Indent ac97 and es1370 according to audio formatting
[qemu-kvm/fedora.git] / hw / i8254.c
blob44e453139bdaa8a71fc2a8c10a88b018c32c74e4
1 /*
2 * QEMU 8253/8254 interval timer emulation
4 * Copyright (c) 2003-2004 Fabrice Bellard
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
24 #include "hw.h"
25 #include "pc.h"
26 #include "isa.h"
27 #include "qemu-timer.h"
29 //#define DEBUG_PIT
31 #define RW_STATE_LSB 1
32 #define RW_STATE_MSB 2
33 #define RW_STATE_WORD0 3
34 #define RW_STATE_WORD1 4
36 typedef struct PITChannelState {
37 int count; /* can be 65536 */
38 uint16_t latched_count;
39 uint8_t count_latched;
40 uint8_t status_latched;
41 uint8_t status;
42 uint8_t read_state;
43 uint8_t write_state;
44 uint8_t write_latch;
45 uint8_t rw_mode;
46 uint8_t mode;
47 uint8_t bcd; /* not supported */
48 uint8_t gate; /* timer start */
49 int64_t count_load_time;
50 /* irq handling */
51 int64_t next_transition_time;
52 QEMUTimer *irq_timer;
53 qemu_irq irq;
54 } PITChannelState;
56 struct PITState {
57 PITChannelState channels[3];
60 static PITState pit_state;
62 static void pit_irq_timer_update(PITChannelState *s, int64_t current_time);
64 static int pit_get_count(PITChannelState *s)
66 uint64_t d;
67 int counter;
69 d = muldiv64(qemu_get_clock(vm_clock) - s->count_load_time, PIT_FREQ, ticks_per_sec);
70 switch(s->mode) {
71 case 0:
72 case 1:
73 case 4:
74 case 5:
75 counter = (s->count - d) & 0xffff;
76 break;
77 case 3:
78 /* XXX: may be incorrect for odd counts */
79 counter = s->count - ((2 * d) % s->count);
80 break;
81 default:
82 counter = s->count - (d % s->count);
83 break;
85 return counter;
88 /* get pit output bit */
89 static int pit_get_out1(PITChannelState *s, int64_t current_time)
91 uint64_t d;
92 int out;
94 d = muldiv64(current_time - s->count_load_time, PIT_FREQ, ticks_per_sec);
95 switch(s->mode) {
96 default:
97 case 0:
98 out = (d >= s->count);
99 break;
100 case 1:
101 out = (d < s->count);
102 break;
103 case 2:
104 if ((d % s->count) == 0 && d != 0)
105 out = 1;
106 else
107 out = 0;
108 break;
109 case 3:
110 out = (d % s->count) < ((s->count + 1) >> 1);
111 break;
112 case 4:
113 case 5:
114 out = (d == s->count);
115 break;
117 return out;
120 int pit_get_out(PITState *pit, int channel, int64_t current_time)
122 PITChannelState *s = &pit->channels[channel];
123 return pit_get_out1(s, current_time);
126 /* return -1 if no transition will occur. */
127 static int64_t pit_get_next_transition_time(PITChannelState *s,
128 int64_t current_time)
130 uint64_t d, next_time, base;
131 int period2;
133 d = muldiv64(current_time - s->count_load_time, PIT_FREQ, ticks_per_sec);
134 switch(s->mode) {
135 default:
136 case 0:
137 case 1:
138 if (d < s->count)
139 next_time = s->count;
140 else
141 return -1;
142 break;
143 case 2:
144 base = (d / s->count) * s->count;
145 if ((d - base) == 0 && d != 0)
146 next_time = base + s->count;
147 else
148 next_time = base + s->count + 1;
149 break;
150 case 3:
151 base = (d / s->count) * s->count;
152 period2 = ((s->count + 1) >> 1);
153 if ((d - base) < period2)
154 next_time = base + period2;
155 else
156 next_time = base + s->count;
157 break;
158 case 4:
159 case 5:
160 if (d < s->count)
161 next_time = s->count;
162 else if (d == s->count)
163 next_time = s->count + 1;
164 else
165 return -1;
166 break;
168 /* convert to timer units */
169 next_time = s->count_load_time + muldiv64(next_time, ticks_per_sec, PIT_FREQ);
170 /* fix potential rounding problems */
171 /* XXX: better solution: use a clock at PIT_FREQ Hz */
172 if (next_time <= current_time)
173 next_time = current_time + 1;
174 return next_time;
177 /* val must be 0 or 1 */
178 void pit_set_gate(PITState *pit, int channel, int val)
180 PITChannelState *s = &pit->channels[channel];
182 switch(s->mode) {
183 default:
184 case 0:
185 case 4:
186 /* XXX: just disable/enable counting */
187 break;
188 case 1:
189 case 5:
190 if (s->gate < val) {
191 /* restart counting on rising edge */
192 s->count_load_time = qemu_get_clock(vm_clock);
193 pit_irq_timer_update(s, s->count_load_time);
195 break;
196 case 2:
197 case 3:
198 if (s->gate < val) {
199 /* restart counting on rising edge */
200 s->count_load_time = qemu_get_clock(vm_clock);
201 pit_irq_timer_update(s, s->count_load_time);
203 /* XXX: disable/enable counting */
204 break;
206 s->gate = val;
209 int pit_get_gate(PITState *pit, int channel)
211 PITChannelState *s = &pit->channels[channel];
212 return s->gate;
215 int pit_get_initial_count(PITState *pit, int channel)
217 PITChannelState *s = &pit->channels[channel];
218 return s->count;
221 int pit_get_mode(PITState *pit, int channel)
223 PITChannelState *s = &pit->channels[channel];
224 return s->mode;
227 static inline void pit_load_count(PITChannelState *s, int val)
229 if (val == 0)
230 val = 0x10000;
231 s->count_load_time = qemu_get_clock(vm_clock);
232 s->count = val;
233 pit_irq_timer_update(s, s->count_load_time);
236 /* if already latched, do not latch again */
237 static void pit_latch_count(PITChannelState *s)
239 if (!s->count_latched) {
240 s->latched_count = pit_get_count(s);
241 s->count_latched = s->rw_mode;
245 static void pit_ioport_write(void *opaque, uint32_t addr, uint32_t val)
247 PITState *pit = opaque;
248 int channel, access;
249 PITChannelState *s;
251 addr &= 3;
252 if (addr == 3) {
253 channel = val >> 6;
254 if (channel == 3) {
255 /* read back command */
256 for(channel = 0; channel < 3; channel++) {
257 s = &pit->channels[channel];
258 if (val & (2 << channel)) {
259 if (!(val & 0x20)) {
260 pit_latch_count(s);
262 if (!(val & 0x10) && !s->status_latched) {
263 /* status latch */
264 /* XXX: add BCD and null count */
265 s->status = (pit_get_out1(s, qemu_get_clock(vm_clock)) << 7) |
266 (s->rw_mode << 4) |
267 (s->mode << 1) |
268 s->bcd;
269 s->status_latched = 1;
273 } else {
274 s = &pit->channels[channel];
275 access = (val >> 4) & 3;
276 if (access == 0) {
277 pit_latch_count(s);
278 } else {
279 s->rw_mode = access;
280 s->read_state = access;
281 s->write_state = access;
283 s->mode = (val >> 1) & 7;
284 s->bcd = val & 1;
285 /* XXX: update irq timer ? */
288 } else {
289 s = &pit->channels[addr];
290 switch(s->write_state) {
291 default:
292 case RW_STATE_LSB:
293 pit_load_count(s, val);
294 break;
295 case RW_STATE_MSB:
296 pit_load_count(s, val << 8);
297 break;
298 case RW_STATE_WORD0:
299 s->write_latch = val;
300 s->write_state = RW_STATE_WORD1;
301 break;
302 case RW_STATE_WORD1:
303 pit_load_count(s, s->write_latch | (val << 8));
304 s->write_state = RW_STATE_WORD0;
305 break;
310 static uint32_t pit_ioport_read(void *opaque, uint32_t addr)
312 PITState *pit = opaque;
313 int ret, count;
314 PITChannelState *s;
316 addr &= 3;
317 s = &pit->channels[addr];
318 if (s->status_latched) {
319 s->status_latched = 0;
320 ret = s->status;
321 } else if (s->count_latched) {
322 switch(s->count_latched) {
323 default:
324 case RW_STATE_LSB:
325 ret = s->latched_count & 0xff;
326 s->count_latched = 0;
327 break;
328 case RW_STATE_MSB:
329 ret = s->latched_count >> 8;
330 s->count_latched = 0;
331 break;
332 case RW_STATE_WORD0:
333 ret = s->latched_count & 0xff;
334 s->count_latched = RW_STATE_MSB;
335 break;
337 } else {
338 switch(s->read_state) {
339 default:
340 case RW_STATE_LSB:
341 count = pit_get_count(s);
342 ret = count & 0xff;
343 break;
344 case RW_STATE_MSB:
345 count = pit_get_count(s);
346 ret = (count >> 8) & 0xff;
347 break;
348 case RW_STATE_WORD0:
349 count = pit_get_count(s);
350 ret = count & 0xff;
351 s->read_state = RW_STATE_WORD1;
352 break;
353 case RW_STATE_WORD1:
354 count = pit_get_count(s);
355 ret = (count >> 8) & 0xff;
356 s->read_state = RW_STATE_WORD0;
357 break;
360 return ret;
363 static void pit_irq_timer_update(PITChannelState *s, int64_t current_time)
365 int64_t expire_time;
366 int irq_level;
368 if (!s->irq_timer)
369 return;
370 expire_time = pit_get_next_transition_time(s, current_time);
371 irq_level = pit_get_out1(s, current_time);
372 qemu_set_irq(s->irq, irq_level);
373 #ifdef DEBUG_PIT
374 printf("irq_level=%d next_delay=%f\n",
375 irq_level,
376 (double)(expire_time - current_time) / ticks_per_sec);
377 #endif
378 s->next_transition_time = expire_time;
379 if (expire_time != -1)
380 qemu_mod_timer(s->irq_timer, expire_time);
381 else
382 qemu_del_timer(s->irq_timer);
385 static void pit_irq_timer(void *opaque)
387 PITChannelState *s = opaque;
389 pit_irq_timer_update(s, s->next_transition_time);
392 static void pit_save(QEMUFile *f, void *opaque)
394 PITState *pit = opaque;
395 PITChannelState *s;
396 int i;
398 for(i = 0; i < 3; i++) {
399 s = &pit->channels[i];
400 qemu_put_be32(f, s->count);
401 qemu_put_be16s(f, &s->latched_count);
402 qemu_put_8s(f, &s->count_latched);
403 qemu_put_8s(f, &s->status_latched);
404 qemu_put_8s(f, &s->status);
405 qemu_put_8s(f, &s->read_state);
406 qemu_put_8s(f, &s->write_state);
407 qemu_put_8s(f, &s->write_latch);
408 qemu_put_8s(f, &s->rw_mode);
409 qemu_put_8s(f, &s->mode);
410 qemu_put_8s(f, &s->bcd);
411 qemu_put_8s(f, &s->gate);
412 qemu_put_be64(f, s->count_load_time);
413 if (s->irq_timer) {
414 qemu_put_be64(f, s->next_transition_time);
415 qemu_put_timer(f, s->irq_timer);
420 static int pit_load(QEMUFile *f, void *opaque, int version_id)
422 PITState *pit = opaque;
423 PITChannelState *s;
424 int i;
426 if (version_id != 1)
427 return -EINVAL;
429 for(i = 0; i < 3; i++) {
430 s = &pit->channels[i];
431 s->count=qemu_get_be32(f);
432 qemu_get_be16s(f, &s->latched_count);
433 qemu_get_8s(f, &s->count_latched);
434 qemu_get_8s(f, &s->status_latched);
435 qemu_get_8s(f, &s->status);
436 qemu_get_8s(f, &s->read_state);
437 qemu_get_8s(f, &s->write_state);
438 qemu_get_8s(f, &s->write_latch);
439 qemu_get_8s(f, &s->rw_mode);
440 qemu_get_8s(f, &s->mode);
441 qemu_get_8s(f, &s->bcd);
442 qemu_get_8s(f, &s->gate);
443 s->count_load_time=qemu_get_be64(f);
444 if (s->irq_timer) {
445 s->next_transition_time=qemu_get_be64(f);
446 qemu_get_timer(f, s->irq_timer);
449 return 0;
452 static void pit_reset(void *opaque)
454 PITState *pit = opaque;
455 PITChannelState *s;
456 int i;
458 for(i = 0;i < 3; i++) {
459 s = &pit->channels[i];
460 s->mode = 3;
461 s->gate = (i != 2);
462 pit_load_count(s, 0);
466 /* When HPET is operating in legacy mode, i8254 timer0 is disabled */
467 void hpet_pit_disable(void) {
468 PITChannelState *s;
469 s = &pit_state.channels[0];
470 if (s->irq_timer)
471 qemu_del_timer(s->irq_timer);
474 /* When HPET is reset or leaving legacy mode, it must reenable i8254
475 * timer 0
478 void hpet_pit_enable(void)
480 PITState *pit = &pit_state;
481 PITChannelState *s;
482 s = &pit->channels[0];
483 s->mode = 3;
484 s->gate = 1;
485 pit_load_count(s, 0);
488 PITState *pit_init(int base, qemu_irq irq)
490 PITState *pit = &pit_state;
491 PITChannelState *s;
493 s = &pit->channels[0];
494 /* the timer 0 is connected to an IRQ */
495 s->irq_timer = qemu_new_timer(vm_clock, pit_irq_timer, s);
496 s->irq = irq;
498 register_savevm("i8254", base, 1, pit_save, pit_load, pit);
500 qemu_register_reset(pit_reset, pit);
501 register_ioport_write(base, 4, 1, pit_ioport_write, pit);
502 register_ioport_read(base, 3, 1, pit_ioport_read, pit);
504 pit_reset(pit);
506 return pit;