & MASTER_DISABLE) &&
263 (i == s->target_cpu)) {
264 for (j = 0; j < 32; j++) {
265 if (pending & (1 << j))
266 pil_pending |= 1 << s->intbit_to_level[j];
269 pil_pending |= (s->slaves[i]->intreg_pending & CPU_SOFTIRQ_MASK) >> 16;
271 for (j = 0; j < MAX_PILS; j++) {
272 if (pil_pending & (1 << j)) {
273 if (!(s->pil_out[i] & (1 << j)))
274 qemu_irq_raise(s->cpu_irqs[i][j]);
275 } else {
276 if (s->pil_out[i] & (1 << j))
277 qemu_irq_lower(s->cpu_irqs[i][j]);
280 s->pil_out[i] = pil_pending;
285 * "irq" here is the bit number in the system interrupt register to
286 * separate serial and keyboard interrupts sharing a level.
288 static void slavio_set_irq(void *opaque, int irq, int level)
290 SLAVIO_INTCTLState *s = opaque;
291 uint32_t mask = 1 << irq;
292 uint32_t pil = s->intbit_to_level[irq];
294 DPRINTF("Set cpu %d irq %d -> pil %d level %d\n", s->target_cpu, irq, pil,
295 level);
296 if (pil > 0) {
297 if (level) {
298 #ifdef DEBUG_IRQ_COUNT
299 s->irq_count[pil]++;
300 #endif
301 s->intregm_pending |= mask;
302 s->slaves[s->target_cpu]->intreg_pending |= 1 << pil;
303 } else {
304 s->intregm_pending &= ~mask;
305 s->slaves[s->target_cpu]->intreg_pending &= ~(1 << pil);
307 slavio_check_interrupts(s);
311 static void slavio_set_timer_irq_cpu(void *opaque, int cpu, int level)
313 SLAVIO_INTCTLState *s = opaque;
315 DPRINTF("Set cpu %d local timer level %d\n", cpu, level);
317 if (level) {
318 s->intregm_pending |= s->cputimer_mbit;
319 s->slaves[cpu]->intreg_pending |= s->cputimer_lbit;
320 } else {
321 s->intregm_pending &= ~s->cputimer_mbit;
322 s->slaves[cpu]->intreg_pending &= ~s->cputimer_lbit;
325 slavio_check_interrupts(s);
328 static void slavio_intctl_save(QEMUFile *f, void *opaque)
330 SLAVIO_INTCTLState *s = opaque;
331 int i;
333 for (i = 0; i < MAX_CPUS; i++) {
334 qemu_put_be32s(f, &s->slaves[i]->intreg_pending);
336 qemu_put_be32s(f, &s->intregm_pending);
337 qemu_put_be32s(f, &s->intregm_disabled);
338 qemu_put_be32s(f, &s->target_cpu);
341 static int slavio_intctl_load(QEMUFile *f, void *opaque, int version_id)
343 SLAVIO_INTCTLState *s = opaque;
344 int i;
346 if (version_id != 1)
347 return -EINVAL;
349 for (i = 0; i < MAX_CPUS; i++) {
350 qemu_get_be32s(f, &s->slaves[i]->intreg_pending);
352 qemu_get_be32s(f, &s->intregm_pending);
353 qemu_get_be32s(f, &s->intregm_disabled);
354 qemu_get_be32s(f, &s->target_cpu);
355 slavio_check_interrupts(s);
356 return 0;
359 static void slavio_intctl_reset(void *opaque)
361 SLAVIO_INTCTLState *s = opaque;
362 int i;
364 for (i = 0; i < MAX_CPUS; i++) {
365 s->slaves[i]->intreg_pending = 0;
367 s->intregm_disabled = ~MASTER_IRQ_MASK;
368 s->intregm_pending = 0;
369 s->target_cpu = 0;
370 slavio_check_interrupts(s);
373 void *slavio_intctl_init(target_phys_addr_t addr, target_phys_addr_t addrg,
374 const uint32_t *intbit_to_level,
375 qemu_irq **irq, qemu_irq **cpu_irq,
376 qemu_irq **parent_irq, unsigned int cputimer)
378 int slavio_intctl_io_memory, slavio_intctlm_io_memory, i;
379 SLAVIO_INTCTLState *s;
380 SLAVIO_CPUINTCTLState *slave;
382 s = qemu_mallocz(sizeof(SLAVIO_INTCTLState));
384 s->intbit_to_level = intbit_to_level;
385 for (i = 0; i < MAX_CPUS; i++) {
386 slave = qemu_mallocz(sizeof(SLAVIO_CPUINTCTLState));
388 slave->cpu = i;
389 slave->master = s;
391 slavio_intctl_io_memory = cpu_register_io_memory(0,
392 slavio_intctl_mem_read,
393 slavio_intctl_mem_write,
394 slave);
395 cpu_register_physical_memory(addr + i * TARGET_PAGE_SIZE, INTCTL_SIZE,
396 slavio_intctl_io_memory);
398 s->slaves[i] = slave;
399 s->cpu_irqs[i] = parent_irq[i];
402 slavio_intctlm_io_memory = cpu_register_io_memory(0,
403 slavio_intctlm_mem_read,
404 slavio_intctlm_mem_write,
406 cpu_register_physical_memory(addrg, INTCTLM_SIZE, slavio_intctlm_io_memory);
408 register_savevm("slavio_intctl", addr, 1, slavio_intctl_save,
409 slavio_intctl_load, s);
410 qemu_register_reset(slavio_intctl_reset, s);
411 *irq = qemu_allocate_irqs(slavio_set_irq, s, 32);
413 *cpu_irq = qemu_allocate_irqs(slavio_set_timer_irq_cpu, s, MAX_CPUS);
414 s->cputimer_mbit = 1 << cputimer;
415 s->cputimer_lbit = 1 << intbit_to_level[cputimer];
416 slavio_intctl_reset(s);
417 return s;