Add fd_readv handler to tap
[qemu-kvm/fedora.git] / vl.c
blob7900b7674868edf959ce7b2713d4b0ad897d74cd
1 /*
2 * QEMU System Emulator
4 * Copyright (c) 2003-2008 Fabrice Bellard
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
24 #include "hw/hw.h"
25 #include "hw/boards.h"
26 #include "hw/usb.h"
27 #include "hw/pcmcia.h"
28 #include "hw/pc.h"
29 #include "hw/audiodev.h"
30 #include "hw/isa.h"
31 #include "hw/baum.h"
32 #include "net.h"
33 #include "console.h"
34 #include "sysemu.h"
35 #include "gdbstub.h"
36 #include "qemu-timer.h"
37 #include "qemu-char.h"
38 #include "block.h"
39 #include "audio/audio.h"
40 #include "migration.h"
41 #include "qemu-kvm.h"
43 #include <unistd.h>
44 #include <fcntl.h>
45 #include <signal.h>
46 #include <time.h>
47 #include <errno.h>
48 #include <sys/time.h>
49 #include <zlib.h>
51 #ifndef _WIN32
52 #include <sys/times.h>
53 #include <sys/wait.h>
54 #include <termios.h>
55 #include <sys/poll.h>
56 #include <sys/mman.h>
57 #include <sys/ioctl.h>
58 #include <sys/socket.h>
59 #include <netinet/in.h>
60 #include <dirent.h>
61 #include <netdb.h>
62 #include <sys/select.h>
63 #include <arpa/inet.h>
64 #ifdef _BSD
65 #include <sys/stat.h>
66 #ifndef __APPLE__
67 #include <libutil.h>
68 #endif
69 #elif defined (__GLIBC__) && defined (__FreeBSD_kernel__)
70 #include <freebsd/stdlib.h>
71 #else
72 #ifndef __sun__
73 #include <linux/if.h>
74 #include <linux/if_tun.h>
75 #include <pty.h>
76 #include <malloc.h>
77 #include <linux/rtc.h>
79 /* For the benefit of older linux systems which don't supply it,
80 we use a local copy of hpet.h. */
81 /* #include <linux/hpet.h> */
82 #include "hpet.h"
84 #include <linux/ppdev.h>
85 #include <linux/parport.h>
86 #else
87 #include <sys/stat.h>
88 #include <sys/ethernet.h>
89 #include <sys/sockio.h>
90 #include <netinet/arp.h>
91 #include <netinet/in.h>
92 #include <netinet/in_systm.h>
93 #include <netinet/ip.h>
94 #include <netinet/ip_icmp.h> // must come after ip.h
95 #include <netinet/udp.h>
96 #include <netinet/tcp.h>
97 #include <net/if.h>
98 #include <syslog.h>
99 #include <stropts.h>
100 #endif
101 #endif
102 #else
103 #include <winsock2.h>
104 int inet_aton(const char *cp, struct in_addr *ia);
105 #endif
107 #if defined(CONFIG_SLIRP)
108 #include "libslirp.h"
109 #endif
111 #ifdef _WIN32
112 #include <malloc.h>
113 #include <sys/timeb.h>
114 #include <mmsystem.h>
115 #define getopt_long_only getopt_long
116 #define memalign(align, size) malloc(size)
117 #endif
119 #include "qemu_socket.h"
121 #ifdef CONFIG_SDL
122 #ifdef __APPLE__
123 #include <SDL/SDL.h>
124 #endif
125 #endif /* CONFIG_SDL */
127 #ifdef CONFIG_COCOA
128 #undef main
129 #define main qemu_main
130 #endif /* CONFIG_COCOA */
132 #include "disas.h"
134 #include "exec-all.h"
136 #include "qemu-kvm.h"
138 #define DEFAULT_NETWORK_SCRIPT "/etc/qemu-ifup"
139 #define DEFAULT_NETWORK_DOWN_SCRIPT "/etc/qemu-ifdown"
140 #ifdef __sun__
141 #define SMBD_COMMAND "/usr/sfw/sbin/smbd"
142 #else
143 #define SMBD_COMMAND "/usr/sbin/smbd"
144 #endif
146 //#define DEBUG_UNUSED_IOPORT
147 //#define DEBUG_IOPORT
149 #ifdef TARGET_PPC
150 #define DEFAULT_RAM_SIZE 144
151 #else
152 #define DEFAULT_RAM_SIZE 128
153 #endif
154 /* in ms */
155 #define GUI_REFRESH_INTERVAL 30
157 /* Max number of USB devices that can be specified on the commandline. */
158 #define MAX_USB_CMDLINE 8
160 /* XXX: use a two level table to limit memory usage */
161 #define MAX_IOPORTS 65536
163 const char *bios_dir = CONFIG_QEMU_SHAREDIR;
164 const char *bios_name = NULL;
165 void *ioport_opaque[MAX_IOPORTS];
166 IOPortReadFunc *ioport_read_table[3][MAX_IOPORTS];
167 IOPortWriteFunc *ioport_write_table[3][MAX_IOPORTS];
168 /* Note: drives_table[MAX_DRIVES] is a dummy block driver if none available
169 to store the VM snapshots */
170 DriveInfo drives_table[MAX_DRIVES+1];
171 int nb_drives;
172 int extboot_drive = -1;
173 /* point to the block driver where the snapshots are managed */
174 BlockDriverState *bs_snapshots;
175 int vga_ram_size;
176 static DisplayState display_state;
177 int nographic;
178 int curses;
179 const char* keyboard_layout = NULL;
180 int64_t ticks_per_sec;
181 ram_addr_t ram_size;
182 int pit_min_timer_count = 0;
183 int nb_nics;
184 NICInfo nd_table[MAX_NICS];
185 int vm_running;
186 static int rtc_utc = 1;
187 static int rtc_date_offset = -1; /* -1 means no change */
188 int cirrus_vga_enabled = 1;
189 int vmsvga_enabled = 0;
190 #ifdef TARGET_SPARC
191 int graphic_width = 1024;
192 int graphic_height = 768;
193 int graphic_depth = 8;
194 #else
195 int graphic_width = 800;
196 int graphic_height = 600;
197 int graphic_depth = 15;
198 #endif
199 int full_screen = 0;
200 int no_frame = 0;
201 int no_quit = 0;
202 int balloon_used = 0;
203 CharDriverState *vmchannel_hds[MAX_VMCHANNEL_DEVICES];
204 CharDriverState *serial_hds[MAX_SERIAL_PORTS];
205 CharDriverState *parallel_hds[MAX_PARALLEL_PORTS];
206 #ifdef TARGET_I386
207 int win2k_install_hack = 0;
208 #endif
209 int usb_enabled = 0;
210 static VLANState *first_vlan;
211 int smp_cpus = 1;
212 const char *vnc_display;
213 #if defined(TARGET_SPARC)
214 #define MAX_CPUS 16
215 #elif defined(TARGET_I386)
216 #define MAX_CPUS 255
217 #elif defined(TARGET_IA64)
218 #define MAX_CPUS 4
219 #else
220 #define MAX_CPUS 1
221 #endif
222 int acpi_enabled = 1;
223 int fd_bootchk = 1;
224 int no_reboot = 0;
225 int no_shutdown = 0;
226 int cursor_hide = 1;
227 int graphic_rotate = 0;
228 int daemonize = 0;
229 const char *incoming;
230 const char *option_rom[MAX_OPTION_ROMS];
231 int nb_option_roms;
232 int semihosting_enabled = 0;
233 int autostart = 1;
234 int time_drift_fix = 0;
235 unsigned int kvm_shadow_memory = 0;
236 const char *mem_path = NULL;
237 int hpagesize = 0;
238 const char *cpu_vendor_string;
239 #ifdef TARGET_ARM
240 int old_param = 0;
241 #endif
242 const char *qemu_name;
243 int alt_grab = 0;
244 #ifdef TARGET_SPARC
245 unsigned int nb_prom_envs = 0;
246 const char *prom_envs[MAX_PROM_ENVS];
247 #endif
248 int nb_drives_opt;
249 struct drive_opt drives_opt[MAX_DRIVES];
251 static CPUState *cur_cpu;
252 static CPUState *next_cpu;
253 static int event_pending = 1;
255 #define TFR(expr) do { if ((expr) != -1) break; } while (errno == EINTR)
257 /* KVM runs the main loop in a separate thread. If we update one of the lists
258 * that are polled before or after select(), we need to make sure to break out
259 * of the select() to ensure the new item is serviced.
261 static void main_loop_break(void)
263 if (kvm_enabled())
264 qemu_kvm_notify_work();
267 void decorate_application_name(char *appname, int max_len)
269 if (kvm_enabled())
271 int remain = max_len - strlen(appname) - 1;
273 if (remain > 0)
274 strncat(appname, "/KVM", remain);
278 /***********************************************************/
279 /* x86 ISA bus support */
281 target_phys_addr_t isa_mem_base = 0;
282 PicState2 *isa_pic;
284 static uint32_t default_ioport_readb(void *opaque, uint32_t address)
286 #ifdef DEBUG_UNUSED_IOPORT
287 fprintf(stderr, "unused inb: port=0x%04x\n", address);
288 #endif
289 return 0xff;
292 static void default_ioport_writeb(void *opaque, uint32_t address, uint32_t data)
294 #ifdef DEBUG_UNUSED_IOPORT
295 fprintf(stderr, "unused outb: port=0x%04x data=0x%02x\n", address, data);
296 #endif
299 /* default is to make two byte accesses */
300 static uint32_t default_ioport_readw(void *opaque, uint32_t address)
302 uint32_t data;
303 data = ioport_read_table[0][address](ioport_opaque[address], address);
304 address = (address + 1) & (MAX_IOPORTS - 1);
305 data |= ioport_read_table[0][address](ioport_opaque[address], address) << 8;
306 return data;
309 static void default_ioport_writew(void *opaque, uint32_t address, uint32_t data)
311 ioport_write_table[0][address](ioport_opaque[address], address, data & 0xff);
312 address = (address + 1) & (MAX_IOPORTS - 1);
313 ioport_write_table[0][address](ioport_opaque[address], address, (data >> 8) & 0xff);
316 static uint32_t default_ioport_readl(void *opaque, uint32_t address)
318 #ifdef DEBUG_UNUSED_IOPORT
319 fprintf(stderr, "unused inl: port=0x%04x\n", address);
320 #endif
321 return 0xffffffff;
324 static void default_ioport_writel(void *opaque, uint32_t address, uint32_t data)
326 #ifdef DEBUG_UNUSED_IOPORT
327 fprintf(stderr, "unused outl: port=0x%04x data=0x%02x\n", address, data);
328 #endif
331 static void init_ioports(void)
333 int i;
335 for(i = 0; i < MAX_IOPORTS; i++) {
336 ioport_read_table[0][i] = default_ioport_readb;
337 ioport_write_table[0][i] = default_ioport_writeb;
338 ioport_read_table[1][i] = default_ioport_readw;
339 ioport_write_table[1][i] = default_ioport_writew;
340 ioport_read_table[2][i] = default_ioport_readl;
341 ioport_write_table[2][i] = default_ioport_writel;
345 /* size is the word size in byte */
346 int register_ioport_read(int start, int length, int size,
347 IOPortReadFunc *func, void *opaque)
349 int i, bsize;
351 if (size == 1) {
352 bsize = 0;
353 } else if (size == 2) {
354 bsize = 1;
355 } else if (size == 4) {
356 bsize = 2;
357 } else {
358 hw_error("register_ioport_read: invalid size");
359 return -1;
361 for(i = start; i < start + length; i += size) {
362 ioport_read_table[bsize][i] = func;
363 if (ioport_opaque[i] != NULL && ioport_opaque[i] != opaque)
364 hw_error("register_ioport_read: invalid opaque");
365 ioport_opaque[i] = opaque;
367 return 0;
370 /* size is the word size in byte */
371 int register_ioport_write(int start, int length, int size,
372 IOPortWriteFunc *func, void *opaque)
374 int i, bsize;
376 if (size == 1) {
377 bsize = 0;
378 } else if (size == 2) {
379 bsize = 1;
380 } else if (size == 4) {
381 bsize = 2;
382 } else {
383 hw_error("register_ioport_write: invalid size");
384 return -1;
386 for(i = start; i < start + length; i += size) {
387 ioport_write_table[bsize][i] = func;
388 if (ioport_opaque[i] != NULL && ioport_opaque[i] != opaque)
389 hw_error("register_ioport_write: invalid opaque");
390 ioport_opaque[i] = opaque;
392 return 0;
395 void isa_unassign_ioport(int start, int length)
397 int i;
399 for(i = start; i < start + length; i++) {
400 ioport_read_table[0][i] = default_ioport_readb;
401 ioport_read_table[1][i] = default_ioport_readw;
402 ioport_read_table[2][i] = default_ioport_readl;
404 ioport_write_table[0][i] = default_ioport_writeb;
405 ioport_write_table[1][i] = default_ioport_writew;
406 ioport_write_table[2][i] = default_ioport_writel;
408 ioport_opaque[i] = NULL;
412 /***********************************************************/
414 void cpu_outb(CPUState *env, int addr, int val)
416 #ifdef DEBUG_IOPORT
417 if (loglevel & CPU_LOG_IOPORT)
418 fprintf(logfile, "outb: %04x %02x\n", addr, val);
419 #endif
420 ioport_write_table[0][addr](ioport_opaque[addr], addr, val);
421 #ifdef USE_KQEMU
422 if (env)
423 env->last_io_time = cpu_get_time_fast();
424 #endif
427 void cpu_outw(CPUState *env, int addr, int val)
429 #ifdef DEBUG_IOPORT
430 if (loglevel & CPU_LOG_IOPORT)
431 fprintf(logfile, "outw: %04x %04x\n", addr, val);
432 #endif
433 ioport_write_table[1][addr](ioport_opaque[addr], addr, val);
434 #ifdef USE_KQEMU
435 if (env)
436 env->last_io_time = cpu_get_time_fast();
437 #endif
440 void cpu_outl(CPUState *env, int addr, int val)
442 #ifdef DEBUG_IOPORT
443 if (loglevel & CPU_LOG_IOPORT)
444 fprintf(logfile, "outl: %04x %08x\n", addr, val);
445 #endif
446 ioport_write_table[2][addr](ioport_opaque[addr], addr, val);
447 #ifdef USE_KQEMU
448 if (env)
449 env->last_io_time = cpu_get_time_fast();
450 #endif
453 int cpu_inb(CPUState *env, int addr)
455 int val;
456 val = ioport_read_table[0][addr](ioport_opaque[addr], addr);
457 #ifdef DEBUG_IOPORT
458 if (loglevel & CPU_LOG_IOPORT)
459 fprintf(logfile, "inb : %04x %02x\n", addr, val);
460 #endif
461 #ifdef USE_KQEMU
462 if (env)
463 env->last_io_time = cpu_get_time_fast();
464 #endif
465 return val;
468 int cpu_inw(CPUState *env, int addr)
470 int val;
471 val = ioport_read_table[1][addr](ioport_opaque[addr], addr);
472 #ifdef DEBUG_IOPORT
473 if (loglevel & CPU_LOG_IOPORT)
474 fprintf(logfile, "inw : %04x %04x\n", addr, val);
475 #endif
476 #ifdef USE_KQEMU
477 if (env)
478 env->last_io_time = cpu_get_time_fast();
479 #endif
480 return val;
483 int cpu_inl(CPUState *env, int addr)
485 int val;
486 val = ioport_read_table[2][addr](ioport_opaque[addr], addr);
487 #ifdef DEBUG_IOPORT
488 if (loglevel & CPU_LOG_IOPORT)
489 fprintf(logfile, "inl : %04x %08x\n", addr, val);
490 #endif
491 #ifdef USE_KQEMU
492 if (env)
493 env->last_io_time = cpu_get_time_fast();
494 #endif
495 return val;
498 /***********************************************************/
499 void hw_error(const char *fmt, ...)
501 va_list ap;
502 CPUState *env;
504 va_start(ap, fmt);
505 fprintf(stderr, "qemu: hardware error: ");
506 vfprintf(stderr, fmt, ap);
507 fprintf(stderr, "\n");
508 for(env = first_cpu; env != NULL; env = env->next_cpu) {
509 fprintf(stderr, "CPU #%d:\n", env->cpu_index);
510 #ifdef TARGET_I386
511 cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU);
512 #else
513 cpu_dump_state(env, stderr, fprintf, 0);
514 #endif
516 va_end(ap);
517 abort();
520 /***********************************************************/
521 /* keyboard/mouse */
523 static QEMUPutKBDEvent *qemu_put_kbd_event;
524 static void *qemu_put_kbd_event_opaque;
525 static QEMUPutMouseEntry *qemu_put_mouse_event_head;
526 static QEMUPutMouseEntry *qemu_put_mouse_event_current;
528 void qemu_add_kbd_event_handler(QEMUPutKBDEvent *func, void *opaque)
530 qemu_put_kbd_event_opaque = opaque;
531 qemu_put_kbd_event = func;
534 QEMUPutMouseEntry *qemu_add_mouse_event_handler(QEMUPutMouseEvent *func,
535 void *opaque, int absolute,
536 const char *name)
538 QEMUPutMouseEntry *s, *cursor;
540 s = qemu_mallocz(sizeof(QEMUPutMouseEntry));
541 if (!s)
542 return NULL;
544 s->qemu_put_mouse_event = func;
545 s->qemu_put_mouse_event_opaque = opaque;
546 s->qemu_put_mouse_event_absolute = absolute;
547 s->qemu_put_mouse_event_name = qemu_strdup(name);
548 s->next = NULL;
550 if (!qemu_put_mouse_event_head) {
551 qemu_put_mouse_event_head = qemu_put_mouse_event_current = s;
552 return s;
555 cursor = qemu_put_mouse_event_head;
556 while (cursor->next != NULL)
557 cursor = cursor->next;
559 cursor->next = s;
560 qemu_put_mouse_event_current = s;
562 return s;
565 void qemu_remove_mouse_event_handler(QEMUPutMouseEntry *entry)
567 QEMUPutMouseEntry *prev = NULL, *cursor;
569 if (!qemu_put_mouse_event_head || entry == NULL)
570 return;
572 cursor = qemu_put_mouse_event_head;
573 while (cursor != NULL && cursor != entry) {
574 prev = cursor;
575 cursor = cursor->next;
578 if (cursor == NULL) // does not exist or list empty
579 return;
580 else if (prev == NULL) { // entry is head
581 qemu_put_mouse_event_head = cursor->next;
582 if (qemu_put_mouse_event_current == entry)
583 qemu_put_mouse_event_current = cursor->next;
584 qemu_free(entry->qemu_put_mouse_event_name);
585 qemu_free(entry);
586 return;
589 prev->next = entry->next;
591 if (qemu_put_mouse_event_current == entry)
592 qemu_put_mouse_event_current = prev;
594 qemu_free(entry->qemu_put_mouse_event_name);
595 qemu_free(entry);
598 void kbd_put_keycode(int keycode)
600 if (qemu_put_kbd_event) {
601 qemu_put_kbd_event(qemu_put_kbd_event_opaque, keycode);
605 void kbd_mouse_event(int dx, int dy, int dz, int buttons_state)
607 QEMUPutMouseEvent *mouse_event;
608 void *mouse_event_opaque;
609 int width;
611 if (!qemu_put_mouse_event_current) {
612 return;
615 mouse_event =
616 qemu_put_mouse_event_current->qemu_put_mouse_event;
617 mouse_event_opaque =
618 qemu_put_mouse_event_current->qemu_put_mouse_event_opaque;
620 if (mouse_event) {
621 if (graphic_rotate) {
622 if (qemu_put_mouse_event_current->qemu_put_mouse_event_absolute)
623 width = 0x7fff;
624 else
625 width = graphic_width - 1;
626 mouse_event(mouse_event_opaque,
627 width - dy, dx, dz, buttons_state);
628 } else
629 mouse_event(mouse_event_opaque,
630 dx, dy, dz, buttons_state);
634 int kbd_mouse_is_absolute(void)
636 if (!qemu_put_mouse_event_current)
637 return 0;
639 return qemu_put_mouse_event_current->qemu_put_mouse_event_absolute;
642 void do_info_mice(void)
644 QEMUPutMouseEntry *cursor;
645 int index = 0;
647 if (!qemu_put_mouse_event_head) {
648 term_printf("No mouse devices connected\n");
649 return;
652 term_printf("Mouse devices available:\n");
653 cursor = qemu_put_mouse_event_head;
654 while (cursor != NULL) {
655 term_printf("%c Mouse #%d: %s\n",
656 (cursor == qemu_put_mouse_event_current ? '*' : ' '),
657 index, cursor->qemu_put_mouse_event_name);
658 index++;
659 cursor = cursor->next;
663 void do_mouse_set(int index)
665 QEMUPutMouseEntry *cursor;
666 int i = 0;
668 if (!qemu_put_mouse_event_head) {
669 term_printf("No mouse devices connected\n");
670 return;
673 cursor = qemu_put_mouse_event_head;
674 while (cursor != NULL && index != i) {
675 i++;
676 cursor = cursor->next;
679 if (cursor != NULL)
680 qemu_put_mouse_event_current = cursor;
681 else
682 term_printf("Mouse at given index not found\n");
685 /* compute with 96 bit intermediate result: (a*b)/c */
686 uint64_t muldiv64(uint64_t a, uint32_t b, uint32_t c)
688 union {
689 uint64_t ll;
690 struct {
691 #ifdef WORDS_BIGENDIAN
692 uint32_t high, low;
693 #else
694 uint32_t low, high;
695 #endif
696 } l;
697 } u, res;
698 uint64_t rl, rh;
700 u.ll = a;
701 rl = (uint64_t)u.l.low * (uint64_t)b;
702 rh = (uint64_t)u.l.high * (uint64_t)b;
703 rh += (rl >> 32);
704 res.l.high = rh / c;
705 res.l.low = (((rh % c) << 32) + (rl & 0xffffffff)) / c;
706 return res.ll;
709 /***********************************************************/
710 /* real time host monotonic timer */
712 #define QEMU_TIMER_BASE 1000000000LL
714 #ifdef WIN32
716 static int64_t clock_freq;
718 static void init_get_clock(void)
720 LARGE_INTEGER freq;
721 int ret;
722 ret = QueryPerformanceFrequency(&freq);
723 if (ret == 0) {
724 fprintf(stderr, "Could not calibrate ticks\n");
725 exit(1);
727 clock_freq = freq.QuadPart;
730 static int64_t get_clock(void)
732 LARGE_INTEGER ti;
733 QueryPerformanceCounter(&ti);
734 return muldiv64(ti.QuadPart, QEMU_TIMER_BASE, clock_freq);
737 #else
739 static int use_rt_clock;
741 static void init_get_clock(void)
743 use_rt_clock = 0;
744 #if defined(__linux__)
746 struct timespec ts;
747 if (clock_gettime(CLOCK_MONOTONIC, &ts) == 0) {
748 use_rt_clock = 1;
751 #endif
754 static int64_t get_clock(void)
756 #if defined(__linux__)
757 if (use_rt_clock) {
758 struct timespec ts;
759 clock_gettime(CLOCK_MONOTONIC, &ts);
760 return ts.tv_sec * 1000000000LL + ts.tv_nsec;
761 } else
762 #endif
764 /* XXX: using gettimeofday leads to problems if the date
765 changes, so it should be avoided. */
766 struct timeval tv;
767 gettimeofday(&tv, NULL);
768 return tv.tv_sec * 1000000000LL + (tv.tv_usec * 1000);
772 #endif
774 /***********************************************************/
775 /* guest cycle counter */
777 static int64_t cpu_ticks_prev;
778 static int64_t cpu_ticks_offset;
779 static int64_t cpu_clock_offset;
780 static int cpu_ticks_enabled;
782 /* return the host CPU cycle counter and handle stop/restart */
783 int64_t cpu_get_ticks(void)
785 if (!cpu_ticks_enabled) {
786 return cpu_ticks_offset;
787 } else {
788 int64_t ticks;
789 ticks = cpu_get_real_ticks();
790 if (cpu_ticks_prev > ticks) {
791 /* Note: non increasing ticks may happen if the host uses
792 software suspend */
793 cpu_ticks_offset += cpu_ticks_prev - ticks;
795 cpu_ticks_prev = ticks;
796 return ticks + cpu_ticks_offset;
800 /* return the host CPU monotonic timer and handle stop/restart */
801 static int64_t cpu_get_clock(void)
803 int64_t ti;
804 if (!cpu_ticks_enabled) {
805 return cpu_clock_offset;
806 } else {
807 ti = get_clock();
808 return ti + cpu_clock_offset;
812 /* enable cpu_get_ticks() */
813 void cpu_enable_ticks(void)
815 if (!cpu_ticks_enabled) {
816 cpu_ticks_offset -= cpu_get_real_ticks();
817 cpu_clock_offset -= get_clock();
818 cpu_ticks_enabled = 1;
822 /* disable cpu_get_ticks() : the clock is stopped. You must not call
823 cpu_get_ticks() after that. */
824 void cpu_disable_ticks(void)
826 if (cpu_ticks_enabled) {
827 cpu_ticks_offset = cpu_get_ticks();
828 cpu_clock_offset = cpu_get_clock();
829 cpu_ticks_enabled = 0;
833 /***********************************************************/
834 /* timers */
836 #define QEMU_TIMER_REALTIME 0
837 #define QEMU_TIMER_VIRTUAL 1
839 struct QEMUClock {
840 int type;
841 /* XXX: add frequency */
844 struct QEMUTimer {
845 QEMUClock *clock;
846 int64_t expire_time;
847 QEMUTimerCB *cb;
848 void *opaque;
849 struct QEMUTimer *next;
852 struct qemu_alarm_timer {
853 char const *name;
854 unsigned int flags;
856 int (*start)(struct qemu_alarm_timer *t);
857 void (*stop)(struct qemu_alarm_timer *t);
858 void (*rearm)(struct qemu_alarm_timer *t);
859 void *priv;
862 #define ALARM_FLAG_DYNTICKS 0x1
863 #define ALARM_FLAG_EXPIRED 0x2
865 static inline int alarm_has_dynticks(struct qemu_alarm_timer *t)
867 return t->flags & ALARM_FLAG_DYNTICKS;
870 static void qemu_rearm_alarm_timer(struct qemu_alarm_timer *t)
872 if (!alarm_has_dynticks(t))
873 return;
875 t->rearm(t);
878 /* TODO: MIN_TIMER_REARM_US should be optimized */
879 #define MIN_TIMER_REARM_US 250
881 static struct qemu_alarm_timer *alarm_timer;
883 #ifdef _WIN32
885 struct qemu_alarm_win32 {
886 MMRESULT timerId;
887 HANDLE host_alarm;
888 unsigned int period;
889 } alarm_win32_data = {0, NULL, -1};
891 static int win32_start_timer(struct qemu_alarm_timer *t);
892 static void win32_stop_timer(struct qemu_alarm_timer *t);
893 static void win32_rearm_timer(struct qemu_alarm_timer *t);
895 #else
897 static int unix_start_timer(struct qemu_alarm_timer *t);
898 static void unix_stop_timer(struct qemu_alarm_timer *t);
900 #ifdef __linux__
902 static int dynticks_start_timer(struct qemu_alarm_timer *t);
903 static void dynticks_stop_timer(struct qemu_alarm_timer *t);
904 static void dynticks_rearm_timer(struct qemu_alarm_timer *t);
906 static int hpet_start_timer(struct qemu_alarm_timer *t);
907 static void hpet_stop_timer(struct qemu_alarm_timer *t);
909 static int rtc_start_timer(struct qemu_alarm_timer *t);
910 static void rtc_stop_timer(struct qemu_alarm_timer *t);
912 #endif /* __linux__ */
914 #endif /* _WIN32 */
916 static struct qemu_alarm_timer alarm_timers[] = {
917 #ifndef _WIN32
918 #ifdef __linux__
919 {"dynticks", ALARM_FLAG_DYNTICKS, dynticks_start_timer,
920 dynticks_stop_timer, dynticks_rearm_timer, NULL},
921 /* HPET - if available - is preferred */
922 {"hpet", 0, hpet_start_timer, hpet_stop_timer, NULL, NULL},
923 /* ...otherwise try RTC */
924 {"rtc", 0, rtc_start_timer, rtc_stop_timer, NULL, NULL},
925 #endif
926 {"unix", 0, unix_start_timer, unix_stop_timer, NULL, NULL},
927 #else
928 {"dynticks", ALARM_FLAG_DYNTICKS, win32_start_timer,
929 win32_stop_timer, win32_rearm_timer, &alarm_win32_data},
930 {"win32", 0, win32_start_timer,
931 win32_stop_timer, NULL, &alarm_win32_data},
932 #endif
933 {NULL, }
936 static void show_available_alarms(void)
938 int i;
940 printf("Available alarm timers, in order of precedence:\n");
941 for (i = 0; alarm_timers[i].name; i++)
942 printf("%s\n", alarm_timers[i].name);
945 static void configure_alarms(char const *opt)
947 int i;
948 int cur = 0;
949 int count = (sizeof(alarm_timers) / sizeof(*alarm_timers)) - 1;
950 char *arg;
951 char *name;
953 if (!strcmp(opt, "?")) {
954 show_available_alarms();
955 exit(0);
958 arg = strdup(opt);
960 /* Reorder the array */
961 name = strtok(arg, ",");
962 while (name) {
963 struct qemu_alarm_timer tmp;
965 for (i = 0; i < count && alarm_timers[i].name; i++) {
966 if (!strcmp(alarm_timers[i].name, name))
967 break;
970 if (i == count) {
971 fprintf(stderr, "Unknown clock %s\n", name);
972 goto next;
975 if (i < cur)
976 /* Ignore */
977 goto next;
979 /* Swap */
980 tmp = alarm_timers[i];
981 alarm_timers[i] = alarm_timers[cur];
982 alarm_timers[cur] = tmp;
984 cur++;
985 next:
986 name = strtok(NULL, ",");
989 free(arg);
991 if (cur) {
992 /* Disable remaining timers */
993 for (i = cur; i < count; i++)
994 alarm_timers[i].name = NULL;
995 } else {
996 show_available_alarms();
997 exit(1);
1001 QEMUClock *rt_clock;
1002 QEMUClock *vm_clock;
1004 static QEMUTimer *active_timers[2];
1006 static QEMUClock *qemu_new_clock(int type)
1008 QEMUClock *clock;
1009 clock = qemu_mallocz(sizeof(QEMUClock));
1010 if (!clock)
1011 return NULL;
1012 clock->type = type;
1013 return clock;
1016 QEMUTimer *qemu_new_timer(QEMUClock *clock, QEMUTimerCB *cb, void *opaque)
1018 QEMUTimer *ts;
1020 ts = qemu_mallocz(sizeof(QEMUTimer));
1021 ts->clock = clock;
1022 ts->cb = cb;
1023 ts->opaque = opaque;
1024 return ts;
1027 void qemu_free_timer(QEMUTimer *ts)
1029 qemu_free(ts);
1032 /* stop a timer, but do not dealloc it */
1033 void qemu_del_timer(QEMUTimer *ts)
1035 QEMUTimer **pt, *t;
1037 /* NOTE: this code must be signal safe because
1038 qemu_timer_expired() can be called from a signal. */
1039 pt = &active_timers[ts->clock->type];
1040 for(;;) {
1041 t = *pt;
1042 if (!t)
1043 break;
1044 if (t == ts) {
1045 *pt = t->next;
1046 break;
1048 pt = &t->next;
1052 /* modify the current timer so that it will be fired when current_time
1053 >= expire_time. The corresponding callback will be called. */
1054 void qemu_mod_timer(QEMUTimer *ts, int64_t expire_time)
1056 QEMUTimer **pt, *t;
1058 qemu_del_timer(ts);
1060 /* add the timer in the sorted list */
1061 /* NOTE: this code must be signal safe because
1062 qemu_timer_expired() can be called from a signal. */
1063 pt = &active_timers[ts->clock->type];
1064 for(;;) {
1065 t = *pt;
1066 if (!t)
1067 break;
1068 if (t->expire_time > expire_time)
1069 break;
1070 pt = &t->next;
1072 ts->expire_time = expire_time;
1073 ts->next = *pt;
1074 *pt = ts;
1076 /* Rearm if necessary */
1077 if ((alarm_timer->flags & ALARM_FLAG_EXPIRED) == 0 &&
1078 pt == &active_timers[ts->clock->type])
1079 qemu_rearm_alarm_timer(alarm_timer);
1082 int qemu_timer_pending(QEMUTimer *ts)
1084 QEMUTimer *t;
1085 for(t = active_timers[ts->clock->type]; t != NULL; t = t->next) {
1086 if (t == ts)
1087 return 1;
1089 return 0;
1092 static inline int qemu_timer_expired(QEMUTimer *timer_head, int64_t current_time)
1094 if (!timer_head)
1095 return 0;
1096 return (timer_head->expire_time <= current_time);
1099 static void qemu_run_timers(QEMUTimer **ptimer_head, int64_t current_time)
1101 QEMUTimer *ts;
1103 for(;;) {
1104 ts = *ptimer_head;
1105 if (!ts || ts->expire_time > current_time)
1106 break;
1107 /* remove timer from the list before calling the callback */
1108 *ptimer_head = ts->next;
1109 ts->next = NULL;
1111 /* run the callback (the timer list can be modified) */
1112 ts->cb(ts->opaque);
1116 int64_t qemu_get_clock(QEMUClock *clock)
1118 switch(clock->type) {
1119 case QEMU_TIMER_REALTIME:
1120 return get_clock() / 1000000;
1121 default:
1122 case QEMU_TIMER_VIRTUAL:
1123 return cpu_get_clock();
1127 static void init_timers(void)
1129 init_get_clock();
1130 ticks_per_sec = QEMU_TIMER_BASE;
1131 rt_clock = qemu_new_clock(QEMU_TIMER_REALTIME);
1132 vm_clock = qemu_new_clock(QEMU_TIMER_VIRTUAL);
1135 /* save a timer */
1136 void qemu_put_timer(QEMUFile *f, QEMUTimer *ts)
1138 uint64_t expire_time;
1140 if (qemu_timer_pending(ts)) {
1141 expire_time = ts->expire_time;
1142 } else {
1143 expire_time = -1;
1145 qemu_put_be64(f, expire_time);
1148 void qemu_get_timer(QEMUFile *f, QEMUTimer *ts)
1150 uint64_t expire_time;
1152 expire_time = qemu_get_be64(f);
1153 if (expire_time != -1) {
1154 qemu_mod_timer(ts, expire_time);
1155 } else {
1156 qemu_del_timer(ts);
1160 static void timer_save(QEMUFile *f, void *opaque)
1162 if (cpu_ticks_enabled) {
1163 hw_error("cannot save state if virtual timers are running");
1165 qemu_put_be64(f, cpu_ticks_offset);
1166 qemu_put_be64(f, ticks_per_sec);
1167 qemu_put_be64(f, cpu_clock_offset);
1170 static int timer_load(QEMUFile *f, void *opaque, int version_id)
1172 if (version_id != 1 && version_id != 2)
1173 return -EINVAL;
1174 if (cpu_ticks_enabled) {
1175 return -EINVAL;
1177 cpu_ticks_offset=qemu_get_be64(f);
1178 ticks_per_sec=qemu_get_be64(f);
1179 if (version_id == 2) {
1180 cpu_clock_offset=qemu_get_be64(f);
1182 return 0;
1185 #ifdef _WIN32
1186 void CALLBACK host_alarm_handler(UINT uTimerID, UINT uMsg,
1187 DWORD_PTR dwUser, DWORD_PTR dw1, DWORD_PTR dw2)
1188 #else
1189 static void host_alarm_handler(int host_signum)
1190 #endif
1192 #if 0
1193 #define DISP_FREQ 1000
1195 static int64_t delta_min = INT64_MAX;
1196 static int64_t delta_max, delta_cum, last_clock, delta, ti;
1197 static int count;
1198 ti = qemu_get_clock(vm_clock);
1199 if (last_clock != 0) {
1200 delta = ti - last_clock;
1201 if (delta < delta_min)
1202 delta_min = delta;
1203 if (delta > delta_max)
1204 delta_max = delta;
1205 delta_cum += delta;
1206 if (++count == DISP_FREQ) {
1207 printf("timer: min=%" PRId64 " us max=%" PRId64 " us avg=%" PRId64 " us avg_freq=%0.3f Hz\n",
1208 muldiv64(delta_min, 1000000, ticks_per_sec),
1209 muldiv64(delta_max, 1000000, ticks_per_sec),
1210 muldiv64(delta_cum, 1000000 / DISP_FREQ, ticks_per_sec),
1211 (double)ticks_per_sec / ((double)delta_cum / DISP_FREQ));
1212 count = 0;
1213 delta_min = INT64_MAX;
1214 delta_max = 0;
1215 delta_cum = 0;
1218 last_clock = ti;
1220 #endif
1221 if (1 ||
1222 alarm_has_dynticks(alarm_timer) ||
1223 qemu_timer_expired(active_timers[QEMU_TIMER_VIRTUAL],
1224 qemu_get_clock(vm_clock)) ||
1225 qemu_timer_expired(active_timers[QEMU_TIMER_REALTIME],
1226 qemu_get_clock(rt_clock))) {
1227 #ifdef _WIN32
1228 struct qemu_alarm_win32 *data = ((struct qemu_alarm_timer*)dwUser)->priv;
1229 SetEvent(data->host_alarm);
1230 #endif
1231 CPUState *env = next_cpu;
1233 alarm_timer->flags |= ALARM_FLAG_EXPIRED;
1235 if (env) {
1236 /* stop the currently executing cpu because a timer occured */
1237 cpu_interrupt(env, CPU_INTERRUPT_EXIT);
1238 #ifdef USE_KQEMU
1239 if (env->kqemu_enabled) {
1240 kqemu_cpu_interrupt(env);
1242 #endif
1244 event_pending = 1;
1248 static uint64_t qemu_next_deadline(void)
1250 int64_t nearest_delta_us = INT64_MAX;
1251 int64_t vmdelta_us;
1253 if (active_timers[QEMU_TIMER_REALTIME])
1254 nearest_delta_us = (active_timers[QEMU_TIMER_REALTIME]->expire_time -
1255 qemu_get_clock(rt_clock))*1000;
1257 if (active_timers[QEMU_TIMER_VIRTUAL]) {
1258 /* round up */
1259 vmdelta_us = (active_timers[QEMU_TIMER_VIRTUAL]->expire_time -
1260 qemu_get_clock(vm_clock)+999)/1000;
1261 if (vmdelta_us < nearest_delta_us)
1262 nearest_delta_us = vmdelta_us;
1265 /* Avoid arming the timer to negative, zero, or too low values */
1266 if (nearest_delta_us <= MIN_TIMER_REARM_US)
1267 nearest_delta_us = MIN_TIMER_REARM_US;
1269 return nearest_delta_us;
1272 #ifndef _WIN32
1274 #if defined(__linux__)
1276 #define RTC_FREQ 1024
1278 static void enable_sigio_timer(int fd)
1280 struct sigaction act;
1282 /* timer signal */
1283 sigfillset(&act.sa_mask);
1284 act.sa_flags = 0;
1285 act.sa_handler = host_alarm_handler;
1287 sigaction(SIGIO, &act, NULL);
1288 fcntl(fd, F_SETFL, O_ASYNC);
1289 fcntl(fd, F_SETOWN, getpid());
1292 static int hpet_start_timer(struct qemu_alarm_timer *t)
1294 struct hpet_info info;
1295 int r, fd;
1297 fd = open("/dev/hpet", O_RDONLY);
1298 if (fd < 0)
1299 return -1;
1301 /* Set frequency */
1302 r = ioctl(fd, HPET_IRQFREQ, RTC_FREQ);
1303 if (r < 0) {
1304 fprintf(stderr, "Could not configure '/dev/hpet' to have a 1024Hz timer. This is not a fatal\n"
1305 "error, but for better emulation accuracy type:\n"
1306 "'echo 1024 > /proc/sys/dev/hpet/max-user-freq' as root.\n");
1307 goto fail;
1310 /* Check capabilities */
1311 r = ioctl(fd, HPET_INFO, &info);
1312 if (r < 0)
1313 goto fail;
1315 /* Enable periodic mode */
1316 r = ioctl(fd, HPET_EPI, 0);
1317 if (info.hi_flags && (r < 0))
1318 goto fail;
1320 /* Enable interrupt */
1321 r = ioctl(fd, HPET_IE_ON, 0);
1322 if (r < 0)
1323 goto fail;
1325 enable_sigio_timer(fd);
1326 t->priv = (void *)(long)fd;
1328 return 0;
1329 fail:
1330 close(fd);
1331 return -1;
1334 static void hpet_stop_timer(struct qemu_alarm_timer *t)
1336 int fd = (long)t->priv;
1338 close(fd);
1341 static int rtc_start_timer(struct qemu_alarm_timer *t)
1343 int rtc_fd;
1344 unsigned long current_rtc_freq = 0;
1346 TFR(rtc_fd = open("/dev/rtc", O_RDONLY));
1347 if (rtc_fd < 0)
1348 return -1;
1349 ioctl(rtc_fd, RTC_IRQP_READ, &current_rtc_freq);
1350 if (current_rtc_freq != RTC_FREQ &&
1351 ioctl(rtc_fd, RTC_IRQP_SET, RTC_FREQ) < 0) {
1352 fprintf(stderr, "Could not configure '/dev/rtc' to have a 1024 Hz timer. This is not a fatal\n"
1353 "error, but for better emulation accuracy either use a 2.6 host Linux kernel or\n"
1354 "type 'echo 1024 > /proc/sys/dev/rtc/max-user-freq' as root.\n");
1355 goto fail;
1357 if (ioctl(rtc_fd, RTC_PIE_ON, 0) < 0) {
1358 fail:
1359 close(rtc_fd);
1360 return -1;
1363 enable_sigio_timer(rtc_fd);
1365 t->priv = (void *)(long)rtc_fd;
1367 return 0;
1370 static void rtc_stop_timer(struct qemu_alarm_timer *t)
1372 int rtc_fd = (long)t->priv;
1374 close(rtc_fd);
1377 static int dynticks_start_timer(struct qemu_alarm_timer *t)
1379 struct sigevent ev;
1380 timer_t host_timer;
1381 struct sigaction act;
1383 sigfillset(&act.sa_mask);
1384 act.sa_flags = 0;
1385 act.sa_handler = host_alarm_handler;
1387 sigaction(SIGALRM, &act, NULL);
1389 ev.sigev_value.sival_int = 0;
1390 ev.sigev_notify = SIGEV_SIGNAL;
1391 ev.sigev_signo = SIGALRM;
1393 if (timer_create(CLOCK_REALTIME, &ev, &host_timer)) {
1394 perror("timer_create");
1396 /* disable dynticks */
1397 fprintf(stderr, "Dynamic Ticks disabled\n");
1399 return -1;
1402 t->priv = (void *)host_timer;
1404 return 0;
1407 static void dynticks_stop_timer(struct qemu_alarm_timer *t)
1409 timer_t host_timer = (timer_t)t->priv;
1411 timer_delete(host_timer);
1414 static void dynticks_rearm_timer(struct qemu_alarm_timer *t)
1416 timer_t host_timer = (timer_t)t->priv;
1417 struct itimerspec timeout;
1418 int64_t nearest_delta_us = INT64_MAX;
1419 int64_t current_us;
1421 if (!active_timers[QEMU_TIMER_REALTIME] &&
1422 !active_timers[QEMU_TIMER_VIRTUAL])
1423 return;
1425 nearest_delta_us = qemu_next_deadline();
1427 /* check whether a timer is already running */
1428 if (timer_gettime(host_timer, &timeout)) {
1429 perror("gettime");
1430 fprintf(stderr, "Internal timer error: aborting\n");
1431 exit(1);
1433 current_us = timeout.it_value.tv_sec * 1000000 + timeout.it_value.tv_nsec/1000;
1434 if (current_us && current_us <= nearest_delta_us)
1435 return;
1437 timeout.it_interval.tv_sec = 0;
1438 timeout.it_interval.tv_nsec = 0; /* 0 for one-shot timer */
1439 timeout.it_value.tv_sec = nearest_delta_us / 1000000;
1440 timeout.it_value.tv_nsec = (nearest_delta_us % 1000000) * 1000;
1441 if (timer_settime(host_timer, 0 /* RELATIVE */, &timeout, NULL)) {
1442 perror("settime");
1443 fprintf(stderr, "Internal timer error: aborting\n");
1444 exit(1);
1448 #endif /* defined(__linux__) */
1450 static int unix_start_timer(struct qemu_alarm_timer *t)
1452 struct sigaction act;
1453 struct itimerval itv;
1454 int err;
1456 /* timer signal */
1457 sigfillset(&act.sa_mask);
1458 act.sa_flags = 0;
1459 act.sa_handler = host_alarm_handler;
1461 sigaction(SIGALRM, &act, NULL);
1463 itv.it_interval.tv_sec = 0;
1464 /* for i386 kernel 2.6 to get 1 ms */
1465 itv.it_interval.tv_usec = 999;
1466 itv.it_value.tv_sec = 0;
1467 itv.it_value.tv_usec = 10 * 1000;
1469 err = setitimer(ITIMER_REAL, &itv, NULL);
1470 if (err)
1471 return -1;
1473 return 0;
1476 static void unix_stop_timer(struct qemu_alarm_timer *t)
1478 struct itimerval itv;
1480 memset(&itv, 0, sizeof(itv));
1481 setitimer(ITIMER_REAL, &itv, NULL);
1484 #endif /* !defined(_WIN32) */
1486 #ifdef _WIN32
1488 static int win32_start_timer(struct qemu_alarm_timer *t)
1490 TIMECAPS tc;
1491 struct qemu_alarm_win32 *data = t->priv;
1492 UINT flags;
1494 data->host_alarm = CreateEvent(NULL, FALSE, FALSE, NULL);
1495 if (!data->host_alarm) {
1496 perror("Failed CreateEvent");
1497 return -1;
1500 memset(&tc, 0, sizeof(tc));
1501 timeGetDevCaps(&tc, sizeof(tc));
1503 if (data->period < tc.wPeriodMin)
1504 data->period = tc.wPeriodMin;
1506 timeBeginPeriod(data->period);
1508 flags = TIME_CALLBACK_FUNCTION;
1509 if (alarm_has_dynticks(t))
1510 flags |= TIME_ONESHOT;
1511 else
1512 flags |= TIME_PERIODIC;
1514 data->timerId = timeSetEvent(1, // interval (ms)
1515 data->period, // resolution
1516 host_alarm_handler, // function
1517 (DWORD)t, // parameter
1518 flags);
1520 if (!data->timerId) {
1521 perror("Failed to initialize win32 alarm timer");
1523 timeEndPeriod(data->period);
1524 CloseHandle(data->host_alarm);
1525 return -1;
1528 qemu_add_wait_object(data->host_alarm, NULL, NULL);
1530 return 0;
1533 static void win32_stop_timer(struct qemu_alarm_timer *t)
1535 struct qemu_alarm_win32 *data = t->priv;
1537 timeKillEvent(data->timerId);
1538 timeEndPeriod(data->period);
1540 CloseHandle(data->host_alarm);
1543 static void win32_rearm_timer(struct qemu_alarm_timer *t)
1545 struct qemu_alarm_win32 *data = t->priv;
1546 uint64_t nearest_delta_us;
1548 if (!active_timers[QEMU_TIMER_REALTIME] &&
1549 !active_timers[QEMU_TIMER_VIRTUAL])
1550 return;
1552 nearest_delta_us = qemu_next_deadline();
1553 nearest_delta_us /= 1000;
1555 timeKillEvent(data->timerId);
1557 data->timerId = timeSetEvent(1,
1558 data->period,
1559 host_alarm_handler,
1560 (DWORD)t,
1561 TIME_ONESHOT | TIME_PERIODIC);
1563 if (!data->timerId) {
1564 perror("Failed to re-arm win32 alarm timer");
1566 timeEndPeriod(data->period);
1567 CloseHandle(data->host_alarm);
1568 exit(1);
1572 #endif /* _WIN32 */
1574 static void init_timer_alarm(void)
1576 struct qemu_alarm_timer *t;
1577 int i, err = -1;
1579 for (i = 0; alarm_timers[i].name; i++) {
1580 t = &alarm_timers[i];
1582 err = t->start(t);
1583 if (!err)
1584 break;
1587 if (err) {
1588 fprintf(stderr, "Unable to find any suitable alarm timer.\n");
1589 fprintf(stderr, "Terminating\n");
1590 exit(1);
1593 alarm_timer = t;
1596 static void quit_timers(void)
1598 alarm_timer->stop(alarm_timer);
1599 alarm_timer = NULL;
1602 /***********************************************************/
1603 /* host time/date access */
1604 void qemu_get_timedate(struct tm *tm, int offset)
1606 time_t ti;
1607 struct tm *ret;
1609 time(&ti);
1610 ti += offset;
1611 if (rtc_date_offset == -1) {
1612 if (rtc_utc)
1613 ret = gmtime(&ti);
1614 else
1615 ret = localtime(&ti);
1616 } else {
1617 ti -= rtc_date_offset;
1618 ret = gmtime(&ti);
1621 memcpy(tm, ret, sizeof(struct tm));
1624 int qemu_timedate_diff(struct tm *tm)
1626 time_t seconds;
1628 if (rtc_date_offset == -1)
1629 if (rtc_utc)
1630 seconds = mktimegm(tm);
1631 else
1632 seconds = mktime(tm);
1633 else
1634 seconds = mktimegm(tm) + rtc_date_offset;
1636 return seconds - time(NULL);
1639 /***********************************************************/
1640 /* character device */
1642 static void qemu_chr_event(CharDriverState *s, int event)
1644 if (!s->chr_event)
1645 return;
1646 s->chr_event(s->handler_opaque, event);
1649 static void qemu_chr_reset_bh(void *opaque)
1651 CharDriverState *s = opaque;
1652 qemu_chr_event(s, CHR_EVENT_RESET);
1653 qemu_bh_delete(s->bh);
1654 s->bh = NULL;
1657 void qemu_chr_reset(CharDriverState *s)
1659 if (s->bh == NULL) {
1660 s->bh = qemu_bh_new(qemu_chr_reset_bh, s);
1661 qemu_bh_schedule(s->bh);
1665 int qemu_chr_write(CharDriverState *s, const uint8_t *buf, int len)
1667 return s->chr_write(s, buf, len);
1670 int qemu_chr_ioctl(CharDriverState *s, int cmd, void *arg)
1672 if (!s->chr_ioctl)
1673 return -ENOTSUP;
1674 return s->chr_ioctl(s, cmd, arg);
1677 int qemu_chr_can_read(CharDriverState *s)
1679 if (!s->chr_can_read)
1680 return 0;
1681 return s->chr_can_read(s->handler_opaque);
1684 void qemu_chr_read(CharDriverState *s, uint8_t *buf, int len)
1686 s->chr_read(s->handler_opaque, buf, len);
1689 void qemu_chr_accept_input(CharDriverState *s)
1691 if (s->chr_accept_input)
1692 s->chr_accept_input(s);
1695 void qemu_chr_printf(CharDriverState *s, const char *fmt, ...)
1697 char buf[4096];
1698 va_list ap;
1699 va_start(ap, fmt);
1700 vsnprintf(buf, sizeof(buf), fmt, ap);
1701 qemu_chr_write(s, (uint8_t *)buf, strlen(buf));
1702 va_end(ap);
1705 void qemu_chr_send_event(CharDriverState *s, int event)
1707 if (s->chr_send_event)
1708 s->chr_send_event(s, event);
1711 void qemu_chr_add_handlers(CharDriverState *s,
1712 IOCanRWHandler *fd_can_read,
1713 IOReadHandler *fd_read,
1714 IOEventHandler *fd_event,
1715 void *opaque)
1717 s->chr_can_read = fd_can_read;
1718 s->chr_read = fd_read;
1719 s->chr_event = fd_event;
1720 s->handler_opaque = opaque;
1721 if (s->chr_update_read_handler)
1722 s->chr_update_read_handler(s);
1725 static int null_chr_write(CharDriverState *chr, const uint8_t *buf, int len)
1727 return len;
1730 static CharDriverState *qemu_chr_open_null(void)
1732 CharDriverState *chr;
1734 chr = qemu_mallocz(sizeof(CharDriverState));
1735 if (!chr)
1736 return NULL;
1737 chr->chr_write = null_chr_write;
1738 return chr;
1741 /* MUX driver for serial I/O splitting */
1742 static int term_timestamps;
1743 static int64_t term_timestamps_start;
1744 #define MAX_MUX 4
1745 #define MUX_BUFFER_SIZE 32 /* Must be a power of 2. */
1746 #define MUX_BUFFER_MASK (MUX_BUFFER_SIZE - 1)
1747 typedef struct {
1748 IOCanRWHandler *chr_can_read[MAX_MUX];
1749 IOReadHandler *chr_read[MAX_MUX];
1750 IOEventHandler *chr_event[MAX_MUX];
1751 void *ext_opaque[MAX_MUX];
1752 CharDriverState *drv;
1753 unsigned char buffer[MUX_BUFFER_SIZE];
1754 int prod;
1755 int cons;
1756 int mux_cnt;
1757 int term_got_escape;
1758 int max_size;
1759 } MuxDriver;
1762 static int mux_chr_write(CharDriverState *chr, const uint8_t *buf, int len)
1764 MuxDriver *d = chr->opaque;
1765 int ret;
1766 if (!term_timestamps) {
1767 ret = d->drv->chr_write(d->drv, buf, len);
1768 } else {
1769 int i;
1771 ret = 0;
1772 for(i = 0; i < len; i++) {
1773 ret += d->drv->chr_write(d->drv, buf+i, 1);
1774 if (buf[i] == '\n') {
1775 char buf1[64];
1776 int64_t ti;
1777 int secs;
1779 ti = get_clock();
1780 if (term_timestamps_start == -1)
1781 term_timestamps_start = ti;
1782 ti -= term_timestamps_start;
1783 secs = ti / 1000000000;
1784 snprintf(buf1, sizeof(buf1),
1785 "[%02d:%02d:%02d.%03d] ",
1786 secs / 3600,
1787 (secs / 60) % 60,
1788 secs % 60,
1789 (int)((ti / 1000000) % 1000));
1790 d->drv->chr_write(d->drv, (uint8_t *)buf1, strlen(buf1));
1794 return ret;
1797 static char *mux_help[] = {
1798 "% h print this help\n\r",
1799 "% x exit emulator\n\r",
1800 "% s save disk data back to file (if -snapshot)\n\r",
1801 "% t toggle console timestamps\n\r"
1802 "% b send break (magic sysrq)\n\r",
1803 "% c switch between console and monitor\n\r",
1804 "% % sends %\n\r",
1805 NULL
1808 static int term_escape_char = 0x01; /* ctrl-a is used for escape */
1809 static void mux_print_help(CharDriverState *chr)
1811 int i, j;
1812 char ebuf[15] = "Escape-Char";
1813 char cbuf[50] = "\n\r";
1815 if (term_escape_char > 0 && term_escape_char < 26) {
1816 sprintf(cbuf,"\n\r");
1817 sprintf(ebuf,"C-%c", term_escape_char - 1 + 'a');
1818 } else {
1819 sprintf(cbuf,"\n\rEscape-Char set to Ascii: 0x%02x\n\r\n\r",
1820 term_escape_char);
1822 chr->chr_write(chr, (uint8_t *)cbuf, strlen(cbuf));
1823 for (i = 0; mux_help[i] != NULL; i++) {
1824 for (j=0; mux_help[i][j] != '\0'; j++) {
1825 if (mux_help[i][j] == '%')
1826 chr->chr_write(chr, (uint8_t *)ebuf, strlen(ebuf));
1827 else
1828 chr->chr_write(chr, (uint8_t *)&mux_help[i][j], 1);
1833 static int mux_proc_byte(CharDriverState *chr, MuxDriver *d, int ch)
1835 if (d->term_got_escape) {
1836 d->term_got_escape = 0;
1837 if (ch == term_escape_char)
1838 goto send_char;
1839 switch(ch) {
1840 case '?':
1841 case 'h':
1842 mux_print_help(chr);
1843 break;
1844 case 'x':
1846 char *term = "QEMU: Terminated\n\r";
1847 chr->chr_write(chr,(uint8_t *)term,strlen(term));
1848 exit(0);
1849 break;
1851 case 's':
1853 int i;
1854 for (i = 0; i < nb_drives; i++) {
1855 bdrv_commit(drives_table[i].bdrv);
1858 break;
1859 case 'b':
1860 qemu_chr_event(chr, CHR_EVENT_BREAK);
1861 break;
1862 case 'c':
1863 /* Switch to the next registered device */
1864 chr->focus++;
1865 if (chr->focus >= d->mux_cnt)
1866 chr->focus = 0;
1867 break;
1868 case 't':
1869 term_timestamps = !term_timestamps;
1870 term_timestamps_start = -1;
1871 break;
1873 } else if (ch == term_escape_char) {
1874 d->term_got_escape = 1;
1875 } else {
1876 send_char:
1877 return 1;
1879 return 0;
1882 static void mux_chr_accept_input(CharDriverState *chr)
1884 int m = chr->focus;
1885 MuxDriver *d = chr->opaque;
1887 while (d->prod != d->cons &&
1888 d->chr_can_read[m] &&
1889 d->chr_can_read[m](d->ext_opaque[m])) {
1890 d->chr_read[m](d->ext_opaque[m],
1891 &d->buffer[d->cons++ & MUX_BUFFER_MASK], 1);
1895 static int mux_chr_can_read(void *opaque)
1897 CharDriverState *chr = opaque;
1898 MuxDriver *d = chr->opaque;
1900 if ((d->prod - d->cons) < MUX_BUFFER_SIZE)
1901 return 1;
1902 if (d->chr_can_read[chr->focus])
1903 return d->chr_can_read[chr->focus](d->ext_opaque[chr->focus]);
1904 return 0;
1907 static void mux_chr_read(void *opaque, const uint8_t *buf, int size)
1909 CharDriverState *chr = opaque;
1910 MuxDriver *d = chr->opaque;
1911 int m = chr->focus;
1912 int i;
1914 mux_chr_accept_input (opaque);
1916 for(i = 0; i < size; i++)
1917 if (mux_proc_byte(chr, d, buf[i])) {
1918 if (d->prod == d->cons &&
1919 d->chr_can_read[m] &&
1920 d->chr_can_read[m](d->ext_opaque[m]))
1921 d->chr_read[m](d->ext_opaque[m], &buf[i], 1);
1922 else
1923 d->buffer[d->prod++ & MUX_BUFFER_MASK] = buf[i];
1927 static void mux_chr_event(void *opaque, int event)
1929 CharDriverState *chr = opaque;
1930 MuxDriver *d = chr->opaque;
1931 int i;
1933 /* Send the event to all registered listeners */
1934 for (i = 0; i < d->mux_cnt; i++)
1935 if (d->chr_event[i])
1936 d->chr_event[i](d->ext_opaque[i], event);
1939 static void mux_chr_update_read_handler(CharDriverState *chr)
1941 MuxDriver *d = chr->opaque;
1943 if (d->mux_cnt >= MAX_MUX) {
1944 fprintf(stderr, "Cannot add I/O handlers, MUX array is full\n");
1945 return;
1947 d->ext_opaque[d->mux_cnt] = chr->handler_opaque;
1948 d->chr_can_read[d->mux_cnt] = chr->chr_can_read;
1949 d->chr_read[d->mux_cnt] = chr->chr_read;
1950 d->chr_event[d->mux_cnt] = chr->chr_event;
1951 /* Fix up the real driver with mux routines */
1952 if (d->mux_cnt == 0) {
1953 qemu_chr_add_handlers(d->drv, mux_chr_can_read, mux_chr_read,
1954 mux_chr_event, chr);
1956 chr->focus = d->mux_cnt;
1957 d->mux_cnt++;
1960 static CharDriverState *qemu_chr_open_mux(CharDriverState *drv)
1962 CharDriverState *chr;
1963 MuxDriver *d;
1965 chr = qemu_mallocz(sizeof(CharDriverState));
1966 if (!chr)
1967 return NULL;
1968 d = qemu_mallocz(sizeof(MuxDriver));
1969 if (!d) {
1970 free(chr);
1971 return NULL;
1974 chr->opaque = d;
1975 d->drv = drv;
1976 chr->focus = -1;
1977 chr->chr_write = mux_chr_write;
1978 chr->chr_update_read_handler = mux_chr_update_read_handler;
1979 chr->chr_accept_input = mux_chr_accept_input;
1980 return chr;
1984 #ifdef _WIN32
1986 static void socket_cleanup(void)
1988 WSACleanup();
1991 static int socket_init(void)
1993 WSADATA Data;
1994 int ret, err;
1996 ret = WSAStartup(MAKEWORD(2,2), &Data);
1997 if (ret != 0) {
1998 err = WSAGetLastError();
1999 fprintf(stderr, "WSAStartup: %d\n", err);
2000 return -1;
2002 atexit(socket_cleanup);
2003 return 0;
2006 static int send_all(int fd, const uint8_t *buf, int len1)
2008 int ret, len;
2010 len = len1;
2011 while (len > 0) {
2012 ret = send(fd, buf, len, 0);
2013 if (ret < 0) {
2014 int errno;
2015 errno = WSAGetLastError();
2016 if (errno != WSAEWOULDBLOCK) {
2017 return -1;
2019 } else if (ret == 0) {
2020 break;
2021 } else {
2022 buf += ret;
2023 len -= ret;
2026 return len1 - len;
2029 void socket_set_nonblock(int fd)
2031 unsigned long opt = 1;
2032 ioctlsocket(fd, FIONBIO, &opt);
2035 #else
2037 static int unix_write(int fd, const uint8_t *buf, int len1)
2039 int ret, len;
2041 len = len1;
2042 while (len > 0) {
2043 ret = write(fd, buf, len);
2044 if (ret < 0) {
2045 if (errno != EINTR && errno != EAGAIN)
2046 return -1;
2047 } else if (ret == 0) {
2048 break;
2049 } else {
2050 buf += ret;
2051 len -= ret;
2054 return len1 - len;
2057 static inline int send_all(int fd, const uint8_t *buf, int len1)
2059 return unix_write(fd, buf, len1);
2062 void socket_set_nonblock(int fd)
2064 fcntl(fd, F_SETFL, O_NONBLOCK);
2066 #endif /* !_WIN32 */
2068 #ifndef _WIN32
2070 typedef struct {
2071 int fd_in, fd_out;
2072 int max_size;
2073 } FDCharDriver;
2075 #define STDIO_MAX_CLIENTS 1
2076 static int stdio_nb_clients = 0;
2078 static int fd_chr_write(CharDriverState *chr, const uint8_t *buf, int len)
2080 FDCharDriver *s = chr->opaque;
2081 return unix_write(s->fd_out, buf, len);
2084 static int fd_chr_read_poll(void *opaque)
2086 CharDriverState *chr = opaque;
2087 FDCharDriver *s = chr->opaque;
2089 s->max_size = qemu_chr_can_read(chr);
2090 return s->max_size;
2093 static void fd_chr_read(void *opaque)
2095 CharDriverState *chr = opaque;
2096 FDCharDriver *s = chr->opaque;
2097 int size, len;
2098 uint8_t buf[1024];
2100 len = sizeof(buf);
2101 if (len > s->max_size)
2102 len = s->max_size;
2103 if (len == 0)
2104 return;
2105 size = read(s->fd_in, buf, len);
2106 if (size == 0) {
2107 /* FD has been closed. Remove it from the active list. */
2108 qemu_set_fd_handler2(s->fd_in, NULL, NULL, NULL, NULL);
2109 return;
2111 if (size > 0) {
2112 qemu_chr_read(chr, buf, size);
2116 static void fd_chr_update_read_handler(CharDriverState *chr)
2118 FDCharDriver *s = chr->opaque;
2120 if (s->fd_in >= 0) {
2121 if (nographic && s->fd_in == 0) {
2122 } else {
2123 qemu_set_fd_handler2(s->fd_in, fd_chr_read_poll,
2124 fd_chr_read, NULL, chr);
2129 static void fd_chr_close(struct CharDriverState *chr)
2131 FDCharDriver *s = chr->opaque;
2133 if (s->fd_in >= 0) {
2134 if (nographic && s->fd_in == 0) {
2135 } else {
2136 qemu_set_fd_handler2(s->fd_in, NULL, NULL, NULL, NULL);
2140 qemu_free(s);
2143 /* open a character device to a unix fd */
2144 static CharDriverState *qemu_chr_open_fd(int fd_in, int fd_out)
2146 CharDriverState *chr;
2147 FDCharDriver *s;
2149 chr = qemu_mallocz(sizeof(CharDriverState));
2150 if (!chr)
2151 return NULL;
2152 s = qemu_mallocz(sizeof(FDCharDriver));
2153 if (!s) {
2154 free(chr);
2155 return NULL;
2157 s->fd_in = fd_in;
2158 s->fd_out = fd_out;
2159 chr->opaque = s;
2160 chr->chr_write = fd_chr_write;
2161 chr->chr_update_read_handler = fd_chr_update_read_handler;
2162 chr->chr_close = fd_chr_close;
2164 qemu_chr_reset(chr);
2166 return chr;
2169 static CharDriverState *qemu_chr_open_file_out(const char *file_out)
2171 int fd_out;
2173 TFR(fd_out = open(file_out, O_WRONLY | O_TRUNC | O_CREAT | O_BINARY, 0666));
2174 if (fd_out < 0)
2175 return NULL;
2176 return qemu_chr_open_fd(-1, fd_out);
2179 static CharDriverState *qemu_chr_open_pipe(const char *filename)
2181 int fd_in, fd_out;
2182 char filename_in[256], filename_out[256];
2184 snprintf(filename_in, 256, "%s.in", filename);
2185 snprintf(filename_out, 256, "%s.out", filename);
2186 TFR(fd_in = open(filename_in, O_RDWR | O_BINARY));
2187 TFR(fd_out = open(filename_out, O_RDWR | O_BINARY));
2188 if (fd_in < 0 || fd_out < 0) {
2189 if (fd_in >= 0)
2190 close(fd_in);
2191 if (fd_out >= 0)
2192 close(fd_out);
2193 TFR(fd_in = fd_out = open(filename, O_RDWR | O_BINARY));
2194 if (fd_in < 0)
2195 return NULL;
2197 return qemu_chr_open_fd(fd_in, fd_out);
2201 /* for STDIO, we handle the case where several clients use it
2202 (nographic mode) */
2204 #define TERM_FIFO_MAX_SIZE 1
2206 static uint8_t term_fifo[TERM_FIFO_MAX_SIZE];
2207 static int term_fifo_size;
2209 static int stdio_read_poll(void *opaque)
2211 CharDriverState *chr = opaque;
2213 /* try to flush the queue if needed */
2214 if (term_fifo_size != 0 && qemu_chr_can_read(chr) > 0) {
2215 qemu_chr_read(chr, term_fifo, 1);
2216 term_fifo_size = 0;
2218 /* see if we can absorb more chars */
2219 if (term_fifo_size == 0)
2220 return 1;
2221 else
2222 return 0;
2225 static void stdio_read(void *opaque)
2227 int size;
2228 uint8_t buf[1];
2229 CharDriverState *chr = opaque;
2231 size = read(0, buf, 1);
2232 if (size == 0) {
2233 /* stdin has been closed. Remove it from the active list. */
2234 qemu_set_fd_handler2(0, NULL, NULL, NULL, NULL);
2235 return;
2237 if (size > 0) {
2238 if (qemu_chr_can_read(chr) > 0) {
2239 qemu_chr_read(chr, buf, 1);
2240 } else if (term_fifo_size == 0) {
2241 term_fifo[term_fifo_size++] = buf[0];
2246 /* init terminal so that we can grab keys */
2247 static struct termios oldtty;
2248 static int old_fd0_flags;
2249 static int term_atexit_done;
2251 static void term_exit(void)
2253 tcsetattr (0, TCSANOW, &oldtty);
2254 fcntl(0, F_SETFL, old_fd0_flags);
2257 static void term_init(void)
2259 struct termios tty;
2261 tcgetattr (0, &tty);
2262 oldtty = tty;
2263 old_fd0_flags = fcntl(0, F_GETFL);
2265 tty.c_iflag &= ~(IGNBRK|BRKINT|PARMRK|ISTRIP
2266 |INLCR|IGNCR|ICRNL|IXON);
2267 tty.c_oflag |= OPOST;
2268 tty.c_lflag &= ~(ECHO|ECHONL|ICANON|IEXTEN);
2269 /* if graphical mode, we allow Ctrl-C handling */
2270 if (nographic)
2271 tty.c_lflag &= ~ISIG;
2272 tty.c_cflag &= ~(CSIZE|PARENB);
2273 tty.c_cflag |= CS8;
2274 tty.c_cc[VMIN] = 1;
2275 tty.c_cc[VTIME] = 0;
2277 tcsetattr (0, TCSANOW, &tty);
2279 if (!term_atexit_done++)
2280 atexit(term_exit);
2282 fcntl(0, F_SETFL, O_NONBLOCK);
2285 static void qemu_chr_close_stdio(struct CharDriverState *chr)
2287 term_exit();
2288 stdio_nb_clients--;
2289 qemu_set_fd_handler2(0, NULL, NULL, NULL, NULL);
2290 fd_chr_close(chr);
2293 static CharDriverState *qemu_chr_open_stdio(void)
2295 CharDriverState *chr;
2297 if (stdio_nb_clients >= STDIO_MAX_CLIENTS)
2298 return NULL;
2299 chr = qemu_chr_open_fd(0, 1);
2300 chr->chr_close = qemu_chr_close_stdio;
2301 qemu_set_fd_handler2(0, stdio_read_poll, stdio_read, NULL, chr);
2302 stdio_nb_clients++;
2303 term_init();
2305 return chr;
2308 #ifdef __sun__
2309 /* Once Solaris has openpty(), this is going to be removed. */
2310 int openpty(int *amaster, int *aslave, char *name,
2311 struct termios *termp, struct winsize *winp)
2313 const char *slave;
2314 int mfd = -1, sfd = -1;
2316 *amaster = *aslave = -1;
2318 mfd = open("/dev/ptmx", O_RDWR | O_NOCTTY);
2319 if (mfd < 0)
2320 goto err;
2322 if (grantpt(mfd) == -1 || unlockpt(mfd) == -1)
2323 goto err;
2325 if ((slave = ptsname(mfd)) == NULL)
2326 goto err;
2328 if ((sfd = open(slave, O_RDONLY | O_NOCTTY)) == -1)
2329 goto err;
2331 if (ioctl(sfd, I_PUSH, "ptem") == -1 ||
2332 (termp != NULL && tcgetattr(sfd, termp) < 0))
2333 goto err;
2335 if (amaster)
2336 *amaster = mfd;
2337 if (aslave)
2338 *aslave = sfd;
2339 if (winp)
2340 ioctl(sfd, TIOCSWINSZ, winp);
2342 return 0;
2344 err:
2345 if (sfd != -1)
2346 close(sfd);
2347 close(mfd);
2348 return -1;
2351 void cfmakeraw (struct termios *termios_p)
2353 termios_p->c_iflag &=
2354 ~(IGNBRK|BRKINT|PARMRK|ISTRIP|INLCR|IGNCR|ICRNL|IXON);
2355 termios_p->c_oflag &= ~OPOST;
2356 termios_p->c_lflag &= ~(ECHO|ECHONL|ICANON|ISIG|IEXTEN);
2357 termios_p->c_cflag &= ~(CSIZE|PARENB);
2358 termios_p->c_cflag |= CS8;
2360 termios_p->c_cc[VMIN] = 0;
2361 termios_p->c_cc[VTIME] = 0;
2363 #endif
2365 #if defined(__linux__) || defined(__sun__)
2366 static CharDriverState *qemu_chr_open_pty(void)
2368 struct termios tty;
2369 int master_fd, slave_fd;
2371 if (openpty(&master_fd, &slave_fd, NULL, NULL, NULL) < 0) {
2372 return NULL;
2375 /* Set raw attributes on the pty. */
2376 cfmakeraw(&tty);
2377 tcsetattr(slave_fd, TCSAFLUSH, &tty);
2379 fprintf(stderr, "char device redirected to %s\n", ptsname(master_fd));
2380 return qemu_chr_open_fd(master_fd, master_fd);
2383 static void tty_serial_init(int fd, int speed,
2384 int parity, int data_bits, int stop_bits)
2386 struct termios tty;
2387 speed_t spd;
2389 #if 0
2390 printf("tty_serial_init: speed=%d parity=%c data=%d stop=%d\n",
2391 speed, parity, data_bits, stop_bits);
2392 #endif
2393 tcgetattr (fd, &tty);
2395 #define MARGIN 1.1
2396 if (speed <= 50 * MARGIN)
2397 spd = B50;
2398 else if (speed <= 75 * MARGIN)
2399 spd = B75;
2400 else if (speed <= 300 * MARGIN)
2401 spd = B300;
2402 else if (speed <= 600 * MARGIN)
2403 spd = B600;
2404 else if (speed <= 1200 * MARGIN)
2405 spd = B1200;
2406 else if (speed <= 2400 * MARGIN)
2407 spd = B2400;
2408 else if (speed <= 4800 * MARGIN)
2409 spd = B4800;
2410 else if (speed <= 9600 * MARGIN)
2411 spd = B9600;
2412 else if (speed <= 19200 * MARGIN)
2413 spd = B19200;
2414 else if (speed <= 38400 * MARGIN)
2415 spd = B38400;
2416 else if (speed <= 57600 * MARGIN)
2417 spd = B57600;
2418 else if (speed <= 115200 * MARGIN)
2419 spd = B115200;
2420 else
2421 spd = B115200;
2423 cfsetispeed(&tty, spd);
2424 cfsetospeed(&tty, spd);
2426 tty.c_iflag &= ~(IGNBRK|BRKINT|PARMRK|ISTRIP
2427 |INLCR|IGNCR|ICRNL|IXON);
2428 tty.c_oflag |= OPOST;
2429 tty.c_lflag &= ~(ECHO|ECHONL|ICANON|IEXTEN|ISIG);
2430 tty.c_cflag &= ~(CSIZE|PARENB|PARODD|CRTSCTS|CSTOPB);
2431 switch(data_bits) {
2432 default:
2433 case 8:
2434 tty.c_cflag |= CS8;
2435 break;
2436 case 7:
2437 tty.c_cflag |= CS7;
2438 break;
2439 case 6:
2440 tty.c_cflag |= CS6;
2441 break;
2442 case 5:
2443 tty.c_cflag |= CS5;
2444 break;
2446 switch(parity) {
2447 default:
2448 case 'N':
2449 break;
2450 case 'E':
2451 tty.c_cflag |= PARENB;
2452 break;
2453 case 'O':
2454 tty.c_cflag |= PARENB | PARODD;
2455 break;
2457 if (stop_bits == 2)
2458 tty.c_cflag |= CSTOPB;
2460 tcsetattr (fd, TCSANOW, &tty);
2463 static int tty_serial_ioctl(CharDriverState *chr, int cmd, void *arg)
2465 FDCharDriver *s = chr->opaque;
2467 switch(cmd) {
2468 case CHR_IOCTL_SERIAL_SET_PARAMS:
2470 QEMUSerialSetParams *ssp = arg;
2471 tty_serial_init(s->fd_in, ssp->speed, ssp->parity,
2472 ssp->data_bits, ssp->stop_bits);
2474 break;
2475 case CHR_IOCTL_SERIAL_SET_BREAK:
2477 int enable = *(int *)arg;
2478 if (enable)
2479 tcsendbreak(s->fd_in, 1);
2481 break;
2482 default:
2483 return -ENOTSUP;
2485 return 0;
2488 static CharDriverState *qemu_chr_open_tty(const char *filename)
2490 CharDriverState *chr;
2491 int fd;
2493 TFR(fd = open(filename, O_RDWR | O_NONBLOCK));
2494 fcntl(fd, F_SETFL, O_NONBLOCK);
2495 tty_serial_init(fd, 115200, 'N', 8, 1);
2496 chr = qemu_chr_open_fd(fd, fd);
2497 if (!chr) {
2498 close(fd);
2499 return NULL;
2501 chr->chr_ioctl = tty_serial_ioctl;
2502 qemu_chr_reset(chr);
2503 return chr;
2505 #else /* ! __linux__ && ! __sun__ */
2506 static CharDriverState *qemu_chr_open_pty(void)
2508 return NULL;
2510 #endif /* __linux__ || __sun__ */
2512 #if defined(__linux__)
2513 typedef struct {
2514 int fd;
2515 int mode;
2516 } ParallelCharDriver;
2518 static int pp_hw_mode(ParallelCharDriver *s, uint16_t mode)
2520 if (s->mode != mode) {
2521 int m = mode;
2522 if (ioctl(s->fd, PPSETMODE, &m) < 0)
2523 return 0;
2524 s->mode = mode;
2526 return 1;
2529 static int pp_ioctl(CharDriverState *chr, int cmd, void *arg)
2531 ParallelCharDriver *drv = chr->opaque;
2532 int fd = drv->fd;
2533 uint8_t b;
2535 switch(cmd) {
2536 case CHR_IOCTL_PP_READ_DATA:
2537 if (ioctl(fd, PPRDATA, &b) < 0)
2538 return -ENOTSUP;
2539 *(uint8_t *)arg = b;
2540 break;
2541 case CHR_IOCTL_PP_WRITE_DATA:
2542 b = *(uint8_t *)arg;
2543 if (ioctl(fd, PPWDATA, &b) < 0)
2544 return -ENOTSUP;
2545 break;
2546 case CHR_IOCTL_PP_READ_CONTROL:
2547 if (ioctl(fd, PPRCONTROL, &b) < 0)
2548 return -ENOTSUP;
2549 /* Linux gives only the lowest bits, and no way to know data
2550 direction! For better compatibility set the fixed upper
2551 bits. */
2552 *(uint8_t *)arg = b | 0xc0;
2553 break;
2554 case CHR_IOCTL_PP_WRITE_CONTROL:
2555 b = *(uint8_t *)arg;
2556 if (ioctl(fd, PPWCONTROL, &b) < 0)
2557 return -ENOTSUP;
2558 break;
2559 case CHR_IOCTL_PP_READ_STATUS:
2560 if (ioctl(fd, PPRSTATUS, &b) < 0)
2561 return -ENOTSUP;
2562 *(uint8_t *)arg = b;
2563 break;
2564 case CHR_IOCTL_PP_EPP_READ_ADDR:
2565 if (pp_hw_mode(drv, IEEE1284_MODE_EPP|IEEE1284_ADDR)) {
2566 struct ParallelIOArg *parg = arg;
2567 int n = read(fd, parg->buffer, parg->count);
2568 if (n != parg->count) {
2569 return -EIO;
2572 break;
2573 case CHR_IOCTL_PP_EPP_READ:
2574 if (pp_hw_mode(drv, IEEE1284_MODE_EPP)) {
2575 struct ParallelIOArg *parg = arg;
2576 int n = read(fd, parg->buffer, parg->count);
2577 if (n != parg->count) {
2578 return -EIO;
2581 break;
2582 case CHR_IOCTL_PP_EPP_WRITE_ADDR:
2583 if (pp_hw_mode(drv, IEEE1284_MODE_EPP|IEEE1284_ADDR)) {
2584 struct ParallelIOArg *parg = arg;
2585 int n = write(fd, parg->buffer, parg->count);
2586 if (n != parg->count) {
2587 return -EIO;
2590 break;
2591 case CHR_IOCTL_PP_EPP_WRITE:
2592 if (pp_hw_mode(drv, IEEE1284_MODE_EPP)) {
2593 struct ParallelIOArg *parg = arg;
2594 int n = write(fd, parg->buffer, parg->count);
2595 if (n != parg->count) {
2596 return -EIO;
2599 break;
2600 default:
2601 return -ENOTSUP;
2603 return 0;
2606 static void pp_close(CharDriverState *chr)
2608 ParallelCharDriver *drv = chr->opaque;
2609 int fd = drv->fd;
2611 pp_hw_mode(drv, IEEE1284_MODE_COMPAT);
2612 ioctl(fd, PPRELEASE);
2613 close(fd);
2614 qemu_free(drv);
2617 static CharDriverState *qemu_chr_open_pp(const char *filename)
2619 CharDriverState *chr;
2620 ParallelCharDriver *drv;
2621 int fd;
2623 TFR(fd = open(filename, O_RDWR));
2624 if (fd < 0)
2625 return NULL;
2627 if (ioctl(fd, PPCLAIM) < 0) {
2628 close(fd);
2629 return NULL;
2632 drv = qemu_mallocz(sizeof(ParallelCharDriver));
2633 if (!drv) {
2634 close(fd);
2635 return NULL;
2637 drv->fd = fd;
2638 drv->mode = IEEE1284_MODE_COMPAT;
2640 chr = qemu_mallocz(sizeof(CharDriverState));
2641 if (!chr) {
2642 qemu_free(drv);
2643 close(fd);
2644 return NULL;
2646 chr->chr_write = null_chr_write;
2647 chr->chr_ioctl = pp_ioctl;
2648 chr->chr_close = pp_close;
2649 chr->opaque = drv;
2651 qemu_chr_reset(chr);
2653 return chr;
2655 #endif /* __linux__ */
2657 #else /* _WIN32 */
2659 typedef struct {
2660 int max_size;
2661 HANDLE hcom, hrecv, hsend;
2662 OVERLAPPED orecv, osend;
2663 BOOL fpipe;
2664 DWORD len;
2665 } WinCharState;
2667 #define NSENDBUF 2048
2668 #define NRECVBUF 2048
2669 #define MAXCONNECT 1
2670 #define NTIMEOUT 5000
2672 static int win_chr_poll(void *opaque);
2673 static int win_chr_pipe_poll(void *opaque);
2675 static void win_chr_close(CharDriverState *chr)
2677 WinCharState *s = chr->opaque;
2679 if (s->hsend) {
2680 CloseHandle(s->hsend);
2681 s->hsend = NULL;
2683 if (s->hrecv) {
2684 CloseHandle(s->hrecv);
2685 s->hrecv = NULL;
2687 if (s->hcom) {
2688 CloseHandle(s->hcom);
2689 s->hcom = NULL;
2691 if (s->fpipe)
2692 qemu_del_polling_cb(win_chr_pipe_poll, chr);
2693 else
2694 qemu_del_polling_cb(win_chr_poll, chr);
2697 static int win_chr_init(CharDriverState *chr, const char *filename)
2699 WinCharState *s = chr->opaque;
2700 COMMCONFIG comcfg;
2701 COMMTIMEOUTS cto = { 0, 0, 0, 0, 0};
2702 COMSTAT comstat;
2703 DWORD size;
2704 DWORD err;
2706 s->hsend = CreateEvent(NULL, TRUE, FALSE, NULL);
2707 if (!s->hsend) {
2708 fprintf(stderr, "Failed CreateEvent\n");
2709 goto fail;
2711 s->hrecv = CreateEvent(NULL, TRUE, FALSE, NULL);
2712 if (!s->hrecv) {
2713 fprintf(stderr, "Failed CreateEvent\n");
2714 goto fail;
2717 s->hcom = CreateFile(filename, GENERIC_READ|GENERIC_WRITE, 0, NULL,
2718 OPEN_EXISTING, FILE_FLAG_OVERLAPPED, 0);
2719 if (s->hcom == INVALID_HANDLE_VALUE) {
2720 fprintf(stderr, "Failed CreateFile (%lu)\n", GetLastError());
2721 s->hcom = NULL;
2722 goto fail;
2725 if (!SetupComm(s->hcom, NRECVBUF, NSENDBUF)) {
2726 fprintf(stderr, "Failed SetupComm\n");
2727 goto fail;
2730 ZeroMemory(&comcfg, sizeof(COMMCONFIG));
2731 size = sizeof(COMMCONFIG);
2732 GetDefaultCommConfig(filename, &comcfg, &size);
2733 comcfg.dcb.DCBlength = sizeof(DCB);
2734 CommConfigDialog(filename, NULL, &comcfg);
2736 if (!SetCommState(s->hcom, &comcfg.dcb)) {
2737 fprintf(stderr, "Failed SetCommState\n");
2738 goto fail;
2741 if (!SetCommMask(s->hcom, EV_ERR)) {
2742 fprintf(stderr, "Failed SetCommMask\n");
2743 goto fail;
2746 cto.ReadIntervalTimeout = MAXDWORD;
2747 if (!SetCommTimeouts(s->hcom, &cto)) {
2748 fprintf(stderr, "Failed SetCommTimeouts\n");
2749 goto fail;
2752 if (!ClearCommError(s->hcom, &err, &comstat)) {
2753 fprintf(stderr, "Failed ClearCommError\n");
2754 goto fail;
2756 qemu_add_polling_cb(win_chr_poll, chr);
2757 return 0;
2759 fail:
2760 win_chr_close(chr);
2761 return -1;
2764 static int win_chr_write(CharDriverState *chr, const uint8_t *buf, int len1)
2766 WinCharState *s = chr->opaque;
2767 DWORD len, ret, size, err;
2769 len = len1;
2770 ZeroMemory(&s->osend, sizeof(s->osend));
2771 s->osend.hEvent = s->hsend;
2772 while (len > 0) {
2773 if (s->hsend)
2774 ret = WriteFile(s->hcom, buf, len, &size, &s->osend);
2775 else
2776 ret = WriteFile(s->hcom, buf, len, &size, NULL);
2777 if (!ret) {
2778 err = GetLastError();
2779 if (err == ERROR_IO_PENDING) {
2780 ret = GetOverlappedResult(s->hcom, &s->osend, &size, TRUE);
2781 if (ret) {
2782 buf += size;
2783 len -= size;
2784 } else {
2785 break;
2787 } else {
2788 break;
2790 } else {
2791 buf += size;
2792 len -= size;
2795 return len1 - len;
2798 static int win_chr_read_poll(CharDriverState *chr)
2800 WinCharState *s = chr->opaque;
2802 s->max_size = qemu_chr_can_read(chr);
2803 return s->max_size;
2806 static void win_chr_readfile(CharDriverState *chr)
2808 WinCharState *s = chr->opaque;
2809 int ret, err;
2810 uint8_t buf[1024];
2811 DWORD size;
2813 ZeroMemory(&s->orecv, sizeof(s->orecv));
2814 s->orecv.hEvent = s->hrecv;
2815 ret = ReadFile(s->hcom, buf, s->len, &size, &s->orecv);
2816 if (!ret) {
2817 err = GetLastError();
2818 if (err == ERROR_IO_PENDING) {
2819 ret = GetOverlappedResult(s->hcom, &s->orecv, &size, TRUE);
2823 if (size > 0) {
2824 qemu_chr_read(chr, buf, size);
2828 static void win_chr_read(CharDriverState *chr)
2830 WinCharState *s = chr->opaque;
2832 if (s->len > s->max_size)
2833 s->len = s->max_size;
2834 if (s->len == 0)
2835 return;
2837 win_chr_readfile(chr);
2840 static int win_chr_poll(void *opaque)
2842 CharDriverState *chr = opaque;
2843 WinCharState *s = chr->opaque;
2844 COMSTAT status;
2845 DWORD comerr;
2847 ClearCommError(s->hcom, &comerr, &status);
2848 if (status.cbInQue > 0) {
2849 s->len = status.cbInQue;
2850 win_chr_read_poll(chr);
2851 win_chr_read(chr);
2852 return 1;
2854 return 0;
2857 static CharDriverState *qemu_chr_open_win(const char *filename)
2859 CharDriverState *chr;
2860 WinCharState *s;
2862 chr = qemu_mallocz(sizeof(CharDriverState));
2863 if (!chr)
2864 return NULL;
2865 s = qemu_mallocz(sizeof(WinCharState));
2866 if (!s) {
2867 free(chr);
2868 return NULL;
2870 chr->opaque = s;
2871 chr->chr_write = win_chr_write;
2872 chr->chr_close = win_chr_close;
2874 if (win_chr_init(chr, filename) < 0) {
2875 free(s);
2876 free(chr);
2877 return NULL;
2879 qemu_chr_reset(chr);
2880 return chr;
2883 static int win_chr_pipe_poll(void *opaque)
2885 CharDriverState *chr = opaque;
2886 WinCharState *s = chr->opaque;
2887 DWORD size;
2889 PeekNamedPipe(s->hcom, NULL, 0, NULL, &size, NULL);
2890 if (size > 0) {
2891 s->len = size;
2892 win_chr_read_poll(chr);
2893 win_chr_read(chr);
2894 return 1;
2896 return 0;
2899 static int win_chr_pipe_init(CharDriverState *chr, const char *filename)
2901 WinCharState *s = chr->opaque;
2902 OVERLAPPED ov;
2903 int ret;
2904 DWORD size;
2905 char openname[256];
2907 s->fpipe = TRUE;
2909 s->hsend = CreateEvent(NULL, TRUE, FALSE, NULL);
2910 if (!s->hsend) {
2911 fprintf(stderr, "Failed CreateEvent\n");
2912 goto fail;
2914 s->hrecv = CreateEvent(NULL, TRUE, FALSE, NULL);
2915 if (!s->hrecv) {
2916 fprintf(stderr, "Failed CreateEvent\n");
2917 goto fail;
2920 snprintf(openname, sizeof(openname), "\\\\.\\pipe\\%s", filename);
2921 s->hcom = CreateNamedPipe(openname, PIPE_ACCESS_DUPLEX | FILE_FLAG_OVERLAPPED,
2922 PIPE_TYPE_BYTE | PIPE_READMODE_BYTE |
2923 PIPE_WAIT,
2924 MAXCONNECT, NSENDBUF, NRECVBUF, NTIMEOUT, NULL);
2925 if (s->hcom == INVALID_HANDLE_VALUE) {
2926 fprintf(stderr, "Failed CreateNamedPipe (%lu)\n", GetLastError());
2927 s->hcom = NULL;
2928 goto fail;
2931 ZeroMemory(&ov, sizeof(ov));
2932 ov.hEvent = CreateEvent(NULL, TRUE, FALSE, NULL);
2933 ret = ConnectNamedPipe(s->hcom, &ov);
2934 if (ret) {
2935 fprintf(stderr, "Failed ConnectNamedPipe\n");
2936 goto fail;
2939 ret = GetOverlappedResult(s->hcom, &ov, &size, TRUE);
2940 if (!ret) {
2941 fprintf(stderr, "Failed GetOverlappedResult\n");
2942 if (ov.hEvent) {
2943 CloseHandle(ov.hEvent);
2944 ov.hEvent = NULL;
2946 goto fail;
2949 if (ov.hEvent) {
2950 CloseHandle(ov.hEvent);
2951 ov.hEvent = NULL;
2953 qemu_add_polling_cb(win_chr_pipe_poll, chr);
2954 return 0;
2956 fail:
2957 win_chr_close(chr);
2958 return -1;
2962 static CharDriverState *qemu_chr_open_win_pipe(const char *filename)
2964 CharDriverState *chr;
2965 WinCharState *s;
2967 chr = qemu_mallocz(sizeof(CharDriverState));
2968 if (!chr)
2969 return NULL;
2970 s = qemu_mallocz(sizeof(WinCharState));
2971 if (!s) {
2972 free(chr);
2973 return NULL;
2975 chr->opaque = s;
2976 chr->chr_write = win_chr_write;
2977 chr->chr_close = win_chr_close;
2979 if (win_chr_pipe_init(chr, filename) < 0) {
2980 free(s);
2981 free(chr);
2982 return NULL;
2984 qemu_chr_reset(chr);
2985 return chr;
2988 static CharDriverState *qemu_chr_open_win_file(HANDLE fd_out)
2990 CharDriverState *chr;
2991 WinCharState *s;
2993 chr = qemu_mallocz(sizeof(CharDriverState));
2994 if (!chr)
2995 return NULL;
2996 s = qemu_mallocz(sizeof(WinCharState));
2997 if (!s) {
2998 free(chr);
2999 return NULL;
3001 s->hcom = fd_out;
3002 chr->opaque = s;
3003 chr->chr_write = win_chr_write;
3004 qemu_chr_reset(chr);
3005 return chr;
3008 static CharDriverState *qemu_chr_open_win_con(const char *filename)
3010 return qemu_chr_open_win_file(GetStdHandle(STD_OUTPUT_HANDLE));
3013 static CharDriverState *qemu_chr_open_win_file_out(const char *file_out)
3015 HANDLE fd_out;
3017 fd_out = CreateFile(file_out, GENERIC_WRITE, FILE_SHARE_READ, NULL,
3018 OPEN_ALWAYS, FILE_ATTRIBUTE_NORMAL, NULL);
3019 if (fd_out == INVALID_HANDLE_VALUE)
3020 return NULL;
3022 return qemu_chr_open_win_file(fd_out);
3024 #endif /* !_WIN32 */
3026 /***********************************************************/
3027 /* UDP Net console */
3029 typedef struct {
3030 int fd;
3031 struct sockaddr_in daddr;
3032 uint8_t buf[1024];
3033 int bufcnt;
3034 int bufptr;
3035 int max_size;
3036 } NetCharDriver;
3038 static int udp_chr_write(CharDriverState *chr, const uint8_t *buf, int len)
3040 NetCharDriver *s = chr->opaque;
3042 return sendto(s->fd, buf, len, 0,
3043 (struct sockaddr *)&s->daddr, sizeof(struct sockaddr_in));
3046 static int udp_chr_read_poll(void *opaque)
3048 CharDriverState *chr = opaque;
3049 NetCharDriver *s = chr->opaque;
3051 s->max_size = qemu_chr_can_read(chr);
3053 /* If there were any stray characters in the queue process them
3054 * first
3056 while (s->max_size > 0 && s->bufptr < s->bufcnt) {
3057 qemu_chr_read(chr, &s->buf[s->bufptr], 1);
3058 s->bufptr++;
3059 s->max_size = qemu_chr_can_read(chr);
3061 return s->max_size;
3064 static void udp_chr_read(void *opaque)
3066 CharDriverState *chr = opaque;
3067 NetCharDriver *s = chr->opaque;
3069 if (s->max_size == 0)
3070 return;
3071 s->bufcnt = recv(s->fd, s->buf, sizeof(s->buf), 0);
3072 s->bufptr = s->bufcnt;
3073 if (s->bufcnt <= 0)
3074 return;
3076 s->bufptr = 0;
3077 while (s->max_size > 0 && s->bufptr < s->bufcnt) {
3078 qemu_chr_read(chr, &s->buf[s->bufptr], 1);
3079 s->bufptr++;
3080 s->max_size = qemu_chr_can_read(chr);
3084 static void udp_chr_update_read_handler(CharDriverState *chr)
3086 NetCharDriver *s = chr->opaque;
3088 if (s->fd >= 0) {
3089 qemu_set_fd_handler2(s->fd, udp_chr_read_poll,
3090 udp_chr_read, NULL, chr);
3094 #ifndef _WIN32
3095 static int parse_unix_path(struct sockaddr_un *uaddr, const char *str);
3096 #endif
3097 int parse_host_src_port(struct sockaddr_in *haddr,
3098 struct sockaddr_in *saddr,
3099 const char *str);
3101 static CharDriverState *qemu_chr_open_udp(const char *def)
3103 CharDriverState *chr = NULL;
3104 NetCharDriver *s = NULL;
3105 int fd = -1;
3106 struct sockaddr_in saddr;
3108 chr = qemu_mallocz(sizeof(CharDriverState));
3109 if (!chr)
3110 goto return_err;
3111 s = qemu_mallocz(sizeof(NetCharDriver));
3112 if (!s)
3113 goto return_err;
3115 fd = socket(PF_INET, SOCK_DGRAM, 0);
3116 if (fd < 0) {
3117 perror("socket(PF_INET, SOCK_DGRAM)");
3118 goto return_err;
3121 if (parse_host_src_port(&s->daddr, &saddr, def) < 0) {
3122 printf("Could not parse: %s\n", def);
3123 goto return_err;
3126 if (bind(fd, (struct sockaddr *)&saddr, sizeof(saddr)) < 0)
3128 perror("bind");
3129 goto return_err;
3132 s->fd = fd;
3133 s->bufcnt = 0;
3134 s->bufptr = 0;
3135 chr->opaque = s;
3136 chr->chr_write = udp_chr_write;
3137 chr->chr_update_read_handler = udp_chr_update_read_handler;
3138 return chr;
3140 return_err:
3141 if (chr)
3142 free(chr);
3143 if (s)
3144 free(s);
3145 if (fd >= 0)
3146 closesocket(fd);
3147 return NULL;
3150 /***********************************************************/
3151 /* TCP Net console */
3153 typedef struct {
3154 int fd, listen_fd;
3155 int connected;
3156 int max_size;
3157 int do_telnetopt;
3158 int do_nodelay;
3159 int is_unix;
3160 } TCPCharDriver;
3162 static void tcp_chr_accept(void *opaque);
3164 static int tcp_chr_write(CharDriverState *chr, const uint8_t *buf, int len)
3166 TCPCharDriver *s = chr->opaque;
3167 if (s->connected) {
3168 return send_all(s->fd, buf, len);
3169 } else {
3170 /* XXX: indicate an error ? */
3171 return len;
3175 static int tcp_chr_read_poll(void *opaque)
3177 CharDriverState *chr = opaque;
3178 TCPCharDriver *s = chr->opaque;
3179 if (!s->connected)
3180 return 0;
3181 s->max_size = qemu_chr_can_read(chr);
3182 return s->max_size;
3185 #define IAC 255
3186 #define IAC_BREAK 243
3187 static void tcp_chr_process_IAC_bytes(CharDriverState *chr,
3188 TCPCharDriver *s,
3189 uint8_t *buf, int *size)
3191 /* Handle any telnet client's basic IAC options to satisfy char by
3192 * char mode with no echo. All IAC options will be removed from
3193 * the buf and the do_telnetopt variable will be used to track the
3194 * state of the width of the IAC information.
3196 * IAC commands come in sets of 3 bytes with the exception of the
3197 * "IAC BREAK" command and the double IAC.
3200 int i;
3201 int j = 0;
3203 for (i = 0; i < *size; i++) {
3204 if (s->do_telnetopt > 1) {
3205 if ((unsigned char)buf[i] == IAC && s->do_telnetopt == 2) {
3206 /* Double IAC means send an IAC */
3207 if (j != i)
3208 buf[j] = buf[i];
3209 j++;
3210 s->do_telnetopt = 1;
3211 } else {
3212 if ((unsigned char)buf[i] == IAC_BREAK && s->do_telnetopt == 2) {
3213 /* Handle IAC break commands by sending a serial break */
3214 qemu_chr_event(chr, CHR_EVENT_BREAK);
3215 s->do_telnetopt++;
3217 s->do_telnetopt++;
3219 if (s->do_telnetopt >= 4) {
3220 s->do_telnetopt = 1;
3222 } else {
3223 if ((unsigned char)buf[i] == IAC) {
3224 s->do_telnetopt = 2;
3225 } else {
3226 if (j != i)
3227 buf[j] = buf[i];
3228 j++;
3232 *size = j;
3235 static void tcp_chr_read(void *opaque)
3237 CharDriverState *chr = opaque;
3238 TCPCharDriver *s = chr->opaque;
3239 uint8_t buf[1024];
3240 int len, size;
3242 if (!s->connected || s->max_size <= 0)
3243 return;
3244 len = sizeof(buf);
3245 if (len > s->max_size)
3246 len = s->max_size;
3247 size = recv(s->fd, buf, len, 0);
3248 if (size == 0) {
3249 /* connection closed */
3250 s->connected = 0;
3251 if (s->listen_fd >= 0) {
3252 qemu_set_fd_handler(s->listen_fd, tcp_chr_accept, NULL, chr);
3254 qemu_set_fd_handler(s->fd, NULL, NULL, NULL);
3255 closesocket(s->fd);
3256 s->fd = -1;
3257 } else if (size > 0) {
3258 if (s->do_telnetopt)
3259 tcp_chr_process_IAC_bytes(chr, s, buf, &size);
3260 if (size > 0)
3261 qemu_chr_read(chr, buf, size);
3265 static void tcp_chr_connect(void *opaque)
3267 CharDriverState *chr = opaque;
3268 TCPCharDriver *s = chr->opaque;
3270 s->connected = 1;
3271 qemu_set_fd_handler2(s->fd, tcp_chr_read_poll,
3272 tcp_chr_read, NULL, chr);
3273 qemu_chr_reset(chr);
3276 #define IACSET(x,a,b,c) x[0] = a; x[1] = b; x[2] = c;
3277 static void tcp_chr_telnet_init(int fd)
3279 char buf[3];
3280 /* Send the telnet negotion to put telnet in binary, no echo, single char mode */
3281 IACSET(buf, 0xff, 0xfb, 0x01); /* IAC WILL ECHO */
3282 send(fd, (char *)buf, 3, 0);
3283 IACSET(buf, 0xff, 0xfb, 0x03); /* IAC WILL Suppress go ahead */
3284 send(fd, (char *)buf, 3, 0);
3285 IACSET(buf, 0xff, 0xfb, 0x00); /* IAC WILL Binary */
3286 send(fd, (char *)buf, 3, 0);
3287 IACSET(buf, 0xff, 0xfd, 0x00); /* IAC DO Binary */
3288 send(fd, (char *)buf, 3, 0);
3291 static void socket_set_nodelay(int fd)
3293 int val = 1;
3294 setsockopt(fd, IPPROTO_TCP, TCP_NODELAY, (char *)&val, sizeof(val));
3297 static void tcp_chr_accept(void *opaque)
3299 CharDriverState *chr = opaque;
3300 TCPCharDriver *s = chr->opaque;
3301 struct sockaddr_in saddr;
3302 #ifndef _WIN32
3303 struct sockaddr_un uaddr;
3304 #endif
3305 struct sockaddr *addr;
3306 socklen_t len;
3307 int fd;
3309 for(;;) {
3310 #ifndef _WIN32
3311 if (s->is_unix) {
3312 len = sizeof(uaddr);
3313 addr = (struct sockaddr *)&uaddr;
3314 } else
3315 #endif
3317 len = sizeof(saddr);
3318 addr = (struct sockaddr *)&saddr;
3320 fd = accept(s->listen_fd, addr, &len);
3321 if (fd < 0 && errno != EINTR) {
3322 return;
3323 } else if (fd >= 0) {
3324 if (s->do_telnetopt)
3325 tcp_chr_telnet_init(fd);
3326 break;
3329 socket_set_nonblock(fd);
3330 if (s->do_nodelay)
3331 socket_set_nodelay(fd);
3332 s->fd = fd;
3333 qemu_set_fd_handler(s->listen_fd, NULL, NULL, NULL);
3334 tcp_chr_connect(chr);
3337 static void tcp_chr_close(CharDriverState *chr)
3339 TCPCharDriver *s = chr->opaque;
3340 if (s->fd >= 0)
3341 closesocket(s->fd);
3342 if (s->listen_fd >= 0)
3343 closesocket(s->listen_fd);
3344 qemu_free(s);
3347 static CharDriverState *qemu_chr_open_tcp(const char *host_str,
3348 int is_telnet,
3349 int is_unix)
3351 CharDriverState *chr = NULL;
3352 TCPCharDriver *s = NULL;
3353 int fd = -1, ret, err, val;
3354 int is_listen = 0;
3355 int is_waitconnect = 1;
3356 int do_nodelay = 0;
3357 const char *ptr;
3358 struct sockaddr_in saddr;
3359 #ifndef _WIN32
3360 struct sockaddr_un uaddr;
3361 #endif
3362 struct sockaddr *addr;
3363 socklen_t addrlen;
3365 #ifndef _WIN32
3366 if (is_unix) {
3367 addr = (struct sockaddr *)&uaddr;
3368 addrlen = sizeof(uaddr);
3369 if (parse_unix_path(&uaddr, host_str) < 0)
3370 goto fail;
3371 } else
3372 #endif
3374 addr = (struct sockaddr *)&saddr;
3375 addrlen = sizeof(saddr);
3376 if (parse_host_port(&saddr, host_str) < 0)
3377 goto fail;
3380 ptr = host_str;
3381 while((ptr = strchr(ptr,','))) {
3382 ptr++;
3383 if (!strncmp(ptr,"server",6)) {
3384 is_listen = 1;
3385 } else if (!strncmp(ptr,"nowait",6)) {
3386 is_waitconnect = 0;
3387 } else if (!strncmp(ptr,"nodelay",6)) {
3388 do_nodelay = 1;
3389 } else {
3390 printf("Unknown option: %s\n", ptr);
3391 goto fail;
3394 if (!is_listen)
3395 is_waitconnect = 0;
3397 chr = qemu_mallocz(sizeof(CharDriverState));
3398 if (!chr)
3399 goto fail;
3400 s = qemu_mallocz(sizeof(TCPCharDriver));
3401 if (!s)
3402 goto fail;
3404 #ifndef _WIN32
3405 if (is_unix)
3406 fd = socket(PF_UNIX, SOCK_STREAM, 0);
3407 else
3408 #endif
3409 fd = socket(PF_INET, SOCK_STREAM, 0);
3411 if (fd < 0)
3412 goto fail;
3414 if (!is_waitconnect)
3415 socket_set_nonblock(fd);
3417 s->connected = 0;
3418 s->fd = -1;
3419 s->listen_fd = -1;
3420 s->is_unix = is_unix;
3421 s->do_nodelay = do_nodelay && !is_unix;
3423 chr->opaque = s;
3424 chr->chr_write = tcp_chr_write;
3425 chr->chr_close = tcp_chr_close;
3427 if (is_listen) {
3428 /* allow fast reuse */
3429 #ifndef _WIN32
3430 if (is_unix) {
3431 char path[109];
3432 strncpy(path, uaddr.sun_path, 108);
3433 path[108] = 0;
3434 unlink(path);
3435 } else
3436 #endif
3438 val = 1;
3439 setsockopt(fd, SOL_SOCKET, SO_REUSEADDR, (const char *)&val, sizeof(val));
3442 ret = bind(fd, addr, addrlen);
3443 if (ret < 0)
3444 goto fail;
3446 ret = listen(fd, 0);
3447 if (ret < 0)
3448 goto fail;
3450 s->listen_fd = fd;
3451 qemu_set_fd_handler(s->listen_fd, tcp_chr_accept, NULL, chr);
3452 if (is_telnet)
3453 s->do_telnetopt = 1;
3454 } else {
3455 for(;;) {
3456 ret = connect(fd, addr, addrlen);
3457 if (ret < 0) {
3458 err = socket_error();
3459 if (err == EINTR || err == EWOULDBLOCK) {
3460 } else if (err == EINPROGRESS) {
3461 break;
3462 #ifdef _WIN32
3463 } else if (err == WSAEALREADY) {
3464 break;
3465 #endif
3466 } else {
3467 goto fail;
3469 } else {
3470 s->connected = 1;
3471 break;
3474 s->fd = fd;
3475 socket_set_nodelay(fd);
3476 if (s->connected)
3477 tcp_chr_connect(chr);
3478 else
3479 qemu_set_fd_handler(s->fd, NULL, tcp_chr_connect, chr);
3482 if (is_listen && is_waitconnect) {
3483 printf("QEMU waiting for connection on: %s\n", host_str);
3484 tcp_chr_accept(chr);
3485 socket_set_nonblock(s->listen_fd);
3488 return chr;
3489 fail:
3490 if (fd >= 0)
3491 closesocket(fd);
3492 qemu_free(s);
3493 qemu_free(chr);
3494 return NULL;
3497 CharDriverState *qemu_chr_open(const char *filename)
3499 const char *p;
3501 if (!strcmp(filename, "vc")) {
3502 return text_console_init(&display_state, 0);
3503 } else if (strstart(filename, "vc:", &p)) {
3504 return text_console_init(&display_state, p);
3505 } else if (!strcmp(filename, "null")) {
3506 return qemu_chr_open_null();
3507 } else
3508 if (strstart(filename, "tcp:", &p)) {
3509 return qemu_chr_open_tcp(p, 0, 0);
3510 } else
3511 if (strstart(filename, "telnet:", &p)) {
3512 return qemu_chr_open_tcp(p, 1, 0);
3513 } else
3514 if (strstart(filename, "udp:", &p)) {
3515 return qemu_chr_open_udp(p);
3516 } else
3517 if (strstart(filename, "mon:", &p)) {
3518 CharDriverState *drv = qemu_chr_open(p);
3519 if (drv) {
3520 drv = qemu_chr_open_mux(drv);
3521 monitor_init(drv, !nographic);
3522 return drv;
3524 printf("Unable to open driver: %s\n", p);
3525 return 0;
3526 } else
3527 #ifndef _WIN32
3528 if (strstart(filename, "unix:", &p)) {
3529 return qemu_chr_open_tcp(p, 0, 1);
3530 } else if (strstart(filename, "file:", &p)) {
3531 return qemu_chr_open_file_out(p);
3532 } else if (strstart(filename, "pipe:", &p)) {
3533 return qemu_chr_open_pipe(p);
3534 } else if (!strcmp(filename, "pty")) {
3535 return qemu_chr_open_pty();
3536 } else if (!strcmp(filename, "stdio")) {
3537 return qemu_chr_open_stdio();
3538 } else
3539 #if defined(__linux__)
3540 if (strstart(filename, "/dev/parport", NULL)) {
3541 return qemu_chr_open_pp(filename);
3542 } else
3543 #endif
3544 #if defined(__linux__) || defined(__sun__)
3545 if (strstart(filename, "/dev/", NULL)) {
3546 return qemu_chr_open_tty(filename);
3547 } else
3548 #endif
3549 #else /* !_WIN32 */
3550 if (strstart(filename, "COM", NULL)) {
3551 return qemu_chr_open_win(filename);
3552 } else
3553 if (strstart(filename, "pipe:", &p)) {
3554 return qemu_chr_open_win_pipe(p);
3555 } else
3556 if (strstart(filename, "con:", NULL)) {
3557 return qemu_chr_open_win_con(filename);
3558 } else
3559 if (strstart(filename, "file:", &p)) {
3560 return qemu_chr_open_win_file_out(p);
3561 } else
3562 #endif
3563 #ifdef CONFIG_BRLAPI
3564 if (!strcmp(filename, "braille")) {
3565 return chr_baum_init();
3566 } else
3567 #endif
3569 return NULL;
3573 void qemu_chr_close(CharDriverState *chr)
3575 if (chr->chr_close)
3576 chr->chr_close(chr);
3577 qemu_free(chr);
3580 /***********************************************************/
3581 /* network device redirectors */
3583 __attribute__ (( unused ))
3584 static void hex_dump(FILE *f, const uint8_t *buf, int size)
3586 int len, i, j, c;
3588 for(i=0;i<size;i+=16) {
3589 len = size - i;
3590 if (len > 16)
3591 len = 16;
3592 fprintf(f, "%08x ", i);
3593 for(j=0;j<16;j++) {
3594 if (j < len)
3595 fprintf(f, " %02x", buf[i+j]);
3596 else
3597 fprintf(f, " ");
3599 fprintf(f, " ");
3600 for(j=0;j<len;j++) {
3601 c = buf[i+j];
3602 if (c < ' ' || c > '~')
3603 c = '.';
3604 fprintf(f, "%c", c);
3606 fprintf(f, "\n");
3610 static int parse_macaddr(uint8_t *macaddr, const char *p)
3612 int i;
3613 char *last_char;
3614 long int offset;
3616 errno = 0;
3617 offset = strtol(p, &last_char, 0);
3618 if (0 == errno && '\0' == *last_char &&
3619 offset >= 0 && offset <= 0xFFFFFF) {
3620 macaddr[3] = (offset & 0xFF0000) >> 16;
3621 macaddr[4] = (offset & 0xFF00) >> 8;
3622 macaddr[5] = offset & 0xFF;
3623 return 0;
3624 } else {
3625 for(i = 0; i < 6; i++) {
3626 macaddr[i] = strtol(p, (char **)&p, 16);
3627 if (i == 5) {
3628 if (*p != '\0')
3629 return -1;
3630 } else {
3631 if (*p != ':' && *p != '-')
3632 return -1;
3633 p++;
3636 return 0;
3639 return -1;
3642 static int get_str_sep(char *buf, int buf_size, const char **pp, int sep)
3644 const char *p, *p1;
3645 int len;
3646 p = *pp;
3647 p1 = strchr(p, sep);
3648 if (!p1)
3649 return -1;
3650 len = p1 - p;
3651 p1++;
3652 if (buf_size > 0) {
3653 if (len > buf_size - 1)
3654 len = buf_size - 1;
3655 memcpy(buf, p, len);
3656 buf[len] = '\0';
3658 *pp = p1;
3659 return 0;
3662 int parse_host_src_port(struct sockaddr_in *haddr,
3663 struct sockaddr_in *saddr,
3664 const char *input_str)
3666 char *str = strdup(input_str);
3667 char *host_str = str;
3668 char *src_str;
3669 char *ptr;
3672 * Chop off any extra arguments at the end of the string which
3673 * would start with a comma, then fill in the src port information
3674 * if it was provided else use the "any address" and "any port".
3676 if ((ptr = strchr(str,',')))
3677 *ptr = '\0';
3679 if ((src_str = strchr(input_str,'@'))) {
3680 *src_str = '\0';
3681 src_str++;
3684 if (parse_host_port(haddr, host_str) < 0)
3685 goto fail;
3687 if (!src_str || *src_str == '\0')
3688 src_str = ":0";
3690 if (parse_host_port(saddr, src_str) < 0)
3691 goto fail;
3693 free(str);
3694 return(0);
3696 fail:
3697 free(str);
3698 return -1;
3701 int parse_host_port(struct sockaddr_in *saddr, const char *str)
3703 char buf[512];
3704 struct hostent *he;
3705 const char *p, *r;
3706 int port;
3708 p = str;
3709 if (get_str_sep(buf, sizeof(buf), &p, ':') < 0)
3710 return -1;
3711 saddr->sin_family = AF_INET;
3712 if (buf[0] == '\0') {
3713 saddr->sin_addr.s_addr = 0;
3714 } else {
3715 if (isdigit(buf[0])) {
3716 if (!inet_aton(buf, &saddr->sin_addr))
3717 return -1;
3718 } else {
3719 if ((he = gethostbyname(buf)) == NULL)
3720 return - 1;
3721 saddr->sin_addr = *(struct in_addr *)he->h_addr;
3724 port = strtol(p, (char **)&r, 0);
3725 if (r == p)
3726 return -1;
3727 saddr->sin_port = htons(port);
3728 return 0;
3731 #ifndef _WIN32
3732 static int parse_unix_path(struct sockaddr_un *uaddr, const char *str)
3734 const char *p;
3735 int len;
3737 len = MIN(108, strlen(str));
3738 p = strchr(str, ',');
3739 if (p)
3740 len = MIN(len, p - str);
3742 memset(uaddr, 0, sizeof(*uaddr));
3744 uaddr->sun_family = AF_UNIX;
3745 memcpy(uaddr->sun_path, str, len);
3747 return 0;
3749 #endif
3751 /* find or alloc a new VLAN */
3752 VLANState *qemu_find_vlan(int id)
3754 VLANState **pvlan, *vlan;
3755 for(vlan = first_vlan; vlan != NULL; vlan = vlan->next) {
3756 if (vlan->id == id)
3757 return vlan;
3759 vlan = qemu_mallocz(sizeof(VLANState));
3760 if (!vlan)
3761 return NULL;
3762 vlan->id = id;
3763 vlan->next = NULL;
3764 pvlan = &first_vlan;
3765 while (*pvlan != NULL)
3766 pvlan = &(*pvlan)->next;
3767 *pvlan = vlan;
3768 return vlan;
3771 VLANClientState *qemu_new_vlan_client(VLANState *vlan,
3772 IOReadHandler *fd_read,
3773 IOCanRWHandler *fd_can_read,
3774 void *opaque)
3776 VLANClientState *vc, **pvc;
3777 vc = qemu_mallocz(sizeof(VLANClientState));
3778 if (!vc)
3779 return NULL;
3780 vc->fd_read = fd_read;
3781 vc->fd_can_read = fd_can_read;
3782 vc->opaque = opaque;
3783 vc->vlan = vlan;
3785 vc->next = NULL;
3786 pvc = &vlan->first_client;
3787 while (*pvc != NULL)
3788 pvc = &(*pvc)->next;
3789 *pvc = vc;
3790 return vc;
3793 int qemu_can_send_packet(VLANClientState *vc1)
3795 VLANState *vlan = vc1->vlan;
3796 VLANClientState *vc;
3798 for(vc = vlan->first_client; vc != NULL; vc = vc->next) {
3799 if (vc != vc1) {
3800 if (vc->fd_can_read && vc->fd_can_read(vc->opaque))
3801 return 1;
3804 return 0;
3807 void qemu_send_packet(VLANClientState *vc1, const uint8_t *buf, int size)
3809 VLANState *vlan = vc1->vlan;
3810 VLANClientState *vc;
3812 #if 0
3813 printf("vlan %d send:\n", vlan->id);
3814 hex_dump(stdout, buf, size);
3815 #endif
3816 for(vc = vlan->first_client; vc != NULL; vc = vc->next) {
3817 if (vc != vc1) {
3818 vc->fd_read(vc->opaque, buf, size);
3823 static ssize_t vc_sendv_compat(VLANClientState *vc, const struct iovec *iov,
3824 int iovcnt)
3826 char buffer[4096];
3827 size_t offset = 0;
3828 int i;
3830 for (i = 0; i < iovcnt; i++) {
3831 size_t len;
3833 len = MIN(sizeof(buffer) - offset, iov[i].iov_len);
3834 memcpy(buffer + offset, iov[i].iov_base, len);
3835 offset += len;
3838 vc->fd_read(vc->opaque, buffer, offset);
3840 return offset;
3843 ssize_t qemu_sendv_packet(VLANClientState *vc1, const struct iovec *iov,
3844 int iovcnt)
3846 VLANState *vlan = vc1->vlan;
3847 VLANClientState *vc;
3848 ssize_t max_len = 0;
3850 for (vc = vlan->first_client; vc != NULL; vc = vc->next) {
3851 ssize_t len = 0;
3853 if (vc == vc1)
3854 continue;
3856 if (vc->fd_readv)
3857 len = vc->fd_readv(vc->opaque, iov, iovcnt);
3858 else if (vc->fd_read)
3859 len = vc_sendv_compat(vc, iov, iovcnt);
3861 max_len = MAX(max_len, len);
3864 return max_len;
3867 #if defined(CONFIG_SLIRP)
3869 /* slirp network adapter */
3871 static int slirp_inited;
3872 static VLANClientState *slirp_vc;
3874 int slirp_can_output(void)
3876 return !slirp_vc || qemu_can_send_packet(slirp_vc);
3879 void slirp_output(const uint8_t *pkt, int pkt_len)
3881 #if 0
3882 printf("slirp output:\n");
3883 hex_dump(stdout, pkt, pkt_len);
3884 #endif
3885 if (!slirp_vc)
3886 return;
3887 qemu_send_packet(slirp_vc, pkt, pkt_len);
3890 static void slirp_receive(void *opaque, const uint8_t *buf, int size)
3892 #if 0
3893 printf("slirp input:\n");
3894 hex_dump(stdout, buf, size);
3895 #endif
3896 slirp_input(buf, size);
3899 static int net_slirp_init(VLANState *vlan)
3901 if (!slirp_inited) {
3902 slirp_inited = 1;
3903 slirp_init();
3905 slirp_vc = qemu_new_vlan_client(vlan,
3906 slirp_receive, NULL, NULL);
3907 snprintf(slirp_vc->info_str, sizeof(slirp_vc->info_str), "user redirector");
3908 return 0;
3911 static void net_slirp_redir(const char *redir_str)
3913 int is_udp;
3914 char buf[256], *r;
3915 const char *p;
3916 struct in_addr guest_addr;
3917 int host_port, guest_port;
3919 if (!slirp_inited) {
3920 slirp_inited = 1;
3921 slirp_init();
3924 p = redir_str;
3925 if (get_str_sep(buf, sizeof(buf), &p, ':') < 0)
3926 goto fail;
3927 if (!strcmp(buf, "tcp")) {
3928 is_udp = 0;
3929 } else if (!strcmp(buf, "udp")) {
3930 is_udp = 1;
3931 } else {
3932 goto fail;
3935 if (get_str_sep(buf, sizeof(buf), &p, ':') < 0)
3936 goto fail;
3937 host_port = strtol(buf, &r, 0);
3938 if (r == buf)
3939 goto fail;
3941 if (get_str_sep(buf, sizeof(buf), &p, ':') < 0)
3942 goto fail;
3943 if (buf[0] == '\0') {
3944 pstrcpy(buf, sizeof(buf), "10.0.2.15");
3946 if (!inet_aton(buf, &guest_addr))
3947 goto fail;
3949 guest_port = strtol(p, &r, 0);
3950 if (r == p)
3951 goto fail;
3953 if (slirp_redir(is_udp, host_port, guest_addr, guest_port) < 0) {
3954 fprintf(stderr, "qemu: could not set up redirection\n");
3955 exit(1);
3957 return;
3958 fail:
3959 fprintf(stderr, "qemu: syntax: -redir [tcp|udp]:host-port:[guest-host]:guest-port\n");
3960 exit(1);
3963 #ifndef _WIN32
3965 char smb_dir[1024];
3967 static void erase_dir(char *dir_name)
3969 DIR *d;
3970 struct dirent *de;
3971 char filename[1024];
3973 /* erase all the files in the directory */
3974 if ((d = opendir(dir_name)) != 0) {
3975 for(;;) {
3976 de = readdir(d);
3977 if (!de)
3978 break;
3979 if (strcmp(de->d_name, ".") != 0 &&
3980 strcmp(de->d_name, "..") != 0) {
3981 snprintf(filename, sizeof(filename), "%s/%s",
3982 smb_dir, de->d_name);
3983 if (unlink(filename) != 0) /* is it a directory? */
3984 erase_dir(filename);
3987 closedir(d);
3988 rmdir(dir_name);
3992 /* automatic user mode samba server configuration */
3993 static void smb_exit(void)
3995 erase_dir(smb_dir);
3998 /* automatic user mode samba server configuration */
3999 static void net_slirp_smb(const char *exported_dir)
4001 char smb_conf[1024];
4002 char smb_cmdline[1024];
4003 FILE *f;
4005 if (!slirp_inited) {
4006 slirp_inited = 1;
4007 slirp_init();
4010 /* XXX: better tmp dir construction */
4011 snprintf(smb_dir, sizeof(smb_dir), "/tmp/qemu-smb.%d", getpid());
4012 if (mkdir(smb_dir, 0700) < 0) {
4013 fprintf(stderr, "qemu: could not create samba server dir '%s'\n", smb_dir);
4014 exit(1);
4016 snprintf(smb_conf, sizeof(smb_conf), "%s/%s", smb_dir, "smb.conf");
4018 f = fopen(smb_conf, "w");
4019 if (!f) {
4020 fprintf(stderr, "qemu: could not create samba server configuration file '%s'\n", smb_conf);
4021 exit(1);
4023 fprintf(f,
4024 "[global]\n"
4025 "private dir=%s\n"
4026 "smb ports=0\n"
4027 "socket address=127.0.0.1\n"
4028 "pid directory=%s\n"
4029 "lock directory=%s\n"
4030 "log file=%s/log.smbd\n"
4031 "smb passwd file=%s/smbpasswd\n"
4032 "security = share\n"
4033 "[qemu]\n"
4034 "path=%s\n"
4035 "read only=no\n"
4036 "guest ok=yes\n",
4037 smb_dir,
4038 smb_dir,
4039 smb_dir,
4040 smb_dir,
4041 smb_dir,
4042 exported_dir
4044 fclose(f);
4045 atexit(smb_exit);
4047 snprintf(smb_cmdline, sizeof(smb_cmdline), "%s -s %s",
4048 SMBD_COMMAND, smb_conf);
4050 slirp_add_exec(0, smb_cmdline, 4, 139);
4053 #endif /* !defined(_WIN32) */
4054 void do_info_slirp(void)
4056 slirp_stats();
4059 #endif /* CONFIG_SLIRP */
4061 #if !defined(_WIN32)
4063 typedef struct TAPState {
4064 VLANClientState *vc;
4065 int fd;
4066 char down_script[1024];
4067 int no_poll;
4068 } TAPState;
4070 static int tap_read_poll(void *opaque)
4072 TAPState *s = opaque;
4073 return (!s->no_poll);
4076 static void tap_receive(void *opaque, const uint8_t *buf, int size)
4078 TAPState *s = opaque;
4079 int ret;
4080 for(;;) {
4081 ret = write(s->fd, buf, size);
4082 if (ret < 0 && (errno == EINTR || errno == EAGAIN)) {
4083 } else {
4084 break;
4089 static ssize_t tap_readv(void *opaque, const struct iovec *iov,
4090 int iovcnt)
4092 TAPState *s = opaque;
4093 ssize_t len;
4095 do {
4096 len = writev(s->fd, iov, iovcnt);
4097 } while (len == -1 && (errno == EINTR || errno == EAGAIN));
4099 return len;
4102 static void tap_send(void *opaque)
4104 TAPState *s = opaque;
4105 uint8_t buf[4096];
4106 int size;
4108 #ifdef __sun__
4109 struct strbuf sbuf;
4110 int f = 0;
4111 sbuf.maxlen = sizeof(buf);
4112 sbuf.buf = buf;
4113 size = getmsg(s->fd, NULL, &sbuf, &f) >=0 ? sbuf.len : -1;
4114 #else
4115 size = read(s->fd, buf, sizeof(buf));
4116 #endif
4117 if (size > 0) {
4118 qemu_send_packet(s->vc, buf, size);
4122 int hack_around_tap(void *opaque)
4124 VLANClientState *vc = opaque;
4125 TAPState *ts = vc->opaque;
4127 if (vc->fd_read != tap_receive)
4128 return -1;
4130 if (ts) {
4131 ts->no_poll = 1;
4132 return ts->fd;
4135 return -1;
4138 /* fd support */
4140 static TAPState *net_tap_fd_init(VLANState *vlan, int fd)
4142 TAPState *s;
4144 s = qemu_mallocz(sizeof(TAPState));
4145 if (!s)
4146 return NULL;
4147 s->fd = fd;
4148 s->no_poll = 0;
4149 enable_sigio_timer(fd);
4150 s->vc = qemu_new_vlan_client(vlan, tap_receive, NULL, s);
4151 s->vc->fd_readv = tap_readv;
4152 qemu_set_fd_handler2(s->fd, tap_read_poll, tap_send, NULL, s);
4153 snprintf(s->vc->info_str, sizeof(s->vc->info_str), "tap: fd=%d", fd);
4154 return s;
4157 #if defined (_BSD) || defined (__FreeBSD_kernel__)
4158 static int tap_open(char *ifname, int ifname_size)
4160 int fd;
4161 char *dev;
4162 struct stat s;
4164 TFR(fd = open("/dev/tap", O_RDWR));
4165 if (fd < 0) {
4166 fprintf(stderr, "warning: could not open /dev/tap: no virtual network emulation\n");
4167 return -1;
4170 fstat(fd, &s);
4171 dev = devname(s.st_rdev, S_IFCHR);
4172 pstrcpy(ifname, ifname_size, dev);
4174 fcntl(fd, F_SETFL, O_NONBLOCK);
4175 return fd;
4177 #elif defined(__sun__)
4178 #define TUNNEWPPA (('T'<<16) | 0x0001)
4180 * Allocate TAP device, returns opened fd.
4181 * Stores dev name in the first arg(must be large enough).
4183 int tap_alloc(char *dev)
4185 int tap_fd, if_fd, ppa = -1;
4186 static int ip_fd = 0;
4187 char *ptr;
4189 static int arp_fd = 0;
4190 int ip_muxid, arp_muxid;
4191 struct strioctl strioc_if, strioc_ppa;
4192 int link_type = I_PLINK;;
4193 struct lifreq ifr;
4194 char actual_name[32] = "";
4196 memset(&ifr, 0x0, sizeof(ifr));
4198 if( *dev ){
4199 ptr = dev;
4200 while( *ptr && !isdigit((int)*ptr) ) ptr++;
4201 ppa = atoi(ptr);
4204 /* Check if IP device was opened */
4205 if( ip_fd )
4206 close(ip_fd);
4208 TFR(ip_fd = open("/dev/udp", O_RDWR, 0));
4209 if (ip_fd < 0) {
4210 syslog(LOG_ERR, "Can't open /dev/ip (actually /dev/udp)");
4211 return -1;
4214 TFR(tap_fd = open("/dev/tap", O_RDWR, 0));
4215 if (tap_fd < 0) {
4216 syslog(LOG_ERR, "Can't open /dev/tap");
4217 return -1;
4220 /* Assign a new PPA and get its unit number. */
4221 strioc_ppa.ic_cmd = TUNNEWPPA;
4222 strioc_ppa.ic_timout = 0;
4223 strioc_ppa.ic_len = sizeof(ppa);
4224 strioc_ppa.ic_dp = (char *)&ppa;
4225 if ((ppa = ioctl (tap_fd, I_STR, &strioc_ppa)) < 0)
4226 syslog (LOG_ERR, "Can't assign new interface");
4228 TFR(if_fd = open("/dev/tap", O_RDWR, 0));
4229 if (if_fd < 0) {
4230 syslog(LOG_ERR, "Can't open /dev/tap (2)");
4231 return -1;
4233 if(ioctl(if_fd, I_PUSH, "ip") < 0){
4234 syslog(LOG_ERR, "Can't push IP module");
4235 return -1;
4238 if (ioctl(if_fd, SIOCGLIFFLAGS, &ifr) < 0)
4239 syslog(LOG_ERR, "Can't get flags\n");
4241 snprintf (actual_name, 32, "tap%d", ppa);
4242 strncpy (ifr.lifr_name, actual_name, sizeof (ifr.lifr_name));
4244 ifr.lifr_ppa = ppa;
4245 /* Assign ppa according to the unit number returned by tun device */
4247 if (ioctl (if_fd, SIOCSLIFNAME, &ifr) < 0)
4248 syslog (LOG_ERR, "Can't set PPA %d", ppa);
4249 if (ioctl(if_fd, SIOCGLIFFLAGS, &ifr) <0)
4250 syslog (LOG_ERR, "Can't get flags\n");
4251 /* Push arp module to if_fd */
4252 if (ioctl (if_fd, I_PUSH, "arp") < 0)
4253 syslog (LOG_ERR, "Can't push ARP module (2)");
4255 /* Push arp module to ip_fd */
4256 if (ioctl (ip_fd, I_POP, NULL) < 0)
4257 syslog (LOG_ERR, "I_POP failed\n");
4258 if (ioctl (ip_fd, I_PUSH, "arp") < 0)
4259 syslog (LOG_ERR, "Can't push ARP module (3)\n");
4260 /* Open arp_fd */
4261 TFR(arp_fd = open ("/dev/tap", O_RDWR, 0));
4262 if (arp_fd < 0)
4263 syslog (LOG_ERR, "Can't open %s\n", "/dev/tap");
4265 /* Set ifname to arp */
4266 strioc_if.ic_cmd = SIOCSLIFNAME;
4267 strioc_if.ic_timout = 0;
4268 strioc_if.ic_len = sizeof(ifr);
4269 strioc_if.ic_dp = (char *)&ifr;
4270 if (ioctl(arp_fd, I_STR, &strioc_if) < 0){
4271 syslog (LOG_ERR, "Can't set ifname to arp\n");
4274 if((ip_muxid = ioctl(ip_fd, I_LINK, if_fd)) < 0){
4275 syslog(LOG_ERR, "Can't link TAP device to IP");
4276 return -1;
4279 if ((arp_muxid = ioctl (ip_fd, link_type, arp_fd)) < 0)
4280 syslog (LOG_ERR, "Can't link TAP device to ARP");
4282 close (if_fd);
4284 memset(&ifr, 0x0, sizeof(ifr));
4285 strncpy (ifr.lifr_name, actual_name, sizeof (ifr.lifr_name));
4286 ifr.lifr_ip_muxid = ip_muxid;
4287 ifr.lifr_arp_muxid = arp_muxid;
4289 if (ioctl (ip_fd, SIOCSLIFMUXID, &ifr) < 0)
4291 ioctl (ip_fd, I_PUNLINK , arp_muxid);
4292 ioctl (ip_fd, I_PUNLINK, ip_muxid);
4293 syslog (LOG_ERR, "Can't set multiplexor id");
4296 sprintf(dev, "tap%d", ppa);
4297 return tap_fd;
4300 static int tap_open(char *ifname, int ifname_size)
4302 char dev[10]="";
4303 int fd;
4304 if( (fd = tap_alloc(dev)) < 0 ){
4305 fprintf(stderr, "Cannot allocate TAP device\n");
4306 return -1;
4308 pstrcpy(ifname, ifname_size, dev);
4309 fcntl(fd, F_SETFL, O_NONBLOCK);
4310 return fd;
4312 #else
4313 static int tap_open(char *ifname, int ifname_size)
4315 struct ifreq ifr;
4316 int fd, ret;
4318 TFR(fd = open("/dev/net/tun", O_RDWR));
4319 if (fd < 0) {
4320 fprintf(stderr, "warning: could not open /dev/net/tun: no virtual network emulation\n");
4321 return -1;
4323 memset(&ifr, 0, sizeof(ifr));
4324 ifr.ifr_flags = IFF_TAP | IFF_NO_PI;
4325 if (ifname[0] != '\0')
4326 pstrcpy(ifr.ifr_name, IFNAMSIZ, ifname);
4327 else
4328 pstrcpy(ifr.ifr_name, IFNAMSIZ, "tap%d");
4329 ret = ioctl(fd, TUNSETIFF, (void *) &ifr);
4330 if (ret != 0) {
4331 fprintf(stderr, "warning: could not configure /dev/net/tun: no virtual network emulation\n");
4332 close(fd);
4333 return -1;
4335 pstrcpy(ifname, ifname_size, ifr.ifr_name);
4336 fcntl(fd, F_SETFL, O_NONBLOCK);
4337 return fd;
4339 #endif
4341 static int launch_script(const char *setup_script, const char *ifname, int fd)
4343 int pid, status;
4344 char *args[3];
4345 char **parg;
4347 /* try to launch network script */
4348 pid = fork();
4349 if (pid >= 0) {
4350 if (pid == 0) {
4351 int open_max = sysconf (_SC_OPEN_MAX), i;
4352 for (i = 0; i < open_max; i++)
4353 if (i != STDIN_FILENO &&
4354 i != STDOUT_FILENO &&
4355 i != STDERR_FILENO &&
4356 i != fd)
4357 close(i);
4359 parg = args;
4360 *parg++ = (char *)setup_script;
4361 *parg++ = (char *)ifname;
4362 *parg++ = NULL;
4363 execv(setup_script, args);
4364 _exit(1);
4366 while (waitpid(pid, &status, 0) != pid);
4367 if (!WIFEXITED(status) ||
4368 WEXITSTATUS(status) != 0) {
4369 fprintf(stderr, "%s: could not launch network script\n",
4370 setup_script);
4371 return -1;
4374 return 0;
4377 static int net_tap_init(VLANState *vlan, const char *ifname1,
4378 const char *setup_script, const char *down_script)
4380 TAPState *s;
4381 int fd;
4382 char ifname[128];
4384 if (ifname1 != NULL)
4385 pstrcpy(ifname, sizeof(ifname), ifname1);
4386 else
4387 ifname[0] = '\0';
4388 TFR(fd = tap_open(ifname, sizeof(ifname)));
4389 if (fd < 0)
4390 return -1;
4392 if (!setup_script || !strcmp(setup_script, "no"))
4393 setup_script = "";
4394 if (setup_script[0] != '\0') {
4395 if (launch_script(setup_script, ifname, fd))
4396 return -1;
4398 s = net_tap_fd_init(vlan, fd);
4399 if (!s)
4400 return -1;
4401 snprintf(s->vc->info_str, sizeof(s->vc->info_str),
4402 "tap: ifname=%s setup_script=%s", ifname, setup_script);
4403 if (down_script && strcmp(down_script, "no"))
4404 snprintf(s->down_script, sizeof(s->down_script), "%s", down_script);
4405 return 0;
4408 #endif /* !_WIN32 */
4410 /* network connection */
4411 typedef struct NetSocketState {
4412 VLANClientState *vc;
4413 int fd;
4414 int state; /* 0 = getting length, 1 = getting data */
4415 int index;
4416 int packet_len;
4417 uint8_t buf[4096];
4418 struct sockaddr_in dgram_dst; /* contains inet host and port destination iff connectionless (SOCK_DGRAM) */
4419 } NetSocketState;
4421 typedef struct NetSocketListenState {
4422 VLANState *vlan;
4423 int fd;
4424 } NetSocketListenState;
4426 /* XXX: we consider we can send the whole packet without blocking */
4427 static void net_socket_receive(void *opaque, const uint8_t *buf, int size)
4429 NetSocketState *s = opaque;
4430 uint32_t len;
4431 len = htonl(size);
4433 send_all(s->fd, (const uint8_t *)&len, sizeof(len));
4434 send_all(s->fd, buf, size);
4437 static void net_socket_receive_dgram(void *opaque, const uint8_t *buf, int size)
4439 NetSocketState *s = opaque;
4440 sendto(s->fd, buf, size, 0,
4441 (struct sockaddr *)&s->dgram_dst, sizeof(s->dgram_dst));
4444 static void net_socket_send(void *opaque)
4446 NetSocketState *s = opaque;
4447 int l, size, err;
4448 uint8_t buf1[4096];
4449 const uint8_t *buf;
4451 size = recv(s->fd, buf1, sizeof(buf1), 0);
4452 if (size < 0) {
4453 err = socket_error();
4454 if (err != EWOULDBLOCK)
4455 goto eoc;
4456 } else if (size == 0) {
4457 /* end of connection */
4458 eoc:
4459 qemu_set_fd_handler(s->fd, NULL, NULL, NULL);
4460 closesocket(s->fd);
4461 return;
4463 buf = buf1;
4464 while (size > 0) {
4465 /* reassemble a packet from the network */
4466 switch(s->state) {
4467 case 0:
4468 l = 4 - s->index;
4469 if (l > size)
4470 l = size;
4471 memcpy(s->buf + s->index, buf, l);
4472 buf += l;
4473 size -= l;
4474 s->index += l;
4475 if (s->index == 4) {
4476 /* got length */
4477 s->packet_len = ntohl(*(uint32_t *)s->buf);
4478 s->index = 0;
4479 s->state = 1;
4481 break;
4482 case 1:
4483 l = s->packet_len - s->index;
4484 if (l > size)
4485 l = size;
4486 memcpy(s->buf + s->index, buf, l);
4487 s->index += l;
4488 buf += l;
4489 size -= l;
4490 if (s->index >= s->packet_len) {
4491 qemu_send_packet(s->vc, s->buf, s->packet_len);
4492 s->index = 0;
4493 s->state = 0;
4495 break;
4500 static void net_socket_send_dgram(void *opaque)
4502 NetSocketState *s = opaque;
4503 int size;
4505 size = recv(s->fd, s->buf, sizeof(s->buf), 0);
4506 if (size < 0)
4507 return;
4508 if (size == 0) {
4509 /* end of connection */
4510 qemu_set_fd_handler(s->fd, NULL, NULL, NULL);
4511 return;
4513 qemu_send_packet(s->vc, s->buf, size);
4516 static int net_socket_mcast_create(struct sockaddr_in *mcastaddr)
4518 struct ip_mreq imr;
4519 int fd;
4520 int val, ret;
4521 if (!IN_MULTICAST(ntohl(mcastaddr->sin_addr.s_addr))) {
4522 fprintf(stderr, "qemu: error: specified mcastaddr \"%s\" (0x%08x) does not contain a multicast address\n",
4523 inet_ntoa(mcastaddr->sin_addr),
4524 (int)ntohl(mcastaddr->sin_addr.s_addr));
4525 return -1;
4528 fd = socket(PF_INET, SOCK_DGRAM, 0);
4529 if (fd < 0) {
4530 perror("socket(PF_INET, SOCK_DGRAM)");
4531 return -1;
4534 val = 1;
4535 ret=setsockopt(fd, SOL_SOCKET, SO_REUSEADDR,
4536 (const char *)&val, sizeof(val));
4537 if (ret < 0) {
4538 perror("setsockopt(SOL_SOCKET, SO_REUSEADDR)");
4539 goto fail;
4542 ret = bind(fd, (struct sockaddr *)mcastaddr, sizeof(*mcastaddr));
4543 if (ret < 0) {
4544 perror("bind");
4545 goto fail;
4548 /* Add host to multicast group */
4549 imr.imr_multiaddr = mcastaddr->sin_addr;
4550 imr.imr_interface.s_addr = htonl(INADDR_ANY);
4552 ret = setsockopt(fd, IPPROTO_IP, IP_ADD_MEMBERSHIP,
4553 (const char *)&imr, sizeof(struct ip_mreq));
4554 if (ret < 0) {
4555 perror("setsockopt(IP_ADD_MEMBERSHIP)");
4556 goto fail;
4559 /* Force mcast msgs to loopback (eg. several QEMUs in same host */
4560 val = 1;
4561 ret=setsockopt(fd, IPPROTO_IP, IP_MULTICAST_LOOP,
4562 (const char *)&val, sizeof(val));
4563 if (ret < 0) {
4564 perror("setsockopt(SOL_IP, IP_MULTICAST_LOOP)");
4565 goto fail;
4568 socket_set_nonblock(fd);
4569 return fd;
4570 fail:
4571 if (fd >= 0)
4572 closesocket(fd);
4573 return -1;
4576 static NetSocketState *net_socket_fd_init_dgram(VLANState *vlan, int fd,
4577 int is_connected)
4579 struct sockaddr_in saddr;
4580 int newfd;
4581 socklen_t saddr_len;
4582 NetSocketState *s;
4584 /* fd passed: multicast: "learn" dgram_dst address from bound address and save it
4585 * Because this may be "shared" socket from a "master" process, datagrams would be recv()
4586 * by ONLY ONE process: we must "clone" this dgram socket --jjo
4589 if (is_connected) {
4590 if (getsockname(fd, (struct sockaddr *) &saddr, &saddr_len) == 0) {
4591 /* must be bound */
4592 if (saddr.sin_addr.s_addr==0) {
4593 fprintf(stderr, "qemu: error: init_dgram: fd=%d unbound, cannot setup multicast dst addr\n",
4594 fd);
4595 return NULL;
4597 /* clone dgram socket */
4598 newfd = net_socket_mcast_create(&saddr);
4599 if (newfd < 0) {
4600 /* error already reported by net_socket_mcast_create() */
4601 close(fd);
4602 return NULL;
4604 /* clone newfd to fd, close newfd */
4605 dup2(newfd, fd);
4606 close(newfd);
4608 } else {
4609 fprintf(stderr, "qemu: error: init_dgram: fd=%d failed getsockname(): %s\n",
4610 fd, strerror(errno));
4611 return NULL;
4615 s = qemu_mallocz(sizeof(NetSocketState));
4616 if (!s)
4617 return NULL;
4618 s->fd = fd;
4620 s->vc = qemu_new_vlan_client(vlan, net_socket_receive_dgram, NULL, s);
4621 qemu_set_fd_handler(s->fd, net_socket_send_dgram, NULL, s);
4623 /* mcast: save bound address as dst */
4624 if (is_connected) s->dgram_dst=saddr;
4626 snprintf(s->vc->info_str, sizeof(s->vc->info_str),
4627 "socket: fd=%d (%s mcast=%s:%d)",
4628 fd, is_connected? "cloned" : "",
4629 inet_ntoa(saddr.sin_addr), ntohs(saddr.sin_port));
4630 return s;
4633 static void net_socket_connect(void *opaque)
4635 NetSocketState *s = opaque;
4636 qemu_set_fd_handler(s->fd, net_socket_send, NULL, s);
4639 static NetSocketState *net_socket_fd_init_stream(VLANState *vlan, int fd,
4640 int is_connected)
4642 NetSocketState *s;
4643 s = qemu_mallocz(sizeof(NetSocketState));
4644 if (!s)
4645 return NULL;
4646 s->fd = fd;
4647 s->vc = qemu_new_vlan_client(vlan,
4648 net_socket_receive, NULL, s);
4649 snprintf(s->vc->info_str, sizeof(s->vc->info_str),
4650 "socket: fd=%d", fd);
4651 if (is_connected) {
4652 net_socket_connect(s);
4653 } else {
4654 qemu_set_fd_handler(s->fd, NULL, net_socket_connect, s);
4656 return s;
4659 static NetSocketState *net_socket_fd_init(VLANState *vlan, int fd,
4660 int is_connected)
4662 int so_type=-1, optlen=sizeof(so_type);
4664 if(getsockopt(fd, SOL_SOCKET, SO_TYPE, (char *)&so_type,
4665 (socklen_t *)&optlen)< 0) {
4666 fprintf(stderr, "qemu: error: getsockopt(SO_TYPE) for fd=%d failed\n", fd);
4667 return NULL;
4669 switch(so_type) {
4670 case SOCK_DGRAM:
4671 return net_socket_fd_init_dgram(vlan, fd, is_connected);
4672 case SOCK_STREAM:
4673 return net_socket_fd_init_stream(vlan, fd, is_connected);
4674 default:
4675 /* who knows ... this could be a eg. a pty, do warn and continue as stream */
4676 fprintf(stderr, "qemu: warning: socket type=%d for fd=%d is not SOCK_DGRAM or SOCK_STREAM\n", so_type, fd);
4677 return net_socket_fd_init_stream(vlan, fd, is_connected);
4679 return NULL;
4682 static void net_socket_accept(void *opaque)
4684 NetSocketListenState *s = opaque;
4685 NetSocketState *s1;
4686 struct sockaddr_in saddr;
4687 socklen_t len;
4688 int fd;
4690 for(;;) {
4691 len = sizeof(saddr);
4692 fd = accept(s->fd, (struct sockaddr *)&saddr, &len);
4693 if (fd < 0 && errno != EINTR) {
4694 return;
4695 } else if (fd >= 0) {
4696 break;
4699 s1 = net_socket_fd_init(s->vlan, fd, 1);
4700 if (!s1) {
4701 closesocket(fd);
4702 } else {
4703 snprintf(s1->vc->info_str, sizeof(s1->vc->info_str),
4704 "socket: connection from %s:%d",
4705 inet_ntoa(saddr.sin_addr), ntohs(saddr.sin_port));
4709 static int net_socket_listen_init(VLANState *vlan, const char *host_str)
4711 NetSocketListenState *s;
4712 int fd, val, ret;
4713 struct sockaddr_in saddr;
4715 if (parse_host_port(&saddr, host_str) < 0)
4716 return -1;
4718 s = qemu_mallocz(sizeof(NetSocketListenState));
4719 if (!s)
4720 return -1;
4722 fd = socket(PF_INET, SOCK_STREAM, 0);
4723 if (fd < 0) {
4724 perror("socket");
4725 return -1;
4727 socket_set_nonblock(fd);
4729 /* allow fast reuse */
4730 val = 1;
4731 setsockopt(fd, SOL_SOCKET, SO_REUSEADDR, (const char *)&val, sizeof(val));
4733 ret = bind(fd, (struct sockaddr *)&saddr, sizeof(saddr));
4734 if (ret < 0) {
4735 perror("bind");
4736 return -1;
4738 ret = listen(fd, 0);
4739 if (ret < 0) {
4740 perror("listen");
4741 return -1;
4743 s->vlan = vlan;
4744 s->fd = fd;
4745 qemu_set_fd_handler(fd, net_socket_accept, NULL, s);
4746 return 0;
4749 static int net_socket_connect_init(VLANState *vlan, const char *host_str)
4751 NetSocketState *s;
4752 int fd, connected, ret, err;
4753 struct sockaddr_in saddr;
4755 if (parse_host_port(&saddr, host_str) < 0)
4756 return -1;
4758 fd = socket(PF_INET, SOCK_STREAM, 0);
4759 if (fd < 0) {
4760 perror("socket");
4761 return -1;
4763 socket_set_nonblock(fd);
4765 connected = 0;
4766 for(;;) {
4767 ret = connect(fd, (struct sockaddr *)&saddr, sizeof(saddr));
4768 if (ret < 0) {
4769 err = socket_error();
4770 if (err == EINTR || err == EWOULDBLOCK) {
4771 } else if (err == EINPROGRESS) {
4772 break;
4773 #ifdef _WIN32
4774 } else if (err == WSAEALREADY) {
4775 break;
4776 #endif
4777 } else {
4778 perror("connect");
4779 closesocket(fd);
4780 return -1;
4782 } else {
4783 connected = 1;
4784 break;
4787 s = net_socket_fd_init(vlan, fd, connected);
4788 if (!s)
4789 return -1;
4790 snprintf(s->vc->info_str, sizeof(s->vc->info_str),
4791 "socket: connect to %s:%d",
4792 inet_ntoa(saddr.sin_addr), ntohs(saddr.sin_port));
4793 return 0;
4796 static int net_socket_mcast_init(VLANState *vlan, const char *host_str)
4798 NetSocketState *s;
4799 int fd;
4800 struct sockaddr_in saddr;
4802 if (parse_host_port(&saddr, host_str) < 0)
4803 return -1;
4806 fd = net_socket_mcast_create(&saddr);
4807 if (fd < 0)
4808 return -1;
4810 s = net_socket_fd_init(vlan, fd, 0);
4811 if (!s)
4812 return -1;
4814 s->dgram_dst = saddr;
4816 snprintf(s->vc->info_str, sizeof(s->vc->info_str),
4817 "socket: mcast=%s:%d",
4818 inet_ntoa(saddr.sin_addr), ntohs(saddr.sin_port));
4819 return 0;
4823 static const char *get_opt_name(char *buf, int buf_size, const char *p)
4825 char *q;
4827 q = buf;
4828 while (*p != '\0' && *p != '=') {
4829 if (q && (q - buf) < buf_size - 1)
4830 *q++ = *p;
4831 p++;
4833 if (q)
4834 *q = '\0';
4836 return p;
4839 static const char *get_opt_value(char *buf, int buf_size, const char *p)
4841 char *q;
4843 q = buf;
4844 while (*p != '\0') {
4845 if (*p == ',') {
4846 if (*(p + 1) != ',')
4847 break;
4848 p++;
4850 if (q && (q - buf) < buf_size - 1)
4851 *q++ = *p;
4852 p++;
4854 if (q)
4855 *q = '\0';
4857 return p;
4860 int get_param_value(char *buf, int buf_size,
4861 const char *tag, const char *str)
4863 const char *p;
4864 char option[128];
4866 p = str;
4867 for(;;) {
4868 p = get_opt_name(option, sizeof(option), p);
4869 if (*p != '=')
4870 break;
4871 p++;
4872 if (!strcmp(tag, option)) {
4873 (void)get_opt_value(buf, buf_size, p);
4874 return strlen(buf);
4875 } else {
4876 p = get_opt_value(NULL, 0, p);
4878 if (*p != ',')
4879 break;
4880 p++;
4882 return 0;
4885 int check_params(char *buf, int buf_size,
4886 char **params, const char *str)
4888 const char *p;
4889 int i;
4891 p = str;
4892 for(;;) {
4893 p = get_opt_name(buf, buf_size, p);
4894 if (*p != '=')
4895 return -1;
4896 p++;
4897 for(i = 0; params[i] != NULL; i++)
4898 if (!strcmp(params[i], buf))
4899 break;
4900 if (params[i] == NULL)
4901 return -1;
4902 p = get_opt_value(NULL, 0, p);
4903 if (*p != ',')
4904 break;
4905 p++;
4907 return 0;
4910 static int nic_get_free_idx(void)
4912 int index;
4914 for (index = 0; index < MAX_NICS; index++)
4915 if (!nd_table[index].used)
4916 return index;
4917 return -1;
4920 int net_client_init(const char *str)
4922 const char *p;
4923 char *q;
4924 char device[64];
4925 char buf[1024];
4926 int vlan_id, ret;
4927 VLANState *vlan;
4929 p = str;
4930 q = device;
4931 while (*p != '\0' && *p != ',') {
4932 if ((q - device) < sizeof(device) - 1)
4933 *q++ = *p;
4934 p++;
4936 *q = '\0';
4937 if (*p == ',')
4938 p++;
4939 vlan_id = 0;
4940 if (get_param_value(buf, sizeof(buf), "vlan", p)) {
4941 vlan_id = strtol(buf, NULL, 0);
4943 vlan = qemu_find_vlan(vlan_id);
4944 if (!vlan) {
4945 fprintf(stderr, "Could not create vlan %d\n", vlan_id);
4946 return -1;
4948 if (!strcmp(device, "nic")) {
4949 NICInfo *nd;
4950 uint8_t *macaddr;
4951 int idx = nic_get_free_idx();
4953 if (idx == -1 || nb_nics >= MAX_NICS) {
4954 fprintf(stderr, "Too Many NICs\n");
4955 return -1;
4957 nd = &nd_table[idx];
4958 macaddr = nd->macaddr;
4959 macaddr[0] = 0x52;
4960 macaddr[1] = 0x54;
4961 macaddr[2] = 0x00;
4962 macaddr[3] = 0x12;
4963 macaddr[4] = 0x34;
4964 macaddr[5] = 0x56 + idx;
4966 if (get_param_value(buf, sizeof(buf), "macaddr", p)) {
4967 if (parse_macaddr(macaddr, buf) < 0) {
4968 fprintf(stderr, "invalid syntax for ethernet address\n");
4969 return -1;
4972 if (get_param_value(buf, sizeof(buf), "model", p)) {
4973 nd->model = strdup(buf);
4975 nd->vlan = vlan;
4976 nd->used = 1;
4977 nb_nics++;
4978 vlan->nb_guest_devs++;
4979 ret = idx;
4980 } else
4981 if (!strcmp(device, "none")) {
4982 /* does nothing. It is needed to signal that no network cards
4983 are wanted */
4984 ret = 0;
4985 } else
4986 #ifdef CONFIG_SLIRP
4987 if (!strcmp(device, "user")) {
4988 if (get_param_value(buf, sizeof(buf), "hostname", p)) {
4989 pstrcpy(slirp_hostname, sizeof(slirp_hostname), buf);
4991 vlan->nb_host_devs++;
4992 ret = net_slirp_init(vlan);
4993 } else
4994 #endif
4995 #ifdef _WIN32
4996 if (!strcmp(device, "tap")) {
4997 char ifname[64];
4998 if (get_param_value(ifname, sizeof(ifname), "ifname", p) <= 0) {
4999 fprintf(stderr, "tap: no interface name\n");
5000 return -1;
5002 vlan->nb_host_devs++;
5003 ret = tap_win32_init(vlan, ifname);
5004 } else
5005 #else
5006 if (!strcmp(device, "tap")) {
5007 char ifname[64];
5008 char setup_script[1024], down_script[1024];
5009 int fd;
5010 vlan->nb_host_devs++;
5011 if (get_param_value(buf, sizeof(buf), "fd", p) > 0) {
5012 fd = strtol(buf, NULL, 0);
5013 fcntl(fd, F_SETFL, O_NONBLOCK);
5014 ret = -1;
5015 if (net_tap_fd_init(vlan, fd))
5016 ret = 0;
5017 } else {
5018 if (get_param_value(ifname, sizeof(ifname), "ifname", p) <= 0) {
5019 ifname[0] = '\0';
5021 if (get_param_value(setup_script, sizeof(setup_script), "script", p) == 0) {
5022 pstrcpy(setup_script, sizeof(setup_script), DEFAULT_NETWORK_SCRIPT);
5024 if (get_param_value(down_script, sizeof(down_script), "downscript", p) == 0) {
5025 pstrcpy(down_script, sizeof(down_script), DEFAULT_NETWORK_DOWN_SCRIPT);
5027 ret = net_tap_init(vlan, ifname, setup_script, down_script);
5029 } else
5030 #endif
5031 if (!strcmp(device, "socket")) {
5032 if (get_param_value(buf, sizeof(buf), "fd", p) > 0) {
5033 int fd;
5034 fd = strtol(buf, NULL, 0);
5035 ret = -1;
5036 if (net_socket_fd_init(vlan, fd, 1))
5037 ret = 0;
5038 } else if (get_param_value(buf, sizeof(buf), "listen", p) > 0) {
5039 ret = net_socket_listen_init(vlan, buf);
5040 } else if (get_param_value(buf, sizeof(buf), "connect", p) > 0) {
5041 ret = net_socket_connect_init(vlan, buf);
5042 } else if (get_param_value(buf, sizeof(buf), "mcast", p) > 0) {
5043 ret = net_socket_mcast_init(vlan, buf);
5044 } else {
5045 fprintf(stderr, "Unknown socket options: %s\n", p);
5046 return -1;
5048 vlan->nb_host_devs++;
5049 } else
5051 fprintf(stderr, "Unknown network device: %s\n", device);
5052 return -1;
5054 if (ret < 0) {
5055 fprintf(stderr, "Could not initialize device '%s'\n", device);
5058 return ret;
5061 void net_client_uninit(NICInfo *nd)
5063 nd->vlan->nb_guest_devs--; /* XXX: free vlan on last reference */
5064 nb_nics--;
5065 nd->used = 0;
5066 free((void *)nd->model);
5069 void do_info_network(void)
5071 VLANState *vlan;
5072 VLANClientState *vc;
5074 for(vlan = first_vlan; vlan != NULL; vlan = vlan->next) {
5075 term_printf("VLAN %d devices:\n", vlan->id);
5076 for(vc = vlan->first_client; vc != NULL; vc = vc->next)
5077 term_printf(" %s\n", vc->info_str);
5081 #define HD_ALIAS "index=%d,media=disk"
5082 #ifdef TARGET_PPC
5083 #define CDROM_ALIAS "index=1,media=cdrom"
5084 #else
5085 #define CDROM_ALIAS "index=2,media=cdrom"
5086 #endif
5087 #define FD_ALIAS "index=%d,if=floppy"
5088 #define PFLASH_ALIAS "if=pflash"
5089 #define MTD_ALIAS "if=mtd"
5090 #define SD_ALIAS "index=0,if=sd"
5092 static int drive_opt_get_free_idx(void)
5094 int index;
5096 for (index = 0; index < MAX_DRIVES; index++)
5097 if (!drives_opt[index].used) {
5098 drives_opt[index].used = 1;
5099 return index;
5102 return -1;
5105 static int drive_get_free_idx(void)
5107 int index;
5109 for (index = 0; index < MAX_DRIVES; index++)
5110 if (!drives_table[index].used) {
5111 drives_table[index].used = 1;
5112 return index;
5115 return -1;
5118 int drive_add(const char *file, const char *fmt, ...)
5120 va_list ap;
5121 int index = drive_opt_get_free_idx();
5123 if (nb_drives_opt >= MAX_DRIVES || index == -1) {
5124 fprintf(stderr, "qemu: too many drives\n");
5125 return -1;
5128 drives_opt[index].file = file;
5129 va_start(ap, fmt);
5130 vsnprintf(drives_opt[index].opt,
5131 sizeof(drives_opt[0].opt), fmt, ap);
5132 va_end(ap);
5134 nb_drives_opt++;
5135 return index;
5138 void drive_remove(int index)
5140 drives_opt[index].used = 0;
5141 nb_drives_opt--;
5144 int drive_get_index(BlockInterfaceType type, int bus, int unit)
5146 int index;
5148 /* seek interface, bus and unit */
5150 for (index = 0; index < MAX_DRIVES; index++)
5151 if (drives_table[index].type == type &&
5152 drives_table[index].bus == bus &&
5153 drives_table[index].unit == unit &&
5154 drives_table[index].used)
5155 return index;
5157 return -1;
5160 int drive_get_max_bus(BlockInterfaceType type)
5162 int max_bus;
5163 int index;
5165 max_bus = -1;
5166 for (index = 0; index < nb_drives; index++) {
5167 if(drives_table[index].type == type &&
5168 drives_table[index].bus > max_bus)
5169 max_bus = drives_table[index].bus;
5171 return max_bus;
5174 static void bdrv_format_print(void *opaque, const char *name)
5176 fprintf(stderr, " %s", name);
5179 void drive_uninit(BlockDriverState *bdrv)
5181 int i;
5183 for (i = 0; i < MAX_DRIVES; i++)
5184 if (drives_table[i].bdrv == bdrv) {
5185 drives_table[i].bdrv = NULL;
5186 drives_table[i].used = 0;
5187 drive_remove(drives_table[i].drive_opt_idx);
5188 nb_drives--;
5189 break;
5193 int drive_init(struct drive_opt *arg, int snapshot,
5194 QEMUMachine *machine)
5196 char buf[128];
5197 char file[1024];
5198 char devname[128];
5199 const char *mediastr = "";
5200 BlockInterfaceType type;
5201 enum { MEDIA_DISK, MEDIA_CDROM } media;
5202 int bus_id, unit_id;
5203 int cyls, heads, secs, translation;
5204 BlockDriverState *bdrv;
5205 BlockDriver *drv = NULL;
5206 int max_devs;
5207 int index;
5208 int cache;
5209 int bdrv_flags;
5210 int drives_table_idx;
5211 char *str = arg->opt;
5212 char *params[] = { "bus", "unit", "if", "index", "cyls", "heads",
5213 "secs", "trans", "media", "snapshot", "file",
5214 "cache", "format", "boot", NULL };
5216 if (check_params(buf, sizeof(buf), params, str) < 0) {
5217 fprintf(stderr, "qemu: unknown parameter '%s' in '%s'\n",
5218 buf, str);
5219 return -1;
5222 file[0] = 0;
5223 cyls = heads = secs = 0;
5224 bus_id = 0;
5225 unit_id = -1;
5226 translation = BIOS_ATA_TRANSLATION_AUTO;
5227 index = -1;
5228 cache = 1;
5230 if (!strcmp(machine->name, "realview") ||
5231 !strcmp(machine->name, "SS-5") ||
5232 !strcmp(machine->name, "SS-10") ||
5233 !strcmp(machine->name, "SS-600MP") ||
5234 !strcmp(machine->name, "versatilepb") ||
5235 !strcmp(machine->name, "versatileab")) {
5236 type = IF_SCSI;
5237 max_devs = MAX_SCSI_DEVS;
5238 strcpy(devname, "scsi");
5239 } else {
5240 type = IF_IDE;
5241 max_devs = MAX_IDE_DEVS;
5242 strcpy(devname, "ide");
5244 media = MEDIA_DISK;
5246 /* extract parameters */
5248 if (get_param_value(buf, sizeof(buf), "bus", str)) {
5249 bus_id = strtol(buf, NULL, 0);
5250 if (bus_id < 0) {
5251 fprintf(stderr, "qemu: '%s' invalid bus id\n", str);
5252 return -1;
5256 if (get_param_value(buf, sizeof(buf), "unit", str)) {
5257 unit_id = strtol(buf, NULL, 0);
5258 if (unit_id < 0) {
5259 fprintf(stderr, "qemu: '%s' invalid unit id\n", str);
5260 return -1;
5264 if (get_param_value(buf, sizeof(buf), "if", str)) {
5265 strncpy(devname, buf, sizeof(devname));
5266 if (!strcmp(buf, "ide")) {
5267 type = IF_IDE;
5268 max_devs = MAX_IDE_DEVS;
5269 } else if (!strcmp(buf, "scsi")) {
5270 type = IF_SCSI;
5271 max_devs = MAX_SCSI_DEVS;
5272 } else if (!strcmp(buf, "floppy")) {
5273 type = IF_FLOPPY;
5274 max_devs = 0;
5275 } else if (!strcmp(buf, "pflash")) {
5276 type = IF_PFLASH;
5277 max_devs = 0;
5278 } else if (!strcmp(buf, "mtd")) {
5279 type = IF_MTD;
5280 max_devs = 0;
5281 } else if (!strcmp(buf, "sd")) {
5282 type = IF_SD;
5283 max_devs = 0;
5284 } else if (!strcmp(buf, "virtio")) {
5285 type = IF_VIRTIO;
5286 max_devs = 0;
5287 } else {
5288 fprintf(stderr, "qemu: '%s' unsupported bus type '%s'\n", str, buf);
5289 return -1;
5293 if (get_param_value(buf, sizeof(buf), "index", str)) {
5294 index = strtol(buf, NULL, 0);
5295 if (index < 0) {
5296 fprintf(stderr, "qemu: '%s' invalid index\n", str);
5297 return -1;
5301 if (get_param_value(buf, sizeof(buf), "cyls", str)) {
5302 cyls = strtol(buf, NULL, 0);
5305 if (get_param_value(buf, sizeof(buf), "heads", str)) {
5306 heads = strtol(buf, NULL, 0);
5309 if (get_param_value(buf, sizeof(buf), "secs", str)) {
5310 secs = strtol(buf, NULL, 0);
5313 if (cyls || heads || secs) {
5314 if (cyls < 1 || cyls > 16383) {
5315 fprintf(stderr, "qemu: '%s' invalid physical cyls number\n", str);
5316 return -1;
5318 if (heads < 1 || heads > 16) {
5319 fprintf(stderr, "qemu: '%s' invalid physical heads number\n", str);
5320 return -1;
5322 if (secs < 1 || secs > 63) {
5323 fprintf(stderr, "qemu: '%s' invalid physical secs number\n", str);
5324 return -1;
5328 if (get_param_value(buf, sizeof(buf), "trans", str)) {
5329 if (!cyls) {
5330 fprintf(stderr,
5331 "qemu: '%s' trans must be used with cyls,heads and secs\n",
5332 str);
5333 return -1;
5335 if (!strcmp(buf, "none"))
5336 translation = BIOS_ATA_TRANSLATION_NONE;
5337 else if (!strcmp(buf, "lba"))
5338 translation = BIOS_ATA_TRANSLATION_LBA;
5339 else if (!strcmp(buf, "auto"))
5340 translation = BIOS_ATA_TRANSLATION_AUTO;
5341 else {
5342 fprintf(stderr, "qemu: '%s' invalid translation type\n", str);
5343 return -1;
5347 if (get_param_value(buf, sizeof(buf), "media", str)) {
5348 if (!strcmp(buf, "disk")) {
5349 media = MEDIA_DISK;
5350 } else if (!strcmp(buf, "cdrom")) {
5351 if (cyls || secs || heads) {
5352 fprintf(stderr,
5353 "qemu: '%s' invalid physical CHS format\n", str);
5354 return -1;
5356 media = MEDIA_CDROM;
5357 } else {
5358 fprintf(stderr, "qemu: '%s' invalid media\n", str);
5359 return -1;
5363 if (get_param_value(buf, sizeof(buf), "snapshot", str)) {
5364 if (!strcmp(buf, "on"))
5365 snapshot = 1;
5366 else if (!strcmp(buf, "off"))
5367 snapshot = 0;
5368 else {
5369 fprintf(stderr, "qemu: '%s' invalid snapshot option\n", str);
5370 return -1;
5374 if (get_param_value(buf, sizeof(buf), "cache", str)) {
5375 if (!strcmp(buf, "off"))
5376 cache = 0;
5377 else if (!strcmp(buf, "on"))
5378 cache = 1;
5379 else {
5380 fprintf(stderr, "qemu: invalid cache option\n");
5381 return -1;
5385 if (get_param_value(buf, sizeof(buf), "format", str)) {
5386 if (strcmp(buf, "?") == 0) {
5387 fprintf(stderr, "qemu: Supported formats:");
5388 bdrv_iterate_format(bdrv_format_print, NULL);
5389 fprintf(stderr, "\n");
5390 return -1;
5392 drv = bdrv_find_format(buf);
5393 if (!drv) {
5394 fprintf(stderr, "qemu: '%s' invalid format\n", buf);
5395 return -1;
5399 if (get_param_value(buf, sizeof(buf), "boot", str)) {
5400 if (!strcmp(buf, "on")) {
5401 if (extboot_drive != -1) {
5402 fprintf(stderr, "qemu: two bootable drives specified\n");
5403 return -1;
5405 extboot_drive = nb_drives;
5406 } else if (strcmp(buf, "off")) {
5407 fprintf(stderr, "qemu: '%s' invalid boot option\n", str);
5408 return -1;
5412 if (arg->file == NULL)
5413 get_param_value(file, sizeof(file), "file", str);
5414 else
5415 pstrcpy(file, sizeof(file), arg->file);
5417 /* compute bus and unit according index */
5419 if (index != -1) {
5420 if (bus_id != 0 || unit_id != -1) {
5421 fprintf(stderr,
5422 "qemu: '%s' index cannot be used with bus and unit\n", str);
5423 return -1;
5425 if (max_devs == 0)
5427 unit_id = index;
5428 bus_id = 0;
5429 } else {
5430 unit_id = index % max_devs;
5431 bus_id = index / max_devs;
5435 /* if user doesn't specify a unit_id,
5436 * try to find the first free
5439 if (unit_id == -1) {
5440 unit_id = 0;
5441 while (drive_get_index(type, bus_id, unit_id) != -1) {
5442 unit_id++;
5443 if (max_devs && unit_id >= max_devs) {
5444 unit_id -= max_devs;
5445 bus_id++;
5450 /* check unit id */
5452 if (max_devs && unit_id >= max_devs) {
5453 fprintf(stderr, "qemu: '%s' unit %d too big (max is %d)\n",
5454 str, unit_id, max_devs - 1);
5455 return -1;
5459 * ignore multiple definitions
5462 if (drive_get_index(type, bus_id, unit_id) != -1)
5463 return -2;
5465 /* init */
5467 if (type == IF_IDE || type == IF_SCSI)
5468 mediastr = (media == MEDIA_CDROM) ? "-cd" : "-hd";
5469 if (max_devs)
5470 snprintf(buf, sizeof(buf), "%s%i%s%i",
5471 devname, bus_id, mediastr, unit_id);
5472 else
5473 snprintf(buf, sizeof(buf), "%s%s%i",
5474 devname, mediastr, unit_id);
5475 bdrv = bdrv_new(buf);
5476 drives_table_idx = drive_get_free_idx();
5477 drives_table[drives_table_idx].bdrv = bdrv;
5478 drives_table[drives_table_idx].type = type;
5479 drives_table[drives_table_idx].bus = bus_id;
5480 drives_table[drives_table_idx].unit = unit_id;
5481 drives_table[drives_table_idx].drive_opt_idx = arg - drives_opt;
5482 nb_drives++;
5484 switch(type) {
5485 case IF_IDE:
5486 case IF_SCSI:
5487 switch(media) {
5488 case MEDIA_DISK:
5489 if (cyls != 0) {
5490 bdrv_set_geometry_hint(bdrv, cyls, heads, secs);
5491 bdrv_set_translation_hint(bdrv, translation);
5493 break;
5494 case MEDIA_CDROM:
5495 bdrv_set_type_hint(bdrv, BDRV_TYPE_CDROM);
5496 break;
5498 break;
5499 case IF_SD:
5500 /* FIXME: This isn't really a floppy, but it's a reasonable
5501 approximation. */
5502 case IF_FLOPPY:
5503 bdrv_set_type_hint(bdrv, BDRV_TYPE_FLOPPY);
5504 break;
5505 case IF_PFLASH:
5506 case IF_MTD:
5507 case IF_VIRTIO:
5508 break;
5510 if (!file[0])
5511 return -2;
5512 bdrv_flags = 0;
5513 if (snapshot)
5514 bdrv_flags |= BDRV_O_SNAPSHOT;
5515 if (!cache)
5516 bdrv_flags |= BDRV_O_DIRECT;
5517 if (bdrv_open2(bdrv, file, bdrv_flags, drv) < 0 || qemu_key_check(bdrv, file)) {
5518 fprintf(stderr, "qemu: could not open disk image %s\n",
5519 file);
5520 return -1;
5522 return drives_table_idx;
5525 /***********************************************************/
5526 /* USB devices */
5528 static USBPort *used_usb_ports;
5529 static USBPort *free_usb_ports;
5531 /* ??? Maybe change this to register a hub to keep track of the topology. */
5532 void qemu_register_usb_port(USBPort *port, void *opaque, int index,
5533 usb_attachfn attach)
5535 port->opaque = opaque;
5536 port->index = index;
5537 port->attach = attach;
5538 port->next = free_usb_ports;
5539 free_usb_ports = port;
5542 static int usb_device_add(const char *devname)
5544 const char *p;
5545 USBDevice *dev;
5546 USBPort *port;
5548 if (!free_usb_ports)
5549 return -1;
5551 if (strstart(devname, "host:", &p)) {
5552 dev = usb_host_device_open(p);
5553 } else if (!strcmp(devname, "mouse")) {
5554 dev = usb_mouse_init();
5555 } else if (!strcmp(devname, "tablet")) {
5556 dev = usb_tablet_init();
5557 } else if (!strcmp(devname, "keyboard")) {
5558 dev = usb_keyboard_init();
5559 } else if (strstart(devname, "disk:", &p)) {
5560 dev = usb_msd_init(p);
5561 } else if (!strcmp(devname, "wacom-tablet")) {
5562 dev = usb_wacom_init();
5563 } else if (strstart(devname, "serial:", &p)) {
5564 dev = usb_serial_init(p);
5565 #ifdef CONFIG_BRLAPI
5566 } else if (!strcmp(devname, "braille")) {
5567 dev = usb_baum_init();
5568 #endif
5569 } else {
5570 return -1;
5572 if (!dev)
5573 return -1;
5575 /* Find a USB port to add the device to. */
5576 port = free_usb_ports;
5577 if (!port->next) {
5578 USBDevice *hub;
5580 /* Create a new hub and chain it on. */
5581 free_usb_ports = NULL;
5582 port->next = used_usb_ports;
5583 used_usb_ports = port;
5585 hub = usb_hub_init(VM_USB_HUB_SIZE);
5586 usb_attach(port, hub);
5587 port = free_usb_ports;
5590 free_usb_ports = port->next;
5591 port->next = used_usb_ports;
5592 used_usb_ports = port;
5593 usb_attach(port, dev);
5594 return 0;
5597 static int usb_device_del(const char *devname)
5599 USBPort *port;
5600 USBPort **lastp;
5601 USBDevice *dev;
5602 int bus_num, addr;
5603 const char *p;
5605 if (!used_usb_ports)
5606 return -1;
5608 p = strchr(devname, '.');
5609 if (!p)
5610 return -1;
5611 bus_num = strtoul(devname, NULL, 0);
5612 addr = strtoul(p + 1, NULL, 0);
5613 if (bus_num != 0)
5614 return -1;
5616 lastp = &used_usb_ports;
5617 port = used_usb_ports;
5618 while (port && port->dev->addr != addr) {
5619 lastp = &port->next;
5620 port = port->next;
5623 if (!port)
5624 return -1;
5626 dev = port->dev;
5627 *lastp = port->next;
5628 usb_attach(port, NULL);
5629 dev->handle_destroy(dev);
5630 port->next = free_usb_ports;
5631 free_usb_ports = port;
5632 return 0;
5635 void do_usb_add(const char *devname)
5637 int ret;
5638 ret = usb_device_add(devname);
5639 if (ret < 0)
5640 term_printf("Could not add USB device '%s'\n", devname);
5643 void do_usb_del(const char *devname)
5645 int ret;
5646 ret = usb_device_del(devname);
5647 if (ret < 0)
5648 term_printf("Could not remove USB device '%s'\n", devname);
5651 void usb_info(void)
5653 USBDevice *dev;
5654 USBPort *port;
5655 const char *speed_str;
5657 if (!usb_enabled) {
5658 term_printf("USB support not enabled\n");
5659 return;
5662 for (port = used_usb_ports; port; port = port->next) {
5663 dev = port->dev;
5664 if (!dev)
5665 continue;
5666 switch(dev->speed) {
5667 case USB_SPEED_LOW:
5668 speed_str = "1.5";
5669 break;
5670 case USB_SPEED_FULL:
5671 speed_str = "12";
5672 break;
5673 case USB_SPEED_HIGH:
5674 speed_str = "480";
5675 break;
5676 default:
5677 speed_str = "?";
5678 break;
5680 term_printf(" Device %d.%d, Speed %s Mb/s, Product %s\n",
5681 0, dev->addr, speed_str, dev->devname);
5685 /***********************************************************/
5686 /* PCMCIA/Cardbus */
5688 static struct pcmcia_socket_entry_s {
5689 struct pcmcia_socket_s *socket;
5690 struct pcmcia_socket_entry_s *next;
5691 } *pcmcia_sockets = 0;
5693 void pcmcia_socket_register(struct pcmcia_socket_s *socket)
5695 struct pcmcia_socket_entry_s *entry;
5697 entry = qemu_malloc(sizeof(struct pcmcia_socket_entry_s));
5698 entry->socket = socket;
5699 entry->next = pcmcia_sockets;
5700 pcmcia_sockets = entry;
5703 void pcmcia_socket_unregister(struct pcmcia_socket_s *socket)
5705 struct pcmcia_socket_entry_s *entry, **ptr;
5707 ptr = &pcmcia_sockets;
5708 for (entry = *ptr; entry; ptr = &entry->next, entry = *ptr)
5709 if (entry->socket == socket) {
5710 *ptr = entry->next;
5711 qemu_free(entry);
5715 void pcmcia_info(void)
5717 struct pcmcia_socket_entry_s *iter;
5718 if (!pcmcia_sockets)
5719 term_printf("No PCMCIA sockets\n");
5721 for (iter = pcmcia_sockets; iter; iter = iter->next)
5722 term_printf("%s: %s\n", iter->socket->slot_string,
5723 iter->socket->attached ? iter->socket->card_string :
5724 "Empty");
5727 /***********************************************************/
5728 /* dumb display */
5730 static void dumb_update(DisplayState *ds, int x, int y, int w, int h)
5734 static void dumb_resize(DisplayState *ds, int w, int h)
5738 static void dumb_refresh(DisplayState *ds)
5740 #if defined(CONFIG_SDL)
5741 vga_hw_update();
5742 #endif
5745 static void dumb_display_init(DisplayState *ds)
5747 ds->data = NULL;
5748 ds->linesize = 0;
5749 ds->depth = 0;
5750 ds->dpy_update = dumb_update;
5751 ds->dpy_resize = dumb_resize;
5752 ds->dpy_refresh = dumb_refresh;
5755 /***********************************************************/
5756 /* I/O handling */
5758 #define MAX_IO_HANDLERS 64
5760 typedef struct IOHandlerRecord {
5761 int fd;
5762 IOCanRWHandler *fd_read_poll;
5763 IOHandler *fd_read;
5764 IOHandler *fd_write;
5765 int deleted;
5766 void *opaque;
5767 /* temporary data */
5768 struct pollfd *ufd;
5769 struct IOHandlerRecord *next;
5770 } IOHandlerRecord;
5772 static IOHandlerRecord *first_io_handler;
5774 /* XXX: fd_read_poll should be suppressed, but an API change is
5775 necessary in the character devices to suppress fd_can_read(). */
5776 int qemu_set_fd_handler2(int fd,
5777 IOCanRWHandler *fd_read_poll,
5778 IOHandler *fd_read,
5779 IOHandler *fd_write,
5780 void *opaque)
5782 IOHandlerRecord **pioh, *ioh;
5784 if (!fd_read && !fd_write) {
5785 pioh = &first_io_handler;
5786 for(;;) {
5787 ioh = *pioh;
5788 if (ioh == NULL)
5789 break;
5790 if (ioh->fd == fd) {
5791 ioh->deleted = 1;
5792 break;
5794 pioh = &ioh->next;
5796 } else {
5797 for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
5798 if (ioh->fd == fd)
5799 goto found;
5801 ioh = qemu_mallocz(sizeof(IOHandlerRecord));
5802 if (!ioh)
5803 return -1;
5804 ioh->next = first_io_handler;
5805 first_io_handler = ioh;
5806 found:
5807 ioh->fd = fd;
5808 ioh->fd_read_poll = fd_read_poll;
5809 ioh->fd_read = fd_read;
5810 ioh->fd_write = fd_write;
5811 ioh->opaque = opaque;
5812 ioh->deleted = 0;
5814 main_loop_break();
5815 return 0;
5818 int qemu_set_fd_handler(int fd,
5819 IOHandler *fd_read,
5820 IOHandler *fd_write,
5821 void *opaque)
5823 return qemu_set_fd_handler2(fd, NULL, fd_read, fd_write, opaque);
5826 /***********************************************************/
5827 /* Polling handling */
5829 typedef struct PollingEntry {
5830 PollingFunc *func;
5831 void *opaque;
5832 struct PollingEntry *next;
5833 } PollingEntry;
5835 static PollingEntry *first_polling_entry;
5837 int qemu_add_polling_cb(PollingFunc *func, void *opaque)
5839 PollingEntry **ppe, *pe;
5840 pe = qemu_mallocz(sizeof(PollingEntry));
5841 if (!pe)
5842 return -1;
5843 pe->func = func;
5844 pe->opaque = opaque;
5845 for(ppe = &first_polling_entry; *ppe != NULL; ppe = &(*ppe)->next);
5846 *ppe = pe;
5847 return 0;
5850 void qemu_del_polling_cb(PollingFunc *func, void *opaque)
5852 PollingEntry **ppe, *pe;
5853 for(ppe = &first_polling_entry; *ppe != NULL; ppe = &(*ppe)->next) {
5854 pe = *ppe;
5855 if (pe->func == func && pe->opaque == opaque) {
5856 *ppe = pe->next;
5857 qemu_free(pe);
5858 break;
5863 #ifdef _WIN32
5864 /***********************************************************/
5865 /* Wait objects support */
5866 typedef struct WaitObjects {
5867 int num;
5868 HANDLE events[MAXIMUM_WAIT_OBJECTS + 1];
5869 WaitObjectFunc *func[MAXIMUM_WAIT_OBJECTS + 1];
5870 void *opaque[MAXIMUM_WAIT_OBJECTS + 1];
5871 } WaitObjects;
5873 static WaitObjects wait_objects = {0};
5875 int qemu_add_wait_object(HANDLE handle, WaitObjectFunc *func, void *opaque)
5877 WaitObjects *w = &wait_objects;
5879 if (w->num >= MAXIMUM_WAIT_OBJECTS)
5880 return -1;
5881 w->events[w->num] = handle;
5882 w->func[w->num] = func;
5883 w->opaque[w->num] = opaque;
5884 w->num++;
5885 return 0;
5888 void qemu_del_wait_object(HANDLE handle, WaitObjectFunc *func, void *opaque)
5890 int i, found;
5891 WaitObjects *w = &wait_objects;
5893 found = 0;
5894 for (i = 0; i < w->num; i++) {
5895 if (w->events[i] == handle)
5896 found = 1;
5897 if (found) {
5898 w->events[i] = w->events[i + 1];
5899 w->func[i] = w->func[i + 1];
5900 w->opaque[i] = w->opaque[i + 1];
5903 if (found)
5904 w->num--;
5906 #endif
5908 #define SELF_ANNOUNCE_ROUNDS 5
5909 #define ETH_P_EXPERIMENTAL 0x01F1 /* just a number */
5910 //#define ETH_P_EXPERIMENTAL 0x0012 /* make it the size of the packet */
5911 #define EXPERIMENTAL_MAGIC 0xf1f23f4f
5913 static int announce_self_create(uint8_t *buf,
5914 uint8_t *mac_addr)
5916 uint32_t magic = EXPERIMENTAL_MAGIC;
5917 uint16_t proto = htons(ETH_P_EXPERIMENTAL);
5919 /* FIXME: should we send a different packet (arp/rarp/ping)? */
5921 memset(buf, 0xff, 6); /* h_dst */
5922 memcpy(buf + 6, mac_addr, 6); /* h_src */
5923 memcpy(buf + 12, &proto, 2); /* h_proto */
5924 memcpy(buf + 14, &magic, 4); /* magic */
5926 return 18; /* len */
5929 static void qemu_announce_self(void)
5931 int i, j, len;
5932 VLANState *vlan;
5933 VLANClientState *vc;
5934 uint8_t buf[256];
5936 for (i = 0; i < nb_nics; i++) {
5937 len = announce_self_create(buf, nd_table[i].macaddr);
5938 vlan = nd_table[i].vlan;
5939 for(vc = vlan->first_client; vc != NULL; vc = vc->next) {
5940 if (vc->fd_read == tap_receive) /* send only if tap */
5941 for (j=0; j < SELF_ANNOUNCE_ROUNDS; j++)
5942 vc->fd_read(vc->opaque, buf, len);
5947 /***********************************************************/
5948 /* savevm/loadvm support */
5950 #define IO_BUF_SIZE 32768
5952 struct QEMUFile {
5953 QEMUFilePutBufferFunc *put_buffer;
5954 QEMUFileGetBufferFunc *get_buffer;
5955 QEMUFileCloseFunc *close;
5956 void *opaque;
5958 int64_t buf_offset; /* start of buffer when writing, end of buffer
5959 when reading */
5960 int buf_index;
5961 int buf_size; /* 0 when writing */
5962 uint8_t buf[IO_BUF_SIZE];
5965 typedef struct QEMUFileFD
5967 int fd;
5968 } QEMUFileFD;
5970 static int fd_get_buffer(void *opaque, uint8_t *buf, int64_t pos, int size)
5972 QEMUFileFD *s = opaque;
5973 int offset = 0;
5974 ssize_t len;
5976 again:
5977 len = read(s->fd, buf + offset, size - offset);
5978 if (len == -1) {
5979 if (errno == EINTR || errno == EAGAIN)
5980 goto again;
5983 return len;
5986 QEMUFile *qemu_fopen_fd(int fd)
5988 QEMUFileFD *s = qemu_mallocz(sizeof(QEMUFileFD));
5989 s->fd = fd;
5990 return qemu_fopen(s, NULL, fd_get_buffer, qemu_free);
5993 typedef struct QEMUFileUnix
5995 FILE *outfile;
5996 } QEMUFileUnix;
5998 static void file_put_buffer(void *opaque, const uint8_t *buf, int64_t pos, int size)
6000 QEMUFileUnix *s = opaque;
6001 fseek(s->outfile, pos, SEEK_SET);
6002 fwrite(buf, 1, size, s->outfile);
6005 static int file_get_buffer(void *opaque, uint8_t *buf, int64_t pos, int size)
6007 QEMUFileUnix *s = opaque;
6008 fseek(s->outfile, pos, SEEK_SET);
6009 return fread(buf, 1, size, s->outfile);
6012 static void file_close(void *opaque)
6014 QEMUFileUnix *s = opaque;
6015 fclose(s->outfile);
6016 qemu_free(s);
6019 QEMUFile *qemu_fopen_file(const char *filename, const char *mode)
6021 QEMUFileUnix *s;
6023 s = qemu_mallocz(sizeof(QEMUFileUnix));
6024 if (!s)
6025 return NULL;
6027 s->outfile = fopen(filename, mode);
6028 if (!s->outfile)
6029 goto fail;
6031 if (!strcmp(mode, "wb"))
6032 return qemu_fopen(s, file_put_buffer, NULL, file_close);
6033 else if (!strcmp(mode, "rb"))
6034 return qemu_fopen(s, NULL, file_get_buffer, file_close);
6036 fail:
6037 if (s->outfile)
6038 fclose(s->outfile);
6039 qemu_free(s);
6040 return NULL;
6043 typedef struct QEMUFileBdrv
6045 BlockDriverState *bs;
6046 int64_t base_offset;
6047 } QEMUFileBdrv;
6049 static void bdrv_put_buffer(void *opaque, const uint8_t *buf, int64_t pos, int size)
6051 QEMUFileBdrv *s = opaque;
6052 bdrv_pwrite(s->bs, s->base_offset + pos, buf, size);
6055 static int bdrv_get_buffer(void *opaque, uint8_t *buf, int64_t pos, int size)
6057 QEMUFileBdrv *s = opaque;
6058 return bdrv_pread(s->bs, s->base_offset + pos, buf, size);
6061 QEMUFile *qemu_fopen_bdrv(BlockDriverState *bs, int64_t offset, int is_writable)
6063 QEMUFileBdrv *s;
6065 s = qemu_mallocz(sizeof(QEMUFileBdrv));
6066 if (!s)
6067 return NULL;
6069 s->bs = bs;
6070 s->base_offset = offset;
6072 if (is_writable)
6073 return qemu_fopen(s, bdrv_put_buffer, NULL, qemu_free);
6075 return qemu_fopen(s, NULL, bdrv_get_buffer, qemu_free);
6078 QEMUFile *qemu_fopen(void *opaque, QEMUFilePutBufferFunc *put_buffer,
6079 QEMUFileGetBufferFunc *get_buffer, QEMUFileCloseFunc *close)
6081 QEMUFile *f;
6083 f = qemu_mallocz(sizeof(QEMUFile));
6084 if (!f)
6085 return NULL;
6087 f->opaque = opaque;
6088 f->put_buffer = put_buffer;
6089 f->get_buffer = get_buffer;
6090 f->close = close;
6092 return f;
6095 void qemu_fflush(QEMUFile *f)
6097 if (!f->put_buffer)
6098 return;
6100 if (f->buf_index > 0) {
6101 f->put_buffer(f->opaque, f->buf, f->buf_offset, f->buf_index);
6102 f->buf_offset += f->buf_index;
6103 f->buf_index = 0;
6107 static void qemu_fill_buffer(QEMUFile *f)
6109 int len;
6111 if (!f->get_buffer)
6112 return;
6114 len = f->get_buffer(f->opaque, f->buf, f->buf_offset, IO_BUF_SIZE);
6115 if (len < 0)
6116 len = 0;
6118 f->buf_index = 0;
6119 f->buf_size = len;
6120 f->buf_offset += len;
6123 void qemu_fclose(QEMUFile *f)
6125 qemu_fflush(f);
6126 if (f->close)
6127 f->close(f->opaque);
6128 qemu_free(f);
6131 void qemu_put_buffer(QEMUFile *f, const uint8_t *buf, int size)
6133 int l;
6134 while (size > 0) {
6135 l = IO_BUF_SIZE - f->buf_index;
6136 if (l > size)
6137 l = size;
6138 memcpy(f->buf + f->buf_index, buf, l);
6139 f->buf_index += l;
6140 buf += l;
6141 size -= l;
6142 if (f->buf_index >= IO_BUF_SIZE)
6143 qemu_fflush(f);
6147 void qemu_put_byte(QEMUFile *f, int v)
6149 f->buf[f->buf_index++] = v;
6150 if (f->buf_index >= IO_BUF_SIZE)
6151 qemu_fflush(f);
6154 int qemu_get_buffer(QEMUFile *f, uint8_t *buf, int size1)
6156 int size, l;
6158 size = size1;
6159 while (size > 0) {
6160 l = f->buf_size - f->buf_index;
6161 if (l == 0) {
6162 qemu_fill_buffer(f);
6163 l = f->buf_size - f->buf_index;
6164 if (l == 0)
6165 break;
6167 if (l > size)
6168 l = size;
6169 memcpy(buf, f->buf + f->buf_index, l);
6170 f->buf_index += l;
6171 buf += l;
6172 size -= l;
6174 return size1 - size;
6177 int qemu_get_byte(QEMUFile *f)
6179 if (f->buf_index >= f->buf_size) {
6180 qemu_fill_buffer(f);
6181 if (f->buf_index >= f->buf_size)
6182 return 0;
6184 return f->buf[f->buf_index++];
6187 int64_t qemu_ftell(QEMUFile *f)
6189 return f->buf_offset - f->buf_size + f->buf_index;
6192 int64_t qemu_fseek(QEMUFile *f, int64_t pos, int whence)
6194 if (whence == SEEK_SET) {
6195 /* nothing to do */
6196 } else if (whence == SEEK_CUR) {
6197 pos += qemu_ftell(f);
6198 } else {
6199 /* SEEK_END not supported */
6200 return -1;
6202 if (f->put_buffer) {
6203 qemu_fflush(f);
6204 f->buf_offset = pos;
6205 } else {
6206 f->buf_offset = pos;
6207 f->buf_index = 0;
6208 f->buf_size = 0;
6210 return pos;
6213 void qemu_put_be16(QEMUFile *f, unsigned int v)
6215 qemu_put_byte(f, v >> 8);
6216 qemu_put_byte(f, v);
6219 void qemu_put_be32(QEMUFile *f, unsigned int v)
6221 qemu_put_byte(f, v >> 24);
6222 qemu_put_byte(f, v >> 16);
6223 qemu_put_byte(f, v >> 8);
6224 qemu_put_byte(f, v);
6227 void qemu_put_be64(QEMUFile *f, uint64_t v)
6229 qemu_put_be32(f, v >> 32);
6230 qemu_put_be32(f, v);
6233 unsigned int qemu_get_be16(QEMUFile *f)
6235 unsigned int v;
6236 v = qemu_get_byte(f) << 8;
6237 v |= qemu_get_byte(f);
6238 return v;
6241 unsigned int qemu_get_be32(QEMUFile *f)
6243 unsigned int v;
6244 v = qemu_get_byte(f) << 24;
6245 v |= qemu_get_byte(f) << 16;
6246 v |= qemu_get_byte(f) << 8;
6247 v |= qemu_get_byte(f);
6248 return v;
6251 uint64_t qemu_get_be64(QEMUFile *f)
6253 uint64_t v;
6254 v = (uint64_t)qemu_get_be32(f) << 32;
6255 v |= qemu_get_be32(f);
6256 return v;
6259 typedef struct SaveStateEntry {
6260 char idstr[256];
6261 int instance_id;
6262 int version_id;
6263 SaveStateHandler *save_state;
6264 LoadStateHandler *load_state;
6265 void *opaque;
6266 struct SaveStateEntry *next;
6267 } SaveStateEntry;
6269 static SaveStateEntry *first_se;
6271 int register_savevm(const char *idstr,
6272 int instance_id,
6273 int version_id,
6274 SaveStateHandler *save_state,
6275 LoadStateHandler *load_state,
6276 void *opaque)
6278 SaveStateEntry *se, **pse;
6280 se = qemu_malloc(sizeof(SaveStateEntry));
6281 if (!se)
6282 return -1;
6283 pstrcpy(se->idstr, sizeof(se->idstr), idstr);
6284 se->instance_id = instance_id;
6285 se->version_id = version_id;
6286 se->save_state = save_state;
6287 se->load_state = load_state;
6288 se->opaque = opaque;
6289 se->next = NULL;
6291 /* add at the end of list */
6292 pse = &first_se;
6293 while (*pse != NULL)
6294 pse = &(*pse)->next;
6295 *pse = se;
6296 return 0;
6299 #define QEMU_VM_FILE_MAGIC 0x5145564d
6300 #define QEMU_VM_FILE_VERSION 0x00000002
6302 static int qemu_savevm_state(QEMUFile *f)
6304 SaveStateEntry *se;
6305 int len, ret;
6306 int64_t cur_pos, len_pos, total_len_pos;
6308 qemu_put_be32(f, QEMU_VM_FILE_MAGIC);
6309 qemu_put_be32(f, QEMU_VM_FILE_VERSION);
6310 total_len_pos = qemu_ftell(f);
6311 qemu_put_be64(f, 0); /* total size */
6313 for(se = first_se; se != NULL; se = se->next) {
6314 /* ID string */
6315 len = strlen(se->idstr);
6316 qemu_put_byte(f, len);
6317 qemu_put_buffer(f, (uint8_t *)se->idstr, len);
6319 qemu_put_be32(f, se->instance_id);
6320 qemu_put_be32(f, se->version_id);
6322 /* record size: filled later */
6323 len_pos = qemu_ftell(f);
6324 qemu_put_be32(f, 0);
6325 se->save_state(f, se->opaque);
6327 /* fill record size */
6328 cur_pos = qemu_ftell(f);
6329 len = cur_pos - len_pos - 4;
6330 qemu_fseek(f, len_pos, SEEK_SET);
6331 qemu_put_be32(f, len);
6332 qemu_fseek(f, cur_pos, SEEK_SET);
6334 cur_pos = qemu_ftell(f);
6335 qemu_fseek(f, total_len_pos, SEEK_SET);
6336 qemu_put_be64(f, cur_pos - total_len_pos - 8);
6337 qemu_fseek(f, cur_pos, SEEK_SET);
6339 ret = 0;
6340 return ret;
6343 static SaveStateEntry *find_se(const char *idstr, int instance_id)
6345 SaveStateEntry *se;
6347 for(se = first_se; se != NULL; se = se->next) {
6348 if (!strcmp(se->idstr, idstr) &&
6349 instance_id == se->instance_id)
6350 return se;
6352 return NULL;
6355 static int qemu_loadvm_state(QEMUFile *f)
6357 SaveStateEntry *se;
6358 int len, ret, instance_id, record_len, version_id;
6359 int64_t total_len, end_pos, cur_pos;
6360 unsigned int v;
6361 char idstr[256];
6363 v = qemu_get_be32(f);
6364 if (v != QEMU_VM_FILE_MAGIC)
6365 goto fail;
6366 v = qemu_get_be32(f);
6367 if (v != QEMU_VM_FILE_VERSION) {
6368 fail:
6369 ret = -1;
6370 goto the_end;
6372 total_len = qemu_get_be64(f);
6373 end_pos = total_len + qemu_ftell(f);
6374 for(;;) {
6375 if (qemu_ftell(f) >= end_pos)
6376 break;
6377 len = qemu_get_byte(f);
6378 qemu_get_buffer(f, (uint8_t *)idstr, len);
6379 idstr[len] = '\0';
6380 instance_id = qemu_get_be32(f);
6381 version_id = qemu_get_be32(f);
6382 record_len = qemu_get_be32(f);
6383 #if 0
6384 printf("idstr=%s instance=0x%x version=%d len=%d\n",
6385 idstr, instance_id, version_id, record_len);
6386 #endif
6387 cur_pos = qemu_ftell(f);
6388 se = find_se(idstr, instance_id);
6389 if (!se) {
6390 fprintf(stderr, "qemu: warning: instance 0x%x of device '%s' not present in current VM\n",
6391 instance_id, idstr);
6392 } else {
6393 ret = se->load_state(f, se->opaque, version_id);
6394 if (ret < 0) {
6395 fprintf(stderr, "qemu: warning: error while loading state for instance 0x%x of device '%s'\n",
6396 instance_id, idstr);
6397 goto the_end;
6400 /* always seek to exact end of record */
6401 qemu_fseek(f, cur_pos + record_len, SEEK_SET);
6403 ret = 0;
6404 the_end:
6405 return ret;
6408 int qemu_live_savevm_state(QEMUFile *f)
6410 SaveStateEntry *se;
6411 int len, ret;
6413 qemu_put_be32(f, QEMU_VM_FILE_MAGIC);
6414 qemu_put_be32(f, QEMU_VM_FILE_VERSION);
6416 for(se = first_se; se != NULL; se = se->next) {
6417 len = strlen(se->idstr);
6419 qemu_put_byte(f, len);
6420 qemu_put_buffer(f, se->idstr, len);
6421 qemu_put_be32(f, se->instance_id);
6422 qemu_put_be32(f, se->version_id);
6424 se->save_state(f, se->opaque);
6427 qemu_put_byte(f, 0);
6429 ret = 0;
6430 return ret;
6433 int qemu_live_loadvm_state(QEMUFile *f)
6435 SaveStateEntry *se;
6436 int len, ret, instance_id, version_id;
6437 unsigned int v;
6438 char idstr[256];
6440 v = qemu_get_be32(f);
6441 if (v != QEMU_VM_FILE_MAGIC)
6442 goto fail;
6443 v = qemu_get_be32(f);
6444 if (v != QEMU_VM_FILE_VERSION) {
6445 fail:
6446 ret = -1;
6447 goto the_end;
6450 for(;;) {
6451 len = qemu_get_byte(f);
6452 if (len == 0)
6453 break;
6454 qemu_get_buffer(f, idstr, len);
6455 idstr[len] = '\0';
6456 instance_id = qemu_get_be32(f);
6457 version_id = qemu_get_be32(f);
6458 se = find_se(idstr, instance_id);
6459 if (!se) {
6460 fprintf(stderr, "qemu: warning: instance 0x%x of device '%s' not present in current VM\n",
6461 instance_id, idstr);
6462 } else {
6463 if (version_id > se->version_id) { /* src version > dst version */
6464 fprintf(stderr, "migration:version mismatch:%s:%d(s)>%d(d)\n",
6465 idstr, version_id, se->version_id);
6466 ret = -1;
6467 goto the_end;
6469 ret = se->load_state(f, se->opaque, version_id);
6470 if (ret < 0) {
6471 fprintf(stderr, "qemu: warning: error while loading state for instance 0x%x of device '%s'\n",
6472 instance_id, idstr);
6473 goto the_end;
6477 ret = 0;
6479 qemu_announce_self();
6481 the_end:
6482 return ret;
6485 /* device can contain snapshots */
6486 static int bdrv_can_snapshot(BlockDriverState *bs)
6488 return (bs &&
6489 !bdrv_is_removable(bs) &&
6490 !bdrv_is_read_only(bs));
6493 /* device must be snapshots in order to have a reliable snapshot */
6494 static int bdrv_has_snapshot(BlockDriverState *bs)
6496 return (bs &&
6497 !bdrv_is_removable(bs) &&
6498 !bdrv_is_read_only(bs));
6501 static BlockDriverState *get_bs_snapshots(void)
6503 BlockDriverState *bs;
6504 int i;
6506 if (bs_snapshots)
6507 return bs_snapshots;
6508 for(i = 0; i <= nb_drives; i++) {
6509 bs = drives_table[i].bdrv;
6510 if (bdrv_can_snapshot(bs))
6511 goto ok;
6513 return NULL;
6515 bs_snapshots = bs;
6516 return bs;
6519 static int bdrv_snapshot_find(BlockDriverState *bs, QEMUSnapshotInfo *sn_info,
6520 const char *name)
6522 QEMUSnapshotInfo *sn_tab, *sn;
6523 int nb_sns, i, ret;
6525 ret = -ENOENT;
6526 nb_sns = bdrv_snapshot_list(bs, &sn_tab);
6527 if (nb_sns < 0)
6528 return ret;
6529 for(i = 0; i < nb_sns; i++) {
6530 sn = &sn_tab[i];
6531 if (!strcmp(sn->id_str, name) || !strcmp(sn->name, name)) {
6532 *sn_info = *sn;
6533 ret = 0;
6534 break;
6537 qemu_free(sn_tab);
6538 return ret;
6541 void do_savevm(const char *name)
6543 BlockDriverState *bs, *bs1;
6544 QEMUSnapshotInfo sn1, *sn = &sn1, old_sn1, *old_sn = &old_sn1;
6545 int must_delete, ret, i;
6546 BlockDriverInfo bdi1, *bdi = &bdi1;
6547 QEMUFile *f;
6548 int saved_vm_running;
6549 #ifdef _WIN32
6550 struct _timeb tb;
6551 #else
6552 struct timeval tv;
6553 #endif
6555 bs = get_bs_snapshots();
6556 if (!bs) {
6557 term_printf("No block device can accept snapshots\n");
6558 return;
6561 /* ??? Should this occur after vm_stop? */
6562 qemu_aio_flush();
6564 saved_vm_running = vm_running;
6565 vm_stop(0);
6567 must_delete = 0;
6568 if (name) {
6569 ret = bdrv_snapshot_find(bs, old_sn, name);
6570 if (ret >= 0) {
6571 must_delete = 1;
6574 memset(sn, 0, sizeof(*sn));
6575 if (must_delete) {
6576 pstrcpy(sn->name, sizeof(sn->name), old_sn->name);
6577 pstrcpy(sn->id_str, sizeof(sn->id_str), old_sn->id_str);
6578 } else {
6579 if (name)
6580 pstrcpy(sn->name, sizeof(sn->name), name);
6583 /* fill auxiliary fields */
6584 #ifdef _WIN32
6585 _ftime(&tb);
6586 sn->date_sec = tb.time;
6587 sn->date_nsec = tb.millitm * 1000000;
6588 #else
6589 gettimeofday(&tv, NULL);
6590 sn->date_sec = tv.tv_sec;
6591 sn->date_nsec = tv.tv_usec * 1000;
6592 #endif
6593 sn->vm_clock_nsec = qemu_get_clock(vm_clock);
6595 if (bdrv_get_info(bs, bdi) < 0 || bdi->vm_state_offset <= 0) {
6596 term_printf("Device %s does not support VM state snapshots\n",
6597 bdrv_get_device_name(bs));
6598 goto the_end;
6601 /* save the VM state */
6602 f = qemu_fopen_bdrv(bs, bdi->vm_state_offset, 1);
6603 if (!f) {
6604 term_printf("Could not open VM state file\n");
6605 goto the_end;
6607 ret = qemu_savevm_state(f);
6608 sn->vm_state_size = qemu_ftell(f);
6609 qemu_fclose(f);
6610 if (ret < 0) {
6611 term_printf("Error %d while writing VM\n", ret);
6612 goto the_end;
6615 /* create the snapshots */
6617 for(i = 0; i < nb_drives; i++) {
6618 bs1 = drives_table[i].bdrv;
6619 if (bdrv_has_snapshot(bs1)) {
6620 if (must_delete) {
6621 ret = bdrv_snapshot_delete(bs1, old_sn->id_str);
6622 if (ret < 0) {
6623 term_printf("Error while deleting snapshot on '%s'\n",
6624 bdrv_get_device_name(bs1));
6627 ret = bdrv_snapshot_create(bs1, sn);
6628 if (ret < 0) {
6629 term_printf("Error while creating snapshot on '%s'\n",
6630 bdrv_get_device_name(bs1));
6635 the_end:
6636 if (saved_vm_running)
6637 vm_start();
6640 void do_loadvm(const char *name)
6642 BlockDriverState *bs, *bs1;
6643 BlockDriverInfo bdi1, *bdi = &bdi1;
6644 QEMUFile *f;
6645 int i, ret;
6646 int saved_vm_running;
6648 bs = get_bs_snapshots();
6649 if (!bs) {
6650 term_printf("No block device supports snapshots\n");
6651 return;
6654 /* Flush all IO requests so they don't interfere with the new state. */
6655 qemu_aio_flush();
6657 saved_vm_running = vm_running;
6658 vm_stop(0);
6660 for(i = 0; i <= nb_drives; i++) {
6661 bs1 = drives_table[i].bdrv;
6662 if (bdrv_has_snapshot(bs1)) {
6663 ret = bdrv_snapshot_goto(bs1, name);
6664 if (ret < 0) {
6665 if (bs != bs1)
6666 term_printf("Warning: ");
6667 switch(ret) {
6668 case -ENOTSUP:
6669 term_printf("Snapshots not supported on device '%s'\n",
6670 bdrv_get_device_name(bs1));
6671 break;
6672 case -ENOENT:
6673 term_printf("Could not find snapshot '%s' on device '%s'\n",
6674 name, bdrv_get_device_name(bs1));
6675 break;
6676 default:
6677 term_printf("Error %d while activating snapshot on '%s'\n",
6678 ret, bdrv_get_device_name(bs1));
6679 break;
6681 /* fatal on snapshot block device */
6682 if (bs == bs1)
6683 goto the_end;
6688 if (bdrv_get_info(bs, bdi) < 0 || bdi->vm_state_offset <= 0) {
6689 term_printf("Device %s does not support VM state snapshots\n",
6690 bdrv_get_device_name(bs));
6691 return;
6694 /* restore the VM state */
6695 f = qemu_fopen_bdrv(bs, bdi->vm_state_offset, 0);
6696 if (!f) {
6697 term_printf("Could not open VM state file\n");
6698 goto the_end;
6700 ret = qemu_loadvm_state(f);
6701 qemu_fclose(f);
6702 if (ret < 0) {
6703 term_printf("Error %d while loading VM state\n", ret);
6705 the_end:
6706 if (saved_vm_running)
6707 vm_start();
6710 void do_delvm(const char *name)
6712 BlockDriverState *bs, *bs1;
6713 int i, ret;
6715 bs = get_bs_snapshots();
6716 if (!bs) {
6717 term_printf("No block device supports snapshots\n");
6718 return;
6721 for(i = 0; i <= nb_drives; i++) {
6722 bs1 = drives_table[i].bdrv;
6723 if (bdrv_has_snapshot(bs1)) {
6724 ret = bdrv_snapshot_delete(bs1, name);
6725 if (ret < 0) {
6726 if (ret == -ENOTSUP)
6727 term_printf("Snapshots not supported on device '%s'\n",
6728 bdrv_get_device_name(bs1));
6729 else
6730 term_printf("Error %d while deleting snapshot on '%s'\n",
6731 ret, bdrv_get_device_name(bs1));
6737 void do_info_snapshots(void)
6739 BlockDriverState *bs, *bs1;
6740 QEMUSnapshotInfo *sn_tab, *sn;
6741 int nb_sns, i;
6742 char buf[256];
6744 bs = get_bs_snapshots();
6745 if (!bs) {
6746 term_printf("No available block device supports snapshots\n");
6747 return;
6749 term_printf("Snapshot devices:");
6750 for(i = 0; i <= nb_drives; i++) {
6751 bs1 = drives_table[i].bdrv;
6752 if (bdrv_has_snapshot(bs1)) {
6753 if (bs == bs1)
6754 term_printf(" %s", bdrv_get_device_name(bs1));
6757 term_printf("\n");
6759 nb_sns = bdrv_snapshot_list(bs, &sn_tab);
6760 if (nb_sns < 0) {
6761 term_printf("bdrv_snapshot_list: error %d\n", nb_sns);
6762 return;
6764 term_printf("Snapshot list (from %s):\n", bdrv_get_device_name(bs));
6765 term_printf("%s\n", bdrv_snapshot_dump(buf, sizeof(buf), NULL));
6766 for(i = 0; i < nb_sns; i++) {
6767 sn = &sn_tab[i];
6768 term_printf("%s\n", bdrv_snapshot_dump(buf, sizeof(buf), sn));
6770 qemu_free(sn_tab);
6773 /***********************************************************/
6774 /* ram save/restore */
6776 static int ram_get_page(QEMUFile *f, uint8_t *buf, int len)
6778 int v;
6780 v = qemu_get_byte(f);
6781 switch(v) {
6782 case 0:
6783 if (qemu_get_buffer(f, buf, len) != len)
6784 return -EIO;
6785 break;
6786 case 1:
6787 v = qemu_get_byte(f);
6788 memset(buf, v, len);
6789 break;
6790 default:
6791 return -EINVAL;
6793 return 0;
6796 static int ram_load_v1(QEMUFile *f, void *opaque)
6798 int ret;
6799 ram_addr_t i;
6801 if (qemu_get_be32(f) != phys_ram_size)
6802 return -EINVAL;
6803 for(i = 0; i < phys_ram_size; i+= TARGET_PAGE_SIZE) {
6804 if (kvm_enabled() && (i>=0xa0000) && (i<0xc0000)) /* do not access video-addresses */
6805 continue;
6806 ret = ram_get_page(f, phys_ram_base + i, TARGET_PAGE_SIZE);
6807 if (ret)
6808 return ret;
6810 return 0;
6813 #define BDRV_HASH_BLOCK_SIZE 1024
6814 #define IOBUF_SIZE 4096
6815 #define RAM_CBLOCK_MAGIC 0xfabe
6817 typedef struct RamCompressState {
6818 z_stream zstream;
6819 QEMUFile *f;
6820 uint8_t buf[IOBUF_SIZE];
6821 } RamCompressState;
6823 static int ram_compress_open(RamCompressState *s, QEMUFile *f)
6825 int ret;
6826 memset(s, 0, sizeof(*s));
6827 s->f = f;
6828 ret = deflateInit2(&s->zstream, 1,
6829 Z_DEFLATED, 15,
6830 9, Z_DEFAULT_STRATEGY);
6831 if (ret != Z_OK)
6832 return -1;
6833 s->zstream.avail_out = IOBUF_SIZE;
6834 s->zstream.next_out = s->buf;
6835 return 0;
6838 static void ram_put_cblock(RamCompressState *s, const uint8_t *buf, int len)
6840 qemu_put_be16(s->f, RAM_CBLOCK_MAGIC);
6841 qemu_put_be16(s->f, len);
6842 qemu_put_buffer(s->f, buf, len);
6845 static int ram_compress_buf(RamCompressState *s, const uint8_t *buf, int len)
6847 int ret;
6849 s->zstream.avail_in = len;
6850 s->zstream.next_in = (uint8_t *)buf;
6851 while (s->zstream.avail_in > 0) {
6852 ret = deflate(&s->zstream, Z_NO_FLUSH);
6853 if (ret != Z_OK)
6854 return -1;
6855 if (s->zstream.avail_out == 0) {
6856 ram_put_cblock(s, s->buf, IOBUF_SIZE);
6857 s->zstream.avail_out = IOBUF_SIZE;
6858 s->zstream.next_out = s->buf;
6861 return 0;
6864 static void ram_compress_close(RamCompressState *s)
6866 int len, ret;
6868 /* compress last bytes */
6869 for(;;) {
6870 ret = deflate(&s->zstream, Z_FINISH);
6871 if (ret == Z_OK || ret == Z_STREAM_END) {
6872 len = IOBUF_SIZE - s->zstream.avail_out;
6873 if (len > 0) {
6874 ram_put_cblock(s, s->buf, len);
6876 s->zstream.avail_out = IOBUF_SIZE;
6877 s->zstream.next_out = s->buf;
6878 if (ret == Z_STREAM_END)
6879 break;
6880 } else {
6881 goto fail;
6884 fail:
6885 deflateEnd(&s->zstream);
6888 typedef struct RamDecompressState {
6889 z_stream zstream;
6890 QEMUFile *f;
6891 uint8_t buf[IOBUF_SIZE];
6892 } RamDecompressState;
6894 static int ram_decompress_open(RamDecompressState *s, QEMUFile *f)
6896 int ret;
6897 memset(s, 0, sizeof(*s));
6898 s->f = f;
6899 ret = inflateInit(&s->zstream);
6900 if (ret != Z_OK)
6901 return -1;
6902 return 0;
6905 static int ram_decompress_buf(RamDecompressState *s, uint8_t *buf, int len)
6907 int ret, clen;
6909 s->zstream.avail_out = len;
6910 s->zstream.next_out = buf;
6911 while (s->zstream.avail_out > 0) {
6912 if (s->zstream.avail_in == 0) {
6913 if (qemu_get_be16(s->f) != RAM_CBLOCK_MAGIC)
6914 return -1;
6915 clen = qemu_get_be16(s->f);
6916 if (clen > IOBUF_SIZE)
6917 return -1;
6918 qemu_get_buffer(s->f, s->buf, clen);
6919 s->zstream.avail_in = clen;
6920 s->zstream.next_in = s->buf;
6922 ret = inflate(&s->zstream, Z_PARTIAL_FLUSH);
6923 if (ret != Z_OK && ret != Z_STREAM_END) {
6924 return -1;
6927 return 0;
6930 static void ram_decompress_close(RamDecompressState *s)
6932 inflateEnd(&s->zstream);
6935 static void ram_save_live(QEMUFile *f, void *opaque)
6937 target_ulong addr;
6939 for (addr = 0; addr < phys_ram_size; addr += TARGET_PAGE_SIZE) {
6940 if (kvm_enabled() && (addr>=0xa0000) && (addr<0xc0000)) /* do not access video-addresses */
6941 continue;
6942 if (cpu_physical_memory_get_dirty(addr, MIGRATION_DIRTY_FLAG)) {
6943 qemu_put_be32(f, addr);
6944 qemu_put_buffer(f, phys_ram_base + addr, TARGET_PAGE_SIZE);
6947 qemu_put_be32(f, 1);
6950 static void ram_save_static(QEMUFile *f, void *opaque)
6952 ram_addr_t i;
6953 RamCompressState s1, *s = &s1;
6954 uint8_t buf[10];
6956 qemu_put_be32(f, phys_ram_size);
6957 if (ram_compress_open(s, f) < 0)
6958 return;
6959 for(i = 0; i < phys_ram_size; i+= BDRV_HASH_BLOCK_SIZE) {
6960 if (kvm_enabled() && (i>=0xa0000) && (i<0xc0000)) /* do not access video-addresses */
6961 continue;
6962 #if 0
6963 if (tight_savevm_enabled) {
6964 int64_t sector_num;
6965 int j;
6967 /* find if the memory block is available on a virtual
6968 block device */
6969 sector_num = -1;
6970 for(j = 0; j < nb_drives; j++) {
6971 sector_num = bdrv_hash_find(drives_table[j].bdrv,
6972 phys_ram_base + i,
6973 BDRV_HASH_BLOCK_SIZE);
6974 if (sector_num >= 0)
6975 break;
6977 if (j == nb_drives)
6978 goto normal_compress;
6979 buf[0] = 1;
6980 buf[1] = j;
6981 cpu_to_be64wu((uint64_t *)(buf + 2), sector_num);
6982 ram_compress_buf(s, buf, 10);
6983 } else
6984 #endif
6986 // normal_compress:
6987 buf[0] = 0;
6988 ram_compress_buf(s, buf, 1);
6989 ram_compress_buf(s, phys_ram_base + i, BDRV_HASH_BLOCK_SIZE);
6992 ram_compress_close(s);
6995 static void ram_save(QEMUFile *f, void *opaque)
6997 int in_migration = cpu_physical_memory_get_dirty_tracking();
6999 qemu_put_byte(f, in_migration);
7001 if (in_migration)
7002 ram_save_live(f, opaque);
7003 else
7004 ram_save_static(f, opaque);
7007 static int ram_load_live(QEMUFile *f, void *opaque)
7009 target_ulong addr;
7011 do {
7012 addr = qemu_get_be32(f);
7013 if (addr == 1)
7014 break;
7016 qemu_get_buffer(f, phys_ram_base + addr, TARGET_PAGE_SIZE);
7017 } while (1);
7019 return 0;
7022 static int ram_load_static(QEMUFile *f, void *opaque)
7024 RamDecompressState s1, *s = &s1;
7025 uint8_t buf[10];
7026 ram_addr_t i;
7028 if (qemu_get_be32(f) != phys_ram_size)
7029 return -EINVAL;
7030 if (ram_decompress_open(s, f) < 0)
7031 return -EINVAL;
7032 for(i = 0; i < phys_ram_size; i+= BDRV_HASH_BLOCK_SIZE) {
7033 if (kvm_enabled() && (i>=0xa0000) && (i<0xc0000)) /* do not access video-addresses */
7034 continue;
7035 if (ram_decompress_buf(s, buf, 1) < 0) {
7036 fprintf(stderr, "Error while reading ram block header\n");
7037 goto error;
7039 if (buf[0] == 0) {
7040 if (ram_decompress_buf(s, phys_ram_base + i, BDRV_HASH_BLOCK_SIZE) < 0) {
7041 fprintf(stderr, "Error while reading ram block address=0x%08" PRIx64, (uint64_t)i);
7042 goto error;
7044 } else
7045 #if 0
7046 if (buf[0] == 1) {
7047 int bs_index;
7048 int64_t sector_num;
7050 ram_decompress_buf(s, buf + 1, 9);
7051 bs_index = buf[1];
7052 sector_num = be64_to_cpupu((const uint64_t *)(buf + 2));
7053 if (bs_index >= nb_drives) {
7054 fprintf(stderr, "Invalid block device index %d\n", bs_index);
7055 goto error;
7057 if (bdrv_read(drives_table[bs_index].bdrv, sector_num,
7058 phys_ram_base + i,
7059 BDRV_HASH_BLOCK_SIZE / 512) < 0) {
7060 fprintf(stderr, "Error while reading sector %d:%" PRId64 "\n",
7061 bs_index, sector_num);
7062 goto error;
7064 } else
7065 #endif
7067 error:
7068 printf("Error block header\n");
7069 return -EINVAL;
7072 ram_decompress_close(s);
7073 return 0;
7076 static int ram_load(QEMUFile *f, void *opaque, int version_id)
7078 int ret;
7080 switch (version_id) {
7081 case 1:
7082 ret = ram_load_v1(f, opaque);
7083 break;
7084 case 3:
7085 if (qemu_get_byte(f)) {
7086 ret = ram_load_live(f, opaque);
7087 break;
7089 case 2:
7090 ret = ram_load_static(f, opaque);
7091 break;
7092 default:
7093 ret = -EINVAL;
7094 break;
7097 return ret;
7100 /***********************************************************/
7101 /* bottom halves (can be seen as timers which expire ASAP) */
7103 struct QEMUBH {
7104 QEMUBHFunc *cb;
7105 void *opaque;
7106 int scheduled;
7107 QEMUBH *next;
7110 static QEMUBH *first_bh = NULL;
7112 QEMUBH *qemu_bh_new(QEMUBHFunc *cb, void *opaque)
7114 QEMUBH *bh;
7115 bh = qemu_mallocz(sizeof(QEMUBH));
7116 if (!bh)
7117 return NULL;
7118 bh->cb = cb;
7119 bh->opaque = opaque;
7120 return bh;
7123 int qemu_bh_poll(void)
7125 QEMUBH *bh, **pbh;
7126 int ret;
7128 ret = 0;
7129 for(;;) {
7130 pbh = &first_bh;
7131 bh = *pbh;
7132 if (!bh)
7133 break;
7134 ret = 1;
7135 *pbh = bh->next;
7136 bh->scheduled = 0;
7137 bh->cb(bh->opaque);
7139 return ret;
7142 void qemu_bh_schedule(QEMUBH *bh)
7144 CPUState *env = cpu_single_env;
7145 if (bh->scheduled)
7146 return;
7147 bh->scheduled = 1;
7148 bh->next = first_bh;
7149 first_bh = bh;
7151 /* stop the currently executing CPU to execute the BH ASAP */
7152 if (env) {
7153 cpu_interrupt(env, CPU_INTERRUPT_EXIT);
7155 main_loop_break();
7158 void qemu_bh_cancel(QEMUBH *bh)
7160 QEMUBH **pbh;
7161 if (bh->scheduled) {
7162 pbh = &first_bh;
7163 while (*pbh != bh)
7164 pbh = &(*pbh)->next;
7165 *pbh = bh->next;
7166 bh->scheduled = 0;
7170 void qemu_bh_delete(QEMUBH *bh)
7172 qemu_bh_cancel(bh);
7173 qemu_free(bh);
7176 /***********************************************************/
7177 /* machine registration */
7179 QEMUMachine *first_machine = NULL;
7180 QEMUMachine *current_machine = NULL;
7182 int qemu_register_machine(QEMUMachine *m)
7184 QEMUMachine **pm;
7185 pm = &first_machine;
7186 while (*pm != NULL)
7187 pm = &(*pm)->next;
7188 m->next = NULL;
7189 *pm = m;
7190 return 0;
7193 static QEMUMachine *find_machine(const char *name)
7195 QEMUMachine *m;
7197 for(m = first_machine; m != NULL; m = m->next) {
7198 if (!strcmp(m->name, name))
7199 return m;
7201 return NULL;
7204 /***********************************************************/
7205 /* main execution loop */
7207 static void gui_update(void *opaque)
7209 DisplayState *ds = opaque;
7210 ds->dpy_refresh(ds);
7211 qemu_mod_timer(ds->gui_timer,
7212 (ds->gui_timer_interval ?
7213 ds->gui_timer_interval :
7214 GUI_REFRESH_INTERVAL)
7215 + qemu_get_clock(rt_clock));
7218 struct vm_change_state_entry {
7219 VMChangeStateHandler *cb;
7220 void *opaque;
7221 LIST_ENTRY (vm_change_state_entry) entries;
7224 static LIST_HEAD(vm_change_state_head, vm_change_state_entry) vm_change_state_head;
7226 VMChangeStateEntry *qemu_add_vm_change_state_handler(VMChangeStateHandler *cb,
7227 void *opaque)
7229 VMChangeStateEntry *e;
7231 e = qemu_mallocz(sizeof (*e));
7232 if (!e)
7233 return NULL;
7235 e->cb = cb;
7236 e->opaque = opaque;
7237 LIST_INSERT_HEAD(&vm_change_state_head, e, entries);
7238 return e;
7241 void qemu_del_vm_change_state_handler(VMChangeStateEntry *e)
7243 LIST_REMOVE (e, entries);
7244 qemu_free (e);
7247 static void vm_state_notify(int running)
7249 VMChangeStateEntry *e;
7251 for (e = vm_change_state_head.lh_first; e; e = e->entries.le_next) {
7252 e->cb(e->opaque, running);
7256 /* XXX: support several handlers */
7257 static VMStopHandler *vm_stop_cb;
7258 static void *vm_stop_opaque;
7260 int qemu_add_vm_stop_handler(VMStopHandler *cb, void *opaque)
7262 vm_stop_cb = cb;
7263 vm_stop_opaque = opaque;
7264 return 0;
7267 void qemu_del_vm_stop_handler(VMStopHandler *cb, void *opaque)
7269 vm_stop_cb = NULL;
7272 void vm_start(void)
7274 if (!vm_running) {
7275 cpu_enable_ticks();
7276 vm_running = 1;
7277 vm_state_notify(1);
7278 qemu_rearm_alarm_timer(alarm_timer);
7282 void vm_stop(int reason)
7284 if (vm_running) {
7285 cpu_disable_ticks();
7286 vm_running = 0;
7287 if (reason != 0) {
7288 if (vm_stop_cb) {
7289 vm_stop_cb(vm_stop_opaque, reason);
7292 vm_state_notify(0);
7296 /* reset/shutdown handler */
7298 typedef struct QEMUResetEntry {
7299 QEMUResetHandler *func;
7300 void *opaque;
7301 struct QEMUResetEntry *next;
7302 } QEMUResetEntry;
7304 static QEMUResetEntry *first_reset_entry;
7305 static int reset_requested;
7306 static int shutdown_requested;
7307 static int powerdown_requested;
7309 int qemu_shutdown_requested(void)
7311 int r = shutdown_requested;
7312 shutdown_requested = 0;
7313 return r;
7316 int qemu_reset_requested(void)
7318 int r = reset_requested;
7319 reset_requested = 0;
7320 return r;
7323 int qemu_powerdown_requested(void)
7325 int r = powerdown_requested;
7326 powerdown_requested = 0;
7327 return r;
7330 void qemu_register_reset(QEMUResetHandler *func, void *opaque)
7332 QEMUResetEntry **pre, *re;
7334 pre = &first_reset_entry;
7335 while (*pre != NULL)
7336 pre = &(*pre)->next;
7337 re = qemu_mallocz(sizeof(QEMUResetEntry));
7338 re->func = func;
7339 re->opaque = opaque;
7340 re->next = NULL;
7341 *pre = re;
7344 void qemu_system_reset(void)
7346 QEMUResetEntry *re;
7348 /* reset all devices */
7349 for(re = first_reset_entry; re != NULL; re = re->next) {
7350 re->func(re->opaque);
7354 void qemu_system_reset_request(void)
7356 if (no_reboot) {
7357 shutdown_requested = 1;
7358 } else {
7359 reset_requested = 1;
7361 if (cpu_single_env)
7362 cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
7363 #ifdef USE_KVM
7364 if (kvm_allowed)
7365 if (!no_reboot)
7366 qemu_kvm_system_reset_request();
7367 #endif
7370 void qemu_system_shutdown_request(void)
7372 shutdown_requested = 1;
7373 if (cpu_single_env)
7374 cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
7377 void qemu_system_powerdown_request(void)
7379 powerdown_requested = 1;
7380 if (cpu_single_env)
7381 cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
7384 /* boot_set handler */
7385 QEMUBootSetHandler *qemu_boot_set_handler = NULL;
7387 void qemu_register_boot_set(QEMUBootSetHandler *func)
7389 qemu_boot_set_handler = func;
7392 static int qemu_select(int max_fd, fd_set *rfds, fd_set *wfds, fd_set *xfds,
7393 struct timeval *tv)
7395 int ret;
7397 /* KVM holds a mutex while QEMU code is running, we need hooks to
7398 release the mutex whenever QEMU code sleeps. */
7400 kvm_sleep_begin();
7402 ret = select(max_fd, rfds, wfds, xfds, tv);
7404 kvm_sleep_end();
7406 return ret;
7409 void main_loop_wait(int timeout)
7411 IOHandlerRecord *ioh;
7412 fd_set rfds, wfds, xfds;
7413 int ret, nfds;
7414 #ifdef _WIN32
7415 int ret2, i;
7416 #endif
7417 struct timeval tv;
7418 PollingEntry *pe;
7421 /* XXX: need to suppress polling by better using win32 events */
7422 ret = 0;
7423 for(pe = first_polling_entry; pe != NULL; pe = pe->next) {
7424 ret |= pe->func(pe->opaque);
7426 #ifdef _WIN32
7427 if (ret == 0) {
7428 int err;
7429 WaitObjects *w = &wait_objects;
7431 ret = WaitForMultipleObjects(w->num, w->events, FALSE, timeout);
7432 if (WAIT_OBJECT_0 + 0 <= ret && ret <= WAIT_OBJECT_0 + w->num - 1) {
7433 if (w->func[ret - WAIT_OBJECT_0])
7434 w->func[ret - WAIT_OBJECT_0](w->opaque[ret - WAIT_OBJECT_0]);
7436 /* Check for additional signaled events */
7437 for(i = (ret - WAIT_OBJECT_0 + 1); i < w->num; i++) {
7439 /* Check if event is signaled */
7440 ret2 = WaitForSingleObject(w->events[i], 0);
7441 if(ret2 == WAIT_OBJECT_0) {
7442 if (w->func[i])
7443 w->func[i](w->opaque[i]);
7444 } else if (ret2 == WAIT_TIMEOUT) {
7445 } else {
7446 err = GetLastError();
7447 fprintf(stderr, "WaitForSingleObject error %d %d\n", i, err);
7450 } else if (ret == WAIT_TIMEOUT) {
7451 } else {
7452 err = GetLastError();
7453 fprintf(stderr, "WaitForMultipleObjects error %d %d\n", ret, err);
7456 #endif
7457 /* poll any events */
7458 /* XXX: separate device handlers from system ones */
7459 nfds = -1;
7460 FD_ZERO(&rfds);
7461 FD_ZERO(&wfds);
7462 FD_ZERO(&xfds);
7463 for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
7464 if (ioh->deleted)
7465 continue;
7466 if (ioh->fd_read &&
7467 (!ioh->fd_read_poll ||
7468 ioh->fd_read_poll(ioh->opaque) != 0)) {
7469 FD_SET(ioh->fd, &rfds);
7470 if (ioh->fd > nfds)
7471 nfds = ioh->fd;
7473 if (ioh->fd_write) {
7474 FD_SET(ioh->fd, &wfds);
7475 if (ioh->fd > nfds)
7476 nfds = ioh->fd;
7480 #ifdef _WIN32
7481 tv.tv_sec = 0;
7482 tv.tv_usec = 0;
7483 #else
7484 tv.tv_sec = timeout / 1000;
7485 tv.tv_usec = (timeout % 1000) * 1000;
7486 #endif
7487 #if defined(CONFIG_SLIRP)
7488 if (slirp_inited) {
7489 slirp_select_fill(&nfds, &rfds, &wfds, &xfds);
7491 #endif
7492 ret = qemu_select(nfds + 1, &rfds, &wfds, &xfds, &tv);
7493 if (ret > 0) {
7494 IOHandlerRecord **pioh;
7496 for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
7497 if (!ioh->deleted && ioh->fd_read && FD_ISSET(ioh->fd, &rfds)) {
7498 ioh->fd_read(ioh->opaque);
7499 if (!(ioh->fd_read_poll && ioh->fd_read_poll(ioh->opaque)))
7500 FD_CLR(ioh->fd, &rfds);
7502 if (!ioh->deleted && ioh->fd_write && FD_ISSET(ioh->fd, &wfds)) {
7503 ioh->fd_write(ioh->opaque);
7507 /* remove deleted IO handlers */
7508 pioh = &first_io_handler;
7509 while (*pioh) {
7510 ioh = *pioh;
7511 if (ioh->deleted) {
7512 *pioh = ioh->next;
7513 qemu_free(ioh);
7514 } else
7515 pioh = &ioh->next;
7518 #if defined(CONFIG_SLIRP)
7519 if (slirp_inited) {
7520 if (ret < 0) {
7521 FD_ZERO(&rfds);
7522 FD_ZERO(&wfds);
7523 FD_ZERO(&xfds);
7525 slirp_select_poll(&rfds, &wfds, &xfds);
7527 #endif
7528 virtio_net_poll();
7530 qemu_aio_poll();
7532 if (vm_running) {
7533 qemu_run_timers(&active_timers[QEMU_TIMER_VIRTUAL],
7534 qemu_get_clock(vm_clock));
7535 /* run dma transfers, if any */
7536 DMA_run();
7539 /* real time timers */
7540 qemu_run_timers(&active_timers[QEMU_TIMER_REALTIME],
7541 qemu_get_clock(rt_clock));
7543 if (alarm_timer->flags & ALARM_FLAG_EXPIRED) {
7544 alarm_timer->flags &= ~(ALARM_FLAG_EXPIRED);
7545 qemu_rearm_alarm_timer(alarm_timer);
7548 /* Check bottom-halves last in case any of the earlier events triggered
7549 them. */
7550 qemu_bh_poll();
7554 static int main_loop(void)
7556 int ret, timeout;
7557 #ifdef CONFIG_PROFILER
7558 int64_t ti;
7559 #endif
7560 CPUState *env;
7563 if (kvm_enabled()) {
7564 kvm_main_loop();
7565 cpu_disable_ticks();
7566 return 0;
7569 cur_cpu = first_cpu;
7570 next_cpu = cur_cpu->next_cpu ?: first_cpu;
7571 for(;;) {
7572 if (vm_running) {
7574 for(;;) {
7575 /* get next cpu */
7576 env = next_cpu;
7577 #ifdef CONFIG_PROFILER
7578 ti = profile_getclock();
7579 #endif
7580 ret = cpu_exec(env);
7581 #ifdef CONFIG_PROFILER
7582 qemu_time += profile_getclock() - ti;
7583 #endif
7584 next_cpu = env->next_cpu ?: first_cpu;
7585 if (event_pending && likely(ret != EXCP_DEBUG)) {
7586 ret = EXCP_INTERRUPT;
7587 event_pending = 0;
7588 break;
7590 if (ret == EXCP_HLT) {
7591 /* Give the next CPU a chance to run. */
7592 cur_cpu = env;
7593 continue;
7595 if (ret != EXCP_HALTED)
7596 break;
7597 /* all CPUs are halted ? */
7598 if (env == cur_cpu)
7599 break;
7601 cur_cpu = env;
7603 if (shutdown_requested) {
7604 ret = EXCP_INTERRUPT;
7605 if (no_shutdown) {
7606 vm_stop(0);
7607 no_shutdown = 0;
7609 else
7610 break;
7612 if (reset_requested) {
7613 reset_requested = 0;
7614 qemu_system_reset();
7615 if (kvm_enabled())
7616 kvm_load_registers(env);
7617 ret = EXCP_INTERRUPT;
7619 if (powerdown_requested) {
7620 powerdown_requested = 0;
7621 qemu_system_powerdown();
7622 ret = EXCP_INTERRUPT;
7624 if (unlikely(ret == EXCP_DEBUG)) {
7625 vm_stop(EXCP_DEBUG);
7627 /* If all cpus are halted then wait until the next IRQ */
7628 /* XXX: use timeout computed from timers */
7629 if (ret == EXCP_HALTED)
7630 timeout = 10;
7631 else
7632 timeout = 0;
7633 } else {
7634 timeout = 10;
7636 #ifdef CONFIG_PROFILER
7637 ti = profile_getclock();
7638 #endif
7639 main_loop_wait(timeout);
7640 #ifdef CONFIG_PROFILER
7641 dev_time += profile_getclock() - ti;
7642 #endif
7644 cpu_disable_ticks();
7645 return ret;
7648 static void help(int exitcode)
7650 printf("QEMU PC emulator version " QEMU_VERSION " (" KVM_VERSION ")"
7651 ", Copyright (c) 2003-2008 Fabrice Bellard\n"
7652 "usage: %s [options] [disk_image]\n"
7653 "\n"
7654 "'disk_image' is a raw hard image image for IDE hard disk 0\n"
7655 "\n"
7656 "Standard options:\n"
7657 "-M machine select emulated machine (-M ? for list)\n"
7658 "-cpu cpu select CPU (-cpu ? for list)\n"
7659 "-fda/-fdb file use 'file' as floppy disk 0/1 image\n"
7660 "-hda/-hdb file use 'file' as IDE hard disk 0/1 image\n"
7661 "-hdc/-hdd file use 'file' as IDE hard disk 2/3 image\n"
7662 "-cdrom file use 'file' as IDE cdrom image (cdrom is ide1 master)\n"
7663 "-drive [file=file][,if=type][,bus=n][,unit=m][,media=d][,index=i]\n"
7664 " [,cyls=c,heads=h,secs=s[,trans=t]][,snapshot=on|off]\n"
7665 " [,cache=on|off][,format=f][,boot=on|off]\n"
7666 " use 'file' as a drive image\n"
7667 "-mtdblock file use 'file' as on-board Flash memory image\n"
7668 "-sd file use 'file' as SecureDigital card image\n"
7669 "-pflash file use 'file' as a parallel flash image\n"
7670 "-boot [a|c|d|n] boot on floppy (a), hard disk (c), CD-ROM (d), or network (n)\n"
7671 "-snapshot write to temporary files instead of disk image files\n"
7672 #ifdef CONFIG_SDL
7673 "-no-frame open SDL window without a frame and window decorations\n"
7674 "-alt-grab use Ctrl-Alt-Shift to grab mouse (instead of Ctrl-Alt)\n"
7675 "-no-quit disable SDL window close capability\n"
7676 #endif
7677 #ifdef TARGET_I386
7678 "-no-fd-bootchk disable boot signature checking for floppy disks\n"
7679 #endif
7680 "-m megs set virtual RAM size to megs MB [default=%d]\n"
7681 "-smp n set the number of CPUs to 'n' [default=1]\n"
7682 "-nographic disable graphical output and redirect serial I/Os to console\n"
7683 "-portrait rotate graphical output 90 deg left (only PXA LCD)\n"
7684 #ifndef _WIN32
7685 "-k language use keyboard layout (for example \"fr\" for French)\n"
7686 #endif
7687 #ifdef HAS_AUDIO
7688 "-audio-help print list of audio drivers and their options\n"
7689 "-soundhw c1,... enable audio support\n"
7690 " and only specified sound cards (comma separated list)\n"
7691 " use -soundhw ? to get the list of supported cards\n"
7692 " use -soundhw all to enable all of them\n"
7693 #endif
7694 "-localtime set the real time clock to local time [default=utc]\n"
7695 "-full-screen start in full screen\n"
7696 #ifdef TARGET_I386
7697 "-win2k-hack use it when installing Windows 2000 to avoid a disk full bug\n"
7698 #endif
7699 "-usb enable the USB driver (will be the default soon)\n"
7700 "-usbdevice name add the host or guest USB device 'name'\n"
7701 #if defined(TARGET_PPC) || defined(TARGET_SPARC)
7702 "-g WxH[xDEPTH] Set the initial graphical resolution and depth\n"
7703 #endif
7704 "-name string set the name of the guest\n"
7705 "\n"
7706 "Network options:\n"
7707 "-net nic[,vlan=n][,macaddr=addr][,model=type]\n"
7708 " create a new Network Interface Card and connect it to VLAN 'n'\n"
7709 #ifdef CONFIG_SLIRP
7710 "-net user[,vlan=n][,hostname=host]\n"
7711 " connect the user mode network stack to VLAN 'n' and send\n"
7712 " hostname 'host' to DHCP clients\n"
7713 #endif
7714 #ifdef _WIN32
7715 "-net tap[,vlan=n],ifname=name\n"
7716 " connect the host TAP network interface to VLAN 'n'\n"
7717 #else
7718 "-net tap[,vlan=n][,fd=h][,ifname=name][,script=file][,downscript=dfile]\n"
7719 " connect the host TAP network interface to VLAN 'n' and use the\n"
7720 " network scripts 'file' (default=%s)\n"
7721 " and 'dfile' (default=%s);\n"
7722 " use '[down]script=no' to disable script execution;\n"
7723 " use 'fd=h' to connect to an already opened TAP interface\n"
7724 #endif
7725 "-net socket[,vlan=n][,fd=h][,listen=[host]:port][,connect=host:port]\n"
7726 " connect the vlan 'n' to another VLAN using a socket connection\n"
7727 "-net socket[,vlan=n][,fd=h][,mcast=maddr:port]\n"
7728 " connect the vlan 'n' to multicast maddr and port\n"
7729 "-net none use it alone to have zero network devices; if no -net option\n"
7730 " is provided, the default is '-net nic -net user'\n"
7731 "\n"
7732 #ifdef CONFIG_SLIRP
7733 "-tftp dir allow tftp access to files in dir [-net user]\n"
7734 "-bootp file advertise file in BOOTP replies\n"
7735 #ifndef _WIN32
7736 "-smb dir allow SMB access to files in 'dir' [-net user]\n"
7737 #endif
7738 "-redir [tcp|udp]:host-port:[guest-host]:guest-port\n"
7739 " redirect TCP or UDP connections from host to guest [-net user]\n"
7740 #endif
7741 "\n"
7742 "Linux boot specific:\n"
7743 "-kernel bzImage use 'bzImage' as kernel image\n"
7744 "-append cmdline use 'cmdline' as kernel command line\n"
7745 "-initrd file use 'file' as initial ram disk\n"
7746 "\n"
7747 "Debug/Expert options:\n"
7748 "-monitor dev redirect the monitor to char device 'dev'\n"
7749 "-vmchannel di:DI,dev redirect the hypercall device with device id DI, to char device 'dev'\n"
7750 "-balloon dev redirect the balloon hypercall device to char device 'dev'\n"
7751 "-serial dev redirect the serial port to char device 'dev'\n"
7752 "-parallel dev redirect the parallel port to char device 'dev'\n"
7753 "-pidfile file Write PID to 'file'\n"
7754 "-S freeze CPU at startup (use 'c' to start execution)\n"
7755 "-s wait gdb connection to port\n"
7756 "-p port set gdb connection port [default=%s]\n"
7757 "-d item1,... output log to %s (use -d ? for a list of log items)\n"
7758 "-hdachs c,h,s[,t] force hard disk 0 physical geometry and the optional BIOS\n"
7759 " translation (t=none or lba) (usually qemu can guess them)\n"
7760 "-L path set the directory for the BIOS, VGA BIOS and keymaps\n"
7761 #ifdef USE_KQEMU
7762 "-kernel-kqemu enable KQEMU full virtualization (default is user mode only)\n"
7763 "-no-kqemu disable KQEMU kernel module usage\n"
7764 #endif
7765 #ifdef USE_KVM
7766 #ifndef NO_CPU_EMULATION
7767 "-no-kvm disable KVM hardware virtualization\n"
7768 #endif
7769 "-no-kvm-irqchip disable KVM kernel mode PIC/IOAPIC/LAPIC\n"
7770 "-no-kvm-pit disable KVM kernel mode PIT\n"
7771 #endif
7772 #ifdef TARGET_I386
7773 "-std-vga simulate a standard VGA card with VESA Bochs Extensions\n"
7774 " (default is CL-GD5446 PCI VGA)\n"
7775 "-no-acpi disable ACPI\n"
7776 #endif
7777 #ifdef CONFIG_CURSES
7778 "-curses use a curses/ncurses interface instead of SDL\n"
7779 #endif
7780 "-no-reboot exit instead of rebooting\n"
7781 "-no-shutdown stop before shutdown\n"
7782 "-loadvm file start right away with a saved state (loadvm in monitor)\n"
7783 "-vnc display start a VNC server on display\n"
7784 #ifndef _WIN32
7785 "-daemonize daemonize QEMU after initializing\n"
7786 #endif
7787 "-tdf inject timer interrupts that got lost\n"
7788 "-kvm-shadow-memory megs set the amount of shadow pages to be allocated\n"
7789 "-mem-path set the path to hugetlbfs/tmpfs mounted directory, also enables allocation of guest memory with huge pages\n"
7790 "-option-rom rom load a file, rom, into the option ROM space\n"
7791 #ifdef TARGET_SPARC
7792 "-prom-env variable=value set OpenBIOS nvram variables\n"
7793 #endif
7794 "-clock force the use of the given methods for timer alarm.\n"
7795 " To see what timers are available use -clock ?\n"
7796 "-startdate select initial date of the clock\n"
7797 "\n"
7798 "During emulation, the following keys are useful:\n"
7799 "ctrl-alt-f toggle full screen\n"
7800 "ctrl-alt-n switch to virtual console 'n'\n"
7801 "ctrl-alt toggle mouse and keyboard grab\n"
7802 "\n"
7803 "When using -nographic, press 'ctrl-a h' to get some help.\n"
7805 "qemu",
7806 DEFAULT_RAM_SIZE,
7807 #ifndef _WIN32
7808 DEFAULT_NETWORK_SCRIPT,
7809 DEFAULT_NETWORK_DOWN_SCRIPT,
7810 #endif
7811 DEFAULT_GDBSTUB_PORT,
7812 "/tmp/qemu.log");
7813 exit(exitcode);
7816 #define HAS_ARG 0x0001
7818 enum {
7819 QEMU_OPTION_h,
7821 QEMU_OPTION_M,
7822 QEMU_OPTION_cpu,
7823 QEMU_OPTION_fda,
7824 QEMU_OPTION_fdb,
7825 QEMU_OPTION_hda,
7826 QEMU_OPTION_hdb,
7827 QEMU_OPTION_hdc,
7828 QEMU_OPTION_hdd,
7829 QEMU_OPTION_drive,
7830 QEMU_OPTION_cdrom,
7831 QEMU_OPTION_mtdblock,
7832 QEMU_OPTION_sd,
7833 QEMU_OPTION_pflash,
7834 QEMU_OPTION_boot,
7835 QEMU_OPTION_snapshot,
7836 #ifdef TARGET_I386
7837 QEMU_OPTION_no_fd_bootchk,
7838 #endif
7839 QEMU_OPTION_m,
7840 QEMU_OPTION_nographic,
7841 QEMU_OPTION_portrait,
7842 #ifdef HAS_AUDIO
7843 QEMU_OPTION_audio_help,
7844 QEMU_OPTION_soundhw,
7845 #endif
7847 QEMU_OPTION_net,
7848 QEMU_OPTION_tftp,
7849 QEMU_OPTION_bootp,
7850 QEMU_OPTION_smb,
7851 QEMU_OPTION_redir,
7853 QEMU_OPTION_kernel,
7854 QEMU_OPTION_append,
7855 QEMU_OPTION_initrd,
7857 QEMU_OPTION_S,
7858 QEMU_OPTION_s,
7859 QEMU_OPTION_p,
7860 QEMU_OPTION_d,
7861 QEMU_OPTION_hdachs,
7862 QEMU_OPTION_L,
7863 QEMU_OPTION_bios,
7864 QEMU_OPTION_no_code_copy,
7865 QEMU_OPTION_k,
7866 QEMU_OPTION_localtime,
7867 QEMU_OPTION_cirrusvga,
7868 QEMU_OPTION_vmsvga,
7869 QEMU_OPTION_g,
7870 QEMU_OPTION_std_vga,
7871 QEMU_OPTION_echr,
7872 QEMU_OPTION_monitor,
7873 QEMU_OPTION_balloon,
7874 QEMU_OPTION_vmchannel,
7875 QEMU_OPTION_serial,
7876 QEMU_OPTION_parallel,
7877 QEMU_OPTION_loadvm,
7878 QEMU_OPTION_full_screen,
7879 QEMU_OPTION_no_frame,
7880 QEMU_OPTION_alt_grab,
7881 QEMU_OPTION_no_quit,
7882 QEMU_OPTION_pidfile,
7883 QEMU_OPTION_no_kqemu,
7884 QEMU_OPTION_kernel_kqemu,
7885 QEMU_OPTION_win2k_hack,
7886 QEMU_OPTION_usb,
7887 QEMU_OPTION_usbdevice,
7888 QEMU_OPTION_smp,
7889 QEMU_OPTION_vnc,
7890 QEMU_OPTION_no_acpi,
7891 QEMU_OPTION_curses,
7892 QEMU_OPTION_no_kvm,
7893 QEMU_OPTION_no_kvm_irqchip,
7894 QEMU_OPTION_no_kvm_pit,
7895 QEMU_OPTION_no_reboot,
7896 QEMU_OPTION_no_shutdown,
7897 QEMU_OPTION_show_cursor,
7898 QEMU_OPTION_daemonize,
7899 QEMU_OPTION_option_rom,
7900 QEMU_OPTION_semihosting,
7901 QEMU_OPTION_cpu_vendor,
7902 QEMU_OPTION_name,
7903 QEMU_OPTION_prom_env,
7904 QEMU_OPTION_old_param,
7905 QEMU_OPTION_clock,
7906 QEMU_OPTION_startdate,
7907 QEMU_OPTION_translation,
7908 QEMU_OPTION_incoming,
7909 QEMU_OPTION_tdf,
7910 QEMU_OPTION_kvm_shadow_memory,
7911 QEMU_OPTION_mempath,
7914 typedef struct QEMUOption {
7915 const char *name;
7916 int flags;
7917 int index;
7918 } QEMUOption;
7920 const QEMUOption qemu_options[] = {
7921 { "h", 0, QEMU_OPTION_h },
7922 { "help", 0, QEMU_OPTION_h },
7924 { "M", HAS_ARG, QEMU_OPTION_M },
7925 { "cpu", HAS_ARG, QEMU_OPTION_cpu },
7926 { "fda", HAS_ARG, QEMU_OPTION_fda },
7927 { "fdb", HAS_ARG, QEMU_OPTION_fdb },
7928 { "hda", HAS_ARG, QEMU_OPTION_hda },
7929 { "hdb", HAS_ARG, QEMU_OPTION_hdb },
7930 { "hdc", HAS_ARG, QEMU_OPTION_hdc },
7931 { "hdd", HAS_ARG, QEMU_OPTION_hdd },
7932 { "drive", HAS_ARG, QEMU_OPTION_drive },
7933 { "cdrom", HAS_ARG, QEMU_OPTION_cdrom },
7934 { "mtdblock", HAS_ARG, QEMU_OPTION_mtdblock },
7935 { "sd", HAS_ARG, QEMU_OPTION_sd },
7936 { "pflash", HAS_ARG, QEMU_OPTION_pflash },
7937 { "boot", HAS_ARG, QEMU_OPTION_boot },
7938 { "snapshot", 0, QEMU_OPTION_snapshot },
7939 #ifdef TARGET_I386
7940 { "no-fd-bootchk", 0, QEMU_OPTION_no_fd_bootchk },
7941 #endif
7942 { "m", HAS_ARG, QEMU_OPTION_m },
7943 { "nographic", 0, QEMU_OPTION_nographic },
7944 { "portrait", 0, QEMU_OPTION_portrait },
7945 { "k", HAS_ARG, QEMU_OPTION_k },
7946 #ifdef HAS_AUDIO
7947 { "audio-help", 0, QEMU_OPTION_audio_help },
7948 { "soundhw", HAS_ARG, QEMU_OPTION_soundhw },
7949 #endif
7951 { "net", HAS_ARG, QEMU_OPTION_net},
7952 #ifdef CONFIG_SLIRP
7953 { "tftp", HAS_ARG, QEMU_OPTION_tftp },
7954 { "bootp", HAS_ARG, QEMU_OPTION_bootp },
7955 #ifndef _WIN32
7956 { "smb", HAS_ARG, QEMU_OPTION_smb },
7957 #endif
7958 { "redir", HAS_ARG, QEMU_OPTION_redir },
7959 #endif
7961 { "kernel", HAS_ARG, QEMU_OPTION_kernel },
7962 { "append", HAS_ARG, QEMU_OPTION_append },
7963 { "initrd", HAS_ARG, QEMU_OPTION_initrd },
7965 { "S", 0, QEMU_OPTION_S },
7966 { "s", 0, QEMU_OPTION_s },
7967 { "p", HAS_ARG, QEMU_OPTION_p },
7968 { "d", HAS_ARG, QEMU_OPTION_d },
7969 { "hdachs", HAS_ARG, QEMU_OPTION_hdachs },
7970 { "L", HAS_ARG, QEMU_OPTION_L },
7971 { "bios", HAS_ARG, QEMU_OPTION_bios },
7972 { "no-code-copy", 0, QEMU_OPTION_no_code_copy },
7973 #ifdef USE_KQEMU
7974 { "no-kqemu", 0, QEMU_OPTION_no_kqemu },
7975 { "kernel-kqemu", 0, QEMU_OPTION_kernel_kqemu },
7976 #endif
7977 #ifdef USE_KVM
7978 #ifndef NO_CPU_EMULATION
7979 { "no-kvm", 0, QEMU_OPTION_no_kvm },
7980 #endif
7981 { "no-kvm-irqchip", 0, QEMU_OPTION_no_kvm_irqchip },
7982 { "no-kvm-pit", 0, QEMU_OPTION_no_kvm_pit },
7983 #endif
7984 #if defined(TARGET_PPC) || defined(TARGET_SPARC)
7985 { "g", 1, QEMU_OPTION_g },
7986 #endif
7987 { "localtime", 0, QEMU_OPTION_localtime },
7988 { "std-vga", 0, QEMU_OPTION_std_vga },
7989 { "monitor", 1, QEMU_OPTION_monitor },
7990 { "balloon", 1, QEMU_OPTION_balloon },
7991 { "vmchannel", 1, QEMU_OPTION_vmchannel },
7992 { "echr", HAS_ARG, QEMU_OPTION_echr },
7993 { "monitor", HAS_ARG, QEMU_OPTION_monitor },
7994 { "serial", HAS_ARG, QEMU_OPTION_serial },
7995 { "parallel", HAS_ARG, QEMU_OPTION_parallel },
7996 { "loadvm", HAS_ARG, QEMU_OPTION_loadvm },
7997 { "incoming", 1, QEMU_OPTION_incoming },
7998 { "full-screen", 0, QEMU_OPTION_full_screen },
7999 #ifdef CONFIG_SDL
8000 { "no-frame", 0, QEMU_OPTION_no_frame },
8001 { "alt-grab", 0, QEMU_OPTION_alt_grab },
8002 { "no-quit", 0, QEMU_OPTION_no_quit },
8003 #endif
8004 { "pidfile", HAS_ARG, QEMU_OPTION_pidfile },
8005 { "win2k-hack", 0, QEMU_OPTION_win2k_hack },
8006 { "usbdevice", HAS_ARG, QEMU_OPTION_usbdevice },
8007 { "smp", HAS_ARG, QEMU_OPTION_smp },
8008 { "vnc", HAS_ARG, QEMU_OPTION_vnc },
8009 #ifdef CONFIG_CURSES
8010 { "curses", 0, QEMU_OPTION_curses },
8011 #endif
8013 /* temporary options */
8014 { "usb", 0, QEMU_OPTION_usb },
8015 { "cirrusvga", 0, QEMU_OPTION_cirrusvga },
8016 { "vmwarevga", 0, QEMU_OPTION_vmsvga },
8017 { "no-acpi", 0, QEMU_OPTION_no_acpi },
8018 { "no-reboot", 0, QEMU_OPTION_no_reboot },
8019 { "no-shutdown", 0, QEMU_OPTION_no_shutdown },
8020 { "show-cursor", 0, QEMU_OPTION_show_cursor },
8021 { "daemonize", 0, QEMU_OPTION_daemonize },
8022 { "option-rom", HAS_ARG, QEMU_OPTION_option_rom },
8023 #if defined(TARGET_ARM) || defined(TARGET_M68K)
8024 { "semihosting", 0, QEMU_OPTION_semihosting },
8025 #endif
8026 { "tdf", 0, QEMU_OPTION_tdf }, /* enable time drift fix */
8027 { "kvm-shadow-memory", HAS_ARG, QEMU_OPTION_kvm_shadow_memory },
8028 { "name", HAS_ARG, QEMU_OPTION_name },
8029 #if defined(TARGET_SPARC)
8030 { "prom-env", HAS_ARG, QEMU_OPTION_prom_env },
8031 #endif
8032 { "cpu-vendor", HAS_ARG, QEMU_OPTION_cpu_vendor },
8033 #if defined(TARGET_ARM)
8034 { "old-param", 0, QEMU_OPTION_old_param },
8035 #endif
8036 { "clock", HAS_ARG, QEMU_OPTION_clock },
8037 { "startdate", HAS_ARG, QEMU_OPTION_startdate },
8038 { "mem-path", HAS_ARG, QEMU_OPTION_mempath },
8039 { NULL },
8042 /* password input */
8044 int qemu_key_check(BlockDriverState *bs, const char *name)
8046 char password[256];
8047 int i;
8049 if (!bdrv_is_encrypted(bs))
8050 return 0;
8052 term_printf("%s is encrypted.\n", name);
8053 for(i = 0; i < 3; i++) {
8054 monitor_readline("Password: ", 1, password, sizeof(password));
8055 if (bdrv_set_key(bs, password) == 0)
8056 return 0;
8057 term_printf("invalid password\n");
8059 return -EPERM;
8062 static BlockDriverState *get_bdrv(int index)
8064 if (index > nb_drives)
8065 return NULL;
8066 return drives_table[index].bdrv;
8069 static void read_passwords(void)
8071 BlockDriverState *bs;
8072 int i;
8074 for(i = 0; i < 6; i++) {
8075 bs = get_bdrv(i);
8076 if (bs)
8077 qemu_key_check(bs, bdrv_get_device_name(bs));
8081 #ifdef HAS_AUDIO
8082 struct soundhw soundhw[] = {
8083 #ifdef HAS_AUDIO_CHOICE
8084 #if defined(TARGET_I386) || defined(TARGET_MIPS)
8086 "pcspk",
8087 "PC speaker",
8090 { .init_isa = pcspk_audio_init }
8092 #endif
8094 "sb16",
8095 "Creative Sound Blaster 16",
8098 { .init_isa = SB16_init }
8101 #ifdef CONFIG_ADLIB
8103 "adlib",
8104 #ifdef HAS_YMF262
8105 "Yamaha YMF262 (OPL3)",
8106 #else
8107 "Yamaha YM3812 (OPL2)",
8108 #endif
8111 { .init_isa = Adlib_init }
8113 #endif
8115 #ifdef CONFIG_GUS
8117 "gus",
8118 "Gravis Ultrasound GF1",
8121 { .init_isa = GUS_init }
8123 #endif
8125 #ifdef CONFIG_AC97
8127 "ac97",
8128 "Intel 82801AA AC97 Audio",
8131 { .init_pci = ac97_init }
8133 #endif
8136 "es1370",
8137 "ENSONIQ AudioPCI ES1370",
8140 { .init_pci = es1370_init }
8142 #endif
8144 { NULL, NULL, 0, 0, { NULL } }
8147 static void select_soundhw (const char *optarg)
8149 struct soundhw *c;
8151 if (*optarg == '?') {
8152 show_valid_cards:
8154 printf ("Valid sound card names (comma separated):\n");
8155 for (c = soundhw; c->name; ++c) {
8156 printf ("%-11s %s\n", c->name, c->descr);
8158 printf ("\n-soundhw all will enable all of the above\n");
8159 exit (*optarg != '?');
8161 else {
8162 size_t l;
8163 const char *p;
8164 char *e;
8165 int bad_card = 0;
8167 if (!strcmp (optarg, "all")) {
8168 for (c = soundhw; c->name; ++c) {
8169 c->enabled = 1;
8171 return;
8174 p = optarg;
8175 while (*p) {
8176 e = strchr (p, ',');
8177 l = !e ? strlen (p) : (size_t) (e - p);
8179 for (c = soundhw; c->name; ++c) {
8180 if (!strncmp (c->name, p, l)) {
8181 c->enabled = 1;
8182 break;
8186 if (!c->name) {
8187 if (l > 80) {
8188 fprintf (stderr,
8189 "Unknown sound card name (too big to show)\n");
8191 else {
8192 fprintf (stderr, "Unknown sound card name `%.*s'\n",
8193 (int) l, p);
8195 bad_card = 1;
8197 p += l + (e != NULL);
8200 if (bad_card)
8201 goto show_valid_cards;
8204 #endif
8206 #ifdef _WIN32
8207 static BOOL WINAPI qemu_ctrl_handler(DWORD type)
8209 exit(STATUS_CONTROL_C_EXIT);
8210 return TRUE;
8212 #endif
8214 #define MAX_NET_CLIENTS 32
8216 static int saved_argc;
8217 static char **saved_argv;
8219 void qemu_get_launch_info(int *argc, char ***argv, int *opt_daemonize, const char **opt_incoming)
8221 *argc = saved_argc;
8222 *argv = saved_argv;
8223 *opt_daemonize = daemonize;
8224 *opt_incoming = incoming;
8228 static int gethugepagesize(void)
8230 int ret, fd;
8231 char buf[4096];
8232 char *needle = "Hugepagesize:";
8233 char *size;
8234 unsigned long hugepagesize;
8236 fd = open("/proc/meminfo", O_RDONLY);
8237 if (fd < 0) {
8238 perror("open");
8239 exit(0);
8242 ret = read(fd, buf, sizeof(buf));
8243 if (ret < 0) {
8244 perror("read");
8245 exit(0);
8248 size = strstr(buf, needle);
8249 if (!size)
8250 return 0;
8251 size += strlen(needle);
8252 hugepagesize = strtol(size, NULL, 0);
8253 return hugepagesize;
8256 void *alloc_mem_area(unsigned long memory, const char *path)
8258 char *filename;
8259 void *area;
8260 int fd;
8262 if (asprintf(&filename, "%s/kvm.XXXXXX", path) == -1)
8263 return NULL;
8265 hpagesize = gethugepagesize() * 1024;
8266 if (!hpagesize)
8267 return NULL;
8269 fd = mkstemp(filename);
8270 if (fd < 0) {
8271 perror("mkstemp");
8272 free(filename);
8273 return NULL;
8275 unlink(filename);
8276 free(filename);
8278 memory = (memory+hpagesize-1) & ~(hpagesize-1);
8281 * ftruncate is not supported by hugetlbfs in older
8282 * hosts, so don't bother checking for errors.
8283 * If anything goes wrong with it under other filesystems,
8284 * mmap will fail.
8286 ftruncate(fd, memory);
8288 area = mmap(0, memory, PROT_READ|PROT_WRITE, MAP_PRIVATE, fd, 0);
8289 if (area == MAP_FAILED) {
8290 perror("mmap");
8291 close(fd);
8292 return NULL;
8295 return area;
8298 void *qemu_alloc_physram(unsigned long memory)
8300 void *area = NULL;
8302 if (mem_path)
8303 area = alloc_mem_area(memory, mem_path);
8304 if (!area)
8305 area = qemu_vmalloc(memory);
8307 return area;
8310 int main(int argc, char **argv)
8312 #ifdef CONFIG_GDBSTUB
8313 int use_gdbstub;
8314 const char *gdbstub_port;
8315 #endif
8316 uint32_t boot_devices_bitmap = 0;
8317 int i;
8318 int snapshot, linux_boot, net_boot;
8319 const char *initrd_filename;
8320 const char *kernel_filename, *kernel_cmdline;
8321 const char *boot_devices = "";
8322 DisplayState *ds = &display_state;
8323 int cyls, heads, secs, translation;
8324 const char *net_clients[MAX_NET_CLIENTS];
8325 int nb_net_clients;
8326 int hda_index;
8327 int optind;
8328 const char *r, *optarg;
8329 CharDriverState *monitor_hd;
8330 const char *monitor_device;
8331 const char *serial_devices[MAX_SERIAL_PORTS];
8332 int serial_device_index;
8333 char vmchannel_devices[MAX_VMCHANNEL_DEVICES][128];
8334 int vmchannel_device_index;
8335 const char *parallel_devices[MAX_PARALLEL_PORTS];
8336 int parallel_device_index;
8337 const char *loadvm = NULL;
8338 QEMUMachine *machine;
8339 const char *cpu_model;
8340 const char *usb_devices[MAX_USB_CMDLINE];
8341 int usb_devices_index;
8342 int fds[2];
8343 const char *pid_file = NULL;
8344 VLANState *vlan;
8346 saved_argc = argc;
8347 saved_argv = argv;
8349 LIST_INIT (&vm_change_state_head);
8350 #ifndef _WIN32
8352 struct sigaction act;
8353 sigfillset(&act.sa_mask);
8354 act.sa_flags = 0;
8355 act.sa_handler = SIG_IGN;
8356 sigaction(SIGPIPE, &act, NULL);
8358 #else
8359 SetConsoleCtrlHandler(qemu_ctrl_handler, TRUE);
8360 /* Note: cpu_interrupt() is currently not SMP safe, so we force
8361 QEMU to run on a single CPU */
8363 HANDLE h;
8364 DWORD mask, smask;
8365 int i;
8366 h = GetCurrentProcess();
8367 if (GetProcessAffinityMask(h, &mask, &smask)) {
8368 for(i = 0; i < 32; i++) {
8369 if (mask & (1 << i))
8370 break;
8372 if (i != 32) {
8373 mask = 1 << i;
8374 SetProcessAffinityMask(h, mask);
8378 #endif
8380 register_machines();
8381 machine = first_machine;
8382 cpu_model = NULL;
8383 initrd_filename = NULL;
8384 ram_size = 0;
8385 vga_ram_size = VGA_RAM_SIZE;
8386 #ifdef CONFIG_GDBSTUB
8387 use_gdbstub = 0;
8388 gdbstub_port = DEFAULT_GDBSTUB_PORT;
8389 #endif
8390 snapshot = 0;
8391 nographic = 0;
8392 curses = 0;
8393 kernel_filename = NULL;
8394 kernel_cmdline = "";
8395 cyls = heads = secs = 0;
8396 translation = BIOS_ATA_TRANSLATION_AUTO;
8397 monitor_device = "vc:800x600";
8399 for(i = 0; i < MAX_VMCHANNEL_DEVICES; i++)
8400 vmchannel_devices[i][0] = '\0';
8401 vmchannel_device_index = 0;
8403 serial_devices[0] = "vc:80Cx24C";
8404 for(i = 1; i < MAX_SERIAL_PORTS; i++)
8405 serial_devices[i] = NULL;
8406 serial_device_index = 0;
8408 parallel_devices[0] = "vc:640x480";
8409 for(i = 1; i < MAX_PARALLEL_PORTS; i++)
8410 parallel_devices[i] = NULL;
8411 parallel_device_index = 0;
8413 usb_devices_index = 0;
8415 nb_net_clients = 0;
8416 nb_drives = 0;
8417 nb_drives_opt = 0;
8418 hda_index = -1;
8420 nb_nics = 0;
8421 /* default mac address of the first network interface */
8423 optind = 1;
8424 for(;;) {
8425 if (optind >= argc)
8426 break;
8427 r = argv[optind];
8428 if (r[0] != '-') {
8429 hda_index = drive_add(argv[optind++], HD_ALIAS, 0);
8430 } else {
8431 const QEMUOption *popt;
8433 optind++;
8434 /* Treat --foo the same as -foo. */
8435 if (r[1] == '-')
8436 r++;
8437 popt = qemu_options;
8438 for(;;) {
8439 if (!popt->name) {
8440 fprintf(stderr, "%s: invalid option -- '%s'\n",
8441 argv[0], r);
8442 exit(1);
8444 if (!strcmp(popt->name, r + 1))
8445 break;
8446 popt++;
8448 if (popt->flags & HAS_ARG) {
8449 if (optind >= argc) {
8450 fprintf(stderr, "%s: option '%s' requires an argument\n",
8451 argv[0], r);
8452 exit(1);
8454 optarg = argv[optind++];
8455 } else {
8456 optarg = NULL;
8459 switch(popt->index) {
8460 case QEMU_OPTION_M:
8461 machine = find_machine(optarg);
8462 if (!machine) {
8463 QEMUMachine *m;
8464 printf("Supported machines are:\n");
8465 for(m = first_machine; m != NULL; m = m->next) {
8466 printf("%-10s %s%s\n",
8467 m->name, m->desc,
8468 m == first_machine ? " (default)" : "");
8470 exit(*optarg != '?');
8472 break;
8473 case QEMU_OPTION_cpu:
8474 /* hw initialization will check this */
8475 if (*optarg == '?') {
8476 /* XXX: implement xxx_cpu_list for targets that still miss it */
8477 #if defined(cpu_list)
8478 cpu_list(stdout, &fprintf);
8479 #endif
8480 exit(0);
8481 } else {
8482 cpu_model = optarg;
8484 break;
8485 case QEMU_OPTION_initrd:
8486 initrd_filename = optarg;
8487 break;
8488 case QEMU_OPTION_hda:
8489 if (cyls == 0)
8490 hda_index = drive_add(optarg, HD_ALIAS, 0);
8491 else
8492 hda_index = drive_add(optarg, HD_ALIAS
8493 ",cyls=%d,heads=%d,secs=%d%s",
8494 0, cyls, heads, secs,
8495 translation == BIOS_ATA_TRANSLATION_LBA ?
8496 ",trans=lba" :
8497 translation == BIOS_ATA_TRANSLATION_NONE ?
8498 ",trans=none" : "");
8499 break;
8500 case QEMU_OPTION_hdb:
8501 case QEMU_OPTION_hdc:
8502 case QEMU_OPTION_hdd:
8503 drive_add(optarg, HD_ALIAS, popt->index - QEMU_OPTION_hda);
8504 break;
8505 case QEMU_OPTION_drive:
8506 drive_add(NULL, "%s", optarg);
8507 break;
8508 case QEMU_OPTION_mtdblock:
8509 drive_add(optarg, MTD_ALIAS);
8510 break;
8511 case QEMU_OPTION_sd:
8512 drive_add(optarg, SD_ALIAS);
8513 break;
8514 case QEMU_OPTION_pflash:
8515 drive_add(optarg, PFLASH_ALIAS);
8516 break;
8517 case QEMU_OPTION_snapshot:
8518 snapshot = 1;
8519 break;
8520 case QEMU_OPTION_hdachs:
8522 const char *p;
8523 p = optarg;
8524 cyls = strtol(p, (char **)&p, 0);
8525 if (cyls < 1 || cyls > 16383)
8526 goto chs_fail;
8527 if (*p != ',')
8528 goto chs_fail;
8529 p++;
8530 heads = strtol(p, (char **)&p, 0);
8531 if (heads < 1 || heads > 16)
8532 goto chs_fail;
8533 if (*p != ',')
8534 goto chs_fail;
8535 p++;
8536 secs = strtol(p, (char **)&p, 0);
8537 if (secs < 1 || secs > 63)
8538 goto chs_fail;
8539 if (*p == ',') {
8540 p++;
8541 if (!strcmp(p, "none"))
8542 translation = BIOS_ATA_TRANSLATION_NONE;
8543 else if (!strcmp(p, "lba"))
8544 translation = BIOS_ATA_TRANSLATION_LBA;
8545 else if (!strcmp(p, "auto"))
8546 translation = BIOS_ATA_TRANSLATION_AUTO;
8547 else
8548 goto chs_fail;
8549 } else if (*p != '\0') {
8550 chs_fail:
8551 fprintf(stderr, "qemu: invalid physical CHS format\n");
8552 exit(1);
8554 if (hda_index != -1)
8555 snprintf(drives_opt[hda_index].opt,
8556 sizeof(drives_opt[hda_index].opt),
8557 HD_ALIAS ",cyls=%d,heads=%d,secs=%d%s",
8558 0, cyls, heads, secs,
8559 translation == BIOS_ATA_TRANSLATION_LBA ?
8560 ",trans=lba" :
8561 translation == BIOS_ATA_TRANSLATION_NONE ?
8562 ",trans=none" : "");
8564 break;
8565 case QEMU_OPTION_nographic:
8566 serial_devices[0] = "stdio";
8567 parallel_devices[0] = "null";
8568 monitor_device = "stdio";
8569 nographic = 1;
8570 break;
8571 #ifdef CONFIG_CURSES
8572 case QEMU_OPTION_curses:
8573 curses = 1;
8574 break;
8575 #endif
8576 case QEMU_OPTION_portrait:
8577 graphic_rotate = 1;
8578 break;
8579 case QEMU_OPTION_kernel:
8580 kernel_filename = optarg;
8581 break;
8582 case QEMU_OPTION_append:
8583 kernel_cmdline = optarg;
8584 break;
8585 case QEMU_OPTION_cdrom:
8586 drive_add(optarg, CDROM_ALIAS);
8587 break;
8588 case QEMU_OPTION_boot:
8589 boot_devices = optarg;
8590 /* We just do some generic consistency checks */
8592 /* Could easily be extended to 64 devices if needed */
8593 const char *p;
8595 boot_devices_bitmap = 0;
8596 for (p = boot_devices; *p != '\0'; p++) {
8597 /* Allowed boot devices are:
8598 * a b : floppy disk drives
8599 * c ... f : IDE disk drives
8600 * g ... m : machine implementation dependant drives
8601 * n ... p : network devices
8602 * It's up to each machine implementation to check
8603 * if the given boot devices match the actual hardware
8604 * implementation and firmware features.
8606 if (*p < 'a' || *p > 'q') {
8607 fprintf(stderr, "Invalid boot device '%c'\n", *p);
8608 exit(1);
8610 if (boot_devices_bitmap & (1 << (*p - 'a'))) {
8611 fprintf(stderr,
8612 "Boot device '%c' was given twice\n",*p);
8613 exit(1);
8615 boot_devices_bitmap |= 1 << (*p - 'a');
8618 break;
8619 case QEMU_OPTION_fda:
8620 case QEMU_OPTION_fdb:
8621 drive_add(optarg, FD_ALIAS, popt->index - QEMU_OPTION_fda);
8622 break;
8623 #ifdef TARGET_I386
8624 case QEMU_OPTION_no_fd_bootchk:
8625 fd_bootchk = 0;
8626 break;
8627 #endif
8628 case QEMU_OPTION_no_code_copy:
8629 code_copy_enabled = 0;
8630 break;
8631 case QEMU_OPTION_net:
8632 if (nb_net_clients >= MAX_NET_CLIENTS) {
8633 fprintf(stderr, "qemu: too many network clients\n");
8634 exit(1);
8636 net_clients[nb_net_clients] = optarg;
8637 nb_net_clients++;
8638 break;
8639 #ifdef CONFIG_SLIRP
8640 case QEMU_OPTION_tftp:
8641 tftp_prefix = optarg;
8642 break;
8643 case QEMU_OPTION_bootp:
8644 bootp_filename = optarg;
8645 break;
8646 #ifndef _WIN32
8647 case QEMU_OPTION_smb:
8648 net_slirp_smb(optarg);
8649 break;
8650 #endif
8651 case QEMU_OPTION_redir:
8652 net_slirp_redir(optarg);
8653 break;
8654 #endif
8655 #ifdef HAS_AUDIO
8656 case QEMU_OPTION_audio_help:
8657 AUD_help ();
8658 exit (0);
8659 break;
8660 case QEMU_OPTION_soundhw:
8661 select_soundhw (optarg);
8662 break;
8663 #endif
8664 case QEMU_OPTION_h:
8665 help(0);
8666 break;
8667 case QEMU_OPTION_m: {
8668 uint64_t value;
8669 char *ptr;
8671 value = strtoul(optarg, &ptr, 10);
8672 switch (*ptr) {
8673 case 0: case 'M': case 'm':
8674 value <<= 20;
8675 break;
8676 case 'G': case 'g':
8677 value <<= 30;
8678 break;
8679 default:
8680 fprintf(stderr, "qemu: invalid ram size: %s\n", optarg);
8681 exit(1);
8684 /* On 32-bit hosts, QEMU is limited by virtual address space */
8685 if (value > (2047 << 20)
8686 #ifndef USE_KQEMU
8687 && HOST_LONG_BITS == 32
8688 #endif
8690 fprintf(stderr, "qemu: at most 2047 MB RAM can be simulated\n");
8691 exit(1);
8693 if (value != (uint64_t)(ram_addr_t)value) {
8694 fprintf(stderr, "qemu: ram size too large\n");
8695 exit(1);
8697 ram_size = value;
8698 break;
8700 case QEMU_OPTION_d:
8702 int mask;
8703 CPULogItem *item;
8705 mask = cpu_str_to_log_mask(optarg);
8706 if (!mask) {
8707 printf("Log items (comma separated):\n");
8708 for(item = cpu_log_items; item->mask != 0; item++) {
8709 printf("%-10s %s\n", item->name, item->help);
8711 exit(1);
8713 cpu_set_log(mask);
8715 break;
8716 #ifdef CONFIG_GDBSTUB
8717 case QEMU_OPTION_s:
8718 use_gdbstub = 1;
8719 break;
8720 case QEMU_OPTION_p:
8721 gdbstub_port = optarg;
8722 break;
8723 #endif
8724 case QEMU_OPTION_L:
8725 bios_dir = optarg;
8726 break;
8727 case QEMU_OPTION_bios:
8728 bios_name = optarg;
8729 break;
8730 case QEMU_OPTION_S:
8731 autostart = 0;
8732 break;
8733 case QEMU_OPTION_k:
8734 keyboard_layout = optarg;
8735 break;
8736 case QEMU_OPTION_localtime:
8737 rtc_utc = 0;
8738 break;
8739 case QEMU_OPTION_cirrusvga:
8740 cirrus_vga_enabled = 1;
8741 vmsvga_enabled = 0;
8742 break;
8743 case QEMU_OPTION_vmsvga:
8744 cirrus_vga_enabled = 0;
8745 vmsvga_enabled = 1;
8746 break;
8747 case QEMU_OPTION_std_vga:
8748 cirrus_vga_enabled = 0;
8749 vmsvga_enabled = 0;
8750 break;
8751 case QEMU_OPTION_g:
8753 const char *p;
8754 int w, h, depth;
8755 p = optarg;
8756 w = strtol(p, (char **)&p, 10);
8757 if (w <= 0) {
8758 graphic_error:
8759 fprintf(stderr, "qemu: invalid resolution or depth\n");
8760 exit(1);
8762 if (*p != 'x')
8763 goto graphic_error;
8764 p++;
8765 h = strtol(p, (char **)&p, 10);
8766 if (h <= 0)
8767 goto graphic_error;
8768 if (*p == 'x') {
8769 p++;
8770 depth = strtol(p, (char **)&p, 10);
8771 if (depth != 8 && depth != 15 && depth != 16 &&
8772 depth != 24 && depth != 32)
8773 goto graphic_error;
8774 } else if (*p == '\0') {
8775 depth = graphic_depth;
8776 } else {
8777 goto graphic_error;
8780 graphic_width = w;
8781 graphic_height = h;
8782 graphic_depth = depth;
8784 break;
8785 case QEMU_OPTION_echr:
8787 char *r;
8788 term_escape_char = strtol(optarg, &r, 0);
8789 if (r == optarg)
8790 printf("Bad argument to echr\n");
8791 break;
8793 case QEMU_OPTION_monitor:
8794 monitor_device = optarg;
8795 break;
8796 case QEMU_OPTION_balloon:
8797 if (vmchannel_device_index >= MAX_VMCHANNEL_DEVICES) {
8798 fprintf(stderr, "qemu: too many balloon/vmchannel devices\n");
8799 exit(1);
8801 if (balloon_used) {
8802 fprintf(stderr, "qemu: only one balloon device can be used\n");
8803 exit(1);
8805 sprintf(vmchannel_devices[vmchannel_device_index],"di:cdcd,%s", optarg);
8806 vmchannel_device_index++;
8807 balloon_used = 1;
8808 break;
8809 case QEMU_OPTION_vmchannel:
8810 if (vmchannel_device_index >= MAX_VMCHANNEL_DEVICES) {
8811 fprintf(stderr, "qemu: too many balloon/vmchannel devices\n");
8812 exit(1);
8814 pstrcpy(vmchannel_devices[vmchannel_device_index],
8815 sizeof(vmchannel_devices[0]), optarg);
8816 vmchannel_device_index++;
8817 break;
8818 case QEMU_OPTION_serial:
8819 if (serial_device_index >= MAX_SERIAL_PORTS) {
8820 fprintf(stderr, "qemu: too many serial ports\n");
8821 exit(1);
8823 serial_devices[serial_device_index] = optarg;
8824 serial_device_index++;
8825 break;
8826 case QEMU_OPTION_parallel:
8827 if (parallel_device_index >= MAX_PARALLEL_PORTS) {
8828 fprintf(stderr, "qemu: too many parallel ports\n");
8829 exit(1);
8831 parallel_devices[parallel_device_index] = optarg;
8832 parallel_device_index++;
8833 break;
8834 case QEMU_OPTION_loadvm:
8835 loadvm = optarg;
8836 break;
8837 case QEMU_OPTION_incoming:
8838 incoming = optarg;
8839 break;
8840 case QEMU_OPTION_full_screen:
8841 full_screen = 1;
8842 break;
8843 #ifdef CONFIG_SDL
8844 case QEMU_OPTION_no_frame:
8845 no_frame = 1;
8846 break;
8847 case QEMU_OPTION_alt_grab:
8848 alt_grab = 1;
8849 break;
8850 case QEMU_OPTION_no_quit:
8851 no_quit = 1;
8852 break;
8853 #endif
8854 case QEMU_OPTION_pidfile:
8855 pid_file = optarg;
8856 break;
8857 #ifdef TARGET_I386
8858 case QEMU_OPTION_win2k_hack:
8859 win2k_install_hack = 1;
8860 break;
8861 #endif
8862 #ifdef USE_KQEMU
8863 case QEMU_OPTION_no_kqemu:
8864 kqemu_allowed = 0;
8865 break;
8866 case QEMU_OPTION_kernel_kqemu:
8867 kqemu_allowed = 2;
8868 break;
8869 #endif
8870 #ifdef USE_KVM
8871 case QEMU_OPTION_no_kvm:
8872 kvm_allowed = 0;
8873 break;
8874 case QEMU_OPTION_no_kvm_irqchip: {
8875 extern int kvm_irqchip, kvm_pit;
8876 kvm_irqchip = 0;
8877 kvm_pit = 0;
8878 break;
8880 case QEMU_OPTION_no_kvm_pit: {
8881 extern int kvm_pit;
8882 kvm_pit = 0;
8883 break;
8885 #endif
8886 case QEMU_OPTION_usb:
8887 usb_enabled = 1;
8888 break;
8889 case QEMU_OPTION_usbdevice:
8890 usb_enabled = 1;
8891 if (usb_devices_index >= MAX_USB_CMDLINE) {
8892 fprintf(stderr, "Too many USB devices\n");
8893 exit(1);
8895 usb_devices[usb_devices_index] = optarg;
8896 usb_devices_index++;
8897 break;
8898 case QEMU_OPTION_smp:
8899 smp_cpus = atoi(optarg);
8900 if (smp_cpus < 1 || smp_cpus > MAX_CPUS) {
8901 fprintf(stderr, "Invalid number of CPUs\n");
8902 exit(1);
8904 break;
8905 case QEMU_OPTION_vnc:
8906 vnc_display = optarg;
8907 break;
8908 case QEMU_OPTION_no_acpi:
8909 acpi_enabled = 0;
8910 break;
8911 case QEMU_OPTION_no_reboot:
8912 no_reboot = 1;
8913 break;
8914 case QEMU_OPTION_no_shutdown:
8915 no_shutdown = 1;
8916 break;
8917 case QEMU_OPTION_show_cursor:
8918 cursor_hide = 0;
8919 break;
8920 case QEMU_OPTION_daemonize:
8921 daemonize = 1;
8922 break;
8923 case QEMU_OPTION_option_rom:
8924 if (nb_option_roms >= MAX_OPTION_ROMS) {
8925 fprintf(stderr, "Too many option ROMs\n");
8926 exit(1);
8928 option_rom[nb_option_roms] = optarg;
8929 nb_option_roms++;
8930 break;
8931 case QEMU_OPTION_semihosting:
8932 semihosting_enabled = 1;
8933 break;
8934 case QEMU_OPTION_tdf:
8935 time_drift_fix = 1;
8936 break;
8937 case QEMU_OPTION_kvm_shadow_memory:
8938 kvm_shadow_memory = (int64_t)atoi(optarg) * 1024 * 1024 / 4096;
8939 break;
8940 case QEMU_OPTION_mempath:
8941 mem_path = optarg;
8942 break;
8943 case QEMU_OPTION_name:
8944 qemu_name = optarg;
8945 break;
8946 #ifdef TARGET_SPARC
8947 case QEMU_OPTION_prom_env:
8948 if (nb_prom_envs >= MAX_PROM_ENVS) {
8949 fprintf(stderr, "Too many prom variables\n");
8950 exit(1);
8952 prom_envs[nb_prom_envs] = optarg;
8953 nb_prom_envs++;
8954 break;
8955 #endif
8956 case QEMU_OPTION_cpu_vendor:
8957 cpu_vendor_string = optarg;
8958 break;
8959 #ifdef TARGET_ARM
8960 case QEMU_OPTION_old_param:
8961 old_param = 1;
8962 break;
8963 #endif
8964 case QEMU_OPTION_clock:
8965 configure_alarms(optarg);
8966 break;
8967 case QEMU_OPTION_startdate:
8969 struct tm tm;
8970 time_t rtc_start_date;
8971 if (!strcmp(optarg, "now")) {
8972 rtc_date_offset = -1;
8973 } else {
8974 if (sscanf(optarg, "%d-%d-%dT%d:%d:%d",
8975 &tm.tm_year,
8976 &tm.tm_mon,
8977 &tm.tm_mday,
8978 &tm.tm_hour,
8979 &tm.tm_min,
8980 &tm.tm_sec) == 6) {
8981 /* OK */
8982 } else if (sscanf(optarg, "%d-%d-%d",
8983 &tm.tm_year,
8984 &tm.tm_mon,
8985 &tm.tm_mday) == 3) {
8986 tm.tm_hour = 0;
8987 tm.tm_min = 0;
8988 tm.tm_sec = 0;
8989 } else {
8990 goto date_fail;
8992 tm.tm_year -= 1900;
8993 tm.tm_mon--;
8994 rtc_start_date = mktimegm(&tm);
8995 if (rtc_start_date == -1) {
8996 date_fail:
8997 fprintf(stderr, "Invalid date format. Valid format are:\n"
8998 "'now' or '2006-06-17T16:01:21' or '2006-06-17'\n");
8999 exit(1);
9001 rtc_date_offset = time(NULL) - rtc_start_date;
9004 break;
9009 #ifndef _WIN32
9010 if (daemonize) {
9011 pid_t pid;
9013 if (pipe(fds) == -1)
9014 exit(1);
9016 pid = fork();
9017 if (pid > 0) {
9018 uint8_t status;
9019 ssize_t len;
9021 close(fds[1]);
9023 again:
9024 len = read(fds[0], &status, 1);
9025 if (len == -1 && (errno == EINTR))
9026 goto again;
9028 if (len != 1)
9029 exit(1);
9030 else if (status == 1) {
9031 fprintf(stderr, "Could not acquire pidfile\n");
9032 exit(1);
9033 } else
9034 exit(0);
9035 } else if (pid < 0)
9036 exit(1);
9038 setsid();
9040 pid = fork();
9041 if (pid > 0)
9042 exit(0);
9043 else if (pid < 0)
9044 exit(1);
9046 umask(027);
9048 signal(SIGTSTP, SIG_IGN);
9049 signal(SIGTTOU, SIG_IGN);
9050 signal(SIGTTIN, SIG_IGN);
9052 #endif
9054 #if USE_KVM
9055 if (kvm_enabled()) {
9056 if (kvm_qemu_init() < 0) {
9057 extern int kvm_allowed;
9058 fprintf(stderr, "Could not initialize KVM, will disable KVM support\n");
9059 #ifdef NO_CPU_EMULATION
9060 fprintf(stderr, "Compiled with --disable-cpu-emulation, exiting.\n");
9061 exit(1);
9062 #endif
9063 kvm_allowed = 0;
9066 #endif
9068 if (pid_file && qemu_create_pidfile(pid_file) != 0) {
9069 if (daemonize) {
9070 uint8_t status = 1;
9071 write(fds[1], &status, 1);
9072 } else
9073 fprintf(stderr, "Could not acquire pid file\n");
9074 exit(1);
9077 #ifdef USE_KQEMU
9078 if (smp_cpus > 1)
9079 kqemu_allowed = 0;
9080 #endif
9081 linux_boot = (kernel_filename != NULL);
9082 net_boot = (boot_devices_bitmap >> ('n' - 'a')) & 0xF;
9084 /* XXX: this should not be: some embedded targets just have flash */
9085 if (!linux_boot && net_boot == 0 &&
9086 nb_drives_opt == 0)
9087 help(1);
9089 /* boot to floppy or the default cd if no hard disk defined yet */
9090 if (!boot_devices[0]) {
9091 boot_devices = "cad";
9093 setvbuf(stdout, NULL, _IOLBF, 0);
9095 init_timers();
9096 init_timer_alarm();
9097 qemu_aio_init();
9099 #ifdef _WIN32
9100 socket_init();
9101 #endif
9103 /* init network clients */
9104 if (nb_net_clients == 0) {
9105 /* if no clients, we use a default config */
9106 net_clients[0] = "nic";
9107 net_clients[1] = "user";
9108 nb_net_clients = 2;
9111 for(i = 0;i < nb_net_clients; i++) {
9112 if (net_client_init(net_clients[i]) < 0)
9113 exit(1);
9115 for(vlan = first_vlan; vlan != NULL; vlan = vlan->next) {
9116 if (vlan->nb_guest_devs == 0 && vlan->nb_host_devs == 0)
9117 continue;
9118 if (vlan->nb_guest_devs == 0) {
9119 fprintf(stderr, "Invalid vlan (%d) with no nics\n", vlan->id);
9120 exit(1);
9122 if (vlan->nb_host_devs == 0)
9123 fprintf(stderr,
9124 "Warning: vlan %d is not connected to host network\n",
9125 vlan->id);
9128 #ifdef TARGET_I386
9129 /* XXX: this should be moved in the PC machine instantiation code */
9130 if (net_boot != 0) {
9131 int netroms = 0;
9132 for (i = 0; i < nb_nics && i < 4; i++) {
9133 const char *model = nd_table[i].model;
9134 char buf[1024];
9135 if (net_boot & (1 << i)) {
9136 if (model == NULL)
9137 model = "rtl8139";
9138 snprintf(buf, sizeof(buf), "%s/pxe-%s.bin", bios_dir, model);
9139 if (get_image_size(buf) > 0) {
9140 if (nb_option_roms >= MAX_OPTION_ROMS) {
9141 fprintf(stderr, "Too many option ROMs\n");
9142 exit(1);
9144 option_rom[nb_option_roms] = strdup(buf);
9145 nb_option_roms++;
9146 netroms++;
9150 if (netroms == 0) {
9151 fprintf(stderr, "No valid PXE rom found for network device\n");
9152 exit(1);
9155 #endif
9157 /* init the memory */
9158 phys_ram_size = machine->ram_require & ~RAMSIZE_FIXED;
9160 if (machine->ram_require & RAMSIZE_FIXED) {
9161 if (ram_size > 0) {
9162 if (ram_size < phys_ram_size) {
9163 fprintf(stderr, "Machine `%s' requires %llu bytes of memory\n",
9164 machine->name, (unsigned long long) phys_ram_size);
9165 exit(-1);
9168 phys_ram_size = ram_size;
9169 } else
9170 ram_size = phys_ram_size;
9171 } else {
9172 if (ram_size == 0)
9173 ram_size = DEFAULT_RAM_SIZE * 1024 * 1024;
9175 phys_ram_size += ram_size;
9178 /* Initialize kvm */
9179 #if defined(TARGET_I386) || defined(TARGET_X86_64)
9180 #define KVM_EXTRA_PAGES 3
9181 #else
9182 #define KVM_EXTRA_PAGES 0
9183 #endif
9184 if (kvm_enabled()) {
9185 phys_ram_size += KVM_EXTRA_PAGES * TARGET_PAGE_SIZE;
9186 if (kvm_qemu_create_context() < 0) {
9187 fprintf(stderr, "Could not create KVM context\n");
9188 exit(1);
9190 #ifdef KVM_CAP_USER_MEMORY
9192 int ret;
9194 ret = kvm_qemu_check_extension(KVM_CAP_USER_MEMORY);
9195 if (ret) {
9196 phys_ram_base = qemu_alloc_physram(phys_ram_size);
9197 if (!phys_ram_base) {
9198 fprintf(stderr, "Could not allocate physical memory\n");
9199 exit(1);
9203 #endif
9204 } else {
9205 phys_ram_base = qemu_vmalloc(phys_ram_size);
9206 if (!phys_ram_base) {
9207 fprintf(stderr, "Could not allocate physical memory\n");
9208 exit(1);
9212 bdrv_init();
9214 /* we always create the cdrom drive, even if no disk is there */
9216 if (nb_drives_opt < MAX_DRIVES)
9217 drive_add(NULL, CDROM_ALIAS);
9219 /* we always create at least one floppy */
9221 if (nb_drives_opt < MAX_DRIVES)
9222 drive_add(NULL, FD_ALIAS, 0);
9224 /* we always create one sd slot, even if no card is in it */
9226 if (nb_drives_opt < MAX_DRIVES)
9227 drive_add(NULL, SD_ALIAS);
9229 /* open the virtual block devices
9230 * note that migration with device
9231 * hot add/remove is broken.
9233 for(i = 0; i < nb_drives_opt; i++)
9234 if (drive_init(&drives_opt[i], snapshot, machine) == -1)
9235 exit(1);
9237 register_savevm("timer", 0, 2, timer_save, timer_load, NULL);
9238 register_savevm("ram", 0, 3, ram_save, ram_load, NULL);
9240 init_ioports();
9242 /* terminal init */
9243 memset(&display_state, 0, sizeof(display_state));
9244 if (nographic) {
9245 if (curses) {
9246 fprintf(stderr, "fatal: -nographic can't be used with -curses\n");
9247 exit(1);
9249 /* nearly nothing to do */
9250 dumb_display_init(ds);
9251 } else if (vnc_display != NULL) {
9252 vnc_display_init(ds);
9253 if (vnc_display_open(ds, vnc_display) < 0)
9254 exit(1);
9255 } else
9256 #if defined(CONFIG_CURSES)
9257 if (curses) {
9258 curses_display_init(ds, full_screen);
9259 } else
9260 #endif
9262 #if defined(CONFIG_SDL)
9263 sdl_display_init(ds, full_screen, no_frame);
9264 #elif defined(CONFIG_COCOA)
9265 cocoa_display_init(ds, full_screen);
9266 #else
9267 dumb_display_init(ds);
9268 #endif
9271 /* Maintain compatibility with multiple stdio monitors */
9272 if (!strcmp(monitor_device,"stdio")) {
9273 for (i = 0; i < MAX_SERIAL_PORTS; i++) {
9274 const char *devname = serial_devices[i];
9275 if (devname && !strcmp(devname,"mon:stdio")) {
9276 monitor_device = NULL;
9277 break;
9278 } else if (devname && !strcmp(devname,"stdio")) {
9279 monitor_device = NULL;
9280 serial_devices[i] = "mon:stdio";
9281 break;
9285 if (monitor_device) {
9286 monitor_hd = qemu_chr_open(monitor_device);
9287 if (!monitor_hd) {
9288 fprintf(stderr, "qemu: could not open monitor device '%s'\n", monitor_device);
9289 exit(1);
9291 monitor_init(monitor_hd, !nographic);
9294 for(i = 0; i < MAX_VMCHANNEL_DEVICES; i++) {
9295 const char *devname = vmchannel_devices[i];
9296 if (devname[0] != '\0' && strcmp(devname, "none")) {
9297 int devid;
9298 char *termn;
9300 if (strstart(devname, "di:", &devname)) {
9301 devid = strtol(devname, &termn, 16);
9302 devname = termn + 1;
9304 else {
9305 fprintf(stderr, "qemu: could not find vmchannel device id '%s'\n",
9306 devname);
9307 exit(1);
9309 vmchannel_hds[i] = qemu_chr_open(devname);
9310 if (!vmchannel_hds[i]) {
9311 fprintf(stderr, "qemu: could not open vmchannel device '%s'\n",
9312 devname);
9313 exit(1);
9315 vmchannel_init(vmchannel_hds[i], devid, i);
9319 for(i = 0; i < MAX_SERIAL_PORTS; i++) {
9320 const char *devname = serial_devices[i];
9321 if (devname && strcmp(devname, "none")) {
9322 serial_hds[i] = qemu_chr_open(devname);
9323 if (!serial_hds[i]) {
9324 fprintf(stderr, "qemu: could not open serial device '%s'\n",
9325 devname);
9326 exit(1);
9328 if (strstart(devname, "vc", 0))
9329 qemu_chr_printf(serial_hds[i], "serial%d console\r\n", i);
9333 for(i = 0; i < MAX_PARALLEL_PORTS; i++) {
9334 const char *devname = parallel_devices[i];
9335 if (devname && strcmp(devname, "none")) {
9336 parallel_hds[i] = qemu_chr_open(devname);
9337 if (!parallel_hds[i]) {
9338 fprintf(stderr, "qemu: could not open parallel device '%s'\n",
9339 devname);
9340 exit(1);
9342 if (strstart(devname, "vc", 0))
9343 qemu_chr_printf(parallel_hds[i], "parallel%d console\r\n", i);
9347 if (kvm_enabled())
9348 kvm_init_ap();
9350 machine->init(ram_size, vga_ram_size, boot_devices, ds,
9351 kernel_filename, kernel_cmdline, initrd_filename, cpu_model);
9353 current_machine = machine;
9355 /* init USB devices */
9356 if (usb_enabled) {
9357 for(i = 0; i < usb_devices_index; i++) {
9358 if (usb_device_add(usb_devices[i]) < 0) {
9359 fprintf(stderr, "Warning: could not add USB device %s\n",
9360 usb_devices[i]);
9365 if (display_state.dpy_refresh) {
9366 display_state.gui_timer = qemu_new_timer(rt_clock, gui_update, &display_state);
9367 qemu_mod_timer(display_state.gui_timer, qemu_get_clock(rt_clock));
9370 #ifdef CONFIG_GDBSTUB
9371 if (use_gdbstub) {
9372 /* XXX: use standard host:port notation and modify options
9373 accordingly. */
9374 if (gdbserver_start(gdbstub_port) < 0) {
9375 fprintf(stderr, "qemu: could not open gdbstub device on port '%s'\n",
9376 gdbstub_port);
9377 exit(1);
9380 #endif
9381 if (loadvm)
9382 do_loadvm(loadvm);
9384 if (incoming) {
9385 int rc;
9387 rc = migrate_incoming(incoming);
9388 if (rc != 0) {
9389 fprintf(stderr, "Migration failed rc=%d\n", rc);
9390 exit(rc);
9395 /* XXX: simplify init */
9396 read_passwords();
9397 if (autostart) {
9398 vm_start();
9402 if (daemonize) {
9403 uint8_t status = 0;
9404 ssize_t len;
9405 int fd;
9407 again1:
9408 len = write(fds[1], &status, 1);
9409 if (len == -1 && (errno == EINTR))
9410 goto again1;
9412 if (len != 1)
9413 exit(1);
9415 chdir("/");
9416 TFR(fd = open("/dev/null", O_RDWR));
9417 if (fd == -1)
9418 exit(1);
9420 dup2(fd, 0);
9421 dup2(fd, 1);
9422 dup2(fd, 2);
9424 close(fd);
9427 main_loop();
9428 quit_timers();
9430 #if !defined(_WIN32)
9431 /* close network clients */
9432 for(vlan = first_vlan; vlan != NULL; vlan = vlan->next) {
9433 VLANClientState *vc;
9435 for(vc = vlan->first_client; vc != NULL; vc = vc->next) {
9436 if (vc->fd_read == tap_receive) {
9437 char ifname[64];
9438 TAPState *s = vc->opaque;
9440 if (sscanf(vc->info_str, "tap: ifname=%63s ", ifname) == 1 &&
9441 s->down_script[0])
9442 launch_script(s->down_script, ifname, s->fd);
9446 #endif
9447 return 0;