2 * defines common to all virtual CPUs
4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
23 #if defined(__arm__) || defined(__sparc__) || defined(__mips__)
27 /* some important defines:
29 * WORDS_ALIGNED : if defined, the host cpu can only make word aligned
32 * WORDS_BIGENDIAN : if defined, the host cpu is big endian and
33 * otherwise little endian.
35 * (TARGET_WORDS_ALIGNED : same for target cpu (not supported yet))
37 * TARGET_WORDS_BIGENDIAN : same for target cpu
42 #if defined(WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN)
48 static inline uint16_t tswap16(uint16_t s
)
53 static inline uint32_t tswap32(uint32_t s
)
58 static inline uint64_t tswap64(uint64_t s
)
63 static inline void tswap16s(uint16_t *s
)
68 static inline void tswap32s(uint32_t *s
)
73 static inline void tswap64s(uint64_t *s
)
80 static inline uint16_t tswap16(uint16_t s
)
85 static inline uint32_t tswap32(uint32_t s
)
90 static inline uint64_t tswap64(uint64_t s
)
95 static inline void tswap16s(uint16_t *s
)
99 static inline void tswap32s(uint32_t *s
)
103 static inline void tswap64s(uint64_t *s
)
109 #if TARGET_LONG_SIZE == 4
110 #define tswapl(s) tswap32(s)
111 #define tswapls(s) tswap32s((uint32_t *)(s))
112 #define bswaptls(s) bswap32s(s)
114 #define tswapl(s) tswap64(s)
115 #define tswapls(s) tswap64s((uint64_t *)(s))
116 #define bswaptls(s) bswap64s(s)
124 /* NOTE: arm FPA is horrible as double 32 bit words are stored in big
128 #if defined(WORDS_BIGENDIAN) \
129 || (defined(__arm__) && !defined(__VFP_FP__) && !defined(CONFIG_SOFTFLOAT))
146 #if defined(WORDS_BIGENDIAN) \
147 || (defined(__arm__) && !defined(__VFP_FP__) && !defined(CONFIG_SOFTFLOAT))
173 /* CPU memory access without any memory or io remapping */
176 * the generic syntax for the memory accesses is:
178 * load: ld{type}{sign}{size}{endian}_{access_type}(ptr)
180 * store: st{type}{size}{endian}_{access_type}(ptr, val)
183 * (empty): integer access
187 * (empty): for floats or 32 bit size
198 * (empty): target cpu endianness or 8 bit access
199 * r : reversed target cpu endianness (not implemented yet)
200 * be : big endian (not implemented yet)
201 * le : little endian (not implemented yet)
204 * raw : host memory access
205 * user : user mode access using soft MMU
206 * kernel : kernel mode access using soft MMU
208 static inline int ldub_p(void *ptr
)
210 return *(uint8_t *)ptr
;
213 static inline int ldsb_p(void *ptr
)
215 return *(int8_t *)ptr
;
218 static inline void stb_p(void *ptr
, int v
)
223 /* NOTE: on arm, putting 2 in /proc/sys/debug/alignment so that the
224 kernel handles unaligned load/stores may give better results, but
225 it is a system wide setting : bad */
226 #if defined(WORDS_BIGENDIAN) || defined(WORDS_ALIGNED)
228 /* conservative code for little endian unaligned accesses */
229 static inline int lduw_le_p(void *ptr
)
233 __asm__
__volatile__ ("lhbrx %0,0,%1" : "=r" (val
) : "r" (ptr
));
237 return p
[0] | (p
[1] << 8);
241 static inline int ldsw_le_p(void *ptr
)
245 __asm__
__volatile__ ("lhbrx %0,0,%1" : "=r" (val
) : "r" (ptr
));
249 return (int16_t)(p
[0] | (p
[1] << 8));
253 static inline int ldl_le_p(void *ptr
)
257 __asm__
__volatile__ ("lwbrx %0,0,%1" : "=r" (val
) : "r" (ptr
));
261 return p
[0] | (p
[1] << 8) | (p
[2] << 16) | (p
[3] << 24);
265 static inline uint64_t ldq_le_p(void *ptr
)
270 v2
= ldl_le_p(p
+ 4);
271 return v1
| ((uint64_t)v2
<< 32);
274 static inline void stw_le_p(void *ptr
, int v
)
277 __asm__
__volatile__ ("sthbrx %1,0,%2" : "=m" (*(uint16_t *)ptr
) : "r" (v
), "r" (ptr
));
285 static inline void stl_le_p(void *ptr
, int v
)
288 __asm__
__volatile__ ("stwbrx %1,0,%2" : "=m" (*(uint32_t *)ptr
) : "r" (v
), "r" (ptr
));
298 static inline void stq_le_p(void *ptr
, uint64_t v
)
301 stl_le_p(p
, (uint32_t)v
);
302 stl_le_p(p
+ 4, v
>> 32);
307 static inline float32
ldfl_le_p(void *ptr
)
317 static inline void stfl_le_p(void *ptr
, float32 v
)
327 static inline float64
ldfq_le_p(void *ptr
)
330 u
.l
.lower
= ldl_le_p(ptr
);
331 u
.l
.upper
= ldl_le_p(ptr
+ 4);
335 static inline void stfq_le_p(void *ptr
, float64 v
)
339 stl_le_p(ptr
, u
.l
.lower
);
340 stl_le_p(ptr
+ 4, u
.l
.upper
);
345 static inline int lduw_le_p(void *ptr
)
347 return *(uint16_t *)ptr
;
350 static inline int ldsw_le_p(void *ptr
)
352 return *(int16_t *)ptr
;
355 static inline int ldl_le_p(void *ptr
)
357 return *(uint32_t *)ptr
;
360 static inline uint64_t ldq_le_p(void *ptr
)
362 return *(uint64_t *)ptr
;
365 static inline void stw_le_p(void *ptr
, int v
)
367 *(uint16_t *)ptr
= v
;
370 static inline void stl_le_p(void *ptr
, int v
)
372 *(uint32_t *)ptr
= v
;
375 static inline void stq_le_p(void *ptr
, uint64_t v
)
377 *(uint64_t *)ptr
= v
;
382 static inline float32
ldfl_le_p(void *ptr
)
384 return *(float32
*)ptr
;
387 static inline float64
ldfq_le_p(void *ptr
)
389 return *(float64
*)ptr
;
392 static inline void stfl_le_p(void *ptr
, float32 v
)
397 static inline void stfq_le_p(void *ptr
, float64 v
)
403 #if !defined(WORDS_BIGENDIAN) || defined(WORDS_ALIGNED)
405 static inline int lduw_be_p(void *ptr
)
407 #if defined(__i386__)
409 asm volatile ("movzwl %1, %0\n"
412 : "m" (*(uint16_t *)ptr
));
415 uint8_t *b
= (uint8_t *) ptr
;
416 return ((b
[0] << 8) | b
[1]);
420 static inline int ldsw_be_p(void *ptr
)
422 #if defined(__i386__)
424 asm volatile ("movzwl %1, %0\n"
427 : "m" (*(uint16_t *)ptr
));
430 uint8_t *b
= (uint8_t *) ptr
;
431 return (int16_t)((b
[0] << 8) | b
[1]);
435 static inline int ldl_be_p(void *ptr
)
437 #if defined(__i386__) || defined(__x86_64__)
439 asm volatile ("movl %1, %0\n"
442 : "m" (*(uint32_t *)ptr
));
445 uint8_t *b
= (uint8_t *) ptr
;
446 return (b
[0] << 24) | (b
[1] << 16) | (b
[2] << 8) | b
[3];
450 static inline uint64_t ldq_be_p(void *ptr
)
455 return (((uint64_t)a
<<32)|b
);
458 static inline void stw_be_p(void *ptr
, int v
)
460 #if defined(__i386__)
461 asm volatile ("xchgb %b0, %h0\n"
464 : "m" (*(uint16_t *)ptr
), "0" (v
));
466 uint8_t *d
= (uint8_t *) ptr
;
472 static inline void stl_be_p(void *ptr
, int v
)
474 #if defined(__i386__) || defined(__x86_64__)
475 asm volatile ("bswap %0\n"
478 : "m" (*(uint32_t *)ptr
), "0" (v
));
480 uint8_t *d
= (uint8_t *) ptr
;
488 static inline void stq_be_p(void *ptr
, uint64_t v
)
490 stl_be_p(ptr
, v
>> 32);
491 stl_be_p(ptr
+ 4, v
);
496 static inline float32
ldfl_be_p(void *ptr
)
506 static inline void stfl_be_p(void *ptr
, float32 v
)
516 static inline float64
ldfq_be_p(void *ptr
)
519 u
.l
.upper
= ldl_be_p(ptr
);
520 u
.l
.lower
= ldl_be_p(ptr
+ 4);
524 static inline void stfq_be_p(void *ptr
, float64 v
)
528 stl_be_p(ptr
, u
.l
.upper
);
529 stl_be_p(ptr
+ 4, u
.l
.lower
);
534 static inline int lduw_be_p(void *ptr
)
536 return *(uint16_t *)ptr
;
539 static inline int ldsw_be_p(void *ptr
)
541 return *(int16_t *)ptr
;
544 static inline int ldl_be_p(void *ptr
)
546 return *(uint32_t *)ptr
;
549 static inline uint64_t ldq_be_p(void *ptr
)
551 return *(uint64_t *)ptr
;
554 static inline void stw_be_p(void *ptr
, int v
)
556 *(uint16_t *)ptr
= v
;
559 static inline void stl_be_p(void *ptr
, int v
)
561 *(uint32_t *)ptr
= v
;
564 static inline void stq_be_p(void *ptr
, uint64_t v
)
566 *(uint64_t *)ptr
= v
;
571 static inline float32
ldfl_be_p(void *ptr
)
573 return *(float32
*)ptr
;
576 static inline float64
ldfq_be_p(void *ptr
)
578 return *(float64
*)ptr
;
581 static inline void stfl_be_p(void *ptr
, float32 v
)
586 static inline void stfq_be_p(void *ptr
, float64 v
)
593 /* target CPU memory access functions */
594 #if defined(TARGET_WORDS_BIGENDIAN)
595 #define lduw_p(p) lduw_be_p(p)
596 #define ldsw_p(p) ldsw_be_p(p)
597 #define ldl_p(p) ldl_be_p(p)
598 #define ldq_p(p) ldq_be_p(p)
599 #define ldfl_p(p) ldfl_be_p(p)
600 #define ldfq_p(p) ldfq_be_p(p)
601 #define stw_p(p, v) stw_be_p(p, v)
602 #define stl_p(p, v) stl_be_p(p, v)
603 #define stq_p(p, v) stq_be_p(p, v)
604 #define stfl_p(p, v) stfl_be_p(p, v)
605 #define stfq_p(p, v) stfq_be_p(p, v)
607 #define lduw_p(p) lduw_le_p(p)
608 #define ldsw_p(p) ldsw_le_p(p)
609 #define ldl_p(p) ldl_le_p(p)
610 #define ldq_p(p) ldq_le_p(p)
611 #define ldfl_p(p) ldfl_le_p(p)
612 #define ldfq_p(p) ldfq_le_p(p)
613 #define stw_p(p, v) stw_le_p(p, v)
614 #define stl_p(p, v) stl_le_p(p, v)
615 #define stq_p(p, v) stq_le_p(p, v)
616 #define stfl_p(p, v) stfl_le_p(p, v)
617 #define stfq_p(p, v) stfq_le_p(p, v)
620 /* MMU memory access macros */
622 #if defined(CONFIG_USER_ONLY)
623 /* On some host systems the guest address space is reserved on the host.
624 * This allows the guest address space to be offset to a convenient location.
626 //#define GUEST_BASE 0x20000000
629 /* All direct uses of g2h and h2g need to go away for usermode softmmu. */
630 #define g2h(x) ((void *)((unsigned long)(x) + GUEST_BASE))
631 #define h2g(x) ((target_ulong)(x - GUEST_BASE))
633 #define saddr(x) g2h(x)
634 #define laddr(x) g2h(x)
636 #else /* !CONFIG_USER_ONLY */
637 /* NOTE: we use double casts if pointers and target_ulong have
639 #define saddr(x) (uint8_t *)(long)(x)
640 #define laddr(x) (uint8_t *)(long)(x)
643 #define ldub_raw(p) ldub_p(laddr((p)))
644 #define ldsb_raw(p) ldsb_p(laddr((p)))
645 #define lduw_raw(p) lduw_p(laddr((p)))
646 #define ldsw_raw(p) ldsw_p(laddr((p)))
647 #define ldl_raw(p) ldl_p(laddr((p)))
648 #define ldq_raw(p) ldq_p(laddr((p)))
649 #define ldfl_raw(p) ldfl_p(laddr((p)))
650 #define ldfq_raw(p) ldfq_p(laddr((p)))
651 #define stb_raw(p, v) stb_p(saddr((p)), v)
652 #define stw_raw(p, v) stw_p(saddr((p)), v)
653 #define stl_raw(p, v) stl_p(saddr((p)), v)
654 #define stq_raw(p, v) stq_p(saddr((p)), v)
655 #define stfl_raw(p, v) stfl_p(saddr((p)), v)
656 #define stfq_raw(p, v) stfq_p(saddr((p)), v)
659 #if defined(CONFIG_USER_ONLY)
661 /* if user mode, no other memory access functions */
662 #define ldub(p) ldub_raw(p)
663 #define ldsb(p) ldsb_raw(p)
664 #define lduw(p) lduw_raw(p)
665 #define ldsw(p) ldsw_raw(p)
666 #define ldl(p) ldl_raw(p)
667 #define ldq(p) ldq_raw(p)
668 #define ldfl(p) ldfl_raw(p)
669 #define ldfq(p) ldfq_raw(p)
670 #define stb(p, v) stb_raw(p, v)
671 #define stw(p, v) stw_raw(p, v)
672 #define stl(p, v) stl_raw(p, v)
673 #define stq(p, v) stq_raw(p, v)
674 #define stfl(p, v) stfl_raw(p, v)
675 #define stfq(p, v) stfq_raw(p, v)
677 #define ldub_code(p) ldub_raw(p)
678 #define ldsb_code(p) ldsb_raw(p)
679 #define lduw_code(p) lduw_raw(p)
680 #define ldsw_code(p) ldsw_raw(p)
681 #define ldl_code(p) ldl_raw(p)
682 #define ldq_code(p) ldq_raw(p)
684 #define ldub_kernel(p) ldub_raw(p)
685 #define ldsb_kernel(p) ldsb_raw(p)
686 #define lduw_kernel(p) lduw_raw(p)
687 #define ldsw_kernel(p) ldsw_raw(p)
688 #define ldl_kernel(p) ldl_raw(p)
689 #define ldq_kernel(p) ldq_raw(p)
690 #define ldfl_kernel(p) ldfl_raw(p)
691 #define ldfq_kernel(p) ldfq_raw(p)
692 #define stb_kernel(p, v) stb_raw(p, v)
693 #define stw_kernel(p, v) stw_raw(p, v)
694 #define stl_kernel(p, v) stl_raw(p, v)
695 #define stq_kernel(p, v) stq_raw(p, v)
696 #define stfl_kernel(p, v) stfl_raw(p, v)
697 #define stfq_kernel(p, vt) stfq_raw(p, v)
699 #endif /* defined(CONFIG_USER_ONLY) */
701 /* page related stuff */
703 #define TARGET_PAGE_SIZE (1ul << TARGET_PAGE_BITS)
704 #define TARGET_PAGE_MASK ~(TARGET_PAGE_SIZE - 1)
705 #define TARGET_PAGE_ALIGN(addr) (((addr) + TARGET_PAGE_SIZE - 1) & TARGET_PAGE_MASK)
707 /* ??? These should be the larger of unsigned long and target_ulong. */
708 extern unsigned long qemu_real_host_page_size
;
709 extern unsigned long qemu_host_page_bits
;
710 extern unsigned long qemu_host_page_size
;
711 extern unsigned long qemu_host_page_mask
;
713 #define HOST_PAGE_ALIGN(addr) (((addr) + qemu_host_page_size - 1) & qemu_host_page_mask)
715 /* same as PROT_xxx */
716 #define PAGE_READ 0x0001
717 #define PAGE_WRITE 0x0002
718 #define PAGE_EXEC 0x0004
719 #define PAGE_BITS (PAGE_READ | PAGE_WRITE | PAGE_EXEC)
720 #define PAGE_VALID 0x0008
721 /* original state of the write flag (used when tracking self-modifying
723 #define PAGE_WRITE_ORG 0x0010
724 #define PAGE_RESERVED 0x0020
726 void page_dump(FILE *f
);
727 int page_get_flags(target_ulong address
);
728 void page_set_flags(target_ulong start
, target_ulong end
, int flags
);
729 int page_check_range(target_ulong start
, target_ulong len
, int flags
);
731 CPUState
*cpu_copy(CPUState
*env
);
733 void cpu_dump_state(CPUState
*env
, FILE *f
,
734 int (*cpu_fprintf
)(FILE *f
, const char *fmt
, ...),
736 void cpu_dump_statistics (CPUState
*env
, FILE *f
,
737 int (*cpu_fprintf
)(FILE *f
, const char *fmt
, ...),
740 void cpu_abort(CPUState
*env
, const char *fmt
, ...)
741 __attribute__ ((__format__ (__printf__
, 2, 3)))
742 __attribute__ ((__noreturn__
));
743 extern CPUState
*first_cpu
;
744 extern CPUState
*cpu_single_env
;
745 extern int code_copy_enabled
;
747 #define CPU_INTERRUPT_EXIT 0x01 /* wants exit from main loop */
748 #define CPU_INTERRUPT_HARD 0x02 /* hardware interrupt pending */
749 #define CPU_INTERRUPT_EXITTB 0x04 /* exit the current TB (use for x86 a20 case) */
750 #define CPU_INTERRUPT_TIMER 0x08 /* internal timer exception pending */
751 #define CPU_INTERRUPT_FIQ 0x10 /* Fast interrupt pending. */
752 #define CPU_INTERRUPT_HALT 0x20 /* CPU halt wanted */
753 #define CPU_INTERRUPT_SMI 0x40 /* (x86 only) SMI interrupt pending */
754 #define CPU_INTERRUPT_DEBUG 0x80 /* Debug event occured. */
755 #define CPU_INTERRUPT_VIRQ 0x100 /* virtual interrupt pending. */
757 void cpu_interrupt(CPUState
*s
, int mask
);
758 void cpu_reset_interrupt(CPUState
*env
, int mask
);
760 int cpu_watchpoint_insert(CPUState
*env
, target_ulong addr
);
761 int cpu_watchpoint_remove(CPUState
*env
, target_ulong addr
);
762 int cpu_breakpoint_insert(CPUState
*env
, target_ulong pc
);
763 int cpu_breakpoint_remove(CPUState
*env
, target_ulong pc
);
764 void cpu_single_step(CPUState
*env
, int enabled
);
765 void cpu_reset(CPUState
*s
);
767 /* Return the physical page corresponding to a virtual one. Use it
768 only for debugging because no protection checks are done. Return -1
770 target_phys_addr_t
cpu_get_phys_page_debug(CPUState
*env
, target_ulong addr
);
772 #define CPU_LOG_TB_OUT_ASM (1 << 0)
773 #define CPU_LOG_TB_IN_ASM (1 << 1)
774 #define CPU_LOG_TB_OP (1 << 2)
775 #define CPU_LOG_TB_OP_OPT (1 << 3)
776 #define CPU_LOG_INT (1 << 4)
777 #define CPU_LOG_EXEC (1 << 5)
778 #define CPU_LOG_PCALL (1 << 6)
779 #define CPU_LOG_IOPORT (1 << 7)
780 #define CPU_LOG_TB_CPU (1 << 8)
782 /* define log items */
783 typedef struct CPULogItem
{
789 extern CPULogItem cpu_log_items
[];
791 void cpu_set_log(int log_flags
);
792 void cpu_set_log_filename(const char *filename
);
793 int cpu_str_to_log_mask(const char *str
);
797 /* NOTE: as these functions may be even used when there is an isa
798 brige on non x86 targets, we always defined them */
799 #ifndef NO_CPU_IO_DEFS
800 void cpu_outb(CPUState
*env
, int addr
, int val
);
801 void cpu_outw(CPUState
*env
, int addr
, int val
);
802 void cpu_outl(CPUState
*env
, int addr
, int val
);
803 int cpu_inb(CPUState
*env
, int addr
);
804 int cpu_inw(CPUState
*env
, int addr
);
805 int cpu_inl(CPUState
*env
, int addr
);
810 extern ram_addr_t phys_ram_size
;
811 extern int phys_ram_fd
;
812 extern uint8_t *phys_ram_base
;
813 extern uint8_t *phys_ram_dirty
;
814 extern uint8_t *bios_mem
;
816 /* physical memory access */
817 #define TLB_INVALID_MASK (1 << 3)
818 #define IO_MEM_SHIFT 4
819 #define IO_MEM_NB_ENTRIES (1 << (TARGET_PAGE_BITS - IO_MEM_SHIFT))
821 #define IO_MEM_RAM (0 << IO_MEM_SHIFT) /* hardcoded offset */
822 #define IO_MEM_ROM (1 << IO_MEM_SHIFT) /* hardcoded offset */
823 #define IO_MEM_UNASSIGNED (2 << IO_MEM_SHIFT)
824 #define IO_MEM_NOTDIRTY (4 << IO_MEM_SHIFT) /* used internally, never use directly */
825 /* acts like a ROM when read and like a device when written. As an
826 exception, the write memory callback gets the ram offset instead of
827 the physical address */
828 #define IO_MEM_ROMD (1)
829 #define IO_MEM_SUBPAGE (2)
830 #define IO_MEM_SUBWIDTH (4)
832 typedef void CPUWriteMemoryFunc(void *opaque
, target_phys_addr_t addr
, uint32_t value
);
833 typedef uint32_t CPUReadMemoryFunc(void *opaque
, target_phys_addr_t addr
);
835 void cpu_register_physical_memory(target_phys_addr_t start_addr
,
837 unsigned long phys_offset
);
838 uint32_t cpu_get_physical_page_desc(target_phys_addr_t addr
);
839 ram_addr_t
qemu_ram_alloc(unsigned long size
);
840 void qemu_ram_free(ram_addr_t addr
);
841 int cpu_register_io_memory(int io_index
,
842 CPUReadMemoryFunc
**mem_read
,
843 CPUWriteMemoryFunc
**mem_write
,
845 void cpu_unregister_io_memory(int table_address
);
846 CPUWriteMemoryFunc
**cpu_get_io_memory_write(int io_index
);
847 CPUReadMemoryFunc
**cpu_get_io_memory_read(int io_index
);
849 void cpu_physical_memory_rw(target_phys_addr_t addr
, uint8_t *buf
,
850 int len
, int is_write
);
851 static inline void cpu_physical_memory_read(target_phys_addr_t addr
,
852 uint8_t *buf
, int len
)
854 cpu_physical_memory_rw(addr
, buf
, len
, 0);
856 static inline void cpu_physical_memory_write(target_phys_addr_t addr
,
857 const uint8_t *buf
, int len
)
859 cpu_physical_memory_rw(addr
, (uint8_t *)buf
, len
, 1);
861 uint32_t ldub_phys(target_phys_addr_t addr
);
862 uint32_t lduw_phys(target_phys_addr_t addr
);
863 uint32_t ldl_phys(target_phys_addr_t addr
);
864 uint64_t ldq_phys(target_phys_addr_t addr
);
865 void stl_phys_notdirty(target_phys_addr_t addr
, uint32_t val
);
866 void stq_phys_notdirty(target_phys_addr_t addr
, uint64_t val
);
867 void stb_phys(target_phys_addr_t addr
, uint32_t val
);
868 void stw_phys(target_phys_addr_t addr
, uint32_t val
);
869 void stl_phys(target_phys_addr_t addr
, uint32_t val
);
870 void stq_phys(target_phys_addr_t addr
, uint64_t val
);
872 void cpu_physical_memory_write_rom(target_phys_addr_t addr
,
873 const uint8_t *buf
, int len
);
874 int cpu_memory_rw_debug(CPUState
*env
, target_ulong addr
,
875 uint8_t *buf
, int len
, int is_write
);
877 #define VGA_DIRTY_FLAG 0x01
878 #define CODE_DIRTY_FLAG 0x02
879 #define MIGRATION_DIRTY_FLAG 0x08
881 /* read dirty bit (return 0 or 1) */
882 static inline int cpu_physical_memory_is_dirty(ram_addr_t addr
)
884 return phys_ram_dirty
[addr
>> TARGET_PAGE_BITS
] == 0xff;
887 static inline int cpu_physical_memory_get_dirty(ram_addr_t addr
,
890 return phys_ram_dirty
[addr
>> TARGET_PAGE_BITS
] & dirty_flags
;
893 static inline void cpu_physical_memory_set_dirty(ram_addr_t addr
)
895 phys_ram_dirty
[addr
>> TARGET_PAGE_BITS
] = 0xff;
898 void cpu_physical_memory_reset_dirty(ram_addr_t start
, ram_addr_t end
,
900 void cpu_tlb_update_dirty(CPUState
*env
);
902 int cpu_physical_memory_set_dirty_tracking(int enable
);
904 int cpu_physical_memory_get_dirty_tracking(void);
906 void dump_exec_info(FILE *f
,
907 int (*cpu_fprintf
)(FILE *f
, const char *fmt
, ...));
909 /*******************************************/
910 /* host CPU ticks (if available) */
912 #if defined(__powerpc__)
914 static inline uint32_t get_tbl(void)
917 asm volatile("mftb %0" : "=r" (tbl
));
921 static inline uint32_t get_tbu(void)
924 asm volatile("mftbu %0" : "=r" (tbl
));
928 static inline int64_t cpu_get_real_ticks(void)
931 /* NOTE: we test if wrapping has occurred */
937 return ((int64_t)h
<< 32) | l
;
940 #elif defined(__i386__)
942 static inline int64_t cpu_get_real_ticks(void)
945 asm volatile ("rdtsc" : "=A" (val
));
949 #elif defined(__x86_64__)
951 static inline int64_t cpu_get_real_ticks(void)
955 asm volatile("rdtsc" : "=a" (low
), "=d" (high
));
962 #elif defined(__ia64)
964 static inline int64_t cpu_get_real_ticks(void)
967 asm volatile ("mov %0 = ar.itc" : "=r"(val
) :: "memory");
971 #elif defined(__s390__)
973 static inline int64_t cpu_get_real_ticks(void)
976 asm volatile("stck 0(%1)" : "=m" (val
) : "a" (&val
) : "cc");
980 #elif defined(__sparc_v8plus__) || defined(__sparc_v8plusa__) || defined(__sparc_v9__)
982 static inline int64_t cpu_get_real_ticks (void)
986 asm volatile("rd %%tick,%0" : "=r"(rval
));
996 asm volatile("rd %%tick,%1; srlx %1,32,%0"
997 : "=r"(rval
.i32
.high
), "=r"(rval
.i32
.low
));
1002 #elif defined(__mips__)
1004 static inline int64_t cpu_get_real_ticks(void)
1006 #if __mips_isa_rev >= 2
1008 static uint32_t cyc_per_count
= 0;
1011 __asm__
__volatile__("rdhwr %0, $3" : "=r" (cyc_per_count
));
1013 __asm__
__volatile__("rdhwr %1, $2" : "=r" (count
));
1014 return (int64_t)(count
* cyc_per_count
);
1017 static int64_t ticks
= 0;
1023 /* The host CPU doesn't have an easily accessible cycle counter.
1024 Just return a monotonically increasing value. This will be
1025 totally wrong, but hopefully better than nothing. */
1026 static inline int64_t cpu_get_real_ticks (void)
1028 static int64_t ticks
= 0;
1034 #ifdef CONFIG_PROFILER
1035 static inline int64_t profile_getclock(void)
1037 return cpu_get_real_ticks();
1040 extern int64_t kqemu_time
, kqemu_time_start
;
1041 extern int64_t qemu_time
, qemu_time_start
;
1042 extern int64_t tlb_flush_time
;
1043 extern int64_t kqemu_exec_count
;
1044 extern int64_t dev_time
;
1045 extern int64_t kqemu_ret_int_count
;
1046 extern int64_t kqemu_ret_excp_count
;
1047 extern int64_t kqemu_ret_intr_count
;
1049 extern int64_t dyngen_tb_count1
;
1050 extern int64_t dyngen_tb_count
;
1051 extern int64_t dyngen_op_count
;
1052 extern int64_t dyngen_old_op_count
;
1053 extern int64_t dyngen_tcg_del_op_count
;
1054 extern int dyngen_op_count_max
;
1055 extern int64_t dyngen_code_in_len
;
1056 extern int64_t dyngen_code_out_len
;
1057 extern int64_t dyngen_interm_time
;
1058 extern int64_t dyngen_code_time
;
1059 extern int64_t dyngen_restore_count
;
1060 extern int64_t dyngen_restore_time
;
1063 #endif /* CPU_ALL_H */