kvm: testsuite: fix warning in msr.c
[qemu-kvm/fedora.git] / gdbstub.c
blob9558358001a63dd696effa73f4d60f0471e5321e
1 /*
2 * gdb server stub
4 * Copyright (c) 2003-2005 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, write to the Free Software
18 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston MA 02110-1301 USA
20 #include "config.h"
21 #include "qemu-common.h"
22 #ifdef CONFIG_USER_ONLY
23 #include <stdlib.h>
24 #include <stdio.h>
25 #include <stdarg.h>
26 #include <string.h>
27 #include <errno.h>
28 #include <unistd.h>
29 #include <fcntl.h>
31 #include "qemu.h"
32 #else
33 #include "monitor.h"
34 #include "qemu-char.h"
35 #include "sysemu.h"
36 #include "gdbstub.h"
37 #endif
38 #include "qemu-kvm.h"
40 #define MAX_PACKET_LENGTH 4096
42 #include "qemu_socket.h"
43 #include "kvm.h"
46 enum {
47 GDB_SIGNAL_0 = 0,
48 GDB_SIGNAL_INT = 2,
49 GDB_SIGNAL_TRAP = 5,
50 GDB_SIGNAL_UNKNOWN = 143
53 #ifdef CONFIG_USER_ONLY
55 /* Map target signal numbers to GDB protocol signal numbers and vice
56 * versa. For user emulation's currently supported systems, we can
57 * assume most signals are defined.
60 static int gdb_signal_table[] = {
62 TARGET_SIGHUP,
63 TARGET_SIGINT,
64 TARGET_SIGQUIT,
65 TARGET_SIGILL,
66 TARGET_SIGTRAP,
67 TARGET_SIGABRT,
68 -1, /* SIGEMT */
69 TARGET_SIGFPE,
70 TARGET_SIGKILL,
71 TARGET_SIGBUS,
72 TARGET_SIGSEGV,
73 TARGET_SIGSYS,
74 TARGET_SIGPIPE,
75 TARGET_SIGALRM,
76 TARGET_SIGTERM,
77 TARGET_SIGURG,
78 TARGET_SIGSTOP,
79 TARGET_SIGTSTP,
80 TARGET_SIGCONT,
81 TARGET_SIGCHLD,
82 TARGET_SIGTTIN,
83 TARGET_SIGTTOU,
84 TARGET_SIGIO,
85 TARGET_SIGXCPU,
86 TARGET_SIGXFSZ,
87 TARGET_SIGVTALRM,
88 TARGET_SIGPROF,
89 TARGET_SIGWINCH,
90 -1, /* SIGLOST */
91 TARGET_SIGUSR1,
92 TARGET_SIGUSR2,
93 #ifdef TARGET_SIGPWR
94 TARGET_SIGPWR,
95 #else
96 -1,
97 #endif
98 -1, /* SIGPOLL */
99 -1,
110 #ifdef __SIGRTMIN
111 __SIGRTMIN + 1,
112 __SIGRTMIN + 2,
113 __SIGRTMIN + 3,
114 __SIGRTMIN + 4,
115 __SIGRTMIN + 5,
116 __SIGRTMIN + 6,
117 __SIGRTMIN + 7,
118 __SIGRTMIN + 8,
119 __SIGRTMIN + 9,
120 __SIGRTMIN + 10,
121 __SIGRTMIN + 11,
122 __SIGRTMIN + 12,
123 __SIGRTMIN + 13,
124 __SIGRTMIN + 14,
125 __SIGRTMIN + 15,
126 __SIGRTMIN + 16,
127 __SIGRTMIN + 17,
128 __SIGRTMIN + 18,
129 __SIGRTMIN + 19,
130 __SIGRTMIN + 20,
131 __SIGRTMIN + 21,
132 __SIGRTMIN + 22,
133 __SIGRTMIN + 23,
134 __SIGRTMIN + 24,
135 __SIGRTMIN + 25,
136 __SIGRTMIN + 26,
137 __SIGRTMIN + 27,
138 __SIGRTMIN + 28,
139 __SIGRTMIN + 29,
140 __SIGRTMIN + 30,
141 __SIGRTMIN + 31,
142 -1, /* SIGCANCEL */
143 __SIGRTMIN,
144 __SIGRTMIN + 32,
145 __SIGRTMIN + 33,
146 __SIGRTMIN + 34,
147 __SIGRTMIN + 35,
148 __SIGRTMIN + 36,
149 __SIGRTMIN + 37,
150 __SIGRTMIN + 38,
151 __SIGRTMIN + 39,
152 __SIGRTMIN + 40,
153 __SIGRTMIN + 41,
154 __SIGRTMIN + 42,
155 __SIGRTMIN + 43,
156 __SIGRTMIN + 44,
157 __SIGRTMIN + 45,
158 __SIGRTMIN + 46,
159 __SIGRTMIN + 47,
160 __SIGRTMIN + 48,
161 __SIGRTMIN + 49,
162 __SIGRTMIN + 50,
163 __SIGRTMIN + 51,
164 __SIGRTMIN + 52,
165 __SIGRTMIN + 53,
166 __SIGRTMIN + 54,
167 __SIGRTMIN + 55,
168 __SIGRTMIN + 56,
169 __SIGRTMIN + 57,
170 __SIGRTMIN + 58,
171 __SIGRTMIN + 59,
172 __SIGRTMIN + 60,
173 __SIGRTMIN + 61,
174 __SIGRTMIN + 62,
175 __SIGRTMIN + 63,
176 __SIGRTMIN + 64,
177 __SIGRTMIN + 65,
178 __SIGRTMIN + 66,
179 __SIGRTMIN + 67,
180 __SIGRTMIN + 68,
181 __SIGRTMIN + 69,
182 __SIGRTMIN + 70,
183 __SIGRTMIN + 71,
184 __SIGRTMIN + 72,
185 __SIGRTMIN + 73,
186 __SIGRTMIN + 74,
187 __SIGRTMIN + 75,
188 __SIGRTMIN + 76,
189 __SIGRTMIN + 77,
190 __SIGRTMIN + 78,
191 __SIGRTMIN + 79,
192 __SIGRTMIN + 80,
193 __SIGRTMIN + 81,
194 __SIGRTMIN + 82,
195 __SIGRTMIN + 83,
196 __SIGRTMIN + 84,
197 __SIGRTMIN + 85,
198 __SIGRTMIN + 86,
199 __SIGRTMIN + 87,
200 __SIGRTMIN + 88,
201 __SIGRTMIN + 89,
202 __SIGRTMIN + 90,
203 __SIGRTMIN + 91,
204 __SIGRTMIN + 92,
205 __SIGRTMIN + 93,
206 __SIGRTMIN + 94,
207 __SIGRTMIN + 95,
208 -1, /* SIGINFO */
209 -1, /* UNKNOWN */
210 -1, /* DEFAULT */
217 #endif
219 #else
220 /* In system mode we only need SIGINT and SIGTRAP; other signals
221 are not yet supported. */
223 enum {
224 TARGET_SIGINT = 2,
225 TARGET_SIGTRAP = 5
228 static int gdb_signal_table[] = {
231 TARGET_SIGINT,
234 TARGET_SIGTRAP
236 #endif
238 #ifdef CONFIG_USER_ONLY
239 static int target_signal_to_gdb (int sig)
241 int i;
242 for (i = 0; i < ARRAY_SIZE (gdb_signal_table); i++)
243 if (gdb_signal_table[i] == sig)
244 return i;
245 return GDB_SIGNAL_UNKNOWN;
247 #endif
249 static int gdb_signal_to_target (int sig)
251 if (sig < ARRAY_SIZE (gdb_signal_table))
252 return gdb_signal_table[sig];
253 else
254 return -1;
257 //#define DEBUG_GDB
259 typedef struct GDBRegisterState {
260 int base_reg;
261 int num_regs;
262 gdb_reg_cb get_reg;
263 gdb_reg_cb set_reg;
264 const char *xml;
265 struct GDBRegisterState *next;
266 } GDBRegisterState;
268 enum RSState {
269 RS_INACTIVE,
270 RS_IDLE,
271 RS_GETLINE,
272 RS_CHKSUM1,
273 RS_CHKSUM2,
274 RS_SYSCALL,
276 typedef struct GDBState {
277 CPUState *c_cpu; /* current CPU for step/continue ops */
278 CPUState *g_cpu; /* current CPU for other ops */
279 CPUState *query_cpu; /* for q{f|s}ThreadInfo */
280 enum RSState state; /* parsing state */
281 char line_buf[MAX_PACKET_LENGTH];
282 int line_buf_index;
283 int line_csum;
284 uint8_t last_packet[MAX_PACKET_LENGTH + 4];
285 int last_packet_len;
286 int signal;
287 #ifdef CONFIG_USER_ONLY
288 int fd;
289 int running_state;
290 #else
291 CharDriverState *chr;
292 CharDriverState *mon_chr;
293 #endif
294 } GDBState;
296 /* By default use no IRQs and no timers while single stepping so as to
297 * make single stepping like an ICE HW step.
299 static int sstep_flags = SSTEP_ENABLE|SSTEP_NOIRQ|SSTEP_NOTIMER;
301 static GDBState *gdbserver_state;
303 /* This is an ugly hack to cope with both new and old gdb.
304 If gdb sends qXfer:features:read then assume we're talking to a newish
305 gdb that understands target descriptions. */
306 static int gdb_has_xml;
308 #ifdef CONFIG_USER_ONLY
309 /* XXX: This is not thread safe. Do we care? */
310 static int gdbserver_fd = -1;
312 static int get_char(GDBState *s)
314 uint8_t ch;
315 int ret;
317 for(;;) {
318 ret = recv(s->fd, &ch, 1, 0);
319 if (ret < 0) {
320 if (errno == ECONNRESET)
321 s->fd = -1;
322 if (errno != EINTR && errno != EAGAIN)
323 return -1;
324 } else if (ret == 0) {
325 close(s->fd);
326 s->fd = -1;
327 return -1;
328 } else {
329 break;
332 return ch;
334 #endif
336 static gdb_syscall_complete_cb gdb_current_syscall_cb;
338 enum {
339 GDB_SYS_UNKNOWN,
340 GDB_SYS_ENABLED,
341 GDB_SYS_DISABLED,
342 } gdb_syscall_mode;
344 /* If gdb is connected when the first semihosting syscall occurs then use
345 remote gdb syscalls. Otherwise use native file IO. */
346 int use_gdb_syscalls(void)
348 if (gdb_syscall_mode == GDB_SYS_UNKNOWN) {
349 gdb_syscall_mode = (gdbserver_state ? GDB_SYS_ENABLED
350 : GDB_SYS_DISABLED);
352 return gdb_syscall_mode == GDB_SYS_ENABLED;
355 /* Resume execution. */
356 static inline void gdb_continue(GDBState *s)
358 #ifdef CONFIG_USER_ONLY
359 s->running_state = 1;
360 #else
361 vm_start();
362 #endif
365 static void put_buffer(GDBState *s, const uint8_t *buf, int len)
367 #ifdef CONFIG_USER_ONLY
368 int ret;
370 while (len > 0) {
371 ret = send(s->fd, buf, len, 0);
372 if (ret < 0) {
373 if (errno != EINTR && errno != EAGAIN)
374 return;
375 } else {
376 buf += ret;
377 len -= ret;
380 #else
381 qemu_chr_write(s->chr, buf, len);
382 #endif
385 static inline int fromhex(int v)
387 if (v >= '0' && v <= '9')
388 return v - '0';
389 else if (v >= 'A' && v <= 'F')
390 return v - 'A' + 10;
391 else if (v >= 'a' && v <= 'f')
392 return v - 'a' + 10;
393 else
394 return 0;
397 static inline int tohex(int v)
399 if (v < 10)
400 return v + '0';
401 else
402 return v - 10 + 'a';
405 static void memtohex(char *buf, const uint8_t *mem, int len)
407 int i, c;
408 char *q;
409 q = buf;
410 for(i = 0; i < len; i++) {
411 c = mem[i];
412 *q++ = tohex(c >> 4);
413 *q++ = tohex(c & 0xf);
415 *q = '\0';
418 static void hextomem(uint8_t *mem, const char *buf, int len)
420 int i;
422 for(i = 0; i < len; i++) {
423 mem[i] = (fromhex(buf[0]) << 4) | fromhex(buf[1]);
424 buf += 2;
428 /* return -1 if error, 0 if OK */
429 static int put_packet_binary(GDBState *s, const char *buf, int len)
431 int csum, i;
432 uint8_t *p;
434 for(;;) {
435 p = s->last_packet;
436 *(p++) = '$';
437 memcpy(p, buf, len);
438 p += len;
439 csum = 0;
440 for(i = 0; i < len; i++) {
441 csum += buf[i];
443 *(p++) = '#';
444 *(p++) = tohex((csum >> 4) & 0xf);
445 *(p++) = tohex((csum) & 0xf);
447 s->last_packet_len = p - s->last_packet;
448 put_buffer(s, (uint8_t *)s->last_packet, s->last_packet_len);
450 #ifdef CONFIG_USER_ONLY
451 i = get_char(s);
452 if (i < 0)
453 return -1;
454 if (i == '+')
455 break;
456 #else
457 break;
458 #endif
460 return 0;
463 /* return -1 if error, 0 if OK */
464 static int put_packet(GDBState *s, const char *buf)
466 #ifdef DEBUG_GDB
467 printf("reply='%s'\n", buf);
468 #endif
470 return put_packet_binary(s, buf, strlen(buf));
473 /* The GDB remote protocol transfers values in target byte order. This means
474 we can use the raw memory access routines to access the value buffer.
475 Conveniently, these also handle the case where the buffer is mis-aligned.
477 #define GET_REG8(val) do { \
478 stb_p(mem_buf, val); \
479 return 1; \
480 } while(0)
481 #define GET_REG16(val) do { \
482 stw_p(mem_buf, val); \
483 return 2; \
484 } while(0)
485 #define GET_REG32(val) do { \
486 stl_p(mem_buf, val); \
487 return 4; \
488 } while(0)
489 #define GET_REG64(val) do { \
490 stq_p(mem_buf, val); \
491 return 8; \
492 } while(0)
494 #if TARGET_LONG_BITS == 64
495 #define GET_REGL(val) GET_REG64(val)
496 #define ldtul_p(addr) ldq_p(addr)
497 #else
498 #define GET_REGL(val) GET_REG32(val)
499 #define ldtul_p(addr) ldl_p(addr)
500 #endif
502 #if defined(TARGET_I386)
504 #ifdef TARGET_X86_64
505 static const int gpr_map[16] = {
506 R_EAX, R_EBX, R_ECX, R_EDX, R_ESI, R_EDI, R_EBP, R_ESP,
507 8, 9, 10, 11, 12, 13, 14, 15
509 #else
510 static const int gpr_map[8] = {0, 1, 2, 3, 4, 5, 6, 7};
511 #endif
513 #define NUM_CORE_REGS (CPU_NB_REGS * 2 + 25)
515 static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
517 if (n < CPU_NB_REGS) {
518 GET_REGL(env->regs[gpr_map[n]]);
519 } else if (n >= CPU_NB_REGS + 8 && n < CPU_NB_REGS + 16) {
520 /* FIXME: byteswap float values. */
521 #ifdef USE_X86LDOUBLE
522 memcpy(mem_buf, &env->fpregs[n - (CPU_NB_REGS + 8)], 10);
523 #else
524 memset(mem_buf, 0, 10);
525 #endif
526 return 10;
527 } else if (n >= CPU_NB_REGS + 24) {
528 n -= CPU_NB_REGS + 24;
529 if (n < CPU_NB_REGS) {
530 stq_p(mem_buf, env->xmm_regs[n].XMM_Q(0));
531 stq_p(mem_buf + 8, env->xmm_regs[n].XMM_Q(1));
532 return 16;
533 } else if (n == CPU_NB_REGS) {
534 GET_REG32(env->mxcsr);
536 } else {
537 n -= CPU_NB_REGS;
538 switch (n) {
539 case 0: GET_REGL(env->eip);
540 case 1: GET_REG32(env->eflags);
541 case 2: GET_REG32(env->segs[R_CS].selector);
542 case 3: GET_REG32(env->segs[R_SS].selector);
543 case 4: GET_REG32(env->segs[R_DS].selector);
544 case 5: GET_REG32(env->segs[R_ES].selector);
545 case 6: GET_REG32(env->segs[R_FS].selector);
546 case 7: GET_REG32(env->segs[R_GS].selector);
547 /* 8...15 x87 regs. */
548 case 16: GET_REG32(env->fpuc);
549 case 17: GET_REG32((env->fpus & ~0x3800) | (env->fpstt & 0x7) << 11);
550 case 18: GET_REG32(0); /* ftag */
551 case 19: GET_REG32(0); /* fiseg */
552 case 20: GET_REG32(0); /* fioff */
553 case 21: GET_REG32(0); /* foseg */
554 case 22: GET_REG32(0); /* fooff */
555 case 23: GET_REG32(0); /* fop */
556 /* 24+ xmm regs. */
559 return 0;
562 static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int i)
564 uint32_t tmp;
566 if (i < CPU_NB_REGS) {
567 env->regs[gpr_map[i]] = ldtul_p(mem_buf);
568 return sizeof(target_ulong);
569 } else if (i >= CPU_NB_REGS + 8 && i < CPU_NB_REGS + 16) {
570 i -= CPU_NB_REGS + 8;
571 #ifdef USE_X86LDOUBLE
572 memcpy(&env->fpregs[i], mem_buf, 10);
573 #endif
574 return 10;
575 } else if (i >= CPU_NB_REGS + 24) {
576 i -= CPU_NB_REGS + 24;
577 if (i < CPU_NB_REGS) {
578 env->xmm_regs[i].XMM_Q(0) = ldq_p(mem_buf);
579 env->xmm_regs[i].XMM_Q(1) = ldq_p(mem_buf + 8);
580 return 16;
581 } else if (i == CPU_NB_REGS) {
582 env->mxcsr = ldl_p(mem_buf);
583 return 4;
585 } else {
586 i -= CPU_NB_REGS;
587 switch (i) {
588 case 0: env->eip = ldtul_p(mem_buf); return sizeof(target_ulong);
589 case 1: env->eflags = ldl_p(mem_buf); return 4;
590 #if defined(CONFIG_USER_ONLY)
591 #define LOAD_SEG(index, sreg)\
592 tmp = ldl_p(mem_buf);\
593 if (tmp != env->segs[sreg].selector)\
594 cpu_x86_load_seg(env, sreg, tmp);
595 #else
596 /* FIXME: Honor segment registers. Needs to avoid raising an exception
597 when the selector is invalid. */
598 #define LOAD_SEG(index, sreg) do {} while(0)
599 #endif
600 case 2: LOAD_SEG(10, R_CS); return 4;
601 case 3: LOAD_SEG(11, R_SS); return 4;
602 case 4: LOAD_SEG(12, R_DS); return 4;
603 case 5: LOAD_SEG(13, R_ES); return 4;
604 case 6: LOAD_SEG(14, R_FS); return 4;
605 case 7: LOAD_SEG(15, R_GS); return 4;
606 /* 8...15 x87 regs. */
607 case 16: env->fpuc = ldl_p(mem_buf); return 4;
608 case 17:
609 tmp = ldl_p(mem_buf);
610 env->fpstt = (tmp >> 11) & 7;
611 env->fpus = tmp & ~0x3800;
612 return 4;
613 case 18: /* ftag */ return 4;
614 case 19: /* fiseg */ return 4;
615 case 20: /* fioff */ return 4;
616 case 21: /* foseg */ return 4;
617 case 22: /* fooff */ return 4;
618 case 23: /* fop */ return 4;
619 /* 24+ xmm regs. */
622 /* Unrecognised register. */
623 return 0;
626 #elif defined (TARGET_PPC)
628 /* Old gdb always expects FP registers. Newer (xml-aware) gdb only
629 expects whatever the target description contains. Due to a
630 historical mishap the FP registers appear in between core integer
631 regs and PC, MSR, CR, and so forth. We hack round this by giving the
632 FP regs zero size when talking to a newer gdb. */
633 #define NUM_CORE_REGS 71
634 #if defined (TARGET_PPC64)
635 #define GDB_CORE_XML "power64-core.xml"
636 #else
637 #define GDB_CORE_XML "power-core.xml"
638 #endif
640 static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
642 if (n < 32) {
643 /* gprs */
644 GET_REGL(env->gpr[n]);
645 } else if (n < 64) {
646 /* fprs */
647 if (gdb_has_xml)
648 return 0;
649 stfq_p(mem_buf, env->fpr[n-32]);
650 return 8;
651 } else {
652 switch (n) {
653 case 64: GET_REGL(env->nip);
654 case 65: GET_REGL(env->msr);
655 case 66:
657 uint32_t cr = 0;
658 int i;
659 for (i = 0; i < 8; i++)
660 cr |= env->crf[i] << (32 - ((i + 1) * 4));
661 GET_REG32(cr);
663 case 67: GET_REGL(env->lr);
664 case 68: GET_REGL(env->ctr);
665 case 69: GET_REGL(env->xer);
666 case 70:
668 if (gdb_has_xml)
669 return 0;
670 GET_REG32(0); /* fpscr */
674 return 0;
677 static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
679 if (n < 32) {
680 /* gprs */
681 env->gpr[n] = ldtul_p(mem_buf);
682 return sizeof(target_ulong);
683 } else if (n < 64) {
684 /* fprs */
685 if (gdb_has_xml)
686 return 0;
687 env->fpr[n-32] = ldfq_p(mem_buf);
688 return 8;
689 } else {
690 switch (n) {
691 case 64:
692 env->nip = ldtul_p(mem_buf);
693 return sizeof(target_ulong);
694 case 65:
695 ppc_store_msr(env, ldtul_p(mem_buf));
696 return sizeof(target_ulong);
697 case 66:
699 uint32_t cr = ldl_p(mem_buf);
700 int i;
701 for (i = 0; i < 8; i++)
702 env->crf[i] = (cr >> (32 - ((i + 1) * 4))) & 0xF;
703 return 4;
705 case 67:
706 env->lr = ldtul_p(mem_buf);
707 return sizeof(target_ulong);
708 case 68:
709 env->ctr = ldtul_p(mem_buf);
710 return sizeof(target_ulong);
711 case 69:
712 env->xer = ldtul_p(mem_buf);
713 return sizeof(target_ulong);
714 case 70:
715 /* fpscr */
716 if (gdb_has_xml)
717 return 0;
718 return 4;
721 return 0;
724 #elif defined (TARGET_SPARC)
726 #if defined(TARGET_SPARC64) && !defined(TARGET_ABI32)
727 #define NUM_CORE_REGS 86
728 #else
729 #define NUM_CORE_REGS 72
730 #endif
732 #ifdef TARGET_ABI32
733 #define GET_REGA(val) GET_REG32(val)
734 #else
735 #define GET_REGA(val) GET_REGL(val)
736 #endif
738 static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
740 if (n < 8) {
741 /* g0..g7 */
742 GET_REGA(env->gregs[n]);
744 if (n < 32) {
745 /* register window */
746 GET_REGA(env->regwptr[n - 8]);
748 #if defined(TARGET_ABI32) || !defined(TARGET_SPARC64)
749 if (n < 64) {
750 /* fprs */
751 GET_REG32(*((uint32_t *)&env->fpr[n - 32]));
753 /* Y, PSR, WIM, TBR, PC, NPC, FPSR, CPSR */
754 switch (n) {
755 case 64: GET_REGA(env->y);
756 case 65: GET_REGA(GET_PSR(env));
757 case 66: GET_REGA(env->wim);
758 case 67: GET_REGA(env->tbr);
759 case 68: GET_REGA(env->pc);
760 case 69: GET_REGA(env->npc);
761 case 70: GET_REGA(env->fsr);
762 case 71: GET_REGA(0); /* csr */
763 default: GET_REGA(0);
765 #else
766 if (n < 64) {
767 /* f0-f31 */
768 GET_REG32(*((uint32_t *)&env->fpr[n - 32]));
770 if (n < 80) {
771 /* f32-f62 (double width, even numbers only) */
772 uint64_t val;
774 val = (uint64_t)*((uint32_t *)&env->fpr[(n - 64) * 2 + 32]) << 32;
775 val |= *((uint32_t *)&env->fpr[(n - 64) * 2 + 33]);
776 GET_REG64(val);
778 switch (n) {
779 case 80: GET_REGL(env->pc);
780 case 81: GET_REGL(env->npc);
781 case 82: GET_REGL(((uint64_t)GET_CCR(env) << 32) |
782 ((env->asi & 0xff) << 24) |
783 ((env->pstate & 0xfff) << 8) |
784 GET_CWP64(env));
785 case 83: GET_REGL(env->fsr);
786 case 84: GET_REGL(env->fprs);
787 case 85: GET_REGL(env->y);
789 #endif
790 return 0;
793 static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
795 #if defined(TARGET_ABI32)
796 abi_ulong tmp;
798 tmp = ldl_p(mem_buf);
799 #else
800 target_ulong tmp;
802 tmp = ldtul_p(mem_buf);
803 #endif
805 if (n < 8) {
806 /* g0..g7 */
807 env->gregs[n] = tmp;
808 } else if (n < 32) {
809 /* register window */
810 env->regwptr[n - 8] = tmp;
812 #if defined(TARGET_ABI32) || !defined(TARGET_SPARC64)
813 else if (n < 64) {
814 /* fprs */
815 *((uint32_t *)&env->fpr[n - 32]) = tmp;
816 } else {
817 /* Y, PSR, WIM, TBR, PC, NPC, FPSR, CPSR */
818 switch (n) {
819 case 64: env->y = tmp; break;
820 case 65: PUT_PSR(env, tmp); break;
821 case 66: env->wim = tmp; break;
822 case 67: env->tbr = tmp; break;
823 case 68: env->pc = tmp; break;
824 case 69: env->npc = tmp; break;
825 case 70: env->fsr = tmp; break;
826 default: return 0;
829 return 4;
830 #else
831 else if (n < 64) {
832 /* f0-f31 */
833 env->fpr[n] = ldfl_p(mem_buf);
834 return 4;
835 } else if (n < 80) {
836 /* f32-f62 (double width, even numbers only) */
837 *((uint32_t *)&env->fpr[(n - 64) * 2 + 32]) = tmp >> 32;
838 *((uint32_t *)&env->fpr[(n - 64) * 2 + 33]) = tmp;
839 } else {
840 switch (n) {
841 case 80: env->pc = tmp; break;
842 case 81: env->npc = tmp; break;
843 case 82:
844 PUT_CCR(env, tmp >> 32);
845 env->asi = (tmp >> 24) & 0xff;
846 env->pstate = (tmp >> 8) & 0xfff;
847 PUT_CWP64(env, tmp & 0xff);
848 break;
849 case 83: env->fsr = tmp; break;
850 case 84: env->fprs = tmp; break;
851 case 85: env->y = tmp; break;
852 default: return 0;
855 return 8;
856 #endif
858 #elif defined (TARGET_ARM)
860 /* Old gdb always expect FPA registers. Newer (xml-aware) gdb only expect
861 whatever the target description contains. Due to a historical mishap
862 the FPA registers appear in between core integer regs and the CPSR.
863 We hack round this by giving the FPA regs zero size when talking to a
864 newer gdb. */
865 #define NUM_CORE_REGS 26
866 #define GDB_CORE_XML "arm-core.xml"
868 static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
870 if (n < 16) {
871 /* Core integer register. */
872 GET_REG32(env->regs[n]);
874 if (n < 24) {
875 /* FPA registers. */
876 if (gdb_has_xml)
877 return 0;
878 memset(mem_buf, 0, 12);
879 return 12;
881 switch (n) {
882 case 24:
883 /* FPA status register. */
884 if (gdb_has_xml)
885 return 0;
886 GET_REG32(0);
887 case 25:
888 /* CPSR */
889 GET_REG32(cpsr_read(env));
891 /* Unknown register. */
892 return 0;
895 static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
897 uint32_t tmp;
899 tmp = ldl_p(mem_buf);
901 /* Mask out low bit of PC to workaround gdb bugs. This will probably
902 cause problems if we ever implement the Jazelle DBX extensions. */
903 if (n == 15)
904 tmp &= ~1;
906 if (n < 16) {
907 /* Core integer register. */
908 env->regs[n] = tmp;
909 return 4;
911 if (n < 24) { /* 16-23 */
912 /* FPA registers (ignored). */
913 if (gdb_has_xml)
914 return 0;
915 return 12;
917 switch (n) {
918 case 24:
919 /* FPA status register (ignored). */
920 if (gdb_has_xml)
921 return 0;
922 return 4;
923 case 25:
924 /* CPSR */
925 cpsr_write (env, tmp, 0xffffffff);
926 return 4;
928 /* Unknown register. */
929 return 0;
932 #elif defined (TARGET_M68K)
934 #define NUM_CORE_REGS 18
936 #define GDB_CORE_XML "cf-core.xml"
938 static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
940 if (n < 8) {
941 /* D0-D7 */
942 GET_REG32(env->dregs[n]);
943 } else if (n < 16) {
944 /* A0-A7 */
945 GET_REG32(env->aregs[n - 8]);
946 } else {
947 switch (n) {
948 case 16: GET_REG32(env->sr);
949 case 17: GET_REG32(env->pc);
952 /* FP registers not included here because they vary between
953 ColdFire and m68k. Use XML bits for these. */
954 return 0;
957 static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
959 uint32_t tmp;
961 tmp = ldl_p(mem_buf);
963 if (n < 8) {
964 /* D0-D7 */
965 env->dregs[n] = tmp;
966 } else if (n < 8) {
967 /* A0-A7 */
968 env->aregs[n - 8] = tmp;
969 } else {
970 switch (n) {
971 case 16: env->sr = tmp; break;
972 case 17: env->pc = tmp; break;
973 default: return 0;
976 return 4;
978 #elif defined (TARGET_MIPS)
980 #define NUM_CORE_REGS 73
982 static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
984 if (n < 32) {
985 GET_REGL(env->active_tc.gpr[n]);
987 if (env->CP0_Config1 & (1 << CP0C1_FP)) {
988 if (n >= 38 && n < 70) {
989 if (env->CP0_Status & (1 << CP0St_FR))
990 GET_REGL(env->active_fpu.fpr[n - 38].d);
991 else
992 GET_REGL(env->active_fpu.fpr[n - 38].w[FP_ENDIAN_IDX]);
994 switch (n) {
995 case 70: GET_REGL((int32_t)env->active_fpu.fcr31);
996 case 71: GET_REGL((int32_t)env->active_fpu.fcr0);
999 switch (n) {
1000 case 32: GET_REGL((int32_t)env->CP0_Status);
1001 case 33: GET_REGL(env->active_tc.LO[0]);
1002 case 34: GET_REGL(env->active_tc.HI[0]);
1003 case 35: GET_REGL(env->CP0_BadVAddr);
1004 case 36: GET_REGL((int32_t)env->CP0_Cause);
1005 case 37: GET_REGL(env->active_tc.PC);
1006 case 72: GET_REGL(0); /* fp */
1007 case 89: GET_REGL((int32_t)env->CP0_PRid);
1009 if (n >= 73 && n <= 88) {
1010 /* 16 embedded regs. */
1011 GET_REGL(0);
1014 return 0;
1017 /* convert MIPS rounding mode in FCR31 to IEEE library */
1018 static unsigned int ieee_rm[] =
1020 float_round_nearest_even,
1021 float_round_to_zero,
1022 float_round_up,
1023 float_round_down
1025 #define RESTORE_ROUNDING_MODE \
1026 set_float_rounding_mode(ieee_rm[env->active_fpu.fcr31 & 3], &env->active_fpu.fp_status)
1028 static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
1030 target_ulong tmp;
1032 tmp = ldtul_p(mem_buf);
1034 if (n < 32) {
1035 env->active_tc.gpr[n] = tmp;
1036 return sizeof(target_ulong);
1038 if (env->CP0_Config1 & (1 << CP0C1_FP)
1039 && n >= 38 && n < 73) {
1040 if (n < 70) {
1041 if (env->CP0_Status & (1 << CP0St_FR))
1042 env->active_fpu.fpr[n - 38].d = tmp;
1043 else
1044 env->active_fpu.fpr[n - 38].w[FP_ENDIAN_IDX] = tmp;
1046 switch (n) {
1047 case 70:
1048 env->active_fpu.fcr31 = tmp & 0xFF83FFFF;
1049 /* set rounding mode */
1050 RESTORE_ROUNDING_MODE;
1051 #ifndef CONFIG_SOFTFLOAT
1052 /* no floating point exception for native float */
1053 SET_FP_ENABLE(env->active_fpu.fcr31, 0);
1054 #endif
1055 break;
1056 case 71: env->active_fpu.fcr0 = tmp; break;
1058 return sizeof(target_ulong);
1060 switch (n) {
1061 case 32: env->CP0_Status = tmp; break;
1062 case 33: env->active_tc.LO[0] = tmp; break;
1063 case 34: env->active_tc.HI[0] = tmp; break;
1064 case 35: env->CP0_BadVAddr = tmp; break;
1065 case 36: env->CP0_Cause = tmp; break;
1066 case 37: env->active_tc.PC = tmp; break;
1067 case 72: /* fp, ignored */ break;
1068 default:
1069 if (n > 89)
1070 return 0;
1071 /* Other registers are readonly. Ignore writes. */
1072 break;
1075 return sizeof(target_ulong);
1077 #elif defined (TARGET_SH4)
1079 /* Hint: Use "set architecture sh4" in GDB to see fpu registers */
1080 /* FIXME: We should use XML for this. */
1082 #define NUM_CORE_REGS 59
1084 static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
1086 if (n < 8) {
1087 if ((env->sr & (SR_MD | SR_RB)) == (SR_MD | SR_RB)) {
1088 GET_REGL(env->gregs[n + 16]);
1089 } else {
1090 GET_REGL(env->gregs[n]);
1092 } else if (n < 16) {
1093 GET_REGL(env->gregs[n - 8]);
1094 } else if (n >= 25 && n < 41) {
1095 GET_REGL(env->fregs[(n - 25) + ((env->fpscr & FPSCR_FR) ? 16 : 0)]);
1096 } else if (n >= 43 && n < 51) {
1097 GET_REGL(env->gregs[n - 43]);
1098 } else if (n >= 51 && n < 59) {
1099 GET_REGL(env->gregs[n - (51 - 16)]);
1101 switch (n) {
1102 case 16: GET_REGL(env->pc);
1103 case 17: GET_REGL(env->pr);
1104 case 18: GET_REGL(env->gbr);
1105 case 19: GET_REGL(env->vbr);
1106 case 20: GET_REGL(env->mach);
1107 case 21: GET_REGL(env->macl);
1108 case 22: GET_REGL(env->sr);
1109 case 23: GET_REGL(env->fpul);
1110 case 24: GET_REGL(env->fpscr);
1111 case 41: GET_REGL(env->ssr);
1112 case 42: GET_REGL(env->spc);
1115 return 0;
1118 static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
1120 uint32_t tmp;
1122 tmp = ldl_p(mem_buf);
1124 if (n < 8) {
1125 if ((env->sr & (SR_MD | SR_RB)) == (SR_MD | SR_RB)) {
1126 env->gregs[n + 16] = tmp;
1127 } else {
1128 env->gregs[n] = tmp;
1130 return 4;
1131 } else if (n < 16) {
1132 env->gregs[n - 8] = tmp;
1133 return 4;
1134 } else if (n >= 25 && n < 41) {
1135 env->fregs[(n - 25) + ((env->fpscr & FPSCR_FR) ? 16 : 0)] = tmp;
1136 } else if (n >= 43 && n < 51) {
1137 env->gregs[n - 43] = tmp;
1138 return 4;
1139 } else if (n >= 51 && n < 59) {
1140 env->gregs[n - (51 - 16)] = tmp;
1141 return 4;
1143 switch (n) {
1144 case 16: env->pc = tmp;
1145 case 17: env->pr = tmp;
1146 case 18: env->gbr = tmp;
1147 case 19: env->vbr = tmp;
1148 case 20: env->mach = tmp;
1149 case 21: env->macl = tmp;
1150 case 22: env->sr = tmp;
1151 case 23: env->fpul = tmp;
1152 case 24: env->fpscr = tmp;
1153 case 41: env->ssr = tmp;
1154 case 42: env->spc = tmp;
1155 default: return 0;
1158 return 4;
1160 #elif defined (TARGET_CRIS)
1162 #define NUM_CORE_REGS 49
1164 static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
1166 uint8_t srs;
1168 srs = env->pregs[PR_SRS];
1169 if (n < 16) {
1170 GET_REG32(env->regs[n]);
1173 if (n >= 21 && n < 32) {
1174 GET_REG32(env->pregs[n - 16]);
1176 if (n >= 33 && n < 49) {
1177 GET_REG32(env->sregs[srs][n - 33]);
1179 switch (n) {
1180 case 16: GET_REG8(env->pregs[0]);
1181 case 17: GET_REG8(env->pregs[1]);
1182 case 18: GET_REG32(env->pregs[2]);
1183 case 19: GET_REG8(srs);
1184 case 20: GET_REG16(env->pregs[4]);
1185 case 32: GET_REG32(env->pc);
1188 return 0;
1191 static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
1193 uint32_t tmp;
1195 if (n > 49)
1196 return 0;
1198 tmp = ldl_p(mem_buf);
1200 if (n < 16) {
1201 env->regs[n] = tmp;
1204 if (n >= 21 && n < 32) {
1205 env->pregs[n - 16] = tmp;
1208 /* FIXME: Should support function regs be writable? */
1209 switch (n) {
1210 case 16: return 1;
1211 case 17: return 1;
1212 case 18: env->pregs[PR_PID] = tmp; break;
1213 case 19: return 1;
1214 case 20: return 2;
1215 case 32: env->pc = tmp; break;
1218 return 4;
1220 #elif defined (TARGET_ALPHA)
1222 #define NUM_CORE_REGS 65
1224 static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
1226 if (n < 31) {
1227 GET_REGL(env->ir[n]);
1229 else if (n == 31) {
1230 GET_REGL(0);
1232 else if (n<63) {
1233 uint64_t val;
1235 val=*((uint64_t *)&env->fir[n-32]);
1236 GET_REGL(val);
1238 else if (n==63) {
1239 GET_REGL(env->fpcr);
1241 else if (n==64) {
1242 GET_REGL(env->pc);
1244 else {
1245 GET_REGL(0);
1248 return 0;
1251 static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
1253 target_ulong tmp;
1254 tmp = ldtul_p(mem_buf);
1256 if (n < 31) {
1257 env->ir[n] = tmp;
1260 if (n > 31 && n < 63) {
1261 env->fir[n - 32] = ldfl_p(mem_buf);
1264 if (n == 64 ) {
1265 env->pc=tmp;
1268 return 8;
1270 #else
1272 #define NUM_CORE_REGS 0
1274 static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
1276 return 0;
1279 static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
1281 return 0;
1284 #endif
1286 static int num_g_regs = NUM_CORE_REGS;
1288 #ifdef GDB_CORE_XML
1289 /* Encode data using the encoding for 'x' packets. */
1290 static int memtox(char *buf, const char *mem, int len)
1292 char *p = buf;
1293 char c;
1295 while (len--) {
1296 c = *(mem++);
1297 switch (c) {
1298 case '#': case '$': case '*': case '}':
1299 *(p++) = '}';
1300 *(p++) = c ^ 0x20;
1301 break;
1302 default:
1303 *(p++) = c;
1304 break;
1307 return p - buf;
1310 static const char *get_feature_xml(const char *p, const char **newp)
1312 extern const char *const xml_builtin[][2];
1313 size_t len;
1314 int i;
1315 const char *name;
1316 static char target_xml[1024];
1318 len = 0;
1319 while (p[len] && p[len] != ':')
1320 len++;
1321 *newp = p + len;
1323 name = NULL;
1324 if (strncmp(p, "target.xml", len) == 0) {
1325 /* Generate the XML description for this CPU. */
1326 if (!target_xml[0]) {
1327 GDBRegisterState *r;
1329 snprintf(target_xml, sizeof(target_xml),
1330 "<?xml version=\"1.0\"?>"
1331 "<!DOCTYPE target SYSTEM \"gdb-target.dtd\">"
1332 "<target>"
1333 "<xi:include href=\"%s\"/>",
1334 GDB_CORE_XML);
1336 for (r = first_cpu->gdb_regs; r; r = r->next) {
1337 strcat(target_xml, "<xi:include href=\"");
1338 strcat(target_xml, r->xml);
1339 strcat(target_xml, "\"/>");
1341 strcat(target_xml, "</target>");
1343 return target_xml;
1345 for (i = 0; ; i++) {
1346 name = xml_builtin[i][0];
1347 if (!name || (strncmp(name, p, len) == 0 && strlen(name) == len))
1348 break;
1350 return name ? xml_builtin[i][1] : NULL;
1352 #endif
1354 static int gdb_read_register(CPUState *env, uint8_t *mem_buf, int reg)
1356 GDBRegisterState *r;
1358 if (reg < NUM_CORE_REGS)
1359 return cpu_gdb_read_register(env, mem_buf, reg);
1361 for (r = env->gdb_regs; r; r = r->next) {
1362 if (r->base_reg <= reg && reg < r->base_reg + r->num_regs) {
1363 return r->get_reg(env, mem_buf, reg - r->base_reg);
1366 return 0;
1369 static int gdb_write_register(CPUState *env, uint8_t *mem_buf, int reg)
1371 GDBRegisterState *r;
1373 if (reg < NUM_CORE_REGS)
1374 return cpu_gdb_write_register(env, mem_buf, reg);
1376 for (r = env->gdb_regs; r; r = r->next) {
1377 if (r->base_reg <= reg && reg < r->base_reg + r->num_regs) {
1378 return r->set_reg(env, mem_buf, reg - r->base_reg);
1381 return 0;
1384 /* Register a supplemental set of CPU registers. If g_pos is nonzero it
1385 specifies the first register number and these registers are included in
1386 a standard "g" packet. Direction is relative to gdb, i.e. get_reg is
1387 gdb reading a CPU register, and set_reg is gdb modifying a CPU register.
1390 void gdb_register_coprocessor(CPUState * env,
1391 gdb_reg_cb get_reg, gdb_reg_cb set_reg,
1392 int num_regs, const char *xml, int g_pos)
1394 GDBRegisterState *s;
1395 GDBRegisterState **p;
1396 static int last_reg = NUM_CORE_REGS;
1398 s = (GDBRegisterState *)qemu_mallocz(sizeof(GDBRegisterState));
1399 s->base_reg = last_reg;
1400 s->num_regs = num_regs;
1401 s->get_reg = get_reg;
1402 s->set_reg = set_reg;
1403 s->xml = xml;
1404 p = &env->gdb_regs;
1405 while (*p) {
1406 /* Check for duplicates. */
1407 if (strcmp((*p)->xml, xml) == 0)
1408 return;
1409 p = &(*p)->next;
1411 /* Add to end of list. */
1412 last_reg += num_regs;
1413 *p = s;
1414 if (g_pos) {
1415 if (g_pos != s->base_reg) {
1416 fprintf(stderr, "Error: Bad gdb register numbering for '%s'\n"
1417 "Expected %d got %d\n", xml, g_pos, s->base_reg);
1418 } else {
1419 num_g_regs = last_reg;
1424 #ifndef CONFIG_USER_ONLY
1425 static const int xlat_gdb_type[] = {
1426 [GDB_WATCHPOINT_WRITE] = BP_GDB | BP_MEM_WRITE,
1427 [GDB_WATCHPOINT_READ] = BP_GDB | BP_MEM_READ,
1428 [GDB_WATCHPOINT_ACCESS] = BP_GDB | BP_MEM_ACCESS,
1430 #endif
1432 static int gdb_breakpoint_insert(target_ulong addr, target_ulong len, int type)
1434 CPUState *env;
1435 int err = 0;
1437 if (kvm_enabled())
1438 return kvm_insert_breakpoint(gdbserver_state->c_cpu, addr, len, type);
1440 switch (type) {
1441 case GDB_BREAKPOINT_SW:
1442 case GDB_BREAKPOINT_HW:
1443 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1444 err = cpu_breakpoint_insert(env, addr, BP_GDB, NULL);
1445 if (err)
1446 break;
1448 return err;
1449 #ifndef CONFIG_USER_ONLY
1450 case GDB_WATCHPOINT_WRITE:
1451 case GDB_WATCHPOINT_READ:
1452 case GDB_WATCHPOINT_ACCESS:
1453 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1454 err = cpu_watchpoint_insert(env, addr, len, xlat_gdb_type[type],
1455 NULL);
1456 if (err)
1457 break;
1459 return err;
1460 #endif
1461 default:
1462 return -ENOSYS;
1466 static int gdb_breakpoint_remove(target_ulong addr, target_ulong len, int type)
1468 CPUState *env;
1469 int err = 0;
1471 if (kvm_enabled())
1472 return kvm_remove_breakpoint(gdbserver_state->c_cpu, addr, len, type);
1474 switch (type) {
1475 case GDB_BREAKPOINT_SW:
1476 case GDB_BREAKPOINT_HW:
1477 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1478 err = cpu_breakpoint_remove(env, addr, BP_GDB);
1479 if (err)
1480 break;
1482 return err;
1483 #ifndef CONFIG_USER_ONLY
1484 case GDB_WATCHPOINT_WRITE:
1485 case GDB_WATCHPOINT_READ:
1486 case GDB_WATCHPOINT_ACCESS:
1487 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1488 err = cpu_watchpoint_remove(env, addr, len, xlat_gdb_type[type]);
1489 if (err)
1490 break;
1492 return err;
1493 #endif
1494 default:
1495 return -ENOSYS;
1499 static void gdb_breakpoint_remove_all(void)
1501 CPUState *env;
1503 if (kvm_enabled()) {
1504 kvm_remove_all_breakpoints(gdbserver_state->c_cpu);
1505 return;
1508 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1509 cpu_breakpoint_remove_all(env, BP_GDB);
1510 #ifndef CONFIG_USER_ONLY
1511 cpu_watchpoint_remove_all(env, BP_GDB);
1512 #endif
1516 static int gdb_handle_packet(GDBState *s, const char *line_buf)
1518 CPUState *env;
1519 const char *p;
1520 int ch, reg_size, type, res, thread;
1521 char buf[MAX_PACKET_LENGTH];
1522 uint8_t mem_buf[MAX_PACKET_LENGTH];
1523 uint8_t *registers;
1524 target_ulong addr, len;
1526 #ifdef DEBUG_GDB
1527 printf("command='%s'\n", line_buf);
1528 #endif
1529 p = line_buf;
1530 ch = *p++;
1531 switch(ch) {
1532 case '?':
1533 /* TODO: Make this return the correct value for user-mode. */
1534 snprintf(buf, sizeof(buf), "T%02xthread:%02x;", GDB_SIGNAL_TRAP,
1535 s->c_cpu->cpu_index+1);
1536 put_packet(s, buf);
1537 /* Remove all the breakpoints when this query is issued,
1538 * because gdb is doing and initial connect and the state
1539 * should be cleaned up.
1541 gdb_breakpoint_remove_all();
1542 break;
1543 case 'c':
1544 if (*p != '\0') {
1545 addr = strtoull(p, (char **)&p, 16);
1546 #if defined(TARGET_I386)
1547 s->c_cpu->eip = addr;
1548 cpu_synchronize_state(s->c_cpu, 1);
1549 #elif defined (TARGET_PPC)
1550 s->c_cpu->nip = addr;
1551 kvm_load_registers(s->c_cpu);
1552 #elif defined (TARGET_SPARC)
1553 s->c_cpu->pc = addr;
1554 s->c_cpu->npc = addr + 4;
1555 #elif defined (TARGET_ARM)
1556 s->c_cpu->regs[15] = addr;
1557 #elif defined (TARGET_SH4)
1558 s->c_cpu->pc = addr;
1559 #elif defined (TARGET_MIPS)
1560 s->c_cpu->active_tc.PC = addr;
1561 #elif defined (TARGET_CRIS)
1562 s->c_cpu->pc = addr;
1563 #elif defined (TARGET_ALPHA)
1564 s->c_cpu->pc = addr;
1565 #endif
1567 s->signal = 0;
1568 gdb_continue(s);
1569 return RS_IDLE;
1570 case 'C':
1571 s->signal = gdb_signal_to_target (strtoul(p, (char **)&p, 16));
1572 if (s->signal == -1)
1573 s->signal = 0;
1574 gdb_continue(s);
1575 return RS_IDLE;
1576 case 'k':
1577 /* Kill the target */
1578 fprintf(stderr, "\nQEMU: Terminated via GDBstub\n");
1579 exit(0);
1580 case 'D':
1581 /* Detach packet */
1582 gdb_breakpoint_remove_all();
1583 gdb_continue(s);
1584 put_packet(s, "OK");
1585 break;
1586 case 's':
1587 if (*p != '\0') {
1588 addr = strtoull(p, (char **)&p, 16);
1589 #if defined(TARGET_I386)
1590 s->c_cpu->eip = addr;
1591 cpu_synchronize_state(s->c_cpu, 1);
1592 #elif defined (TARGET_PPC)
1593 s->c_cpu->nip = addr;
1594 kvm_load_registers(s->c_cpu);
1595 #elif defined (TARGET_SPARC)
1596 s->c_cpu->pc = addr;
1597 s->c_cpu->npc = addr + 4;
1598 #elif defined (TARGET_ARM)
1599 s->c_cpu->regs[15] = addr;
1600 #elif defined (TARGET_SH4)
1601 s->c_cpu->pc = addr;
1602 #elif defined (TARGET_MIPS)
1603 s->c_cpu->active_tc.PC = addr;
1604 #elif defined (TARGET_CRIS)
1605 s->c_cpu->pc = addr;
1606 #elif defined (TARGET_ALPHA)
1607 s->c_cpu->pc = addr;
1608 #endif
1610 cpu_single_step(s->c_cpu, sstep_flags);
1611 gdb_continue(s);
1612 return RS_IDLE;
1613 case 'F':
1615 target_ulong ret;
1616 target_ulong err;
1618 ret = strtoull(p, (char **)&p, 16);
1619 if (*p == ',') {
1620 p++;
1621 err = strtoull(p, (char **)&p, 16);
1622 } else {
1623 err = 0;
1625 if (*p == ',')
1626 p++;
1627 type = *p;
1628 if (gdb_current_syscall_cb)
1629 gdb_current_syscall_cb(s->c_cpu, ret, err);
1630 if (type == 'C') {
1631 put_packet(s, "T02");
1632 } else {
1633 gdb_continue(s);
1636 break;
1637 case 'g':
1638 cpu_synchronize_state(s->g_cpu, 0);
1639 len = 0;
1640 for (addr = 0; addr < num_g_regs; addr++) {
1641 reg_size = gdb_read_register(s->g_cpu, mem_buf + len, addr);
1642 len += reg_size;
1644 memtohex(buf, mem_buf, len);
1645 put_packet(s, buf);
1646 break;
1647 case 'G':
1648 registers = mem_buf;
1649 len = strlen(p) / 2;
1650 hextomem((uint8_t *)registers, p, len);
1651 for (addr = 0; addr < num_g_regs && len > 0; addr++) {
1652 reg_size = gdb_write_register(s->g_cpu, registers, addr);
1653 len -= reg_size;
1654 registers += reg_size;
1656 cpu_synchronize_state(s->g_cpu, 1);
1657 put_packet(s, "OK");
1658 break;
1659 case 'm':
1660 addr = strtoull(p, (char **)&p, 16);
1661 if (*p == ',')
1662 p++;
1663 len = strtoull(p, NULL, 16);
1664 if (cpu_memory_rw_debug(s->g_cpu, addr, mem_buf, len, 0) != 0) {
1665 put_packet (s, "E14");
1666 } else {
1667 memtohex(buf, mem_buf, len);
1668 put_packet(s, buf);
1670 break;
1671 case 'M':
1672 addr = strtoull(p, (char **)&p, 16);
1673 if (*p == ',')
1674 p++;
1675 len = strtoull(p, (char **)&p, 16);
1676 if (*p == ':')
1677 p++;
1678 hextomem(mem_buf, p, len);
1679 if (cpu_memory_rw_debug(s->g_cpu, addr, mem_buf, len, 1) != 0)
1680 put_packet(s, "E14");
1681 else
1682 put_packet(s, "OK");
1683 break;
1684 case 'p':
1685 /* Older gdb are really dumb, and don't use 'g' if 'p' is avaialable.
1686 This works, but can be very slow. Anything new enough to
1687 understand XML also knows how to use this properly. */
1688 if (!gdb_has_xml)
1689 goto unknown_command;
1690 addr = strtoull(p, (char **)&p, 16);
1691 reg_size = gdb_read_register(s->g_cpu, mem_buf, addr);
1692 if (reg_size) {
1693 memtohex(buf, mem_buf, reg_size);
1694 put_packet(s, buf);
1695 } else {
1696 put_packet(s, "E14");
1698 break;
1699 case 'P':
1700 if (!gdb_has_xml)
1701 goto unknown_command;
1702 addr = strtoull(p, (char **)&p, 16);
1703 if (*p == '=')
1704 p++;
1705 reg_size = strlen(p) / 2;
1706 hextomem(mem_buf, p, reg_size);
1707 gdb_write_register(s->g_cpu, mem_buf, addr);
1708 put_packet(s, "OK");
1709 break;
1710 case 'Z':
1711 case 'z':
1712 type = strtoul(p, (char **)&p, 16);
1713 if (*p == ',')
1714 p++;
1715 addr = strtoull(p, (char **)&p, 16);
1716 if (*p == ',')
1717 p++;
1718 len = strtoull(p, (char **)&p, 16);
1719 if (ch == 'Z')
1720 res = gdb_breakpoint_insert(addr, len, type);
1721 else
1722 res = gdb_breakpoint_remove(addr, len, type);
1723 if (res >= 0)
1724 put_packet(s, "OK");
1725 else if (res == -ENOSYS)
1726 put_packet(s, "");
1727 else
1728 put_packet(s, "E22");
1729 break;
1730 case 'H':
1731 type = *p++;
1732 thread = strtoull(p, (char **)&p, 16);
1733 if (thread == -1 || thread == 0) {
1734 put_packet(s, "OK");
1735 break;
1737 for (env = first_cpu; env != NULL; env = env->next_cpu)
1738 if (env->cpu_index + 1 == thread)
1739 break;
1740 if (env == NULL) {
1741 put_packet(s, "E22");
1742 break;
1744 switch (type) {
1745 case 'c':
1746 s->c_cpu = env;
1747 put_packet(s, "OK");
1748 break;
1749 case 'g':
1750 s->g_cpu = env;
1751 put_packet(s, "OK");
1752 break;
1753 default:
1754 put_packet(s, "E22");
1755 break;
1757 break;
1758 case 'T':
1759 thread = strtoull(p, (char **)&p, 16);
1760 #ifndef CONFIG_USER_ONLY
1761 if (thread > 0 && thread < smp_cpus + 1)
1762 #else
1763 if (thread == 1)
1764 #endif
1765 put_packet(s, "OK");
1766 else
1767 put_packet(s, "E22");
1768 break;
1769 case 'q':
1770 case 'Q':
1771 /* parse any 'q' packets here */
1772 if (!strcmp(p,"qemu.sstepbits")) {
1773 /* Query Breakpoint bit definitions */
1774 snprintf(buf, sizeof(buf), "ENABLE=%x,NOIRQ=%x,NOTIMER=%x",
1775 SSTEP_ENABLE,
1776 SSTEP_NOIRQ,
1777 SSTEP_NOTIMER);
1778 put_packet(s, buf);
1779 break;
1780 } else if (strncmp(p,"qemu.sstep",10) == 0) {
1781 /* Display or change the sstep_flags */
1782 p += 10;
1783 if (*p != '=') {
1784 /* Display current setting */
1785 snprintf(buf, sizeof(buf), "0x%x", sstep_flags);
1786 put_packet(s, buf);
1787 break;
1789 p++;
1790 type = strtoul(p, (char **)&p, 16);
1791 sstep_flags = type;
1792 put_packet(s, "OK");
1793 break;
1794 } else if (strcmp(p,"C") == 0) {
1795 /* "Current thread" remains vague in the spec, so always return
1796 * the first CPU (gdb returns the first thread). */
1797 put_packet(s, "QC1");
1798 break;
1799 } else if (strcmp(p,"fThreadInfo") == 0) {
1800 s->query_cpu = first_cpu;
1801 goto report_cpuinfo;
1802 } else if (strcmp(p,"sThreadInfo") == 0) {
1803 report_cpuinfo:
1804 if (s->query_cpu) {
1805 snprintf(buf, sizeof(buf), "m%x", s->query_cpu->cpu_index+1);
1806 put_packet(s, buf);
1807 s->query_cpu = s->query_cpu->next_cpu;
1808 } else
1809 put_packet(s, "l");
1810 break;
1811 } else if (strncmp(p,"ThreadExtraInfo,", 16) == 0) {
1812 thread = strtoull(p+16, (char **)&p, 16);
1813 for (env = first_cpu; env != NULL; env = env->next_cpu)
1814 if (env->cpu_index + 1 == thread) {
1815 cpu_synchronize_state(env, 0);
1816 len = snprintf((char *)mem_buf, sizeof(mem_buf),
1817 "CPU#%d [%s]", env->cpu_index,
1818 env->halted ? "halted " : "running");
1819 memtohex(buf, mem_buf, len);
1820 put_packet(s, buf);
1821 break;
1823 break;
1825 #ifdef CONFIG_USER_ONLY
1826 else if (strncmp(p, "Offsets", 7) == 0) {
1827 TaskState *ts = s->c_cpu->opaque;
1829 snprintf(buf, sizeof(buf),
1830 "Text=" TARGET_ABI_FMT_lx ";Data=" TARGET_ABI_FMT_lx
1831 ";Bss=" TARGET_ABI_FMT_lx,
1832 ts->info->code_offset,
1833 ts->info->data_offset,
1834 ts->info->data_offset);
1835 put_packet(s, buf);
1836 break;
1838 #else /* !CONFIG_USER_ONLY */
1839 else if (strncmp(p, "Rcmd,", 5) == 0) {
1840 int len = strlen(p + 5);
1842 if ((len % 2) != 0) {
1843 put_packet(s, "E01");
1844 break;
1846 hextomem(mem_buf, p + 5, len);
1847 len = len / 2;
1848 mem_buf[len++] = 0;
1849 qemu_chr_read(s->mon_chr, mem_buf, len);
1850 put_packet(s, "OK");
1851 break;
1853 #endif /* !CONFIG_USER_ONLY */
1854 if (strncmp(p, "Supported", 9) == 0) {
1855 snprintf(buf, sizeof(buf), "PacketSize=%x", MAX_PACKET_LENGTH);
1856 #ifdef GDB_CORE_XML
1857 strcat(buf, ";qXfer:features:read+");
1858 #endif
1859 put_packet(s, buf);
1860 break;
1862 #ifdef GDB_CORE_XML
1863 if (strncmp(p, "Xfer:features:read:", 19) == 0) {
1864 const char *xml;
1865 target_ulong total_len;
1867 gdb_has_xml = 1;
1868 p += 19;
1869 xml = get_feature_xml(p, &p);
1870 if (!xml) {
1871 snprintf(buf, sizeof(buf), "E00");
1872 put_packet(s, buf);
1873 break;
1876 if (*p == ':')
1877 p++;
1878 addr = strtoul(p, (char **)&p, 16);
1879 if (*p == ',')
1880 p++;
1881 len = strtoul(p, (char **)&p, 16);
1883 total_len = strlen(xml);
1884 if (addr > total_len) {
1885 snprintf(buf, sizeof(buf), "E00");
1886 put_packet(s, buf);
1887 break;
1889 if (len > (MAX_PACKET_LENGTH - 5) / 2)
1890 len = (MAX_PACKET_LENGTH - 5) / 2;
1891 if (len < total_len - addr) {
1892 buf[0] = 'm';
1893 len = memtox(buf + 1, xml + addr, len);
1894 } else {
1895 buf[0] = 'l';
1896 len = memtox(buf + 1, xml + addr, total_len - addr);
1898 put_packet_binary(s, buf, len + 1);
1899 break;
1901 #endif
1902 /* Unrecognised 'q' command. */
1903 goto unknown_command;
1905 default:
1906 unknown_command:
1907 /* put empty packet */
1908 buf[0] = '\0';
1909 put_packet(s, buf);
1910 break;
1912 return RS_IDLE;
1915 void gdb_set_stop_cpu(CPUState *env)
1917 gdbserver_state->c_cpu = env;
1918 gdbserver_state->g_cpu = env;
1921 #ifndef CONFIG_USER_ONLY
1922 static void gdb_vm_state_change(void *opaque, int running, int reason)
1924 GDBState *s = gdbserver_state;
1925 CPUState *env = s->c_cpu;
1926 char buf[256];
1927 const char *type;
1928 int ret;
1930 if (running || (reason != EXCP_DEBUG && reason != EXCP_INTERRUPT) ||
1931 s->state == RS_INACTIVE || s->state == RS_SYSCALL)
1932 return;
1934 /* disable single step if it was enable */
1935 cpu_single_step(env, 0);
1937 if (reason == EXCP_DEBUG) {
1938 if (env->watchpoint_hit) {
1939 switch (env->watchpoint_hit->flags & BP_MEM_ACCESS) {
1940 case BP_MEM_READ:
1941 type = "r";
1942 break;
1943 case BP_MEM_ACCESS:
1944 type = "a";
1945 break;
1946 default:
1947 type = "";
1948 break;
1950 snprintf(buf, sizeof(buf),
1951 "T%02xthread:%02x;%swatch:" TARGET_FMT_lx ";",
1952 GDB_SIGNAL_TRAP, env->cpu_index+1, type,
1953 env->watchpoint_hit->vaddr);
1954 put_packet(s, buf);
1955 env->watchpoint_hit = NULL;
1956 return;
1958 tb_flush(env);
1959 ret = GDB_SIGNAL_TRAP;
1960 } else {
1961 ret = GDB_SIGNAL_INT;
1963 snprintf(buf, sizeof(buf), "T%02xthread:%02x;", ret, env->cpu_index+1);
1964 put_packet(s, buf);
1966 #endif
1968 /* Send a gdb syscall request.
1969 This accepts limited printf-style format specifiers, specifically:
1970 %x - target_ulong argument printed in hex.
1971 %lx - 64-bit argument printed in hex.
1972 %s - string pointer (target_ulong) and length (int) pair. */
1973 void gdb_do_syscall(gdb_syscall_complete_cb cb, const char *fmt, ...)
1975 va_list va;
1976 char buf[256];
1977 char *p;
1978 target_ulong addr;
1979 uint64_t i64;
1980 GDBState *s;
1982 s = gdbserver_state;
1983 if (!s)
1984 return;
1985 gdb_current_syscall_cb = cb;
1986 s->state = RS_SYSCALL;
1987 #ifndef CONFIG_USER_ONLY
1988 vm_stop(EXCP_DEBUG);
1989 #endif
1990 s->state = RS_IDLE;
1991 va_start(va, fmt);
1992 p = buf;
1993 *(p++) = 'F';
1994 while (*fmt) {
1995 if (*fmt == '%') {
1996 fmt++;
1997 switch (*fmt++) {
1998 case 'x':
1999 addr = va_arg(va, target_ulong);
2000 p += snprintf(p, &buf[sizeof(buf)] - p, TARGET_FMT_lx, addr);
2001 break;
2002 case 'l':
2003 if (*(fmt++) != 'x')
2004 goto bad_format;
2005 i64 = va_arg(va, uint64_t);
2006 p += snprintf(p, &buf[sizeof(buf)] - p, "%" PRIx64, i64);
2007 break;
2008 case 's':
2009 addr = va_arg(va, target_ulong);
2010 p += snprintf(p, &buf[sizeof(buf)] - p, TARGET_FMT_lx "/%x",
2011 addr, va_arg(va, int));
2012 break;
2013 default:
2014 bad_format:
2015 fprintf(stderr, "gdbstub: Bad syscall format string '%s'\n",
2016 fmt - 1);
2017 break;
2019 } else {
2020 *(p++) = *(fmt++);
2023 *p = 0;
2024 va_end(va);
2025 put_packet(s, buf);
2026 #ifdef CONFIG_USER_ONLY
2027 gdb_handlesig(s->c_cpu, 0);
2028 #else
2029 cpu_exit(s->c_cpu);
2030 #endif
2033 static void gdb_read_byte(GDBState *s, int ch)
2035 int i, csum;
2036 uint8_t reply;
2038 #ifndef CONFIG_USER_ONLY
2039 if (s->last_packet_len) {
2040 /* Waiting for a response to the last packet. If we see the start
2041 of a new command then abandon the previous response. */
2042 if (ch == '-') {
2043 #ifdef DEBUG_GDB
2044 printf("Got NACK, retransmitting\n");
2045 #endif
2046 put_buffer(s, (uint8_t *)s->last_packet, s->last_packet_len);
2048 #ifdef DEBUG_GDB
2049 else if (ch == '+')
2050 printf("Got ACK\n");
2051 else
2052 printf("Got '%c' when expecting ACK/NACK\n", ch);
2053 #endif
2054 if (ch == '+' || ch == '$')
2055 s->last_packet_len = 0;
2056 if (ch != '$')
2057 return;
2059 if (vm_running) {
2060 /* when the CPU is running, we cannot do anything except stop
2061 it when receiving a char */
2062 vm_stop(EXCP_INTERRUPT);
2063 } else
2064 #endif
2066 switch(s->state) {
2067 case RS_IDLE:
2068 if (ch == '$') {
2069 s->line_buf_index = 0;
2070 s->state = RS_GETLINE;
2072 break;
2073 case RS_GETLINE:
2074 if (ch == '#') {
2075 s->state = RS_CHKSUM1;
2076 } else if (s->line_buf_index >= sizeof(s->line_buf) - 1) {
2077 s->state = RS_IDLE;
2078 } else {
2079 s->line_buf[s->line_buf_index++] = ch;
2081 break;
2082 case RS_CHKSUM1:
2083 s->line_buf[s->line_buf_index] = '\0';
2084 s->line_csum = fromhex(ch) << 4;
2085 s->state = RS_CHKSUM2;
2086 break;
2087 case RS_CHKSUM2:
2088 s->line_csum |= fromhex(ch);
2089 csum = 0;
2090 for(i = 0; i < s->line_buf_index; i++) {
2091 csum += s->line_buf[i];
2093 if (s->line_csum != (csum & 0xff)) {
2094 reply = '-';
2095 put_buffer(s, &reply, 1);
2096 s->state = RS_IDLE;
2097 } else {
2098 reply = '+';
2099 put_buffer(s, &reply, 1);
2100 s->state = gdb_handle_packet(s, s->line_buf);
2102 break;
2103 default:
2104 abort();
2109 #ifdef CONFIG_USER_ONLY
2111 gdb_queuesig (void)
2113 GDBState *s;
2115 s = gdbserver_state;
2117 if (gdbserver_fd < 0 || s->fd < 0)
2118 return 0;
2119 else
2120 return 1;
2124 gdb_handlesig (CPUState *env, int sig)
2126 GDBState *s;
2127 char buf[256];
2128 int n;
2130 s = gdbserver_state;
2131 if (gdbserver_fd < 0 || s->fd < 0)
2132 return sig;
2134 /* disable single step if it was enabled */
2135 cpu_single_step(env, 0);
2136 tb_flush(env);
2138 if (sig != 0)
2140 snprintf(buf, sizeof(buf), "S%02x", target_signal_to_gdb (sig));
2141 put_packet(s, buf);
2143 /* put_packet() might have detected that the peer terminated the
2144 connection. */
2145 if (s->fd < 0)
2146 return sig;
2148 sig = 0;
2149 s->state = RS_IDLE;
2150 s->running_state = 0;
2151 while (s->running_state == 0) {
2152 n = read (s->fd, buf, 256);
2153 if (n > 0)
2155 int i;
2157 for (i = 0; i < n; i++)
2158 gdb_read_byte (s, buf[i]);
2160 else if (n == 0 || errno != EAGAIN)
2162 /* XXX: Connection closed. Should probably wait for annother
2163 connection before continuing. */
2164 return sig;
2167 sig = s->signal;
2168 s->signal = 0;
2169 return sig;
2172 /* Tell the remote gdb that the process has exited. */
2173 void gdb_exit(CPUState *env, int code)
2175 GDBState *s;
2176 char buf[4];
2178 s = gdbserver_state;
2179 if (gdbserver_fd < 0 || s->fd < 0)
2180 return;
2182 snprintf(buf, sizeof(buf), "W%02x", code);
2183 put_packet(s, buf);
2186 /* Tell the remote gdb that the process has exited due to SIG. */
2187 void gdb_signalled(CPUState *env, int sig)
2189 GDBState *s;
2190 char buf[4];
2192 s = gdbserver_state;
2193 if (gdbserver_fd < 0 || s->fd < 0)
2194 return;
2196 snprintf(buf, sizeof(buf), "X%02x", target_signal_to_gdb (sig));
2197 put_packet(s, buf);
2200 static void gdb_accept(void)
2202 GDBState *s;
2203 struct sockaddr_in sockaddr;
2204 socklen_t len;
2205 int val, fd;
2207 for(;;) {
2208 len = sizeof(sockaddr);
2209 fd = accept(gdbserver_fd, (struct sockaddr *)&sockaddr, &len);
2210 if (fd < 0 && errno != EINTR) {
2211 perror("accept");
2212 return;
2213 } else if (fd >= 0) {
2214 break;
2218 /* set short latency */
2219 val = 1;
2220 setsockopt(fd, IPPROTO_TCP, TCP_NODELAY, (char *)&val, sizeof(val));
2222 s = qemu_mallocz(sizeof(GDBState));
2223 s->c_cpu = first_cpu;
2224 s->g_cpu = first_cpu;
2225 s->fd = fd;
2226 gdb_has_xml = 0;
2228 gdbserver_state = s;
2230 fcntl(fd, F_SETFL, O_NONBLOCK);
2233 static int gdbserver_open(int port)
2235 struct sockaddr_in sockaddr;
2236 int fd, val, ret;
2238 fd = socket(PF_INET, SOCK_STREAM, 0);
2239 if (fd < 0) {
2240 perror("socket");
2241 return -1;
2244 /* allow fast reuse */
2245 val = 1;
2246 setsockopt(fd, SOL_SOCKET, SO_REUSEADDR, (char *)&val, sizeof(val));
2248 sockaddr.sin_family = AF_INET;
2249 sockaddr.sin_port = htons(port);
2250 sockaddr.sin_addr.s_addr = 0;
2251 ret = bind(fd, (struct sockaddr *)&sockaddr, sizeof(sockaddr));
2252 if (ret < 0) {
2253 perror("bind");
2254 return -1;
2256 ret = listen(fd, 0);
2257 if (ret < 0) {
2258 perror("listen");
2259 return -1;
2261 return fd;
2264 int gdbserver_start(int port)
2266 gdbserver_fd = gdbserver_open(port);
2267 if (gdbserver_fd < 0)
2268 return -1;
2269 /* accept connections */
2270 gdb_accept();
2271 return 0;
2274 /* Disable gdb stub for child processes. */
2275 void gdbserver_fork(CPUState *env)
2277 GDBState *s = gdbserver_state;
2278 if (gdbserver_fd < 0 || s->fd < 0)
2279 return;
2280 close(s->fd);
2281 s->fd = -1;
2282 cpu_breakpoint_remove_all(env, BP_GDB);
2283 cpu_watchpoint_remove_all(env, BP_GDB);
2285 #else
2286 static int gdb_chr_can_receive(void *opaque)
2288 /* We can handle an arbitrarily large amount of data.
2289 Pick the maximum packet size, which is as good as anything. */
2290 return MAX_PACKET_LENGTH;
2293 static void gdb_chr_receive(void *opaque, const uint8_t *buf, int size)
2295 int i;
2297 for (i = 0; i < size; i++) {
2298 gdb_read_byte(gdbserver_state, buf[i]);
2302 static void gdb_chr_event(void *opaque, int event)
2304 switch (event) {
2305 case CHR_EVENT_RESET:
2306 vm_stop(EXCP_INTERRUPT);
2307 gdb_has_xml = 0;
2308 break;
2309 default:
2310 break;
2314 static void gdb_monitor_output(GDBState *s, const char *msg, int len)
2316 char buf[MAX_PACKET_LENGTH];
2318 buf[0] = 'O';
2319 if (len > (MAX_PACKET_LENGTH/2) - 1)
2320 len = (MAX_PACKET_LENGTH/2) - 1;
2321 memtohex(buf + 1, (uint8_t *)msg, len);
2322 put_packet(s, buf);
2325 static int gdb_monitor_write(CharDriverState *chr, const uint8_t *buf, int len)
2327 const char *p = (const char *)buf;
2328 int max_sz;
2330 max_sz = (sizeof(gdbserver_state->last_packet) - 2) / 2;
2331 for (;;) {
2332 if (len <= max_sz) {
2333 gdb_monitor_output(gdbserver_state, p, len);
2334 break;
2336 gdb_monitor_output(gdbserver_state, p, max_sz);
2337 p += max_sz;
2338 len -= max_sz;
2340 return len;
2343 #ifndef _WIN32
2344 static void gdb_sigterm_handler(int signal)
2346 if (vm_running)
2347 vm_stop(EXCP_INTERRUPT);
2349 #endif
2351 int gdbserver_start(const char *device)
2353 GDBState *s;
2354 char gdbstub_device_name[128];
2355 CharDriverState *chr = NULL;
2356 CharDriverState *mon_chr;
2358 if (!device)
2359 return -1;
2360 if (strcmp(device, "none") != 0) {
2361 if (strstart(device, "tcp:", NULL)) {
2362 /* enforce required TCP attributes */
2363 snprintf(gdbstub_device_name, sizeof(gdbstub_device_name),
2364 "%s,nowait,nodelay,server", device);
2365 device = gdbstub_device_name;
2367 #ifndef _WIN32
2368 else if (strcmp(device, "stdio") == 0) {
2369 struct sigaction act;
2371 memset(&act, 0, sizeof(act));
2372 act.sa_handler = gdb_sigterm_handler;
2373 sigaction(SIGINT, &act, NULL);
2375 #endif
2376 chr = qemu_chr_open("gdb", device, NULL);
2377 if (!chr)
2378 return -1;
2380 qemu_chr_add_handlers(chr, gdb_chr_can_receive, gdb_chr_receive,
2381 gdb_chr_event, NULL);
2384 s = gdbserver_state;
2385 if (!s) {
2386 s = qemu_mallocz(sizeof(GDBState));
2387 gdbserver_state = s;
2389 qemu_add_vm_change_state_handler(gdb_vm_state_change, NULL);
2391 /* Initialize a monitor terminal for gdb */
2392 mon_chr = qemu_mallocz(sizeof(*mon_chr));
2393 mon_chr->chr_write = gdb_monitor_write;
2394 monitor_init(mon_chr, 0);
2395 } else {
2396 if (s->chr)
2397 qemu_chr_close(s->chr);
2398 mon_chr = s->mon_chr;
2399 memset(s, 0, sizeof(GDBState));
2401 s->c_cpu = first_cpu;
2402 s->g_cpu = first_cpu;
2403 s->chr = chr;
2404 s->state = chr ? RS_IDLE : RS_INACTIVE;
2405 s->mon_chr = mon_chr;
2407 return 0;
2409 #endif