2 * QEMU Sparc SLAVIO interrupt controller emulation
4 * Copyright (c) 2003-2005 Fabrice Bellard
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
28 //#define DEBUG_IRQ_COUNT
32 #define DPRINTF(fmt, ...) \
33 do { printf("IRQ: " fmt , ## __VA_ARGS__); } while (0)
35 #define DPRINTF(fmt, ...)
39 * Registers of interrupt controller in sun4m.
41 * This is the interrupt controller part of chip STP2001 (Slave I/O), also
42 * produced as NCR89C105. See
43 * http://www.ibiblio.org/pub/historic-linux/early-ports/Sparc/NCR/NCR89C105.txt
45 * There is a system master controller and one for each cpu.
52 struct SLAVIO_CPUINTCTLState
;
54 typedef struct SLAVIO_INTCTLState
{
55 uint32_t intregm_pending
;
56 uint32_t intregm_disabled
;
58 #ifdef DEBUG_IRQ_COUNT
59 uint64_t irq_count
[32];
61 qemu_irq
*cpu_irqs
[MAX_CPUS
];
62 const uint32_t *intbit_to_level
;
63 uint32_t cputimer_lbit
, cputimer_mbit
;
64 uint32_t pil_out
[MAX_CPUS
];
65 struct SLAVIO_CPUINTCTLState
*slaves
[MAX_CPUS
];
68 typedef struct SLAVIO_CPUINTCTLState
{
69 uint32_t intreg_pending
;
70 SLAVIO_INTCTLState
*master
;
72 } SLAVIO_CPUINTCTLState
;
74 #define INTCTL_MAXADDR 0xf
75 #define INTCTL_SIZE (INTCTL_MAXADDR + 1)
76 #define INTCTLM_SIZE 0x14
77 #define MASTER_IRQ_MASK ~0x0fa2007f
78 #define MASTER_DISABLE 0x80000000
79 #define CPU_SOFTIRQ_MASK 0xfffe0000
80 #define CPU_IRQ_INT15_IN 0x0004000
81 #define CPU_IRQ_INT15_MASK 0x80000000
83 static void slavio_check_interrupts(SLAVIO_INTCTLState
*s
, int set_irqs
);
85 // per-cpu interrupt controller
86 static uint32_t slavio_intctl_mem_readl(void *opaque
, target_phys_addr_t addr
)
88 SLAVIO_CPUINTCTLState
*s
= opaque
;
94 ret
= s
->intreg_pending
;
100 DPRINTF("read cpu %d reg 0x" TARGET_FMT_plx
" = %x\n", s
->cpu
, addr
, ret
);
105 static void slavio_intctl_mem_writel(void *opaque
, target_phys_addr_t addr
,
108 SLAVIO_CPUINTCTLState
*s
= opaque
;
112 DPRINTF("write cpu %d reg 0x" TARGET_FMT_plx
" = %x\n", s
->cpu
, addr
, val
);
114 case 1: // clear pending softints
115 if (val
& CPU_IRQ_INT15_IN
)
116 val
|= CPU_IRQ_INT15_MASK
;
117 val
&= CPU_SOFTIRQ_MASK
;
118 s
->intreg_pending
&= ~val
;
119 slavio_check_interrupts(s
->master
, 1);
120 DPRINTF("Cleared cpu %d irq mask %x, curmask %x\n", s
->cpu
, val
,
123 case 2: // set softint
124 val
&= CPU_SOFTIRQ_MASK
;
125 s
->intreg_pending
|= val
;
126 slavio_check_interrupts(s
->master
, 1);
127 DPRINTF("Set cpu %d irq mask %x, curmask %x\n", s
->cpu
, val
,
135 static CPUReadMemoryFunc
*slavio_intctl_mem_read
[3] = {
138 slavio_intctl_mem_readl
,
141 static CPUWriteMemoryFunc
*slavio_intctl_mem_write
[3] = {
144 slavio_intctl_mem_writel
,
147 // master system interrupt controller
148 static uint32_t slavio_intctlm_mem_readl(void *opaque
, target_phys_addr_t addr
)
150 SLAVIO_INTCTLState
*s
= opaque
;
156 ret
= s
->intregm_pending
& ~MASTER_DISABLE
;
159 ret
= s
->intregm_disabled
& MASTER_IRQ_MASK
;
168 DPRINTF("read system reg 0x" TARGET_FMT_plx
" = %x\n", addr
, ret
);
173 static void slavio_intctlm_mem_writel(void *opaque
, target_phys_addr_t addr
,
176 SLAVIO_INTCTLState
*s
= opaque
;
180 DPRINTF("write system reg 0x" TARGET_FMT_plx
" = %x\n", addr
, val
);
182 case 2: // clear (enable)
183 // Force clear unused bits
184 val
&= MASTER_IRQ_MASK
;
185 s
->intregm_disabled
&= ~val
;
186 DPRINTF("Enabled master irq mask %x, curmask %x\n", val
,
187 s
->intregm_disabled
);
188 slavio_check_interrupts(s
, 1);
190 case 3: // set (disable, clear pending)
191 // Force clear unused bits
192 val
&= MASTER_IRQ_MASK
;
193 s
->intregm_disabled
|= val
;
194 s
->intregm_pending
&= ~val
;
195 slavio_check_interrupts(s
, 1);
196 DPRINTF("Disabled master irq mask %x, curmask %x\n", val
,
197 s
->intregm_disabled
);
200 s
->target_cpu
= val
& (MAX_CPUS
- 1);
201 slavio_check_interrupts(s
, 1);
202 DPRINTF("Set master irq cpu %d\n", s
->target_cpu
);
209 static CPUReadMemoryFunc
*slavio_intctlm_mem_read
[3] = {
212 slavio_intctlm_mem_readl
,
215 static CPUWriteMemoryFunc
*slavio_intctlm_mem_write
[3] = {
218 slavio_intctlm_mem_writel
,
221 void slavio_pic_info(Monitor
*mon
, void *opaque
)
223 SLAVIO_INTCTLState
*s
= opaque
;
226 for (i
= 0; i
< MAX_CPUS
; i
++) {
227 monitor_printf(mon
, "per-cpu %d: pending 0x%08x\n", i
,
228 s
->slaves
[i
]->intreg_pending
);
230 monitor_printf(mon
, "master: pending 0x%08x, disabled 0x%08x\n",
231 s
->intregm_pending
, s
->intregm_disabled
);
234 void slavio_irq_info(Monitor
*mon
, void *opaque
)
236 #ifndef DEBUG_IRQ_COUNT
237 monitor_printf(mon
, "irq statistic code not compiled.\n");
239 SLAVIO_INTCTLState
*s
= opaque
;
243 monitor_printf(mon
, "IRQ statistics:\n");
244 for (i
= 0; i
< 32; i
++) {
245 count
= s
->irq_count
[i
];
247 monitor_printf(mon
, "%2d: %" PRId64
"\n", i
, count
);
252 static void slavio_check_interrupts(SLAVIO_INTCTLState
*s
, int set_irqs
)
254 uint32_t pending
= s
->intregm_pending
, pil_pending
;
257 pending
&= ~s
->intregm_disabled
;
259 DPRINTF("pending %x disabled %x\n", pending
, s
->intregm_disabled
);
260 for (i
= 0; i
< MAX_CPUS
; i
++) {
262 if (pending
&& !(s
->intregm_disabled
& MASTER_DISABLE
) &&
263 (i
== s
->target_cpu
)) {
264 for (j
= 0; j
< 32; j
++) {
265 if (pending
& (1 << j
))
266 pil_pending
|= 1 << s
->intbit_to_level
[j
];
269 pil_pending
|= (s
->slaves
[i
]->intreg_pending
& CPU_SOFTIRQ_MASK
) >> 16;
272 for (j
= 0; j
< MAX_PILS
; j
++) {
273 if (pil_pending
& (1 << j
)) {
274 if (!(s
->pil_out
[i
] & (1 << j
))) {
275 qemu_irq_raise(s
->cpu_irqs
[i
][j
]);
278 if (s
->pil_out
[i
] & (1 << j
)) {
279 qemu_irq_lower(s
->cpu_irqs
[i
][j
]);
284 s
->pil_out
[i
] = pil_pending
;
289 * "irq" here is the bit number in the system interrupt register to
290 * separate serial and keyboard interrupts sharing a level.
292 static void slavio_set_irq(void *opaque
, int irq
, int level
)
294 SLAVIO_INTCTLState
*s
= opaque
;
295 uint32_t mask
= 1 << irq
;
296 uint32_t pil
= s
->intbit_to_level
[irq
];
298 DPRINTF("Set cpu %d irq %d -> pil %d level %d\n", s
->target_cpu
, irq
, pil
,
302 #ifdef DEBUG_IRQ_COUNT
305 s
->intregm_pending
|= mask
;
306 s
->slaves
[s
->target_cpu
]->intreg_pending
|= 1 << pil
;
308 s
->intregm_pending
&= ~mask
;
309 s
->slaves
[s
->target_cpu
]->intreg_pending
&= ~(1 << pil
);
311 slavio_check_interrupts(s
, 1);
315 static void slavio_set_timer_irq_cpu(void *opaque
, int cpu
, int level
)
317 SLAVIO_INTCTLState
*s
= opaque
;
319 DPRINTF("Set cpu %d local timer level %d\n", cpu
, level
);
322 s
->intregm_pending
|= s
->cputimer_mbit
;
323 s
->slaves
[cpu
]->intreg_pending
|= s
->cputimer_lbit
;
325 s
->intregm_pending
&= ~s
->cputimer_mbit
;
326 s
->slaves
[cpu
]->intreg_pending
&= ~s
->cputimer_lbit
;
329 slavio_check_interrupts(s
, 1);
332 static void slavio_intctl_save(QEMUFile
*f
, void *opaque
)
334 SLAVIO_INTCTLState
*s
= opaque
;
337 for (i
= 0; i
< MAX_CPUS
; i
++) {
338 qemu_put_be32s(f
, &s
->slaves
[i
]->intreg_pending
);
340 qemu_put_be32s(f
, &s
->intregm_pending
);
341 qemu_put_be32s(f
, &s
->intregm_disabled
);
342 qemu_put_be32s(f
, &s
->target_cpu
);
345 static int slavio_intctl_load(QEMUFile
*f
, void *opaque
, int version_id
)
347 SLAVIO_INTCTLState
*s
= opaque
;
353 for (i
= 0; i
< MAX_CPUS
; i
++) {
354 qemu_get_be32s(f
, &s
->slaves
[i
]->intreg_pending
);
356 qemu_get_be32s(f
, &s
->intregm_pending
);
357 qemu_get_be32s(f
, &s
->intregm_disabled
);
358 qemu_get_be32s(f
, &s
->target_cpu
);
359 slavio_check_interrupts(s
, 0);
363 static void slavio_intctl_reset(void *opaque
)
365 SLAVIO_INTCTLState
*s
= opaque
;
368 for (i
= 0; i
< MAX_CPUS
; i
++) {
369 s
->slaves
[i
]->intreg_pending
= 0;
371 s
->intregm_disabled
= ~MASTER_IRQ_MASK
;
372 s
->intregm_pending
= 0;
374 slavio_check_interrupts(s
, 0);
377 void *slavio_intctl_init(target_phys_addr_t addr
, target_phys_addr_t addrg
,
378 const uint32_t *intbit_to_level
,
379 qemu_irq
**irq
, qemu_irq
**cpu_irq
,
380 qemu_irq
**parent_irq
, unsigned int cputimer
)
382 int slavio_intctl_io_memory
, slavio_intctlm_io_memory
, i
;
383 SLAVIO_INTCTLState
*s
;
384 SLAVIO_CPUINTCTLState
*slave
;
386 s
= qemu_mallocz(sizeof(SLAVIO_INTCTLState
));
388 s
->intbit_to_level
= intbit_to_level
;
389 for (i
= 0; i
< MAX_CPUS
; i
++) {
390 slave
= qemu_mallocz(sizeof(SLAVIO_CPUINTCTLState
));
395 slavio_intctl_io_memory
= cpu_register_io_memory(slavio_intctl_mem_read
,
396 slavio_intctl_mem_write
,
398 cpu_register_physical_memory(addr
+ i
* TARGET_PAGE_SIZE
, INTCTL_SIZE
,
399 slavio_intctl_io_memory
);
401 s
->slaves
[i
] = slave
;
402 s
->cpu_irqs
[i
] = parent_irq
[i
];
405 slavio_intctlm_io_memory
= cpu_register_io_memory(slavio_intctlm_mem_read
,
406 slavio_intctlm_mem_write
,
408 cpu_register_physical_memory(addrg
, INTCTLM_SIZE
, slavio_intctlm_io_memory
);
410 register_savevm("slavio_intctl", addr
, 1, slavio_intctl_save
,
411 slavio_intctl_load
, s
);
412 qemu_register_reset(slavio_intctl_reset
, s
);
413 *irq
= qemu_allocate_irqs(slavio_set_irq
, s
, 32);
415 *cpu_irq
= qemu_allocate_irqs(slavio_set_timer_irq_cpu
, s
, MAX_CPUS
);
416 s
->cputimer_mbit
= 1 << cputimer
;
417 s
->cputimer_lbit
= 1 << intbit_to_level
[cputimer
];
418 slavio_intctl_reset(s
);