2 * QEMU ETRAX DMA Controller.
4 * Copyright (c) 2008 Edgar E. Iglesias, Axis Communications AB.
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
28 #include "etraxfs_dma.h"
33 #define RW_SAVED_DATA 0x58
34 #define RW_SAVED_DATA_BUF 0x5c
36 #define RW_GROUP_DOWN 0x7c
40 #define RW_INTR_MASK 0x8c
41 #define RW_ACK_INTR 0x90
43 #define R_MASKED_INTR 0x98
44 #define RW_STREAM_CMD 0x9c
46 #define DMA_REG_MAX 0x100
50 // ------------------------------------------------------------ dma_descr_group
51 typedef struct dma_descr_group
{
52 struct dma_descr_group
*next
;
63 struct dma_descr_group
*up
;
65 struct dma_descr_context
*context
;
66 struct dma_descr_group
*group
;
70 // ---------------------------------------------------------- dma_descr_context
71 typedef struct dma_descr_context
{
72 struct dma_descr_context
*next
;
77 unsigned store_mode
: 1;
86 struct dma_descr_data
*saved_data
;
90 // ------------------------------------------------------------- dma_descr_data
91 typedef struct dma_descr_data
{
92 struct dma_descr_data
*next
;
109 regk_dma_ack_pkt
= 0x00000100,
110 regk_dma_anytime
= 0x00000001,
111 regk_dma_array
= 0x00000008,
112 regk_dma_burst
= 0x00000020,
113 regk_dma_client
= 0x00000002,
114 regk_dma_copy_next
= 0x00000010,
115 regk_dma_copy_up
= 0x00000020,
116 regk_dma_data_at_eol
= 0x00000001,
117 regk_dma_dis_c
= 0x00000010,
118 regk_dma_dis_g
= 0x00000020,
119 regk_dma_idle
= 0x00000001,
120 regk_dma_intern
= 0x00000004,
121 regk_dma_load_c
= 0x00000200,
122 regk_dma_load_c_n
= 0x00000280,
123 regk_dma_load_c_next
= 0x00000240,
124 regk_dma_load_d
= 0x00000140,
125 regk_dma_load_g
= 0x00000300,
126 regk_dma_load_g_down
= 0x000003c0,
127 regk_dma_load_g_next
= 0x00000340,
128 regk_dma_load_g_up
= 0x00000380,
129 regk_dma_next_en
= 0x00000010,
130 regk_dma_next_pkt
= 0x00000010,
131 regk_dma_no
= 0x00000000,
132 regk_dma_only_at_wait
= 0x00000000,
133 regk_dma_restore
= 0x00000020,
134 regk_dma_rst
= 0x00000001,
135 regk_dma_running
= 0x00000004,
136 regk_dma_rw_cfg_default
= 0x00000000,
137 regk_dma_rw_cmd_default
= 0x00000000,
138 regk_dma_rw_intr_mask_default
= 0x00000000,
139 regk_dma_rw_stat_default
= 0x00000101,
140 regk_dma_rw_stream_cmd_default
= 0x00000000,
141 regk_dma_save_down
= 0x00000020,
142 regk_dma_save_up
= 0x00000020,
143 regk_dma_set_reg
= 0x00000050,
144 regk_dma_set_w_size1
= 0x00000190,
145 regk_dma_set_w_size2
= 0x000001a0,
146 regk_dma_set_w_size4
= 0x000001c0,
147 regk_dma_stopped
= 0x00000002,
148 regk_dma_store_c
= 0x00000002,
149 regk_dma_store_descr
= 0x00000000,
150 regk_dma_store_g
= 0x00000004,
151 regk_dma_store_md
= 0x00000001,
152 regk_dma_sw
= 0x00000008,
153 regk_dma_update_down
= 0x00000020,
154 regk_dma_yes
= 0x00000001
164 struct fs_dma_channel
168 struct etraxfs_dma_client
*client
;
171 /* Internal status. */
173 enum dma_ch_state state
;
175 unsigned int input
: 1;
176 unsigned int eol
: 1;
178 struct dma_descr_group current_g
;
179 struct dma_descr_context current_c
;
180 struct dma_descr_data current_d
;
182 /* Controll registers. */
183 uint32_t regs
[DMA_REG_MAX
];
189 target_phys_addr_t base
;
192 struct fs_dma_channel
*channels
;
195 static inline uint32_t channel_reg(struct fs_dma_ctrl
*ctrl
, int c
, int reg
)
197 return ctrl
->channels
[c
].regs
[reg
];
200 static inline int channel_stopped(struct fs_dma_ctrl
*ctrl
, int c
)
202 return channel_reg(ctrl
, c
, RW_CFG
) & 2;
205 static inline int channel_en(struct fs_dma_ctrl
*ctrl
, int c
)
207 return (channel_reg(ctrl
, c
, RW_CFG
) & 1)
208 && ctrl
->channels
[c
].client
;
211 static inline int fs_channel(target_phys_addr_t base
, target_phys_addr_t addr
)
213 /* Every channel has a 0x2000 ctrl register map. */
214 return (addr
- base
) >> 13;
217 #ifdef USE_THIS_DEAD_CODE
218 static void channel_load_g(struct fs_dma_ctrl
*ctrl
, int c
)
220 target_phys_addr_t addr
= channel_reg(ctrl
, c
, RW_GROUP
);
222 /* Load and decode. FIXME: handle endianness. */
223 cpu_physical_memory_read (addr
,
224 (void *) &ctrl
->channels
[c
].current_g
,
225 sizeof ctrl
->channels
[c
].current_g
);
228 static void dump_c(int ch
, struct dma_descr_context
*c
)
230 printf("%s ch=%d\n", __func__
, ch
);
231 printf("next=%p\n", c
->next
);
232 printf("saved_data=%p\n", c
->saved_data
);
233 printf("saved_data_buf=%p\n", c
->saved_data_buf
);
234 printf("eol=%x\n", (uint32_t) c
->eol
);
237 static void dump_d(int ch
, struct dma_descr_data
*d
)
239 printf("%s ch=%d\n", __func__
, ch
);
240 printf("next=%p\n", d
->next
);
241 printf("buf=%p\n", d
->buf
);
242 printf("after=%p\n", d
->after
);
243 printf("intr=%x\n", (uint32_t) d
->intr
);
244 printf("out_eop=%x\n", (uint32_t) d
->out_eop
);
245 printf("in_eop=%x\n", (uint32_t) d
->in_eop
);
246 printf("eol=%x\n", (uint32_t) d
->eol
);
250 static void channel_load_c(struct fs_dma_ctrl
*ctrl
, int c
)
252 target_phys_addr_t addr
= channel_reg(ctrl
, c
, RW_GROUP_DOWN
);
254 /* Load and decode. FIXME: handle endianness. */
255 cpu_physical_memory_read (addr
,
256 (void *) &ctrl
->channels
[c
].current_c
,
257 sizeof ctrl
->channels
[c
].current_c
);
259 D(dump_c(c
, &ctrl
->channels
[c
].current_c
));
260 /* I guess this should update the current pos. */
261 ctrl
->channels
[c
].regs
[RW_SAVED_DATA
] =
262 (uint32_t)(unsigned long)ctrl
->channels
[c
].current_c
.saved_data
;
263 ctrl
->channels
[c
].regs
[RW_SAVED_DATA_BUF
] =
264 (uint32_t)(unsigned long)ctrl
->channels
[c
].current_c
.saved_data_buf
;
267 static void channel_load_d(struct fs_dma_ctrl
*ctrl
, int c
)
269 target_phys_addr_t addr
= channel_reg(ctrl
, c
, RW_SAVED_DATA
);
271 /* Load and decode. FIXME: handle endianness. */
272 D(printf("%s ch=%d addr=%x\n", __func__
, c
, addr
));
273 cpu_physical_memory_read (addr
,
274 (void *) &ctrl
->channels
[c
].current_d
,
275 sizeof ctrl
->channels
[c
].current_d
);
277 D(dump_d(c
, &ctrl
->channels
[c
].current_d
));
278 ctrl
->channels
[c
].regs
[RW_DATA
] = addr
;
281 static void channel_store_c(struct fs_dma_ctrl
*ctrl
, int c
)
283 target_phys_addr_t addr
= channel_reg(ctrl
, c
, RW_GROUP_DOWN
);
285 /* Encode and store. FIXME: handle endianness. */
286 D(printf("%s ch=%d addr=%x\n", __func__
, c
, addr
));
287 D(dump_d(c
, &ctrl
->channels
[c
].current_d
));
288 cpu_physical_memory_write (addr
,
289 (void *) &ctrl
->channels
[c
].current_c
,
290 sizeof ctrl
->channels
[c
].current_c
);
293 static void channel_store_d(struct fs_dma_ctrl
*ctrl
, int c
)
295 target_phys_addr_t addr
= channel_reg(ctrl
, c
, RW_SAVED_DATA
);
297 /* Encode and store. FIXME: handle endianness. */
298 D(printf("%s ch=%d addr=%x\n", __func__
, c
, addr
));
299 cpu_physical_memory_write (addr
,
300 (void *) &ctrl
->channels
[c
].current_d
,
301 sizeof ctrl
->channels
[c
].current_d
);
304 static inline void channel_stop(struct fs_dma_ctrl
*ctrl
, int c
)
309 static inline void channel_start(struct fs_dma_ctrl
*ctrl
, int c
)
311 if (ctrl
->channels
[c
].client
)
313 ctrl
->channels
[c
].eol
= 0;
314 ctrl
->channels
[c
].state
= RUNNING
;
316 printf("WARNING: starting DMA ch %d with no client\n", c
);
319 static void channel_continue(struct fs_dma_ctrl
*ctrl
, int c
)
321 if (!channel_en(ctrl
, c
)
322 || channel_stopped(ctrl
, c
)
323 || ctrl
->channels
[c
].state
!= RUNNING
324 /* Only reload the current data descriptor if it has eol set. */
325 || !ctrl
->channels
[c
].current_d
.eol
) {
326 D(printf("continue failed ch=%d state=%d stopped=%d en=%d eol=%d\n",
327 c
, ctrl
->channels
[c
].state
,
328 channel_stopped(ctrl
, c
),
330 ctrl
->channels
[c
].eol
));
331 D(dump_d(c
, &ctrl
->channels
[c
].current_d
));
335 /* Reload the current descriptor. */
336 channel_load_d(ctrl
, c
);
338 /* If the current descriptor cleared the eol flag and we had already
339 reached eol state, do the continue. */
340 if (!ctrl
->channels
[c
].current_d
.eol
&& ctrl
->channels
[c
].eol
) {
341 D(printf("continue %d ok %p\n", c
,
342 ctrl
->channels
[c
].current_d
.next
));
343 ctrl
->channels
[c
].regs
[RW_SAVED_DATA
] =
344 (uint32_t)(unsigned long)ctrl
->channels
[c
].current_d
.next
;
345 channel_load_d(ctrl
, c
);
346 channel_start(ctrl
, c
);
348 ctrl
->channels
[c
].regs
[RW_SAVED_DATA_BUF
] =
349 (uint32_t)(unsigned long)ctrl
->channels
[c
].current_d
.buf
;
352 static void channel_stream_cmd(struct fs_dma_ctrl
*ctrl
, int c
, uint32_t v
)
354 unsigned int cmd
= v
& ((1 << 10) - 1);
356 D(printf("%s ch=%d cmd=%x\n",
358 if (cmd
& regk_dma_load_d
) {
359 channel_load_d(ctrl
, c
);
360 if (cmd
& regk_dma_burst
)
361 channel_start(ctrl
, c
);
364 if (cmd
& regk_dma_load_c
) {
365 channel_load_c(ctrl
, c
);
366 channel_start(ctrl
, c
);
370 static void channel_update_irq(struct fs_dma_ctrl
*ctrl
, int c
)
372 D(printf("%s %d\n", __func__
, c
));
373 ctrl
->channels
[c
].regs
[R_INTR
] &=
374 ~(ctrl
->channels
[c
].regs
[RW_ACK_INTR
]);
376 ctrl
->channels
[c
].regs
[R_MASKED_INTR
] =
377 ctrl
->channels
[c
].regs
[R_INTR
]
378 & ctrl
->channels
[c
].regs
[RW_INTR_MASK
];
380 D(printf("%s: chan=%d masked_intr=%x\n", __func__
,
382 ctrl
->channels
[c
].regs
[R_MASKED_INTR
]));
384 if (ctrl
->channels
[c
].regs
[R_MASKED_INTR
])
385 qemu_irq_raise(ctrl
->channels
[c
].irq
[0]);
387 qemu_irq_lower(ctrl
->channels
[c
].irq
[0]);
390 static void channel_out_run(struct fs_dma_ctrl
*ctrl
, int c
)
393 uint32_t saved_data_buf
;
394 unsigned char buf
[2 * 1024];
396 if (ctrl
->channels
[c
].eol
== 1)
399 saved_data_buf
= channel_reg(ctrl
, c
, RW_SAVED_DATA_BUF
);
401 D(fprintf(logfile
, "ch=%d buf=%x after=%x saved_data_buf=%x\n",
403 (uint32_t)ctrl
->channels
[c
].current_d
.buf
,
404 (uint32_t)ctrl
->channels
[c
].current_d
.after
,
407 len
= (uint32_t)(unsigned long) ctrl
->channels
[c
].current_d
.after
;
408 len
-= saved_data_buf
;
410 if (len
> sizeof buf
)
412 cpu_physical_memory_read (saved_data_buf
, buf
, len
);
414 D(printf("channel %d pushes %x %u bytes\n", c
,
415 saved_data_buf
, len
));
417 if (ctrl
->channels
[c
].client
->client
.push
)
418 ctrl
->channels
[c
].client
->client
.push(
419 ctrl
->channels
[c
].client
->client
.opaque
, buf
, len
);
421 printf("WARNING: DMA ch%d dataloss, no attached client.\n", c
);
423 saved_data_buf
+= len
;
425 if (saved_data_buf
==
426 (uint32_t)(unsigned long)ctrl
->channels
[c
].current_d
.after
) {
427 /* Done. Step to next. */
428 if (ctrl
->channels
[c
].current_d
.out_eop
) {
429 /* TODO: signal eop to the client. */
430 D(printf("signal eop\n"));
432 if (ctrl
->channels
[c
].current_d
.intr
) {
433 /* TODO: signal eop to the client. */
435 D(printf("signal intr\n"));
436 ctrl
->channels
[c
].regs
[R_INTR
] |= (1 << 2);
437 channel_update_irq(ctrl
, c
);
439 if (ctrl
->channels
[c
].current_d
.eol
) {
440 D(printf("channel %d EOL\n", c
));
441 ctrl
->channels
[c
].eol
= 1;
443 /* Mark the context as disabled. */
444 ctrl
->channels
[c
].current_c
.dis
= 1;
445 channel_store_c(ctrl
, c
);
447 channel_stop(ctrl
, c
);
449 ctrl
->channels
[c
].regs
[RW_SAVED_DATA
] =
450 (uint32_t)(unsigned long) ctrl
->channels
[c
].current_d
.next
;
451 /* Load new descriptor. */
452 channel_load_d(ctrl
, c
);
453 saved_data_buf
= (uint32_t)(unsigned long)
454 ctrl
->channels
[c
].current_d
.buf
;
457 channel_store_d(ctrl
, c
);
458 ctrl
->channels
[c
].regs
[RW_SAVED_DATA_BUF
] = saved_data_buf
;
459 D(dump_d(c
, &ctrl
->channels
[c
].current_d
));
461 ctrl
->channels
[c
].regs
[RW_SAVED_DATA_BUF
] = saved_data_buf
;
464 static int channel_in_process(struct fs_dma_ctrl
*ctrl
, int c
,
465 unsigned char *buf
, int buflen
, int eop
)
468 uint32_t saved_data_buf
;
470 if (ctrl
->channels
[c
].eol
== 1)
473 saved_data_buf
= channel_reg(ctrl
, c
, RW_SAVED_DATA_BUF
);
474 len
= (uint32_t)(unsigned long) ctrl
->channels
[c
].current_d
.after
;
475 len
-= saved_data_buf
;
480 cpu_physical_memory_write (saved_data_buf
, buf
, len
);
481 saved_data_buf
+= len
;
483 if (saved_data_buf
==
484 (uint32_t)(unsigned long)ctrl
->channels
[c
].current_d
.after
486 uint32_t r_intr
= ctrl
->channels
[c
].regs
[R_INTR
];
488 D(printf("in dscr end len=%d\n",
489 ctrl
->channels
[c
].current_d
.after
490 - ctrl
->channels
[c
].current_d
.buf
));
491 ctrl
->channels
[c
].current_d
.after
=
492 (void *)(unsigned long) saved_data_buf
;
494 /* Done. Step to next. */
495 if (ctrl
->channels
[c
].current_d
.intr
) {
496 /* TODO: signal eop to the client. */
498 ctrl
->channels
[c
].regs
[R_INTR
] |= 3;
501 ctrl
->channels
[c
].current_d
.in_eop
= 1;
502 ctrl
->channels
[c
].regs
[R_INTR
] |= 8;
504 if (r_intr
!= ctrl
->channels
[c
].regs
[R_INTR
])
505 channel_update_irq(ctrl
, c
);
507 channel_store_d(ctrl
, c
);
508 D(dump_d(c
, &ctrl
->channels
[c
].current_d
));
510 if (ctrl
->channels
[c
].current_d
.eol
) {
511 D(printf("channel %d EOL\n", c
));
512 ctrl
->channels
[c
].eol
= 1;
514 /* Mark the context as disabled. */
515 ctrl
->channels
[c
].current_c
.dis
= 1;
516 channel_store_c(ctrl
, c
);
518 channel_stop(ctrl
, c
);
520 ctrl
->channels
[c
].regs
[RW_SAVED_DATA
] =
521 (uint32_t)(unsigned long) ctrl
->channels
[c
].current_d
.next
;
522 /* Load new descriptor. */
523 channel_load_d(ctrl
, c
);
524 saved_data_buf
= (uint32_t)(unsigned long)
525 ctrl
->channels
[c
].current_d
.buf
;
529 ctrl
->channels
[c
].regs
[RW_SAVED_DATA_BUF
] = saved_data_buf
;
533 static inline void channel_in_run(struct fs_dma_ctrl
*ctrl
, int c
)
535 if (ctrl
->channels
[c
].client
->client
.pull
)
536 ctrl
->channels
[c
].client
->client
.pull(
537 ctrl
->channels
[c
].client
->client
.opaque
);
540 static uint32_t dma_rinvalid (void *opaque
, target_phys_addr_t addr
)
542 struct fs_dma_ctrl
*ctrl
= opaque
;
543 CPUState
*env
= ctrl
->env
;
544 cpu_abort(env
, "Unsupported short access. reg=" TARGET_FMT_plx
"\n",
550 dma_readl (void *opaque
, target_phys_addr_t addr
)
552 struct fs_dma_ctrl
*ctrl
= opaque
;
556 /* Make addr relative to this instances base. */
557 c
= fs_channel(ctrl
->base
, addr
);
562 r
= ctrl
->channels
[c
].state
& 7;
563 r
|= ctrl
->channels
[c
].eol
<< 5;
564 r
|= ctrl
->channels
[c
].stream_cmd_src
<< 8;
568 r
= ctrl
->channels
[c
].regs
[addr
];
569 D(printf ("%s c=%d addr=%x\n",
577 dma_winvalid (void *opaque
, target_phys_addr_t addr
, uint32_t value
)
579 struct fs_dma_ctrl
*ctrl
= opaque
;
580 CPUState
*env
= ctrl
->env
;
581 cpu_abort(env
, "Unsupported short access. reg=" TARGET_FMT_plx
"\n",
586 dma_writel (void *opaque
, target_phys_addr_t addr
, uint32_t value
)
588 struct fs_dma_ctrl
*ctrl
= opaque
;
591 /* Make addr relative to this instances base. */
592 c
= fs_channel(ctrl
->base
, addr
);
597 ctrl
->channels
[c
].regs
[addr
] = value
;
601 ctrl
->channels
[c
].regs
[addr
] = value
;
605 ctrl
->channels
[c
].regs
[addr
] = value
;
606 channel_continue(ctrl
, c
);
610 case RW_SAVED_DATA_BUF
:
613 ctrl
->channels
[c
].regs
[addr
] = value
;
618 ctrl
->channels
[c
].regs
[addr
] = value
;
619 channel_update_irq(ctrl
, c
);
620 if (addr
== RW_ACK_INTR
)
621 ctrl
->channels
[c
].regs
[RW_ACK_INTR
] = 0;
625 ctrl
->channels
[c
].regs
[addr
] = value
;
626 D(printf("stream_cmd ch=%d\n", c
));
627 channel_stream_cmd(ctrl
, c
, value
);
631 D(printf ("%s c=%d %x %x\n", __func__
, c
, addr
));
636 static CPUReadMemoryFunc
*dma_read
[] = {
642 static CPUWriteMemoryFunc
*dma_write
[] = {
648 void etraxfs_dmac_run(void *opaque
)
650 struct fs_dma_ctrl
*ctrl
= opaque
;
655 i
< ctrl
->nr_channels
;
658 if (ctrl
->channels
[i
].state
== RUNNING
)
661 if (ctrl
->channels
[i
].input
)
662 channel_in_run(ctrl
, i
);
664 channel_out_run(ctrl
, i
);
669 int etraxfs_dmac_input(struct etraxfs_dma_client
*client
,
670 void *buf
, int len
, int eop
)
672 return channel_in_process(client
->ctrl
, client
->channel
,
676 /* Connect an IRQ line with a channel. */
677 void etraxfs_dmac_connect(void *opaque
, int c
, qemu_irq
*line
, int input
)
679 struct fs_dma_ctrl
*ctrl
= opaque
;
680 ctrl
->channels
[c
].irq
= line
;
681 ctrl
->channels
[c
].input
= input
;
684 void etraxfs_dmac_connect_client(void *opaque
, int c
,
685 struct etraxfs_dma_client
*cl
)
687 struct fs_dma_ctrl
*ctrl
= opaque
;
690 ctrl
->channels
[c
].client
= cl
;
694 static void *etraxfs_dmac
;
698 etraxfs_dmac_run(etraxfs_dmac
);
701 void *etraxfs_dmac_init(CPUState
*env
,
702 target_phys_addr_t base
, int nr_channels
)
704 struct fs_dma_ctrl
*ctrl
= NULL
;
707 ctrl
= qemu_mallocz(sizeof *ctrl
);
713 ctrl
->nr_channels
= nr_channels
;
714 ctrl
->channels
= qemu_mallocz(sizeof ctrl
->channels
[0] * nr_channels
);
718 for (i
= 0; i
< nr_channels
; i
++)
720 ctrl
->channels
[i
].regmap
= cpu_register_io_memory(0,
724 cpu_register_physical_memory (base
+ i
* 0x2000,
725 sizeof ctrl
->channels
[i
].regs
,
726 ctrl
->channels
[i
].regmap
);
729 /* Hax, we only support one DMA controller at a time. */
733 qemu_free(ctrl
->channels
);