Separate thread for IO handling
[qemu-kvm/fedora.git] / cpu-all.h
blob4c75ec3acfd5c4ef7adceba073a5ed6239358f3b
1 /*
2 * defines common to all virtual CPUs
4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
20 #ifndef CPU_ALL_H
21 #define CPU_ALL_H
23 #if defined(__arm__) || defined(__sparc__) || defined(__mips__)
24 #define WORDS_ALIGNED
25 #endif
27 /* some important defines:
29 * WORDS_ALIGNED : if defined, the host cpu can only make word aligned
30 * memory accesses.
32 * WORDS_BIGENDIAN : if defined, the host cpu is big endian and
33 * otherwise little endian.
35 * (TARGET_WORDS_ALIGNED : same for target cpu (not supported yet))
37 * TARGET_WORDS_BIGENDIAN : same for target cpu
40 #include "bswap.h"
42 #if defined(WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN)
43 #define BSWAP_NEEDED
44 #endif
46 #ifdef BSWAP_NEEDED
48 static inline uint16_t tswap16(uint16_t s)
50 return bswap16(s);
53 static inline uint32_t tswap32(uint32_t s)
55 return bswap32(s);
58 static inline uint64_t tswap64(uint64_t s)
60 return bswap64(s);
63 static inline void tswap16s(uint16_t *s)
65 *s = bswap16(*s);
68 static inline void tswap32s(uint32_t *s)
70 *s = bswap32(*s);
73 static inline void tswap64s(uint64_t *s)
75 *s = bswap64(*s);
78 #else
80 static inline uint16_t tswap16(uint16_t s)
82 return s;
85 static inline uint32_t tswap32(uint32_t s)
87 return s;
90 static inline uint64_t tswap64(uint64_t s)
92 return s;
95 static inline void tswap16s(uint16_t *s)
99 static inline void tswap32s(uint32_t *s)
103 static inline void tswap64s(uint64_t *s)
107 #endif
109 #if TARGET_LONG_SIZE == 4
110 #define tswapl(s) tswap32(s)
111 #define tswapls(s) tswap32s((uint32_t *)(s))
112 #define bswaptls(s) bswap32s(s)
113 #else
114 #define tswapl(s) tswap64(s)
115 #define tswapls(s) tswap64s((uint64_t *)(s))
116 #define bswaptls(s) bswap64s(s)
117 #endif
119 typedef union {
120 float32 f;
121 uint32_t l;
122 } CPU_FloatU;
124 /* NOTE: arm FPA is horrible as double 32 bit words are stored in big
125 endian ! */
126 typedef union {
127 float64 d;
128 #if defined(WORDS_BIGENDIAN) \
129 || (defined(__arm__) && !defined(__VFP_FP__) && !defined(CONFIG_SOFTFLOAT))
130 struct {
131 uint32_t upper;
132 uint32_t lower;
133 } l;
134 #else
135 struct {
136 uint32_t lower;
137 uint32_t upper;
138 } l;
139 #endif
140 uint64_t ll;
141 } CPU_DoubleU;
143 #ifdef TARGET_SPARC
144 typedef union {
145 float128 q;
146 #if defined(WORDS_BIGENDIAN) \
147 || (defined(__arm__) && !defined(__VFP_FP__) && !defined(CONFIG_SOFTFLOAT))
148 struct {
149 uint32_t upmost;
150 uint32_t upper;
151 uint32_t lower;
152 uint32_t lowest;
153 } l;
154 struct {
155 uint64_t upper;
156 uint64_t lower;
157 } ll;
158 #else
159 struct {
160 uint32_t lowest;
161 uint32_t lower;
162 uint32_t upper;
163 uint32_t upmost;
164 } l;
165 struct {
166 uint64_t lower;
167 uint64_t upper;
168 } ll;
169 #endif
170 } CPU_QuadU;
171 #endif
173 /* CPU memory access without any memory or io remapping */
176 * the generic syntax for the memory accesses is:
178 * load: ld{type}{sign}{size}{endian}_{access_type}(ptr)
180 * store: st{type}{size}{endian}_{access_type}(ptr, val)
182 * type is:
183 * (empty): integer access
184 * f : float access
186 * sign is:
187 * (empty): for floats or 32 bit size
188 * u : unsigned
189 * s : signed
191 * size is:
192 * b: 8 bits
193 * w: 16 bits
194 * l: 32 bits
195 * q: 64 bits
197 * endian is:
198 * (empty): target cpu endianness or 8 bit access
199 * r : reversed target cpu endianness (not implemented yet)
200 * be : big endian (not implemented yet)
201 * le : little endian (not implemented yet)
203 * access_type is:
204 * raw : host memory access
205 * user : user mode access using soft MMU
206 * kernel : kernel mode access using soft MMU
208 static inline int ldub_p(void *ptr)
210 return *(uint8_t *)ptr;
213 static inline int ldsb_p(void *ptr)
215 return *(int8_t *)ptr;
218 static inline void stb_p(void *ptr, int v)
220 *(uint8_t *)ptr = v;
223 /* NOTE: on arm, putting 2 in /proc/sys/debug/alignment so that the
224 kernel handles unaligned load/stores may give better results, but
225 it is a system wide setting : bad */
226 #if defined(WORDS_BIGENDIAN) || defined(WORDS_ALIGNED)
228 /* conservative code for little endian unaligned accesses */
229 static inline int lduw_le_p(void *ptr)
231 #ifdef __powerpc__
232 int val;
233 __asm__ __volatile__ ("lhbrx %0,0,%1" : "=r" (val) : "r" (ptr));
234 return val;
235 #else
236 uint8_t *p = ptr;
237 return p[0] | (p[1] << 8);
238 #endif
241 static inline int ldsw_le_p(void *ptr)
243 #ifdef __powerpc__
244 int val;
245 __asm__ __volatile__ ("lhbrx %0,0,%1" : "=r" (val) : "r" (ptr));
246 return (int16_t)val;
247 #else
248 uint8_t *p = ptr;
249 return (int16_t)(p[0] | (p[1] << 8));
250 #endif
253 static inline int ldl_le_p(void *ptr)
255 #ifdef __powerpc__
256 int val;
257 __asm__ __volatile__ ("lwbrx %0,0,%1" : "=r" (val) : "r" (ptr));
258 return val;
259 #else
260 uint8_t *p = ptr;
261 return p[0] | (p[1] << 8) | (p[2] << 16) | (p[3] << 24);
262 #endif
265 static inline uint64_t ldq_le_p(void *ptr)
267 uint8_t *p = ptr;
268 uint32_t v1, v2;
269 v1 = ldl_le_p(p);
270 v2 = ldl_le_p(p + 4);
271 return v1 | ((uint64_t)v2 << 32);
274 static inline void stw_le_p(void *ptr, int v)
276 #ifdef __powerpc__
277 __asm__ __volatile__ ("sthbrx %1,0,%2" : "=m" (*(uint16_t *)ptr) : "r" (v), "r" (ptr));
278 #else
279 uint8_t *p = ptr;
280 p[0] = v;
281 p[1] = v >> 8;
282 #endif
285 static inline void stl_le_p(void *ptr, int v)
287 #ifdef __powerpc__
288 __asm__ __volatile__ ("stwbrx %1,0,%2" : "=m" (*(uint32_t *)ptr) : "r" (v), "r" (ptr));
289 #else
290 uint8_t *p = ptr;
291 p[0] = v;
292 p[1] = v >> 8;
293 p[2] = v >> 16;
294 p[3] = v >> 24;
295 #endif
298 static inline void stq_le_p(void *ptr, uint64_t v)
300 uint8_t *p = ptr;
301 stl_le_p(p, (uint32_t)v);
302 stl_le_p(p + 4, v >> 32);
305 /* float access */
307 static inline float32 ldfl_le_p(void *ptr)
309 union {
310 float32 f;
311 uint32_t i;
312 } u;
313 u.i = ldl_le_p(ptr);
314 return u.f;
317 static inline void stfl_le_p(void *ptr, float32 v)
319 union {
320 float32 f;
321 uint32_t i;
322 } u;
323 u.f = v;
324 stl_le_p(ptr, u.i);
327 static inline float64 ldfq_le_p(void *ptr)
329 CPU_DoubleU u;
330 u.l.lower = ldl_le_p(ptr);
331 u.l.upper = ldl_le_p(ptr + 4);
332 return u.d;
335 static inline void stfq_le_p(void *ptr, float64 v)
337 CPU_DoubleU u;
338 u.d = v;
339 stl_le_p(ptr, u.l.lower);
340 stl_le_p(ptr + 4, u.l.upper);
343 #else
345 static inline int lduw_le_p(void *ptr)
347 return *(uint16_t *)ptr;
350 static inline int ldsw_le_p(void *ptr)
352 return *(int16_t *)ptr;
355 static inline int ldl_le_p(void *ptr)
357 return *(uint32_t *)ptr;
360 static inline uint64_t ldq_le_p(void *ptr)
362 return *(uint64_t *)ptr;
365 static inline void stw_le_p(void *ptr, int v)
367 *(uint16_t *)ptr = v;
370 static inline void stl_le_p(void *ptr, int v)
372 *(uint32_t *)ptr = v;
375 static inline void stq_le_p(void *ptr, uint64_t v)
377 *(uint64_t *)ptr = v;
380 /* float access */
382 static inline float32 ldfl_le_p(void *ptr)
384 return *(float32 *)ptr;
387 static inline float64 ldfq_le_p(void *ptr)
389 return *(float64 *)ptr;
392 static inline void stfl_le_p(void *ptr, float32 v)
394 *(float32 *)ptr = v;
397 static inline void stfq_le_p(void *ptr, float64 v)
399 *(float64 *)ptr = v;
401 #endif
403 #if !defined(WORDS_BIGENDIAN) || defined(WORDS_ALIGNED)
405 static inline int lduw_be_p(void *ptr)
407 #if defined(__i386__)
408 int val;
409 asm volatile ("movzwl %1, %0\n"
410 "xchgb %b0, %h0\n"
411 : "=q" (val)
412 : "m" (*(uint16_t *)ptr));
413 return val;
414 #else
415 uint8_t *b = (uint8_t *) ptr;
416 return ((b[0] << 8) | b[1]);
417 #endif
420 static inline int ldsw_be_p(void *ptr)
422 #if defined(__i386__)
423 int val;
424 asm volatile ("movzwl %1, %0\n"
425 "xchgb %b0, %h0\n"
426 : "=q" (val)
427 : "m" (*(uint16_t *)ptr));
428 return (int16_t)val;
429 #else
430 uint8_t *b = (uint8_t *) ptr;
431 return (int16_t)((b[0] << 8) | b[1]);
432 #endif
435 static inline int ldl_be_p(void *ptr)
437 #if defined(__i386__) || defined(__x86_64__)
438 int val;
439 asm volatile ("movl %1, %0\n"
440 "bswap %0\n"
441 : "=r" (val)
442 : "m" (*(uint32_t *)ptr));
443 return val;
444 #else
445 uint8_t *b = (uint8_t *) ptr;
446 return (b[0] << 24) | (b[1] << 16) | (b[2] << 8) | b[3];
447 #endif
450 static inline uint64_t ldq_be_p(void *ptr)
452 uint32_t a,b;
453 a = ldl_be_p(ptr);
454 b = ldl_be_p(ptr+4);
455 return (((uint64_t)a<<32)|b);
458 static inline void stw_be_p(void *ptr, int v)
460 #if defined(__i386__)
461 asm volatile ("xchgb %b0, %h0\n"
462 "movw %w0, %1\n"
463 : "=q" (v)
464 : "m" (*(uint16_t *)ptr), "0" (v));
465 #else
466 uint8_t *d = (uint8_t *) ptr;
467 d[0] = v >> 8;
468 d[1] = v;
469 #endif
472 static inline void stl_be_p(void *ptr, int v)
474 #if defined(__i386__) || defined(__x86_64__)
475 asm volatile ("bswap %0\n"
476 "movl %0, %1\n"
477 : "=r" (v)
478 : "m" (*(uint32_t *)ptr), "0" (v));
479 #else
480 uint8_t *d = (uint8_t *) ptr;
481 d[0] = v >> 24;
482 d[1] = v >> 16;
483 d[2] = v >> 8;
484 d[3] = v;
485 #endif
488 static inline void stq_be_p(void *ptr, uint64_t v)
490 stl_be_p(ptr, v >> 32);
491 stl_be_p(ptr + 4, v);
494 /* float access */
496 static inline float32 ldfl_be_p(void *ptr)
498 union {
499 float32 f;
500 uint32_t i;
501 } u;
502 u.i = ldl_be_p(ptr);
503 return u.f;
506 static inline void stfl_be_p(void *ptr, float32 v)
508 union {
509 float32 f;
510 uint32_t i;
511 } u;
512 u.f = v;
513 stl_be_p(ptr, u.i);
516 static inline float64 ldfq_be_p(void *ptr)
518 CPU_DoubleU u;
519 u.l.upper = ldl_be_p(ptr);
520 u.l.lower = ldl_be_p(ptr + 4);
521 return u.d;
524 static inline void stfq_be_p(void *ptr, float64 v)
526 CPU_DoubleU u;
527 u.d = v;
528 stl_be_p(ptr, u.l.upper);
529 stl_be_p(ptr + 4, u.l.lower);
532 #else
534 static inline int lduw_be_p(void *ptr)
536 return *(uint16_t *)ptr;
539 static inline int ldsw_be_p(void *ptr)
541 return *(int16_t *)ptr;
544 static inline int ldl_be_p(void *ptr)
546 return *(uint32_t *)ptr;
549 static inline uint64_t ldq_be_p(void *ptr)
551 return *(uint64_t *)ptr;
554 static inline void stw_be_p(void *ptr, int v)
556 *(uint16_t *)ptr = v;
559 static inline void stl_be_p(void *ptr, int v)
561 *(uint32_t *)ptr = v;
564 static inline void stq_be_p(void *ptr, uint64_t v)
566 *(uint64_t *)ptr = v;
569 /* float access */
571 static inline float32 ldfl_be_p(void *ptr)
573 return *(float32 *)ptr;
576 static inline float64 ldfq_be_p(void *ptr)
578 return *(float64 *)ptr;
581 static inline void stfl_be_p(void *ptr, float32 v)
583 *(float32 *)ptr = v;
586 static inline void stfq_be_p(void *ptr, float64 v)
588 *(float64 *)ptr = v;
591 #endif
593 /* target CPU memory access functions */
594 #if defined(TARGET_WORDS_BIGENDIAN)
595 #define lduw_p(p) lduw_be_p(p)
596 #define ldsw_p(p) ldsw_be_p(p)
597 #define ldl_p(p) ldl_be_p(p)
598 #define ldq_p(p) ldq_be_p(p)
599 #define ldfl_p(p) ldfl_be_p(p)
600 #define ldfq_p(p) ldfq_be_p(p)
601 #define stw_p(p, v) stw_be_p(p, v)
602 #define stl_p(p, v) stl_be_p(p, v)
603 #define stq_p(p, v) stq_be_p(p, v)
604 #define stfl_p(p, v) stfl_be_p(p, v)
605 #define stfq_p(p, v) stfq_be_p(p, v)
606 #else
607 #define lduw_p(p) lduw_le_p(p)
608 #define ldsw_p(p) ldsw_le_p(p)
609 #define ldl_p(p) ldl_le_p(p)
610 #define ldq_p(p) ldq_le_p(p)
611 #define ldfl_p(p) ldfl_le_p(p)
612 #define ldfq_p(p) ldfq_le_p(p)
613 #define stw_p(p, v) stw_le_p(p, v)
614 #define stl_p(p, v) stl_le_p(p, v)
615 #define stq_p(p, v) stq_le_p(p, v)
616 #define stfl_p(p, v) stfl_le_p(p, v)
617 #define stfq_p(p, v) stfq_le_p(p, v)
618 #endif
620 /* MMU memory access macros */
622 #if defined(CONFIG_USER_ONLY)
623 /* On some host systems the guest address space is reserved on the host.
624 * This allows the guest address space to be offset to a convenient location.
626 //#define GUEST_BASE 0x20000000
627 #define GUEST_BASE 0
629 /* All direct uses of g2h and h2g need to go away for usermode softmmu. */
630 #define g2h(x) ((void *)((unsigned long)(x) + GUEST_BASE))
631 #define h2g(x) ((target_ulong)(x - GUEST_BASE))
633 #define saddr(x) g2h(x)
634 #define laddr(x) g2h(x)
636 #else /* !CONFIG_USER_ONLY */
637 /* NOTE: we use double casts if pointers and target_ulong have
638 different sizes */
639 #define saddr(x) (uint8_t *)(long)(x)
640 #define laddr(x) (uint8_t *)(long)(x)
641 #endif
643 #define ldub_raw(p) ldub_p(laddr((p)))
644 #define ldsb_raw(p) ldsb_p(laddr((p)))
645 #define lduw_raw(p) lduw_p(laddr((p)))
646 #define ldsw_raw(p) ldsw_p(laddr((p)))
647 #define ldl_raw(p) ldl_p(laddr((p)))
648 #define ldq_raw(p) ldq_p(laddr((p)))
649 #define ldfl_raw(p) ldfl_p(laddr((p)))
650 #define ldfq_raw(p) ldfq_p(laddr((p)))
651 #define stb_raw(p, v) stb_p(saddr((p)), v)
652 #define stw_raw(p, v) stw_p(saddr((p)), v)
653 #define stl_raw(p, v) stl_p(saddr((p)), v)
654 #define stq_raw(p, v) stq_p(saddr((p)), v)
655 #define stfl_raw(p, v) stfl_p(saddr((p)), v)
656 #define stfq_raw(p, v) stfq_p(saddr((p)), v)
659 #if defined(CONFIG_USER_ONLY)
661 /* if user mode, no other memory access functions */
662 #define ldub(p) ldub_raw(p)
663 #define ldsb(p) ldsb_raw(p)
664 #define lduw(p) lduw_raw(p)
665 #define ldsw(p) ldsw_raw(p)
666 #define ldl(p) ldl_raw(p)
667 #define ldq(p) ldq_raw(p)
668 #define ldfl(p) ldfl_raw(p)
669 #define ldfq(p) ldfq_raw(p)
670 #define stb(p, v) stb_raw(p, v)
671 #define stw(p, v) stw_raw(p, v)
672 #define stl(p, v) stl_raw(p, v)
673 #define stq(p, v) stq_raw(p, v)
674 #define stfl(p, v) stfl_raw(p, v)
675 #define stfq(p, v) stfq_raw(p, v)
677 #define ldub_code(p) ldub_raw(p)
678 #define ldsb_code(p) ldsb_raw(p)
679 #define lduw_code(p) lduw_raw(p)
680 #define ldsw_code(p) ldsw_raw(p)
681 #define ldl_code(p) ldl_raw(p)
682 #define ldq_code(p) ldq_raw(p)
684 #define ldub_kernel(p) ldub_raw(p)
685 #define ldsb_kernel(p) ldsb_raw(p)
686 #define lduw_kernel(p) lduw_raw(p)
687 #define ldsw_kernel(p) ldsw_raw(p)
688 #define ldl_kernel(p) ldl_raw(p)
689 #define ldq_kernel(p) ldq_raw(p)
690 #define ldfl_kernel(p) ldfl_raw(p)
691 #define ldfq_kernel(p) ldfq_raw(p)
692 #define stb_kernel(p, v) stb_raw(p, v)
693 #define stw_kernel(p, v) stw_raw(p, v)
694 #define stl_kernel(p, v) stl_raw(p, v)
695 #define stq_kernel(p, v) stq_raw(p, v)
696 #define stfl_kernel(p, v) stfl_raw(p, v)
697 #define stfq_kernel(p, vt) stfq_raw(p, v)
699 #endif /* defined(CONFIG_USER_ONLY) */
701 /* page related stuff */
703 #define TARGET_PAGE_SIZE (1ul << TARGET_PAGE_BITS)
704 #define TARGET_PAGE_MASK ~(TARGET_PAGE_SIZE - 1)
705 #define TARGET_PAGE_ALIGN(addr) (((addr) + TARGET_PAGE_SIZE - 1) & TARGET_PAGE_MASK)
707 /* ??? These should be the larger of unsigned long and target_ulong. */
708 extern unsigned long qemu_real_host_page_size;
709 extern unsigned long qemu_host_page_bits;
710 extern unsigned long qemu_host_page_size;
711 extern unsigned long qemu_host_page_mask;
713 #define HOST_PAGE_ALIGN(addr) (((addr) + qemu_host_page_size - 1) & qemu_host_page_mask)
715 /* same as PROT_xxx */
716 #define PAGE_READ 0x0001
717 #define PAGE_WRITE 0x0002
718 #define PAGE_EXEC 0x0004
719 #define PAGE_BITS (PAGE_READ | PAGE_WRITE | PAGE_EXEC)
720 #define PAGE_VALID 0x0008
721 /* original state of the write flag (used when tracking self-modifying
722 code */
723 #define PAGE_WRITE_ORG 0x0010
724 #define PAGE_RESERVED 0x0020
726 void page_dump(FILE *f);
727 int page_get_flags(target_ulong address);
728 void page_set_flags(target_ulong start, target_ulong end, int flags);
729 int page_check_range(target_ulong start, target_ulong len, int flags);
731 CPUState *cpu_copy(CPUState *env);
733 void cpu_dump_state(CPUState *env, FILE *f,
734 int (*cpu_fprintf)(FILE *f, const char *fmt, ...),
735 int flags);
736 void cpu_dump_statistics (CPUState *env, FILE *f,
737 int (*cpu_fprintf)(FILE *f, const char *fmt, ...),
738 int flags);
740 void cpu_abort(CPUState *env, const char *fmt, ...)
741 __attribute__ ((__format__ (__printf__, 2, 3)))
742 __attribute__ ((__noreturn__));
743 extern CPUState *first_cpu;
744 extern CPUState *cpu_single_env;
745 extern int code_copy_enabled;
747 #define CPU_INTERRUPT_EXIT 0x01 /* wants exit from main loop */
748 #define CPU_INTERRUPT_HARD 0x02 /* hardware interrupt pending */
749 #define CPU_INTERRUPT_EXITTB 0x04 /* exit the current TB (use for x86 a20 case) */
750 #define CPU_INTERRUPT_TIMER 0x08 /* internal timer exception pending */
751 #define CPU_INTERRUPT_FIQ 0x10 /* Fast interrupt pending. */
752 #define CPU_INTERRUPT_HALT 0x20 /* CPU halt wanted */
753 #define CPU_INTERRUPT_SMI 0x40 /* (x86 only) SMI interrupt pending */
754 #define CPU_INTERRUPT_DEBUG 0x80 /* Debug event occured. */
755 #define CPU_INTERRUPT_VIRQ 0x100 /* virtual interrupt pending. */
757 void cpu_interrupt(CPUState *s, int mask);
758 void cpu_reset_interrupt(CPUState *env, int mask);
760 int cpu_watchpoint_insert(CPUState *env, target_ulong addr);
761 int cpu_watchpoint_remove(CPUState *env, target_ulong addr);
762 int cpu_breakpoint_insert(CPUState *env, target_ulong pc);
763 int cpu_breakpoint_remove(CPUState *env, target_ulong pc);
764 void cpu_single_step(CPUState *env, int enabled);
765 void cpu_reset(CPUState *s);
767 /* Return the physical page corresponding to a virtual one. Use it
768 only for debugging because no protection checks are done. Return -1
769 if no page found. */
770 target_phys_addr_t cpu_get_phys_page_debug(CPUState *env, target_ulong addr);
772 #define CPU_LOG_TB_OUT_ASM (1 << 0)
773 #define CPU_LOG_TB_IN_ASM (1 << 1)
774 #define CPU_LOG_TB_OP (1 << 2)
775 #define CPU_LOG_TB_OP_OPT (1 << 3)
776 #define CPU_LOG_INT (1 << 4)
777 #define CPU_LOG_EXEC (1 << 5)
778 #define CPU_LOG_PCALL (1 << 6)
779 #define CPU_LOG_IOPORT (1 << 7)
780 #define CPU_LOG_TB_CPU (1 << 8)
782 /* define log items */
783 typedef struct CPULogItem {
784 int mask;
785 const char *name;
786 const char *help;
787 } CPULogItem;
789 extern CPULogItem cpu_log_items[];
791 void cpu_set_log(int log_flags);
792 void cpu_set_log_filename(const char *filename);
793 int cpu_str_to_log_mask(const char *str);
795 /* IO ports API */
797 /* NOTE: as these functions may be even used when there is an isa
798 brige on non x86 targets, we always defined them */
799 #ifndef NO_CPU_IO_DEFS
800 void cpu_outb(CPUState *env, int addr, int val);
801 void cpu_outw(CPUState *env, int addr, int val);
802 void cpu_outl(CPUState *env, int addr, int val);
803 int cpu_inb(CPUState *env, int addr);
804 int cpu_inw(CPUState *env, int addr);
805 int cpu_inl(CPUState *env, int addr);
806 #endif
808 /* memory API */
810 extern ram_addr_t phys_ram_size;
811 extern int phys_ram_fd;
812 extern uint8_t *phys_ram_base;
813 extern uint8_t *phys_ram_dirty;
814 extern uint8_t *bios_mem;
816 /* physical memory access */
817 #define TLB_INVALID_MASK (1 << 3)
818 #define IO_MEM_SHIFT 4
819 #define IO_MEM_NB_ENTRIES (1 << (TARGET_PAGE_BITS - IO_MEM_SHIFT))
821 #define IO_MEM_RAM (0 << IO_MEM_SHIFT) /* hardcoded offset */
822 #define IO_MEM_ROM (1 << IO_MEM_SHIFT) /* hardcoded offset */
823 #define IO_MEM_UNASSIGNED (2 << IO_MEM_SHIFT)
824 #define IO_MEM_NOTDIRTY (4 << IO_MEM_SHIFT) /* used internally, never use directly */
825 /* acts like a ROM when read and like a device when written. As an
826 exception, the write memory callback gets the ram offset instead of
827 the physical address */
828 #define IO_MEM_ROMD (1)
829 #define IO_MEM_SUBPAGE (2)
830 #define IO_MEM_SUBWIDTH (4)
832 typedef void CPUWriteMemoryFunc(void *opaque, target_phys_addr_t addr, uint32_t value);
833 typedef uint32_t CPUReadMemoryFunc(void *opaque, target_phys_addr_t addr);
835 void cpu_register_physical_memory(target_phys_addr_t start_addr,
836 unsigned long size,
837 unsigned long phys_offset);
838 uint32_t cpu_get_physical_page_desc(target_phys_addr_t addr);
839 ram_addr_t qemu_ram_alloc(unsigned long size);
840 void qemu_ram_free(ram_addr_t addr);
841 int cpu_register_io_memory(int io_index,
842 CPUReadMemoryFunc **mem_read,
843 CPUWriteMemoryFunc **mem_write,
844 void *opaque);
845 void cpu_unregister_io_memory(int table_address);
846 CPUWriteMemoryFunc **cpu_get_io_memory_write(int io_index);
847 CPUReadMemoryFunc **cpu_get_io_memory_read(int io_index);
849 void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf,
850 int len, int is_write);
851 static inline void cpu_physical_memory_read(target_phys_addr_t addr,
852 uint8_t *buf, int len)
854 cpu_physical_memory_rw(addr, buf, len, 0);
856 static inline void cpu_physical_memory_write(target_phys_addr_t addr,
857 const uint8_t *buf, int len)
859 cpu_physical_memory_rw(addr, (uint8_t *)buf, len, 1);
861 uint32_t ldub_phys(target_phys_addr_t addr);
862 uint32_t lduw_phys(target_phys_addr_t addr);
863 uint32_t ldl_phys(target_phys_addr_t addr);
864 uint64_t ldq_phys(target_phys_addr_t addr);
865 void stl_phys_notdirty(target_phys_addr_t addr, uint32_t val);
866 void stq_phys_notdirty(target_phys_addr_t addr, uint64_t val);
867 void stb_phys(target_phys_addr_t addr, uint32_t val);
868 void stw_phys(target_phys_addr_t addr, uint32_t val);
869 void stl_phys(target_phys_addr_t addr, uint32_t val);
870 void stq_phys(target_phys_addr_t addr, uint64_t val);
872 void cpu_physical_memory_write_rom(target_phys_addr_t addr,
873 const uint8_t *buf, int len);
874 int cpu_memory_rw_debug(CPUState *env, target_ulong addr,
875 uint8_t *buf, int len, int is_write);
877 #define VGA_DIRTY_FLAG 0x01
878 #define CODE_DIRTY_FLAG 0x02
879 #define MIGRATION_DIRTY_FLAG 0x08
881 /* read dirty bit (return 0 or 1) */
882 static inline int cpu_physical_memory_is_dirty(ram_addr_t addr)
884 return phys_ram_dirty[addr >> TARGET_PAGE_BITS] == 0xff;
887 static inline int cpu_physical_memory_get_dirty(ram_addr_t addr,
888 int dirty_flags)
890 return phys_ram_dirty[addr >> TARGET_PAGE_BITS] & dirty_flags;
893 static inline void cpu_physical_memory_set_dirty(ram_addr_t addr)
895 phys_ram_dirty[addr >> TARGET_PAGE_BITS] = 0xff;
898 void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end,
899 int dirty_flags);
900 void cpu_tlb_update_dirty(CPUState *env);
902 int cpu_physical_memory_set_dirty_tracking(int enable);
904 int cpu_physical_memory_get_dirty_tracking(void);
906 void dump_exec_info(FILE *f,
907 int (*cpu_fprintf)(FILE *f, const char *fmt, ...));
909 /*******************************************/
910 /* host CPU ticks (if available) */
912 #if defined(__powerpc__)
914 static inline uint32_t get_tbl(void)
916 uint32_t tbl;
917 asm volatile("mftb %0" : "=r" (tbl));
918 return tbl;
921 static inline uint32_t get_tbu(void)
923 uint32_t tbl;
924 asm volatile("mftbu %0" : "=r" (tbl));
925 return tbl;
928 static inline int64_t cpu_get_real_ticks(void)
930 uint32_t l, h, h1;
931 /* NOTE: we test if wrapping has occurred */
932 do {
933 h = get_tbu();
934 l = get_tbl();
935 h1 = get_tbu();
936 } while (h != h1);
937 return ((int64_t)h << 32) | l;
940 #elif defined(__i386__)
942 static inline int64_t cpu_get_real_ticks(void)
944 int64_t val;
945 asm volatile ("rdtsc" : "=A" (val));
946 return val;
949 #elif defined(__x86_64__)
951 static inline int64_t cpu_get_real_ticks(void)
953 uint32_t low,high;
954 int64_t val;
955 asm volatile("rdtsc" : "=a" (low), "=d" (high));
956 val = high;
957 val <<= 32;
958 val |= low;
959 return val;
962 #elif defined(__ia64)
964 static inline int64_t cpu_get_real_ticks(void)
966 int64_t val;
967 asm volatile ("mov %0 = ar.itc" : "=r"(val) :: "memory");
968 return val;
971 #elif defined(__s390__)
973 static inline int64_t cpu_get_real_ticks(void)
975 int64_t val;
976 asm volatile("stck 0(%1)" : "=m" (val) : "a" (&val) : "cc");
977 return val;
980 #elif defined(__sparc_v8plus__) || defined(__sparc_v8plusa__) || defined(__sparc_v9__)
982 static inline int64_t cpu_get_real_ticks (void)
984 #if defined(_LP64)
985 uint64_t rval;
986 asm volatile("rd %%tick,%0" : "=r"(rval));
987 return rval;
988 #else
989 union {
990 uint64_t i64;
991 struct {
992 uint32_t high;
993 uint32_t low;
994 } i32;
995 } rval;
996 asm volatile("rd %%tick,%1; srlx %1,32,%0"
997 : "=r"(rval.i32.high), "=r"(rval.i32.low));
998 return rval.i64;
999 #endif
1002 #elif defined(__mips__)
1004 static inline int64_t cpu_get_real_ticks(void)
1006 #if __mips_isa_rev >= 2
1007 uint32_t count;
1008 static uint32_t cyc_per_count = 0;
1010 if (!cyc_per_count)
1011 __asm__ __volatile__("rdhwr %0, $3" : "=r" (cyc_per_count));
1013 __asm__ __volatile__("rdhwr %1, $2" : "=r" (count));
1014 return (int64_t)(count * cyc_per_count);
1015 #else
1016 /* FIXME */
1017 static int64_t ticks = 0;
1018 return ticks++;
1019 #endif
1022 #else
1023 /* The host CPU doesn't have an easily accessible cycle counter.
1024 Just return a monotonically increasing value. This will be
1025 totally wrong, but hopefully better than nothing. */
1026 static inline int64_t cpu_get_real_ticks (void)
1028 static int64_t ticks = 0;
1029 return ticks++;
1031 #endif
1033 /* profiling */
1034 #ifdef CONFIG_PROFILER
1035 static inline int64_t profile_getclock(void)
1037 return cpu_get_real_ticks();
1040 extern int64_t kqemu_time, kqemu_time_start;
1041 extern int64_t qemu_time, qemu_time_start;
1042 extern int64_t tlb_flush_time;
1043 extern int64_t kqemu_exec_count;
1044 extern int64_t dev_time;
1045 extern int64_t kqemu_ret_int_count;
1046 extern int64_t kqemu_ret_excp_count;
1047 extern int64_t kqemu_ret_intr_count;
1049 extern int64_t dyngen_tb_count1;
1050 extern int64_t dyngen_tb_count;
1051 extern int64_t dyngen_op_count;
1052 extern int64_t dyngen_old_op_count;
1053 extern int64_t dyngen_tcg_del_op_count;
1054 extern int dyngen_op_count_max;
1055 extern int64_t dyngen_code_in_len;
1056 extern int64_t dyngen_code_out_len;
1057 extern int64_t dyngen_interm_time;
1058 extern int64_t dyngen_code_time;
1059 extern int64_t dyngen_restore_count;
1060 extern int64_t dyngen_restore_time;
1061 #endif
1063 #endif /* CPU_ALL_H */