4 * Copyright (c) 2003-2005 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, write to the Free Software
18 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston MA 02110-1301 USA
21 #include "qemu-common.h"
22 #ifdef CONFIG_USER_ONLY
34 #include "qemu-char.h"
40 #define MAX_PACKET_LENGTH 4096
42 #include "qemu_socket.h"
50 GDB_SIGNAL_UNKNOWN
= 143
53 #ifdef CONFIG_USER_ONLY
55 /* Map target signal numbers to GDB protocol signal numbers and vice
56 * versa. For user emulation's currently supported systems, we can
57 * assume most signals are defined.
60 static int gdb_signal_table
[] = {
220 /* In system mode we only need SIGINT and SIGTRAP; other signals
221 are not yet supported. */
228 static int gdb_signal_table
[] = {
238 #ifdef CONFIG_USER_ONLY
239 static int target_signal_to_gdb (int sig
)
242 for (i
= 0; i
< ARRAY_SIZE (gdb_signal_table
); i
++)
243 if (gdb_signal_table
[i
] == sig
)
245 return GDB_SIGNAL_UNKNOWN
;
249 static int gdb_signal_to_target (int sig
)
251 if (sig
< ARRAY_SIZE (gdb_signal_table
))
252 return gdb_signal_table
[sig
];
259 typedef struct GDBRegisterState
{
265 struct GDBRegisterState
*next
;
276 typedef struct GDBState
{
277 CPUState
*c_cpu
; /* current CPU for step/continue ops */
278 CPUState
*g_cpu
; /* current CPU for other ops */
279 CPUState
*query_cpu
; /* for q{f|s}ThreadInfo */
280 enum RSState state
; /* parsing state */
281 char line_buf
[MAX_PACKET_LENGTH
];
284 uint8_t last_packet
[MAX_PACKET_LENGTH
+ 4];
287 #ifdef CONFIG_USER_ONLY
291 CharDriverState
*chr
;
292 CharDriverState
*mon_chr
;
296 /* By default use no IRQs and no timers while single stepping so as to
297 * make single stepping like an ICE HW step.
299 static int sstep_flags
= SSTEP_ENABLE
|SSTEP_NOIRQ
|SSTEP_NOTIMER
;
301 static GDBState
*gdbserver_state
;
303 /* This is an ugly hack to cope with both new and old gdb.
304 If gdb sends qXfer:features:read then assume we're talking to a newish
305 gdb that understands target descriptions. */
306 static int gdb_has_xml
;
308 #ifdef CONFIG_USER_ONLY
309 /* XXX: This is not thread safe. Do we care? */
310 static int gdbserver_fd
= -1;
312 static int get_char(GDBState
*s
)
318 ret
= recv(s
->fd
, &ch
, 1, 0);
320 if (errno
== ECONNRESET
)
322 if (errno
!= EINTR
&& errno
!= EAGAIN
)
324 } else if (ret
== 0) {
336 static gdb_syscall_complete_cb gdb_current_syscall_cb
;
344 /* If gdb is connected when the first semihosting syscall occurs then use
345 remote gdb syscalls. Otherwise use native file IO. */
346 int use_gdb_syscalls(void)
348 if (gdb_syscall_mode
== GDB_SYS_UNKNOWN
) {
349 gdb_syscall_mode
= (gdbserver_state
? GDB_SYS_ENABLED
352 return gdb_syscall_mode
== GDB_SYS_ENABLED
;
355 /* Resume execution. */
356 static inline void gdb_continue(GDBState
*s
)
358 #ifdef CONFIG_USER_ONLY
359 s
->running_state
= 1;
365 static void put_buffer(GDBState
*s
, const uint8_t *buf
, int len
)
367 #ifdef CONFIG_USER_ONLY
371 ret
= send(s
->fd
, buf
, len
, 0);
373 if (errno
!= EINTR
&& errno
!= EAGAIN
)
381 qemu_chr_write(s
->chr
, buf
, len
);
385 static inline int fromhex(int v
)
387 if (v
>= '0' && v
<= '9')
389 else if (v
>= 'A' && v
<= 'F')
391 else if (v
>= 'a' && v
<= 'f')
397 static inline int tohex(int v
)
405 static void memtohex(char *buf
, const uint8_t *mem
, int len
)
410 for(i
= 0; i
< len
; i
++) {
412 *q
++ = tohex(c
>> 4);
413 *q
++ = tohex(c
& 0xf);
418 static void hextomem(uint8_t *mem
, const char *buf
, int len
)
422 for(i
= 0; i
< len
; i
++) {
423 mem
[i
] = (fromhex(buf
[0]) << 4) | fromhex(buf
[1]);
428 /* return -1 if error, 0 if OK */
429 static int put_packet_binary(GDBState
*s
, const char *buf
, int len
)
440 for(i
= 0; i
< len
; i
++) {
444 *(p
++) = tohex((csum
>> 4) & 0xf);
445 *(p
++) = tohex((csum
) & 0xf);
447 s
->last_packet_len
= p
- s
->last_packet
;
448 put_buffer(s
, (uint8_t *)s
->last_packet
, s
->last_packet_len
);
450 #ifdef CONFIG_USER_ONLY
463 /* return -1 if error, 0 if OK */
464 static int put_packet(GDBState
*s
, const char *buf
)
467 printf("reply='%s'\n", buf
);
470 return put_packet_binary(s
, buf
, strlen(buf
));
473 /* The GDB remote protocol transfers values in target byte order. This means
474 we can use the raw memory access routines to access the value buffer.
475 Conveniently, these also handle the case where the buffer is mis-aligned.
477 #define GET_REG8(val) do { \
478 stb_p(mem_buf, val); \
481 #define GET_REG16(val) do { \
482 stw_p(mem_buf, val); \
485 #define GET_REG32(val) do { \
486 stl_p(mem_buf, val); \
489 #define GET_REG64(val) do { \
490 stq_p(mem_buf, val); \
494 #if TARGET_LONG_BITS == 64
495 #define GET_REGL(val) GET_REG64(val)
496 #define ldtul_p(addr) ldq_p(addr)
498 #define GET_REGL(val) GET_REG32(val)
499 #define ldtul_p(addr) ldl_p(addr)
502 #if defined(TARGET_I386)
505 static const int gpr_map
[16] = {
506 R_EAX
, R_EBX
, R_ECX
, R_EDX
, R_ESI
, R_EDI
, R_EBP
, R_ESP
,
507 8, 9, 10, 11, 12, 13, 14, 15
510 static const int gpr_map
[8] = {0, 1, 2, 3, 4, 5, 6, 7};
513 #define NUM_CORE_REGS (CPU_NB_REGS * 2 + 25)
515 static int cpu_gdb_read_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
517 if (n
< CPU_NB_REGS
) {
518 GET_REGL(env
->regs
[gpr_map
[n
]]);
519 } else if (n
>= CPU_NB_REGS
+ 8 && n
< CPU_NB_REGS
+ 16) {
520 /* FIXME: byteswap float values. */
521 #ifdef USE_X86LDOUBLE
522 memcpy(mem_buf
, &env
->fpregs
[n
- (CPU_NB_REGS
+ 8)], 10);
524 memset(mem_buf
, 0, 10);
527 } else if (n
>= CPU_NB_REGS
+ 24) {
528 n
-= CPU_NB_REGS
+ 24;
529 if (n
< CPU_NB_REGS
) {
530 stq_p(mem_buf
, env
->xmm_regs
[n
].XMM_Q(0));
531 stq_p(mem_buf
+ 8, env
->xmm_regs
[n
].XMM_Q(1));
533 } else if (n
== CPU_NB_REGS
) {
534 GET_REG32(env
->mxcsr
);
539 case 0: GET_REGL(env
->eip
);
540 case 1: GET_REG32(env
->eflags
);
541 case 2: GET_REG32(env
->segs
[R_CS
].selector
);
542 case 3: GET_REG32(env
->segs
[R_SS
].selector
);
543 case 4: GET_REG32(env
->segs
[R_DS
].selector
);
544 case 5: GET_REG32(env
->segs
[R_ES
].selector
);
545 case 6: GET_REG32(env
->segs
[R_FS
].selector
);
546 case 7: GET_REG32(env
->segs
[R_GS
].selector
);
547 /* 8...15 x87 regs. */
548 case 16: GET_REG32(env
->fpuc
);
549 case 17: GET_REG32((env
->fpus
& ~0x3800) | (env
->fpstt
& 0x7) << 11);
550 case 18: GET_REG32(0); /* ftag */
551 case 19: GET_REG32(0); /* fiseg */
552 case 20: GET_REG32(0); /* fioff */
553 case 21: GET_REG32(0); /* foseg */
554 case 22: GET_REG32(0); /* fooff */
555 case 23: GET_REG32(0); /* fop */
562 static int cpu_gdb_write_register(CPUState
*env
, uint8_t *mem_buf
, int i
)
566 if (i
< CPU_NB_REGS
) {
567 env
->regs
[gpr_map
[i
]] = ldtul_p(mem_buf
);
568 return sizeof(target_ulong
);
569 } else if (i
>= CPU_NB_REGS
+ 8 && i
< CPU_NB_REGS
+ 16) {
570 i
-= CPU_NB_REGS
+ 8;
571 #ifdef USE_X86LDOUBLE
572 memcpy(&env
->fpregs
[i
], mem_buf
, 10);
575 } else if (i
>= CPU_NB_REGS
+ 24) {
576 i
-= CPU_NB_REGS
+ 24;
577 if (i
< CPU_NB_REGS
) {
578 env
->xmm_regs
[i
].XMM_Q(0) = ldq_p(mem_buf
);
579 env
->xmm_regs
[i
].XMM_Q(1) = ldq_p(mem_buf
+ 8);
581 } else if (i
== CPU_NB_REGS
) {
582 env
->mxcsr
= ldl_p(mem_buf
);
588 case 0: env
->eip
= ldtul_p(mem_buf
); return sizeof(target_ulong
);
589 case 1: env
->eflags
= ldl_p(mem_buf
); return 4;
590 #if defined(CONFIG_USER_ONLY)
591 #define LOAD_SEG(index, sreg)\
592 tmp = ldl_p(mem_buf);\
593 if (tmp != env->segs[sreg].selector)\
594 cpu_x86_load_seg(env, sreg, tmp);
596 /* FIXME: Honor segment registers. Needs to avoid raising an exception
597 when the selector is invalid. */
598 #define LOAD_SEG(index, sreg) do {} while(0)
600 case 2: LOAD_SEG(10, R_CS
); return 4;
601 case 3: LOAD_SEG(11, R_SS
); return 4;
602 case 4: LOAD_SEG(12, R_DS
); return 4;
603 case 5: LOAD_SEG(13, R_ES
); return 4;
604 case 6: LOAD_SEG(14, R_FS
); return 4;
605 case 7: LOAD_SEG(15, R_GS
); return 4;
606 /* 8...15 x87 regs. */
607 case 16: env
->fpuc
= ldl_p(mem_buf
); return 4;
609 tmp
= ldl_p(mem_buf
);
610 env
->fpstt
= (tmp
>> 11) & 7;
611 env
->fpus
= tmp
& ~0x3800;
613 case 18: /* ftag */ return 4;
614 case 19: /* fiseg */ return 4;
615 case 20: /* fioff */ return 4;
616 case 21: /* foseg */ return 4;
617 case 22: /* fooff */ return 4;
618 case 23: /* fop */ return 4;
622 /* Unrecognised register. */
626 #elif defined (TARGET_PPC)
628 /* Old gdb always expects FP registers. Newer (xml-aware) gdb only
629 expects whatever the target description contains. Due to a
630 historical mishap the FP registers appear in between core integer
631 regs and PC, MSR, CR, and so forth. We hack round this by giving the
632 FP regs zero size when talking to a newer gdb. */
633 #define NUM_CORE_REGS 71
634 #if defined (TARGET_PPC64)
635 #define GDB_CORE_XML "power64-core.xml"
637 #define GDB_CORE_XML "power-core.xml"
640 static int cpu_gdb_read_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
644 GET_REGL(env
->gpr
[n
]);
649 stfq_p(mem_buf
, env
->fpr
[n
-32]);
653 case 64: GET_REGL(env
->nip
);
654 case 65: GET_REGL(env
->msr
);
659 for (i
= 0; i
< 8; i
++)
660 cr
|= env
->crf
[i
] << (32 - ((i
+ 1) * 4));
663 case 67: GET_REGL(env
->lr
);
664 case 68: GET_REGL(env
->ctr
);
665 case 69: GET_REGL(env
->xer
);
670 GET_REG32(0); /* fpscr */
677 static int cpu_gdb_write_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
681 env
->gpr
[n
] = ldtul_p(mem_buf
);
682 return sizeof(target_ulong
);
687 env
->fpr
[n
-32] = ldfq_p(mem_buf
);
692 env
->nip
= ldtul_p(mem_buf
);
693 return sizeof(target_ulong
);
695 ppc_store_msr(env
, ldtul_p(mem_buf
));
696 return sizeof(target_ulong
);
699 uint32_t cr
= ldl_p(mem_buf
);
701 for (i
= 0; i
< 8; i
++)
702 env
->crf
[i
] = (cr
>> (32 - ((i
+ 1) * 4))) & 0xF;
706 env
->lr
= ldtul_p(mem_buf
);
707 return sizeof(target_ulong
);
709 env
->ctr
= ldtul_p(mem_buf
);
710 return sizeof(target_ulong
);
712 env
->xer
= ldtul_p(mem_buf
);
713 return sizeof(target_ulong
);
724 #elif defined (TARGET_SPARC)
726 #if defined(TARGET_SPARC64) && !defined(TARGET_ABI32)
727 #define NUM_CORE_REGS 86
729 #define NUM_CORE_REGS 72
733 #define GET_REGA(val) GET_REG32(val)
735 #define GET_REGA(val) GET_REGL(val)
738 static int cpu_gdb_read_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
742 GET_REGA(env
->gregs
[n
]);
745 /* register window */
746 GET_REGA(env
->regwptr
[n
- 8]);
748 #if defined(TARGET_ABI32) || !defined(TARGET_SPARC64)
751 GET_REG32(*((uint32_t *)&env
->fpr
[n
- 32]));
753 /* Y, PSR, WIM, TBR, PC, NPC, FPSR, CPSR */
755 case 64: GET_REGA(env
->y
);
756 case 65: GET_REGA(GET_PSR(env
));
757 case 66: GET_REGA(env
->wim
);
758 case 67: GET_REGA(env
->tbr
);
759 case 68: GET_REGA(env
->pc
);
760 case 69: GET_REGA(env
->npc
);
761 case 70: GET_REGA(env
->fsr
);
762 case 71: GET_REGA(0); /* csr */
763 default: GET_REGA(0);
768 GET_REG32(*((uint32_t *)&env
->fpr
[n
- 32]));
771 /* f32-f62 (double width, even numbers only) */
774 val
= (uint64_t)*((uint32_t *)&env
->fpr
[(n
- 64) * 2 + 32]) << 32;
775 val
|= *((uint32_t *)&env
->fpr
[(n
- 64) * 2 + 33]);
779 case 80: GET_REGL(env
->pc
);
780 case 81: GET_REGL(env
->npc
);
781 case 82: GET_REGL(((uint64_t)GET_CCR(env
) << 32) |
782 ((env
->asi
& 0xff) << 24) |
783 ((env
->pstate
& 0xfff) << 8) |
785 case 83: GET_REGL(env
->fsr
);
786 case 84: GET_REGL(env
->fprs
);
787 case 85: GET_REGL(env
->y
);
793 static int cpu_gdb_write_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
795 #if defined(TARGET_ABI32)
798 tmp
= ldl_p(mem_buf
);
802 tmp
= ldtul_p(mem_buf
);
809 /* register window */
810 env
->regwptr
[n
- 8] = tmp
;
812 #if defined(TARGET_ABI32) || !defined(TARGET_SPARC64)
815 *((uint32_t *)&env
->fpr
[n
- 32]) = tmp
;
817 /* Y, PSR, WIM, TBR, PC, NPC, FPSR, CPSR */
819 case 64: env
->y
= tmp
; break;
820 case 65: PUT_PSR(env
, tmp
); break;
821 case 66: env
->wim
= tmp
; break;
822 case 67: env
->tbr
= tmp
; break;
823 case 68: env
->pc
= tmp
; break;
824 case 69: env
->npc
= tmp
; break;
825 case 70: env
->fsr
= tmp
; break;
833 env
->fpr
[n
] = ldfl_p(mem_buf
);
836 /* f32-f62 (double width, even numbers only) */
837 *((uint32_t *)&env
->fpr
[(n
- 64) * 2 + 32]) = tmp
>> 32;
838 *((uint32_t *)&env
->fpr
[(n
- 64) * 2 + 33]) = tmp
;
841 case 80: env
->pc
= tmp
; break;
842 case 81: env
->npc
= tmp
; break;
844 PUT_CCR(env
, tmp
>> 32);
845 env
->asi
= (tmp
>> 24) & 0xff;
846 env
->pstate
= (tmp
>> 8) & 0xfff;
847 PUT_CWP64(env
, tmp
& 0xff);
849 case 83: env
->fsr
= tmp
; break;
850 case 84: env
->fprs
= tmp
; break;
851 case 85: env
->y
= tmp
; break;
858 #elif defined (TARGET_ARM)
860 /* Old gdb always expect FPA registers. Newer (xml-aware) gdb only expect
861 whatever the target description contains. Due to a historical mishap
862 the FPA registers appear in between core integer regs and the CPSR.
863 We hack round this by giving the FPA regs zero size when talking to a
865 #define NUM_CORE_REGS 26
866 #define GDB_CORE_XML "arm-core.xml"
868 static int cpu_gdb_read_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
871 /* Core integer register. */
872 GET_REG32(env
->regs
[n
]);
878 memset(mem_buf
, 0, 12);
883 /* FPA status register. */
889 GET_REG32(cpsr_read(env
));
891 /* Unknown register. */
895 static int cpu_gdb_write_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
899 tmp
= ldl_p(mem_buf
);
901 /* Mask out low bit of PC to workaround gdb bugs. This will probably
902 cause problems if we ever implement the Jazelle DBX extensions. */
907 /* Core integer register. */
911 if (n
< 24) { /* 16-23 */
912 /* FPA registers (ignored). */
919 /* FPA status register (ignored). */
925 cpsr_write (env
, tmp
, 0xffffffff);
928 /* Unknown register. */
932 #elif defined (TARGET_M68K)
934 #define NUM_CORE_REGS 18
936 #define GDB_CORE_XML "cf-core.xml"
938 static int cpu_gdb_read_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
942 GET_REG32(env
->dregs
[n
]);
945 GET_REG32(env
->aregs
[n
- 8]);
948 case 16: GET_REG32(env
->sr
);
949 case 17: GET_REG32(env
->pc
);
952 /* FP registers not included here because they vary between
953 ColdFire and m68k. Use XML bits for these. */
957 static int cpu_gdb_write_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
961 tmp
= ldl_p(mem_buf
);
968 env
->aregs
[n
- 8] = tmp
;
971 case 16: env
->sr
= tmp
; break;
972 case 17: env
->pc
= tmp
; break;
978 #elif defined (TARGET_MIPS)
980 #define NUM_CORE_REGS 73
982 static int cpu_gdb_read_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
985 GET_REGL(env
->active_tc
.gpr
[n
]);
987 if (env
->CP0_Config1
& (1 << CP0C1_FP
)) {
988 if (n
>= 38 && n
< 70) {
989 if (env
->CP0_Status
& (1 << CP0St_FR
))
990 GET_REGL(env
->active_fpu
.fpr
[n
- 38].d
);
992 GET_REGL(env
->active_fpu
.fpr
[n
- 38].w
[FP_ENDIAN_IDX
]);
995 case 70: GET_REGL((int32_t)env
->active_fpu
.fcr31
);
996 case 71: GET_REGL((int32_t)env
->active_fpu
.fcr0
);
1000 case 32: GET_REGL((int32_t)env
->CP0_Status
);
1001 case 33: GET_REGL(env
->active_tc
.LO
[0]);
1002 case 34: GET_REGL(env
->active_tc
.HI
[0]);
1003 case 35: GET_REGL(env
->CP0_BadVAddr
);
1004 case 36: GET_REGL((int32_t)env
->CP0_Cause
);
1005 case 37: GET_REGL(env
->active_tc
.PC
);
1006 case 72: GET_REGL(0); /* fp */
1007 case 89: GET_REGL((int32_t)env
->CP0_PRid
);
1009 if (n
>= 73 && n
<= 88) {
1010 /* 16 embedded regs. */
1017 /* convert MIPS rounding mode in FCR31 to IEEE library */
1018 static unsigned int ieee_rm
[] =
1020 float_round_nearest_even
,
1021 float_round_to_zero
,
1025 #define RESTORE_ROUNDING_MODE \
1026 set_float_rounding_mode(ieee_rm[env->active_fpu.fcr31 & 3], &env->active_fpu.fp_status)
1028 static int cpu_gdb_write_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
1032 tmp
= ldtul_p(mem_buf
);
1035 env
->active_tc
.gpr
[n
] = tmp
;
1036 return sizeof(target_ulong
);
1038 if (env
->CP0_Config1
& (1 << CP0C1_FP
)
1039 && n
>= 38 && n
< 73) {
1041 if (env
->CP0_Status
& (1 << CP0St_FR
))
1042 env
->active_fpu
.fpr
[n
- 38].d
= tmp
;
1044 env
->active_fpu
.fpr
[n
- 38].w
[FP_ENDIAN_IDX
] = tmp
;
1048 env
->active_fpu
.fcr31
= tmp
& 0xFF83FFFF;
1049 /* set rounding mode */
1050 RESTORE_ROUNDING_MODE
;
1051 #ifndef CONFIG_SOFTFLOAT
1052 /* no floating point exception for native float */
1053 SET_FP_ENABLE(env
->active_fpu
.fcr31
, 0);
1056 case 71: env
->active_fpu
.fcr0
= tmp
; break;
1058 return sizeof(target_ulong
);
1061 case 32: env
->CP0_Status
= tmp
; break;
1062 case 33: env
->active_tc
.LO
[0] = tmp
; break;
1063 case 34: env
->active_tc
.HI
[0] = tmp
; break;
1064 case 35: env
->CP0_BadVAddr
= tmp
; break;
1065 case 36: env
->CP0_Cause
= tmp
; break;
1066 case 37: env
->active_tc
.PC
= tmp
; break;
1067 case 72: /* fp, ignored */ break;
1071 /* Other registers are readonly. Ignore writes. */
1075 return sizeof(target_ulong
);
1077 #elif defined (TARGET_SH4)
1079 /* Hint: Use "set architecture sh4" in GDB to see fpu registers */
1080 /* FIXME: We should use XML for this. */
1082 #define NUM_CORE_REGS 59
1084 static int cpu_gdb_read_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
1087 if ((env
->sr
& (SR_MD
| SR_RB
)) == (SR_MD
| SR_RB
)) {
1088 GET_REGL(env
->gregs
[n
+ 16]);
1090 GET_REGL(env
->gregs
[n
]);
1092 } else if (n
< 16) {
1093 GET_REGL(env
->gregs
[n
- 8]);
1094 } else if (n
>= 25 && n
< 41) {
1095 GET_REGL(env
->fregs
[(n
- 25) + ((env
->fpscr
& FPSCR_FR
) ? 16 : 0)]);
1096 } else if (n
>= 43 && n
< 51) {
1097 GET_REGL(env
->gregs
[n
- 43]);
1098 } else if (n
>= 51 && n
< 59) {
1099 GET_REGL(env
->gregs
[n
- (51 - 16)]);
1102 case 16: GET_REGL(env
->pc
);
1103 case 17: GET_REGL(env
->pr
);
1104 case 18: GET_REGL(env
->gbr
);
1105 case 19: GET_REGL(env
->vbr
);
1106 case 20: GET_REGL(env
->mach
);
1107 case 21: GET_REGL(env
->macl
);
1108 case 22: GET_REGL(env
->sr
);
1109 case 23: GET_REGL(env
->fpul
);
1110 case 24: GET_REGL(env
->fpscr
);
1111 case 41: GET_REGL(env
->ssr
);
1112 case 42: GET_REGL(env
->spc
);
1118 static int cpu_gdb_write_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
1122 tmp
= ldl_p(mem_buf
);
1125 if ((env
->sr
& (SR_MD
| SR_RB
)) == (SR_MD
| SR_RB
)) {
1126 env
->gregs
[n
+ 16] = tmp
;
1128 env
->gregs
[n
] = tmp
;
1131 } else if (n
< 16) {
1132 env
->gregs
[n
- 8] = tmp
;
1134 } else if (n
>= 25 && n
< 41) {
1135 env
->fregs
[(n
- 25) + ((env
->fpscr
& FPSCR_FR
) ? 16 : 0)] = tmp
;
1136 } else if (n
>= 43 && n
< 51) {
1137 env
->gregs
[n
- 43] = tmp
;
1139 } else if (n
>= 51 && n
< 59) {
1140 env
->gregs
[n
- (51 - 16)] = tmp
;
1144 case 16: env
->pc
= tmp
;
1145 case 17: env
->pr
= tmp
;
1146 case 18: env
->gbr
= tmp
;
1147 case 19: env
->vbr
= tmp
;
1148 case 20: env
->mach
= tmp
;
1149 case 21: env
->macl
= tmp
;
1150 case 22: env
->sr
= tmp
;
1151 case 23: env
->fpul
= tmp
;
1152 case 24: env
->fpscr
= tmp
;
1153 case 41: env
->ssr
= tmp
;
1154 case 42: env
->spc
= tmp
;
1160 #elif defined (TARGET_CRIS)
1162 #define NUM_CORE_REGS 49
1164 static int cpu_gdb_read_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
1168 srs
= env
->pregs
[PR_SRS
];
1170 GET_REG32(env
->regs
[n
]);
1173 if (n
>= 21 && n
< 32) {
1174 GET_REG32(env
->pregs
[n
- 16]);
1176 if (n
>= 33 && n
< 49) {
1177 GET_REG32(env
->sregs
[srs
][n
- 33]);
1180 case 16: GET_REG8(env
->pregs
[0]);
1181 case 17: GET_REG8(env
->pregs
[1]);
1182 case 18: GET_REG32(env
->pregs
[2]);
1183 case 19: GET_REG8(srs
);
1184 case 20: GET_REG16(env
->pregs
[4]);
1185 case 32: GET_REG32(env
->pc
);
1191 static int cpu_gdb_write_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
1198 tmp
= ldl_p(mem_buf
);
1204 if (n
>= 21 && n
< 32) {
1205 env
->pregs
[n
- 16] = tmp
;
1208 /* FIXME: Should support function regs be writable? */
1212 case 18: env
->pregs
[PR_PID
] = tmp
; break;
1215 case 32: env
->pc
= tmp
; break;
1220 #elif defined (TARGET_ALPHA)
1222 #define NUM_CORE_REGS 65
1224 static int cpu_gdb_read_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
1227 GET_REGL(env
->ir
[n
]);
1235 val
=*((uint64_t *)&env
->fir
[n
-32]);
1239 GET_REGL(env
->fpcr
);
1251 static int cpu_gdb_write_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
1254 tmp
= ldtul_p(mem_buf
);
1260 if (n
> 31 && n
< 63) {
1261 env
->fir
[n
- 32] = ldfl_p(mem_buf
);
1272 #define NUM_CORE_REGS 0
1274 static int cpu_gdb_read_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
1279 static int cpu_gdb_write_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
1286 static int num_g_regs
= NUM_CORE_REGS
;
1289 /* Encode data using the encoding for 'x' packets. */
1290 static int memtox(char *buf
, const char *mem
, int len
)
1298 case '#': case '$': case '*': case '}':
1310 static const char *get_feature_xml(const char *p
, const char **newp
)
1312 extern const char *const xml_builtin
[][2];
1316 static char target_xml
[1024];
1319 while (p
[len
] && p
[len
] != ':')
1324 if (strncmp(p
, "target.xml", len
) == 0) {
1325 /* Generate the XML description for this CPU. */
1326 if (!target_xml
[0]) {
1327 GDBRegisterState
*r
;
1329 snprintf(target_xml
, sizeof(target_xml
),
1330 "<?xml version=\"1.0\"?>"
1331 "<!DOCTYPE target SYSTEM \"gdb-target.dtd\">"
1333 "<xi:include href=\"%s\"/>",
1336 for (r
= first_cpu
->gdb_regs
; r
; r
= r
->next
) {
1337 strcat(target_xml
, "<xi:include href=\"");
1338 strcat(target_xml
, r
->xml
);
1339 strcat(target_xml
, "\"/>");
1341 strcat(target_xml
, "</target>");
1345 for (i
= 0; ; i
++) {
1346 name
= xml_builtin
[i
][0];
1347 if (!name
|| (strncmp(name
, p
, len
) == 0 && strlen(name
) == len
))
1350 return name
? xml_builtin
[i
][1] : NULL
;
1354 static int gdb_read_register(CPUState
*env
, uint8_t *mem_buf
, int reg
)
1356 GDBRegisterState
*r
;
1358 if (reg
< NUM_CORE_REGS
)
1359 return cpu_gdb_read_register(env
, mem_buf
, reg
);
1361 for (r
= env
->gdb_regs
; r
; r
= r
->next
) {
1362 if (r
->base_reg
<= reg
&& reg
< r
->base_reg
+ r
->num_regs
) {
1363 return r
->get_reg(env
, mem_buf
, reg
- r
->base_reg
);
1369 static int gdb_write_register(CPUState
*env
, uint8_t *mem_buf
, int reg
)
1371 GDBRegisterState
*r
;
1373 if (reg
< NUM_CORE_REGS
)
1374 return cpu_gdb_write_register(env
, mem_buf
, reg
);
1376 for (r
= env
->gdb_regs
; r
; r
= r
->next
) {
1377 if (r
->base_reg
<= reg
&& reg
< r
->base_reg
+ r
->num_regs
) {
1378 return r
->set_reg(env
, mem_buf
, reg
- r
->base_reg
);
1384 /* Register a supplemental set of CPU registers. If g_pos is nonzero it
1385 specifies the first register number and these registers are included in
1386 a standard "g" packet. Direction is relative to gdb, i.e. get_reg is
1387 gdb reading a CPU register, and set_reg is gdb modifying a CPU register.
1390 void gdb_register_coprocessor(CPUState
* env
,
1391 gdb_reg_cb get_reg
, gdb_reg_cb set_reg
,
1392 int num_regs
, const char *xml
, int g_pos
)
1394 GDBRegisterState
*s
;
1395 GDBRegisterState
**p
;
1396 static int last_reg
= NUM_CORE_REGS
;
1398 s
= (GDBRegisterState
*)qemu_mallocz(sizeof(GDBRegisterState
));
1399 s
->base_reg
= last_reg
;
1400 s
->num_regs
= num_regs
;
1401 s
->get_reg
= get_reg
;
1402 s
->set_reg
= set_reg
;
1406 /* Check for duplicates. */
1407 if (strcmp((*p
)->xml
, xml
) == 0)
1411 /* Add to end of list. */
1412 last_reg
+= num_regs
;
1415 if (g_pos
!= s
->base_reg
) {
1416 fprintf(stderr
, "Error: Bad gdb register numbering for '%s'\n"
1417 "Expected %d got %d\n", xml
, g_pos
, s
->base_reg
);
1419 num_g_regs
= last_reg
;
1424 #ifndef CONFIG_USER_ONLY
1425 static const int xlat_gdb_type
[] = {
1426 [GDB_WATCHPOINT_WRITE
] = BP_GDB
| BP_MEM_WRITE
,
1427 [GDB_WATCHPOINT_READ
] = BP_GDB
| BP_MEM_READ
,
1428 [GDB_WATCHPOINT_ACCESS
] = BP_GDB
| BP_MEM_ACCESS
,
1432 static int gdb_breakpoint_insert(target_ulong addr
, target_ulong len
, int type
)
1438 return kvm_insert_breakpoint(gdbserver_state
->c_cpu
, addr
, len
, type
);
1441 case GDB_BREAKPOINT_SW
:
1442 case GDB_BREAKPOINT_HW
:
1443 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
1444 err
= cpu_breakpoint_insert(env
, addr
, BP_GDB
, NULL
);
1449 #ifndef CONFIG_USER_ONLY
1450 case GDB_WATCHPOINT_WRITE
:
1451 case GDB_WATCHPOINT_READ
:
1452 case GDB_WATCHPOINT_ACCESS
:
1453 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
1454 err
= cpu_watchpoint_insert(env
, addr
, len
, xlat_gdb_type
[type
],
1466 static int gdb_breakpoint_remove(target_ulong addr
, target_ulong len
, int type
)
1472 return kvm_remove_breakpoint(gdbserver_state
->c_cpu
, addr
, len
, type
);
1475 case GDB_BREAKPOINT_SW
:
1476 case GDB_BREAKPOINT_HW
:
1477 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
1478 err
= cpu_breakpoint_remove(env
, addr
, BP_GDB
);
1483 #ifndef CONFIG_USER_ONLY
1484 case GDB_WATCHPOINT_WRITE
:
1485 case GDB_WATCHPOINT_READ
:
1486 case GDB_WATCHPOINT_ACCESS
:
1487 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
1488 err
= cpu_watchpoint_remove(env
, addr
, len
, xlat_gdb_type
[type
]);
1499 static void gdb_breakpoint_remove_all(void)
1503 if (kvm_enabled()) {
1504 kvm_remove_all_breakpoints(gdbserver_state
->c_cpu
);
1508 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
1509 cpu_breakpoint_remove_all(env
, BP_GDB
);
1510 #ifndef CONFIG_USER_ONLY
1511 cpu_watchpoint_remove_all(env
, BP_GDB
);
1516 static int gdb_handle_packet(GDBState
*s
, const char *line_buf
)
1520 int ch
, reg_size
, type
, res
, thread
;
1521 char buf
[MAX_PACKET_LENGTH
];
1522 uint8_t mem_buf
[MAX_PACKET_LENGTH
];
1524 target_ulong addr
, len
;
1527 printf("command='%s'\n", line_buf
);
1533 /* TODO: Make this return the correct value for user-mode. */
1534 snprintf(buf
, sizeof(buf
), "T%02xthread:%02x;", GDB_SIGNAL_TRAP
,
1535 s
->c_cpu
->cpu_index
+1);
1537 /* Remove all the breakpoints when this query is issued,
1538 * because gdb is doing and initial connect and the state
1539 * should be cleaned up.
1541 gdb_breakpoint_remove_all();
1545 addr
= strtoull(p
, (char **)&p
, 16);
1546 #if defined(TARGET_I386)
1547 s
->c_cpu
->eip
= addr
;
1548 cpu_synchronize_state(s
->c_cpu
, 1);
1549 #elif defined (TARGET_PPC)
1550 s
->c_cpu
->nip
= addr
;
1551 kvm_load_registers(s
->c_cpu
);
1552 #elif defined (TARGET_SPARC)
1553 s
->c_cpu
->pc
= addr
;
1554 s
->c_cpu
->npc
= addr
+ 4;
1555 #elif defined (TARGET_ARM)
1556 s
->c_cpu
->regs
[15] = addr
;
1557 #elif defined (TARGET_SH4)
1558 s
->c_cpu
->pc
= addr
;
1559 #elif defined (TARGET_MIPS)
1560 s
->c_cpu
->active_tc
.PC
= addr
;
1561 #elif defined (TARGET_CRIS)
1562 s
->c_cpu
->pc
= addr
;
1563 #elif defined (TARGET_ALPHA)
1564 s
->c_cpu
->pc
= addr
;
1571 s
->signal
= gdb_signal_to_target (strtoul(p
, (char **)&p
, 16));
1572 if (s
->signal
== -1)
1577 /* Kill the target */
1578 fprintf(stderr
, "\nQEMU: Terminated via GDBstub\n");
1582 gdb_breakpoint_remove_all();
1584 put_packet(s
, "OK");
1588 addr
= strtoull(p
, (char **)&p
, 16);
1589 #if defined(TARGET_I386)
1590 s
->c_cpu
->eip
= addr
;
1591 cpu_synchronize_state(s
->c_cpu
, 1);
1592 #elif defined (TARGET_PPC)
1593 s
->c_cpu
->nip
= addr
;
1594 kvm_load_registers(s
->c_cpu
);
1595 #elif defined (TARGET_SPARC)
1596 s
->c_cpu
->pc
= addr
;
1597 s
->c_cpu
->npc
= addr
+ 4;
1598 #elif defined (TARGET_ARM)
1599 s
->c_cpu
->regs
[15] = addr
;
1600 #elif defined (TARGET_SH4)
1601 s
->c_cpu
->pc
= addr
;
1602 #elif defined (TARGET_MIPS)
1603 s
->c_cpu
->active_tc
.PC
= addr
;
1604 #elif defined (TARGET_CRIS)
1605 s
->c_cpu
->pc
= addr
;
1606 #elif defined (TARGET_ALPHA)
1607 s
->c_cpu
->pc
= addr
;
1610 cpu_single_step(s
->c_cpu
, sstep_flags
);
1618 ret
= strtoull(p
, (char **)&p
, 16);
1621 err
= strtoull(p
, (char **)&p
, 16);
1628 if (gdb_current_syscall_cb
)
1629 gdb_current_syscall_cb(s
->c_cpu
, ret
, err
);
1631 put_packet(s
, "T02");
1638 cpu_synchronize_state(s
->g_cpu
, 0);
1640 for (addr
= 0; addr
< num_g_regs
; addr
++) {
1641 reg_size
= gdb_read_register(s
->g_cpu
, mem_buf
+ len
, addr
);
1644 memtohex(buf
, mem_buf
, len
);
1648 registers
= mem_buf
;
1649 len
= strlen(p
) / 2;
1650 hextomem((uint8_t *)registers
, p
, len
);
1651 for (addr
= 0; addr
< num_g_regs
&& len
> 0; addr
++) {
1652 reg_size
= gdb_write_register(s
->g_cpu
, registers
, addr
);
1654 registers
+= reg_size
;
1656 cpu_synchronize_state(s
->g_cpu
, 1);
1657 put_packet(s
, "OK");
1660 addr
= strtoull(p
, (char **)&p
, 16);
1663 len
= strtoull(p
, NULL
, 16);
1664 if (cpu_memory_rw_debug(s
->g_cpu
, addr
, mem_buf
, len
, 0) != 0) {
1665 put_packet (s
, "E14");
1667 memtohex(buf
, mem_buf
, len
);
1672 addr
= strtoull(p
, (char **)&p
, 16);
1675 len
= strtoull(p
, (char **)&p
, 16);
1678 hextomem(mem_buf
, p
, len
);
1679 if (cpu_memory_rw_debug(s
->g_cpu
, addr
, mem_buf
, len
, 1) != 0)
1680 put_packet(s
, "E14");
1682 put_packet(s
, "OK");
1685 /* Older gdb are really dumb, and don't use 'g' if 'p' is avaialable.
1686 This works, but can be very slow. Anything new enough to
1687 understand XML also knows how to use this properly. */
1689 goto unknown_command
;
1690 addr
= strtoull(p
, (char **)&p
, 16);
1691 reg_size
= gdb_read_register(s
->g_cpu
, mem_buf
, addr
);
1693 memtohex(buf
, mem_buf
, reg_size
);
1696 put_packet(s
, "E14");
1701 goto unknown_command
;
1702 addr
= strtoull(p
, (char **)&p
, 16);
1705 reg_size
= strlen(p
) / 2;
1706 hextomem(mem_buf
, p
, reg_size
);
1707 gdb_write_register(s
->g_cpu
, mem_buf
, addr
);
1708 put_packet(s
, "OK");
1712 type
= strtoul(p
, (char **)&p
, 16);
1715 addr
= strtoull(p
, (char **)&p
, 16);
1718 len
= strtoull(p
, (char **)&p
, 16);
1720 res
= gdb_breakpoint_insert(addr
, len
, type
);
1722 res
= gdb_breakpoint_remove(addr
, len
, type
);
1724 put_packet(s
, "OK");
1725 else if (res
== -ENOSYS
)
1728 put_packet(s
, "E22");
1732 thread
= strtoull(p
, (char **)&p
, 16);
1733 if (thread
== -1 || thread
== 0) {
1734 put_packet(s
, "OK");
1737 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
)
1738 if (env
->cpu_index
+ 1 == thread
)
1741 put_packet(s
, "E22");
1747 put_packet(s
, "OK");
1751 put_packet(s
, "OK");
1754 put_packet(s
, "E22");
1759 thread
= strtoull(p
, (char **)&p
, 16);
1760 #ifndef CONFIG_USER_ONLY
1761 if (thread
> 0 && thread
< smp_cpus
+ 1)
1765 put_packet(s
, "OK");
1767 put_packet(s
, "E22");
1771 /* parse any 'q' packets here */
1772 if (!strcmp(p
,"qemu.sstepbits")) {
1773 /* Query Breakpoint bit definitions */
1774 snprintf(buf
, sizeof(buf
), "ENABLE=%x,NOIRQ=%x,NOTIMER=%x",
1780 } else if (strncmp(p
,"qemu.sstep",10) == 0) {
1781 /* Display or change the sstep_flags */
1784 /* Display current setting */
1785 snprintf(buf
, sizeof(buf
), "0x%x", sstep_flags
);
1790 type
= strtoul(p
, (char **)&p
, 16);
1792 put_packet(s
, "OK");
1794 } else if (strcmp(p
,"C") == 0) {
1795 /* "Current thread" remains vague in the spec, so always return
1796 * the first CPU (gdb returns the first thread). */
1797 put_packet(s
, "QC1");
1799 } else if (strcmp(p
,"fThreadInfo") == 0) {
1800 s
->query_cpu
= first_cpu
;
1801 goto report_cpuinfo
;
1802 } else if (strcmp(p
,"sThreadInfo") == 0) {
1805 snprintf(buf
, sizeof(buf
), "m%x", s
->query_cpu
->cpu_index
+1);
1807 s
->query_cpu
= s
->query_cpu
->next_cpu
;
1811 } else if (strncmp(p
,"ThreadExtraInfo,", 16) == 0) {
1812 thread
= strtoull(p
+16, (char **)&p
, 16);
1813 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
)
1814 if (env
->cpu_index
+ 1 == thread
) {
1815 cpu_synchronize_state(env
, 0);
1816 len
= snprintf((char *)mem_buf
, sizeof(mem_buf
),
1817 "CPU#%d [%s]", env
->cpu_index
,
1818 env
->halted
? "halted " : "running");
1819 memtohex(buf
, mem_buf
, len
);
1825 #ifdef CONFIG_USER_ONLY
1826 else if (strncmp(p
, "Offsets", 7) == 0) {
1827 TaskState
*ts
= s
->c_cpu
->opaque
;
1829 snprintf(buf
, sizeof(buf
),
1830 "Text=" TARGET_ABI_FMT_lx
";Data=" TARGET_ABI_FMT_lx
1831 ";Bss=" TARGET_ABI_FMT_lx
,
1832 ts
->info
->code_offset
,
1833 ts
->info
->data_offset
,
1834 ts
->info
->data_offset
);
1838 #else /* !CONFIG_USER_ONLY */
1839 else if (strncmp(p
, "Rcmd,", 5) == 0) {
1840 int len
= strlen(p
+ 5);
1842 if ((len
% 2) != 0) {
1843 put_packet(s
, "E01");
1846 hextomem(mem_buf
, p
+ 5, len
);
1849 qemu_chr_read(s
->mon_chr
, mem_buf
, len
);
1850 put_packet(s
, "OK");
1853 #endif /* !CONFIG_USER_ONLY */
1854 if (strncmp(p
, "Supported", 9) == 0) {
1855 snprintf(buf
, sizeof(buf
), "PacketSize=%x", MAX_PACKET_LENGTH
);
1857 strcat(buf
, ";qXfer:features:read+");
1863 if (strncmp(p
, "Xfer:features:read:", 19) == 0) {
1865 target_ulong total_len
;
1869 xml
= get_feature_xml(p
, &p
);
1871 snprintf(buf
, sizeof(buf
), "E00");
1878 addr
= strtoul(p
, (char **)&p
, 16);
1881 len
= strtoul(p
, (char **)&p
, 16);
1883 total_len
= strlen(xml
);
1884 if (addr
> total_len
) {
1885 snprintf(buf
, sizeof(buf
), "E00");
1889 if (len
> (MAX_PACKET_LENGTH
- 5) / 2)
1890 len
= (MAX_PACKET_LENGTH
- 5) / 2;
1891 if (len
< total_len
- addr
) {
1893 len
= memtox(buf
+ 1, xml
+ addr
, len
);
1896 len
= memtox(buf
+ 1, xml
+ addr
, total_len
- addr
);
1898 put_packet_binary(s
, buf
, len
+ 1);
1902 /* Unrecognised 'q' command. */
1903 goto unknown_command
;
1907 /* put empty packet */
1915 void gdb_set_stop_cpu(CPUState
*env
)
1917 gdbserver_state
->c_cpu
= env
;
1918 gdbserver_state
->g_cpu
= env
;
1921 #ifndef CONFIG_USER_ONLY
1922 static void gdb_vm_state_change(void *opaque
, int running
, int reason
)
1924 GDBState
*s
= gdbserver_state
;
1925 CPUState
*env
= s
->c_cpu
;
1930 if (running
|| (reason
!= EXCP_DEBUG
&& reason
!= EXCP_INTERRUPT
) ||
1931 s
->state
== RS_INACTIVE
|| s
->state
== RS_SYSCALL
)
1934 /* disable single step if it was enable */
1935 cpu_single_step(env
, 0);
1937 if (reason
== EXCP_DEBUG
) {
1938 if (env
->watchpoint_hit
) {
1939 switch (env
->watchpoint_hit
->flags
& BP_MEM_ACCESS
) {
1950 snprintf(buf
, sizeof(buf
),
1951 "T%02xthread:%02x;%swatch:" TARGET_FMT_lx
";",
1952 GDB_SIGNAL_TRAP
, env
->cpu_index
+1, type
,
1953 env
->watchpoint_hit
->vaddr
);
1955 env
->watchpoint_hit
= NULL
;
1959 ret
= GDB_SIGNAL_TRAP
;
1961 ret
= GDB_SIGNAL_INT
;
1963 snprintf(buf
, sizeof(buf
), "T%02xthread:%02x;", ret
, env
->cpu_index
+1);
1968 /* Send a gdb syscall request.
1969 This accepts limited printf-style format specifiers, specifically:
1970 %x - target_ulong argument printed in hex.
1971 %lx - 64-bit argument printed in hex.
1972 %s - string pointer (target_ulong) and length (int) pair. */
1973 void gdb_do_syscall(gdb_syscall_complete_cb cb
, const char *fmt
, ...)
1982 s
= gdbserver_state
;
1985 gdb_current_syscall_cb
= cb
;
1986 s
->state
= RS_SYSCALL
;
1987 #ifndef CONFIG_USER_ONLY
1988 vm_stop(EXCP_DEBUG
);
1999 addr
= va_arg(va
, target_ulong
);
2000 p
+= snprintf(p
, &buf
[sizeof(buf
)] - p
, TARGET_FMT_lx
, addr
);
2003 if (*(fmt
++) != 'x')
2005 i64
= va_arg(va
, uint64_t);
2006 p
+= snprintf(p
, &buf
[sizeof(buf
)] - p
, "%" PRIx64
, i64
);
2009 addr
= va_arg(va
, target_ulong
);
2010 p
+= snprintf(p
, &buf
[sizeof(buf
)] - p
, TARGET_FMT_lx
"/%x",
2011 addr
, va_arg(va
, int));
2015 fprintf(stderr
, "gdbstub: Bad syscall format string '%s'\n",
2026 #ifdef CONFIG_USER_ONLY
2027 gdb_handlesig(s
->c_cpu
, 0);
2033 static void gdb_read_byte(GDBState
*s
, int ch
)
2038 #ifndef CONFIG_USER_ONLY
2039 if (s
->last_packet_len
) {
2040 /* Waiting for a response to the last packet. If we see the start
2041 of a new command then abandon the previous response. */
2044 printf("Got NACK, retransmitting\n");
2046 put_buffer(s
, (uint8_t *)s
->last_packet
, s
->last_packet_len
);
2050 printf("Got ACK\n");
2052 printf("Got '%c' when expecting ACK/NACK\n", ch
);
2054 if (ch
== '+' || ch
== '$')
2055 s
->last_packet_len
= 0;
2060 /* when the CPU is running, we cannot do anything except stop
2061 it when receiving a char */
2062 vm_stop(EXCP_INTERRUPT
);
2069 s
->line_buf_index
= 0;
2070 s
->state
= RS_GETLINE
;
2075 s
->state
= RS_CHKSUM1
;
2076 } else if (s
->line_buf_index
>= sizeof(s
->line_buf
) - 1) {
2079 s
->line_buf
[s
->line_buf_index
++] = ch
;
2083 s
->line_buf
[s
->line_buf_index
] = '\0';
2084 s
->line_csum
= fromhex(ch
) << 4;
2085 s
->state
= RS_CHKSUM2
;
2088 s
->line_csum
|= fromhex(ch
);
2090 for(i
= 0; i
< s
->line_buf_index
; i
++) {
2091 csum
+= s
->line_buf
[i
];
2093 if (s
->line_csum
!= (csum
& 0xff)) {
2095 put_buffer(s
, &reply
, 1);
2099 put_buffer(s
, &reply
, 1);
2100 s
->state
= gdb_handle_packet(s
, s
->line_buf
);
2109 #ifdef CONFIG_USER_ONLY
2115 s
= gdbserver_state
;
2117 if (gdbserver_fd
< 0 || s
->fd
< 0)
2124 gdb_handlesig (CPUState
*env
, int sig
)
2130 s
= gdbserver_state
;
2131 if (gdbserver_fd
< 0 || s
->fd
< 0)
2134 /* disable single step if it was enabled */
2135 cpu_single_step(env
, 0);
2140 snprintf(buf
, sizeof(buf
), "S%02x", target_signal_to_gdb (sig
));
2143 /* put_packet() might have detected that the peer terminated the
2150 s
->running_state
= 0;
2151 while (s
->running_state
== 0) {
2152 n
= read (s
->fd
, buf
, 256);
2157 for (i
= 0; i
< n
; i
++)
2158 gdb_read_byte (s
, buf
[i
]);
2160 else if (n
== 0 || errno
!= EAGAIN
)
2162 /* XXX: Connection closed. Should probably wait for annother
2163 connection before continuing. */
2172 /* Tell the remote gdb that the process has exited. */
2173 void gdb_exit(CPUState
*env
, int code
)
2178 s
= gdbserver_state
;
2179 if (gdbserver_fd
< 0 || s
->fd
< 0)
2182 snprintf(buf
, sizeof(buf
), "W%02x", code
);
2186 /* Tell the remote gdb that the process has exited due to SIG. */
2187 void gdb_signalled(CPUState
*env
, int sig
)
2192 s
= gdbserver_state
;
2193 if (gdbserver_fd
< 0 || s
->fd
< 0)
2196 snprintf(buf
, sizeof(buf
), "X%02x", target_signal_to_gdb (sig
));
2200 static void gdb_accept(void)
2203 struct sockaddr_in sockaddr
;
2208 len
= sizeof(sockaddr
);
2209 fd
= accept(gdbserver_fd
, (struct sockaddr
*)&sockaddr
, &len
);
2210 if (fd
< 0 && errno
!= EINTR
) {
2213 } else if (fd
>= 0) {
2218 /* set short latency */
2220 setsockopt(fd
, IPPROTO_TCP
, TCP_NODELAY
, (char *)&val
, sizeof(val
));
2222 s
= qemu_mallocz(sizeof(GDBState
));
2223 s
->c_cpu
= first_cpu
;
2224 s
->g_cpu
= first_cpu
;
2228 gdbserver_state
= s
;
2230 fcntl(fd
, F_SETFL
, O_NONBLOCK
);
2233 static int gdbserver_open(int port
)
2235 struct sockaddr_in sockaddr
;
2238 fd
= socket(PF_INET
, SOCK_STREAM
, 0);
2244 /* allow fast reuse */
2246 setsockopt(fd
, SOL_SOCKET
, SO_REUSEADDR
, (char *)&val
, sizeof(val
));
2248 sockaddr
.sin_family
= AF_INET
;
2249 sockaddr
.sin_port
= htons(port
);
2250 sockaddr
.sin_addr
.s_addr
= 0;
2251 ret
= bind(fd
, (struct sockaddr
*)&sockaddr
, sizeof(sockaddr
));
2256 ret
= listen(fd
, 0);
2264 int gdbserver_start(int port
)
2266 gdbserver_fd
= gdbserver_open(port
);
2267 if (gdbserver_fd
< 0)
2269 /* accept connections */
2274 /* Disable gdb stub for child processes. */
2275 void gdbserver_fork(CPUState
*env
)
2277 GDBState
*s
= gdbserver_state
;
2278 if (gdbserver_fd
< 0 || s
->fd
< 0)
2282 cpu_breakpoint_remove_all(env
, BP_GDB
);
2283 cpu_watchpoint_remove_all(env
, BP_GDB
);
2286 static int gdb_chr_can_receive(void *opaque
)
2288 /* We can handle an arbitrarily large amount of data.
2289 Pick the maximum packet size, which is as good as anything. */
2290 return MAX_PACKET_LENGTH
;
2293 static void gdb_chr_receive(void *opaque
, const uint8_t *buf
, int size
)
2297 for (i
= 0; i
< size
; i
++) {
2298 gdb_read_byte(gdbserver_state
, buf
[i
]);
2302 static void gdb_chr_event(void *opaque
, int event
)
2305 case CHR_EVENT_RESET
:
2306 vm_stop(EXCP_INTERRUPT
);
2314 static void gdb_monitor_output(GDBState
*s
, const char *msg
, int len
)
2316 char buf
[MAX_PACKET_LENGTH
];
2319 if (len
> (MAX_PACKET_LENGTH
/2) - 1)
2320 len
= (MAX_PACKET_LENGTH
/2) - 1;
2321 memtohex(buf
+ 1, (uint8_t *)msg
, len
);
2325 static int gdb_monitor_write(CharDriverState
*chr
, const uint8_t *buf
, int len
)
2327 const char *p
= (const char *)buf
;
2330 max_sz
= (sizeof(gdbserver_state
->last_packet
) - 2) / 2;
2332 if (len
<= max_sz
) {
2333 gdb_monitor_output(gdbserver_state
, p
, len
);
2336 gdb_monitor_output(gdbserver_state
, p
, max_sz
);
2344 static void gdb_sigterm_handler(int signal
)
2347 vm_stop(EXCP_INTERRUPT
);
2351 int gdbserver_start(const char *device
)
2354 char gdbstub_device_name
[128];
2355 CharDriverState
*chr
= NULL
;
2356 CharDriverState
*mon_chr
;
2360 if (strcmp(device
, "none") != 0) {
2361 if (strstart(device
, "tcp:", NULL
)) {
2362 /* enforce required TCP attributes */
2363 snprintf(gdbstub_device_name
, sizeof(gdbstub_device_name
),
2364 "%s,nowait,nodelay,server", device
);
2365 device
= gdbstub_device_name
;
2368 else if (strcmp(device
, "stdio") == 0) {
2369 struct sigaction act
;
2371 memset(&act
, 0, sizeof(act
));
2372 act
.sa_handler
= gdb_sigterm_handler
;
2373 sigaction(SIGINT
, &act
, NULL
);
2376 chr
= qemu_chr_open("gdb", device
, NULL
);
2380 qemu_chr_add_handlers(chr
, gdb_chr_can_receive
, gdb_chr_receive
,
2381 gdb_chr_event
, NULL
);
2384 s
= gdbserver_state
;
2386 s
= qemu_mallocz(sizeof(GDBState
));
2387 gdbserver_state
= s
;
2389 qemu_add_vm_change_state_handler(gdb_vm_state_change
, NULL
);
2391 /* Initialize a monitor terminal for gdb */
2392 mon_chr
= qemu_mallocz(sizeof(*mon_chr
));
2393 mon_chr
->chr_write
= gdb_monitor_write
;
2394 monitor_init(mon_chr
, 0);
2397 qemu_chr_close(s
->chr
);
2398 mon_chr
= s
->mon_chr
;
2399 memset(s
, 0, sizeof(GDBState
));
2401 s
->c_cpu
= first_cpu
;
2402 s
->g_cpu
= first_cpu
;
2404 s
->state
= chr
? RS_IDLE
: RS_INACTIVE
;
2405 s
->mon_chr
= mon_chr
;