[IR] Replace `isa<TerminatorInst>` with `isTerminator()`.
[polly-mirror.git] / lib / Analysis / ScopDetection.cpp
blob666ac34ea572369b2b69e01bcd857aa21e4ad6e7
1 //===- ScopDetection.cpp - Detect Scops -----------------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Detect the maximal Scops of a function.
12 // A static control part (Scop) is a subgraph of the control flow graph (CFG)
13 // that only has statically known control flow and can therefore be described
14 // within the polyhedral model.
16 // Every Scop fulfills these restrictions:
18 // * It is a single entry single exit region
20 // * Only affine linear bounds in the loops
22 // Every natural loop in a Scop must have a number of loop iterations that can
23 // be described as an affine linear function in surrounding loop iterators or
24 // parameters. (A parameter is a scalar that does not change its value during
25 // execution of the Scop).
27 // * Only comparisons of affine linear expressions in conditions
29 // * All loops and conditions perfectly nested
31 // The control flow needs to be structured such that it could be written using
32 // just 'for' and 'if' statements, without the need for any 'goto', 'break' or
33 // 'continue'.
35 // * Side effect free functions call
37 // Function calls and intrinsics that do not have side effects (readnone)
38 // or memory intrinsics (memset, memcpy, memmove) are allowed.
40 // The Scop detection finds the largest Scops by checking if the largest
41 // region is a Scop. If this is not the case, its canonical subregions are
42 // checked until a region is a Scop. It is now tried to extend this Scop by
43 // creating a larger non canonical region.
45 //===----------------------------------------------------------------------===//
47 #include "polly/ScopDetection.h"
48 #include "polly/LinkAllPasses.h"
49 #include "polly/Options.h"
50 #include "polly/ScopDetectionDiagnostic.h"
51 #include "polly/Support/SCEVValidator.h"
52 #include "polly/Support/ScopHelper.h"
53 #include "polly/Support/ScopLocation.h"
54 #include "llvm/ADT/DenseMap.h"
55 #include "llvm/ADT/SetVector.h"
56 #include "llvm/ADT/SmallPtrSet.h"
57 #include "llvm/ADT/SmallVector.h"
58 #include "llvm/ADT/Statistic.h"
59 #include "llvm/ADT/StringRef.h"
60 #include "llvm/Analysis/AliasAnalysis.h"
61 #include "llvm/Analysis/Loads.h"
62 #include "llvm/Analysis/LoopInfo.h"
63 #include "llvm/Analysis/MemoryLocation.h"
64 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
65 #include "llvm/Analysis/RegionInfo.h"
66 #include "llvm/Analysis/ScalarEvolution.h"
67 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
68 #include "llvm/IR/BasicBlock.h"
69 #include "llvm/IR/Constants.h"
70 #include "llvm/IR/DebugLoc.h"
71 #include "llvm/IR/DerivedTypes.h"
72 #include "llvm/IR/DiagnosticInfo.h"
73 #include "llvm/IR/DiagnosticPrinter.h"
74 #include "llvm/IR/Dominators.h"
75 #include "llvm/IR/Function.h"
76 #include "llvm/IR/InstrTypes.h"
77 #include "llvm/IR/Instruction.h"
78 #include "llvm/IR/Instructions.h"
79 #include "llvm/IR/IntrinsicInst.h"
80 #include "llvm/IR/Intrinsics.h"
81 #include "llvm/IR/LLVMContext.h"
82 #include "llvm/IR/Metadata.h"
83 #include "llvm/IR/Module.h"
84 #include "llvm/IR/PassManager.h"
85 #include "llvm/IR/Type.h"
86 #include "llvm/IR/Value.h"
87 #include "llvm/Pass.h"
88 #include "llvm/Support/Casting.h"
89 #include "llvm/Support/CommandLine.h"
90 #include "llvm/Support/Debug.h"
91 #include "llvm/Support/ErrorHandling.h"
92 #include "llvm/Support/Regex.h"
93 #include "llvm/Support/raw_ostream.h"
94 #include <algorithm>
95 #include <cassert>
96 #include <memory>
97 #include <stack>
98 #include <string>
99 #include <utility>
100 #include <vector>
102 using namespace llvm;
103 using namespace polly;
105 #define DEBUG_TYPE "polly-detect"
107 // This option is set to a very high value, as analyzing such loops increases
108 // compile time on several cases. For experiments that enable this option,
109 // a value of around 40 has been working to avoid run-time regressions with
110 // Polly while still exposing interesting optimization opportunities.
111 static cl::opt<int> ProfitabilityMinPerLoopInstructions(
112 "polly-detect-profitability-min-per-loop-insts",
113 cl::desc("The minimal number of per-loop instructions before a single loop "
114 "region is considered profitable"),
115 cl::Hidden, cl::ValueRequired, cl::init(100000000), cl::cat(PollyCategory));
117 bool polly::PollyProcessUnprofitable;
119 static cl::opt<bool, true> XPollyProcessUnprofitable(
120 "polly-process-unprofitable",
121 cl::desc(
122 "Process scops that are unlikely to benefit from Polly optimizations."),
123 cl::location(PollyProcessUnprofitable), cl::init(false), cl::ZeroOrMore,
124 cl::cat(PollyCategory));
126 static cl::list<std::string> OnlyFunctions(
127 "polly-only-func",
128 cl::desc("Only run on functions that match a regex. "
129 "Multiple regexes can be comma separated. "
130 "Scop detection will run on all functions that match "
131 "ANY of the regexes provided."),
132 cl::ZeroOrMore, cl::CommaSeparated, cl::cat(PollyCategory));
134 static cl::list<std::string> IgnoredFunctions(
135 "polly-ignore-func",
136 cl::desc("Ignore functions that match a regex. "
137 "Multiple regexes can be comma separated. "
138 "Scop detection will ignore all functions that match "
139 "ANY of the regexes provided."),
140 cl::ZeroOrMore, cl::CommaSeparated, cl::cat(PollyCategory));
142 bool polly::PollyAllowFullFunction;
144 static cl::opt<bool, true>
145 XAllowFullFunction("polly-detect-full-functions",
146 cl::desc("Allow the detection of full functions"),
147 cl::location(polly::PollyAllowFullFunction),
148 cl::init(false), cl::cat(PollyCategory));
150 static cl::opt<std::string> OnlyRegion(
151 "polly-only-region",
152 cl::desc("Only run on certain regions (The provided identifier must "
153 "appear in the name of the region's entry block"),
154 cl::value_desc("identifier"), cl::ValueRequired, cl::init(""),
155 cl::cat(PollyCategory));
157 static cl::opt<bool>
158 IgnoreAliasing("polly-ignore-aliasing",
159 cl::desc("Ignore possible aliasing of the array bases"),
160 cl::Hidden, cl::init(false), cl::ZeroOrMore,
161 cl::cat(PollyCategory));
163 bool polly::PollyAllowUnsignedOperations;
165 static cl::opt<bool, true> XPollyAllowUnsignedOperations(
166 "polly-allow-unsigned-operations",
167 cl::desc("Allow unsigned operations such as comparisons or zero-extends."),
168 cl::location(PollyAllowUnsignedOperations), cl::Hidden, cl::ZeroOrMore,
169 cl::init(true), cl::cat(PollyCategory));
171 bool polly::PollyUseRuntimeAliasChecks;
173 static cl::opt<bool, true> XPollyUseRuntimeAliasChecks(
174 "polly-use-runtime-alias-checks",
175 cl::desc("Use runtime alias checks to resolve possible aliasing."),
176 cl::location(PollyUseRuntimeAliasChecks), cl::Hidden, cl::ZeroOrMore,
177 cl::init(true), cl::cat(PollyCategory));
179 static cl::opt<bool>
180 ReportLevel("polly-report",
181 cl::desc("Print information about the activities of Polly"),
182 cl::init(false), cl::ZeroOrMore, cl::cat(PollyCategory));
184 static cl::opt<bool> AllowDifferentTypes(
185 "polly-allow-differing-element-types",
186 cl::desc("Allow different element types for array accesses"), cl::Hidden,
187 cl::init(true), cl::ZeroOrMore, cl::cat(PollyCategory));
189 static cl::opt<bool>
190 AllowNonAffine("polly-allow-nonaffine",
191 cl::desc("Allow non affine access functions in arrays"),
192 cl::Hidden, cl::init(false), cl::ZeroOrMore,
193 cl::cat(PollyCategory));
195 static cl::opt<bool>
196 AllowModrefCall("polly-allow-modref-calls",
197 cl::desc("Allow functions with known modref behavior"),
198 cl::Hidden, cl::init(false), cl::ZeroOrMore,
199 cl::cat(PollyCategory));
201 static cl::opt<bool> AllowNonAffineSubRegions(
202 "polly-allow-nonaffine-branches",
203 cl::desc("Allow non affine conditions for branches"), cl::Hidden,
204 cl::init(true), cl::ZeroOrMore, cl::cat(PollyCategory));
206 static cl::opt<bool>
207 AllowNonAffineSubLoops("polly-allow-nonaffine-loops",
208 cl::desc("Allow non affine conditions for loops"),
209 cl::Hidden, cl::init(false), cl::ZeroOrMore,
210 cl::cat(PollyCategory));
212 static cl::opt<bool, true>
213 TrackFailures("polly-detect-track-failures",
214 cl::desc("Track failure strings in detecting scop regions"),
215 cl::location(PollyTrackFailures), cl::Hidden, cl::ZeroOrMore,
216 cl::init(true), cl::cat(PollyCategory));
218 static cl::opt<bool> KeepGoing("polly-detect-keep-going",
219 cl::desc("Do not fail on the first error."),
220 cl::Hidden, cl::ZeroOrMore, cl::init(false),
221 cl::cat(PollyCategory));
223 static cl::opt<bool, true>
224 PollyDelinearizeX("polly-delinearize",
225 cl::desc("Delinearize array access functions"),
226 cl::location(PollyDelinearize), cl::Hidden,
227 cl::ZeroOrMore, cl::init(true), cl::cat(PollyCategory));
229 static cl::opt<bool>
230 VerifyScops("polly-detect-verify",
231 cl::desc("Verify the detected SCoPs after each transformation"),
232 cl::Hidden, cl::init(false), cl::ZeroOrMore,
233 cl::cat(PollyCategory));
235 bool polly::PollyInvariantLoadHoisting;
237 static cl::opt<bool, true> XPollyInvariantLoadHoisting(
238 "polly-invariant-load-hoisting", cl::desc("Hoist invariant loads."),
239 cl::location(PollyInvariantLoadHoisting), cl::Hidden, cl::ZeroOrMore,
240 cl::init(false), cl::cat(PollyCategory));
242 /// The minimal trip count under which loops are considered unprofitable.
243 static const unsigned MIN_LOOP_TRIP_COUNT = 8;
245 bool polly::PollyTrackFailures = false;
246 bool polly::PollyDelinearize = false;
247 StringRef polly::PollySkipFnAttr = "polly.skip.fn";
249 //===----------------------------------------------------------------------===//
250 // Statistics.
252 STATISTIC(NumScopRegions, "Number of scops");
253 STATISTIC(NumLoopsInScop, "Number of loops in scops");
254 STATISTIC(NumScopsDepthZero, "Number of scops with maximal loop depth 0");
255 STATISTIC(NumScopsDepthOne, "Number of scops with maximal loop depth 1");
256 STATISTIC(NumScopsDepthTwo, "Number of scops with maximal loop depth 2");
257 STATISTIC(NumScopsDepthThree, "Number of scops with maximal loop depth 3");
258 STATISTIC(NumScopsDepthFour, "Number of scops with maximal loop depth 4");
259 STATISTIC(NumScopsDepthFive, "Number of scops with maximal loop depth 5");
260 STATISTIC(NumScopsDepthLarger,
261 "Number of scops with maximal loop depth 6 and larger");
262 STATISTIC(NumProfScopRegions, "Number of scops (profitable scops only)");
263 STATISTIC(NumLoopsInProfScop,
264 "Number of loops in scops (profitable scops only)");
265 STATISTIC(NumLoopsOverall, "Number of total loops");
266 STATISTIC(NumProfScopsDepthZero,
267 "Number of scops with maximal loop depth 0 (profitable scops only)");
268 STATISTIC(NumProfScopsDepthOne,
269 "Number of scops with maximal loop depth 1 (profitable scops only)");
270 STATISTIC(NumProfScopsDepthTwo,
271 "Number of scops with maximal loop depth 2 (profitable scops only)");
272 STATISTIC(NumProfScopsDepthThree,
273 "Number of scops with maximal loop depth 3 (profitable scops only)");
274 STATISTIC(NumProfScopsDepthFour,
275 "Number of scops with maximal loop depth 4 (profitable scops only)");
276 STATISTIC(NumProfScopsDepthFive,
277 "Number of scops with maximal loop depth 5 (profitable scops only)");
278 STATISTIC(NumProfScopsDepthLarger,
279 "Number of scops with maximal loop depth 6 and larger "
280 "(profitable scops only)");
281 STATISTIC(MaxNumLoopsInScop, "Maximal number of loops in scops");
282 STATISTIC(MaxNumLoopsInProfScop,
283 "Maximal number of loops in scops (profitable scops only)");
285 static void updateLoopCountStatistic(ScopDetection::LoopStats Stats,
286 bool OnlyProfitable);
288 namespace {
290 class DiagnosticScopFound : public DiagnosticInfo {
291 private:
292 static int PluginDiagnosticKind;
294 Function &F;
295 std::string FileName;
296 unsigned EntryLine, ExitLine;
298 public:
299 DiagnosticScopFound(Function &F, std::string FileName, unsigned EntryLine,
300 unsigned ExitLine)
301 : DiagnosticInfo(PluginDiagnosticKind, DS_Note), F(F), FileName(FileName),
302 EntryLine(EntryLine), ExitLine(ExitLine) {}
304 void print(DiagnosticPrinter &DP) const override;
306 static bool classof(const DiagnosticInfo *DI) {
307 return DI->getKind() == PluginDiagnosticKind;
310 } // namespace
312 int DiagnosticScopFound::PluginDiagnosticKind =
313 getNextAvailablePluginDiagnosticKind();
315 void DiagnosticScopFound::print(DiagnosticPrinter &DP) const {
316 DP << "Polly detected an optimizable loop region (scop) in function '" << F
317 << "'\n";
319 if (FileName.empty()) {
320 DP << "Scop location is unknown. Compile with debug info "
321 "(-g) to get more precise information. ";
322 return;
325 DP << FileName << ":" << EntryLine << ": Start of scop\n";
326 DP << FileName << ":" << ExitLine << ": End of scop";
329 /// Check if a string matches any regex in a list of regexes.
330 /// @param Str the input string to match against.
331 /// @param RegexList a list of strings that are regular expressions.
332 static bool doesStringMatchAnyRegex(StringRef Str,
333 const cl::list<std::string> &RegexList) {
334 for (auto RegexStr : RegexList) {
335 Regex R(RegexStr);
337 std::string Err;
338 if (!R.isValid(Err))
339 report_fatal_error("invalid regex given as input to polly: " + Err, true);
341 if (R.match(Str))
342 return true;
344 return false;
346 //===----------------------------------------------------------------------===//
347 // ScopDetection.
349 ScopDetection::ScopDetection(Function &F, const DominatorTree &DT,
350 ScalarEvolution &SE, LoopInfo &LI, RegionInfo &RI,
351 AliasAnalysis &AA, OptimizationRemarkEmitter &ORE)
352 : DT(DT), SE(SE), LI(LI), RI(RI), AA(AA), ORE(ORE) {
353 if (!PollyProcessUnprofitable && LI.empty())
354 return;
356 Region *TopRegion = RI.getTopLevelRegion();
358 if (!OnlyFunctions.empty() &&
359 !doesStringMatchAnyRegex(F.getName(), OnlyFunctions))
360 return;
362 if (doesStringMatchAnyRegex(F.getName(), IgnoredFunctions))
363 return;
365 if (!isValidFunction(F))
366 return;
368 findScops(*TopRegion);
370 NumScopRegions += ValidRegions.size();
372 // Prune non-profitable regions.
373 for (auto &DIt : DetectionContextMap) {
374 auto &DC = DIt.getSecond();
375 if (DC.Log.hasErrors())
376 continue;
377 if (!ValidRegions.count(&DC.CurRegion))
378 continue;
379 LoopStats Stats = countBeneficialLoops(&DC.CurRegion, SE, LI, 0);
380 updateLoopCountStatistic(Stats, false /* OnlyProfitable */);
381 if (isProfitableRegion(DC)) {
382 updateLoopCountStatistic(Stats, true /* OnlyProfitable */);
383 continue;
386 ValidRegions.remove(&DC.CurRegion);
389 NumProfScopRegions += ValidRegions.size();
390 NumLoopsOverall += countBeneficialLoops(TopRegion, SE, LI, 0).NumLoops;
392 // Only makes sense when we tracked errors.
393 if (PollyTrackFailures)
394 emitMissedRemarks(F);
396 if (ReportLevel)
397 printLocations(F);
399 assert(ValidRegions.size() <= DetectionContextMap.size() &&
400 "Cached more results than valid regions");
403 template <class RR, typename... Args>
404 inline bool ScopDetection::invalid(DetectionContext &Context, bool Assert,
405 Args &&... Arguments) const {
406 if (!Context.Verifying) {
407 RejectLog &Log = Context.Log;
408 std::shared_ptr<RR> RejectReason = std::make_shared<RR>(Arguments...);
410 if (PollyTrackFailures)
411 Log.report(RejectReason);
413 LLVM_DEBUG(dbgs() << RejectReason->getMessage());
414 LLVM_DEBUG(dbgs() << "\n");
415 } else {
416 assert(!Assert && "Verification of detected scop failed");
419 return false;
422 bool ScopDetection::isMaxRegionInScop(const Region &R, bool Verify) const {
423 if (!ValidRegions.count(&R))
424 return false;
426 if (Verify) {
427 DetectionContextMap.erase(getBBPairForRegion(&R));
428 const auto &It = DetectionContextMap.insert(std::make_pair(
429 getBBPairForRegion(&R),
430 DetectionContext(const_cast<Region &>(R), AA, false /*verifying*/)));
431 DetectionContext &Context = It.first->second;
432 return isValidRegion(Context);
435 return true;
438 std::string ScopDetection::regionIsInvalidBecause(const Region *R) const {
439 // Get the first error we found. Even in keep-going mode, this is the first
440 // reason that caused the candidate to be rejected.
441 auto *Log = lookupRejectionLog(R);
443 // This can happen when we marked a region invalid, but didn't track
444 // an error for it.
445 if (!Log || !Log->hasErrors())
446 return "";
448 RejectReasonPtr RR = *Log->begin();
449 return RR->getMessage();
452 bool ScopDetection::addOverApproximatedRegion(Region *AR,
453 DetectionContext &Context) const {
454 // If we already know about Ar we can exit.
455 if (!Context.NonAffineSubRegionSet.insert(AR))
456 return true;
458 // All loops in the region have to be overapproximated too if there
459 // are accesses that depend on the iteration count.
461 for (BasicBlock *BB : AR->blocks()) {
462 Loop *L = LI.getLoopFor(BB);
463 if (AR->contains(L))
464 Context.BoxedLoopsSet.insert(L);
467 return (AllowNonAffineSubLoops || Context.BoxedLoopsSet.empty());
470 bool ScopDetection::onlyValidRequiredInvariantLoads(
471 InvariantLoadsSetTy &RequiredILS, DetectionContext &Context) const {
472 Region &CurRegion = Context.CurRegion;
473 const DataLayout &DL = CurRegion.getEntry()->getModule()->getDataLayout();
475 if (!PollyInvariantLoadHoisting && !RequiredILS.empty())
476 return false;
478 for (LoadInst *Load : RequiredILS) {
479 // If we already know a load has been accepted as required invariant, we
480 // already run the validation below once and consequently don't need to
481 // run it again. Hence, we return early. For certain test cases (e.g.,
482 // COSMO this avoids us spending 50% of scop-detection time in this
483 // very function (and its children).
484 if (Context.RequiredILS.count(Load))
485 continue;
486 if (!isHoistableLoad(Load, CurRegion, LI, SE, DT, Context.RequiredILS))
487 return false;
489 for (auto NonAffineRegion : Context.NonAffineSubRegionSet) {
490 if (isSafeToLoadUnconditionally(Load->getPointerOperand(),
491 Load->getAlignment(), DL))
492 continue;
494 if (NonAffineRegion->contains(Load) &&
495 Load->getParent() != NonAffineRegion->getEntry())
496 return false;
500 Context.RequiredILS.insert(RequiredILS.begin(), RequiredILS.end());
502 return true;
505 bool ScopDetection::involvesMultiplePtrs(const SCEV *S0, const SCEV *S1,
506 Loop *Scope) const {
507 SetVector<Value *> Values;
508 findValues(S0, SE, Values);
509 if (S1)
510 findValues(S1, SE, Values);
512 SmallPtrSet<Value *, 8> PtrVals;
513 for (auto *V : Values) {
514 if (auto *P2I = dyn_cast<PtrToIntInst>(V))
515 V = P2I->getOperand(0);
517 if (!V->getType()->isPointerTy())
518 continue;
520 auto *PtrSCEV = SE.getSCEVAtScope(V, Scope);
521 if (isa<SCEVConstant>(PtrSCEV))
522 continue;
524 auto *BasePtr = dyn_cast<SCEVUnknown>(SE.getPointerBase(PtrSCEV));
525 if (!BasePtr)
526 return true;
528 auto *BasePtrVal = BasePtr->getValue();
529 if (PtrVals.insert(BasePtrVal).second) {
530 for (auto *PtrVal : PtrVals)
531 if (PtrVal != BasePtrVal && !AA.isNoAlias(PtrVal, BasePtrVal))
532 return true;
536 return false;
539 bool ScopDetection::isAffine(const SCEV *S, Loop *Scope,
540 DetectionContext &Context) const {
541 InvariantLoadsSetTy AccessILS;
542 if (!isAffineExpr(&Context.CurRegion, Scope, S, SE, &AccessILS))
543 return false;
545 if (!onlyValidRequiredInvariantLoads(AccessILS, Context))
546 return false;
548 return true;
551 bool ScopDetection::isValidSwitch(BasicBlock &BB, SwitchInst *SI,
552 Value *Condition, bool IsLoopBranch,
553 DetectionContext &Context) const {
554 Loop *L = LI.getLoopFor(&BB);
555 const SCEV *ConditionSCEV = SE.getSCEVAtScope(Condition, L);
557 if (IsLoopBranch && L->isLoopLatch(&BB))
558 return false;
560 // Check for invalid usage of different pointers in one expression.
561 if (involvesMultiplePtrs(ConditionSCEV, nullptr, L))
562 return false;
564 if (isAffine(ConditionSCEV, L, Context))
565 return true;
567 if (AllowNonAffineSubRegions &&
568 addOverApproximatedRegion(RI.getRegionFor(&BB), Context))
569 return true;
571 return invalid<ReportNonAffBranch>(Context, /*Assert=*/true, &BB,
572 ConditionSCEV, ConditionSCEV, SI);
575 bool ScopDetection::isValidBranch(BasicBlock &BB, BranchInst *BI,
576 Value *Condition, bool IsLoopBranch,
577 DetectionContext &Context) const {
578 // Constant integer conditions are always affine.
579 if (isa<ConstantInt>(Condition))
580 return true;
582 if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Condition)) {
583 auto Opcode = BinOp->getOpcode();
584 if (Opcode == Instruction::And || Opcode == Instruction::Or) {
585 Value *Op0 = BinOp->getOperand(0);
586 Value *Op1 = BinOp->getOperand(1);
587 return isValidBranch(BB, BI, Op0, IsLoopBranch, Context) &&
588 isValidBranch(BB, BI, Op1, IsLoopBranch, Context);
592 if (auto PHI = dyn_cast<PHINode>(Condition)) {
593 auto *Unique = dyn_cast_or_null<ConstantInt>(
594 getUniqueNonErrorValue(PHI, &Context.CurRegion, LI, DT));
595 if (Unique && (Unique->isZero() || Unique->isOne()))
596 return true;
599 if (auto Load = dyn_cast<LoadInst>(Condition))
600 if (!IsLoopBranch && Context.CurRegion.contains(Load)) {
601 Context.RequiredILS.insert(Load);
602 return true;
605 // Non constant conditions of branches need to be ICmpInst.
606 if (!isa<ICmpInst>(Condition)) {
607 if (!IsLoopBranch && AllowNonAffineSubRegions &&
608 addOverApproximatedRegion(RI.getRegionFor(&BB), Context))
609 return true;
610 return invalid<ReportInvalidCond>(Context, /*Assert=*/true, BI, &BB);
613 ICmpInst *ICmp = cast<ICmpInst>(Condition);
615 // Are both operands of the ICmp affine?
616 if (isa<UndefValue>(ICmp->getOperand(0)) ||
617 isa<UndefValue>(ICmp->getOperand(1)))
618 return invalid<ReportUndefOperand>(Context, /*Assert=*/true, &BB, ICmp);
620 Loop *L = LI.getLoopFor(&BB);
621 const SCEV *LHS = SE.getSCEVAtScope(ICmp->getOperand(0), L);
622 const SCEV *RHS = SE.getSCEVAtScope(ICmp->getOperand(1), L);
624 LHS = tryForwardThroughPHI(LHS, Context.CurRegion, SE, LI, DT);
625 RHS = tryForwardThroughPHI(RHS, Context.CurRegion, SE, LI, DT);
627 // If unsigned operations are not allowed try to approximate the region.
628 if (ICmp->isUnsigned() && !PollyAllowUnsignedOperations)
629 return !IsLoopBranch && AllowNonAffineSubRegions &&
630 addOverApproximatedRegion(RI.getRegionFor(&BB), Context);
632 // Check for invalid usage of different pointers in one expression.
633 if (ICmp->isEquality() && involvesMultiplePtrs(LHS, nullptr, L) &&
634 involvesMultiplePtrs(RHS, nullptr, L))
635 return false;
637 // Check for invalid usage of different pointers in a relational comparison.
638 if (ICmp->isRelational() && involvesMultiplePtrs(LHS, RHS, L))
639 return false;
641 if (isAffine(LHS, L, Context) && isAffine(RHS, L, Context))
642 return true;
644 if (!IsLoopBranch && AllowNonAffineSubRegions &&
645 addOverApproximatedRegion(RI.getRegionFor(&BB), Context))
646 return true;
648 if (IsLoopBranch)
649 return false;
651 return invalid<ReportNonAffBranch>(Context, /*Assert=*/true, &BB, LHS, RHS,
652 ICmp);
655 bool ScopDetection::isValidCFG(BasicBlock &BB, bool IsLoopBranch,
656 bool AllowUnreachable,
657 DetectionContext &Context) const {
658 Region &CurRegion = Context.CurRegion;
660 TerminatorInst *TI = BB.getTerminator();
662 if (AllowUnreachable && isa<UnreachableInst>(TI))
663 return true;
665 // Return instructions are only valid if the region is the top level region.
666 if (isa<ReturnInst>(TI) && CurRegion.isTopLevelRegion())
667 return true;
669 Value *Condition = getConditionFromTerminator(TI);
671 if (!Condition)
672 return invalid<ReportInvalidTerminator>(Context, /*Assert=*/true, &BB);
674 // UndefValue is not allowed as condition.
675 if (isa<UndefValue>(Condition))
676 return invalid<ReportUndefCond>(Context, /*Assert=*/true, TI, &BB);
678 if (BranchInst *BI = dyn_cast<BranchInst>(TI))
679 return isValidBranch(BB, BI, Condition, IsLoopBranch, Context);
681 SwitchInst *SI = dyn_cast<SwitchInst>(TI);
682 assert(SI && "Terminator was neither branch nor switch");
684 return isValidSwitch(BB, SI, Condition, IsLoopBranch, Context);
687 bool ScopDetection::isValidCallInst(CallInst &CI,
688 DetectionContext &Context) const {
689 if (CI.doesNotReturn())
690 return false;
692 if (CI.doesNotAccessMemory())
693 return true;
695 if (auto *II = dyn_cast<IntrinsicInst>(&CI))
696 if (isValidIntrinsicInst(*II, Context))
697 return true;
699 Function *CalledFunction = CI.getCalledFunction();
701 // Indirect calls are not supported.
702 if (CalledFunction == nullptr)
703 return false;
705 if (isDebugCall(&CI)) {
706 LLVM_DEBUG(dbgs() << "Allow call to debug function: "
707 << CalledFunction->getName() << '\n');
708 return true;
711 if (AllowModrefCall) {
712 switch (AA.getModRefBehavior(CalledFunction)) {
713 case FMRB_UnknownModRefBehavior:
714 return false;
715 case FMRB_DoesNotAccessMemory:
716 case FMRB_OnlyReadsMemory:
717 // Implicitly disable delinearization since we have an unknown
718 // accesses with an unknown access function.
719 Context.HasUnknownAccess = true;
720 Context.AST.add(&CI);
721 return true;
722 case FMRB_OnlyReadsArgumentPointees:
723 case FMRB_OnlyAccessesArgumentPointees:
724 for (const auto &Arg : CI.arg_operands()) {
725 if (!Arg->getType()->isPointerTy())
726 continue;
728 // Bail if a pointer argument has a base address not known to
729 // ScalarEvolution. Note that a zero pointer is acceptable.
730 auto *ArgSCEV = SE.getSCEVAtScope(Arg, LI.getLoopFor(CI.getParent()));
731 if (ArgSCEV->isZero())
732 continue;
734 auto *BP = dyn_cast<SCEVUnknown>(SE.getPointerBase(ArgSCEV));
735 if (!BP)
736 return false;
738 // Implicitly disable delinearization since we have an unknown
739 // accesses with an unknown access function.
740 Context.HasUnknownAccess = true;
743 Context.AST.add(&CI);
744 return true;
745 case FMRB_DoesNotReadMemory:
746 case FMRB_OnlyAccessesInaccessibleMem:
747 case FMRB_OnlyAccessesInaccessibleOrArgMem:
748 return false;
752 return false;
755 bool ScopDetection::isValidIntrinsicInst(IntrinsicInst &II,
756 DetectionContext &Context) const {
757 if (isIgnoredIntrinsic(&II))
758 return true;
760 // The closest loop surrounding the call instruction.
761 Loop *L = LI.getLoopFor(II.getParent());
763 // The access function and base pointer for memory intrinsics.
764 const SCEV *AF;
765 const SCEVUnknown *BP;
767 switch (II.getIntrinsicID()) {
768 // Memory intrinsics that can be represented are supported.
769 case Intrinsic::memmove:
770 case Intrinsic::memcpy:
771 AF = SE.getSCEVAtScope(cast<MemTransferInst>(II).getSource(), L);
772 if (!AF->isZero()) {
773 BP = dyn_cast<SCEVUnknown>(SE.getPointerBase(AF));
774 // Bail if the source pointer is not valid.
775 if (!isValidAccess(&II, AF, BP, Context))
776 return false;
778 // Fall through
779 case Intrinsic::memset:
780 AF = SE.getSCEVAtScope(cast<MemIntrinsic>(II).getDest(), L);
781 if (!AF->isZero()) {
782 BP = dyn_cast<SCEVUnknown>(SE.getPointerBase(AF));
783 // Bail if the destination pointer is not valid.
784 if (!isValidAccess(&II, AF, BP, Context))
785 return false;
788 // Bail if the length is not affine.
789 if (!isAffine(SE.getSCEVAtScope(cast<MemIntrinsic>(II).getLength(), L), L,
790 Context))
791 return false;
793 return true;
794 default:
795 break;
798 return false;
801 bool ScopDetection::isInvariant(Value &Val, const Region &Reg,
802 DetectionContext &Ctx) const {
803 // A reference to function argument or constant value is invariant.
804 if (isa<Argument>(Val) || isa<Constant>(Val))
805 return true;
807 Instruction *I = dyn_cast<Instruction>(&Val);
808 if (!I)
809 return false;
811 if (!Reg.contains(I))
812 return true;
814 // Loads within the SCoP may read arbitrary values, need to hoist them. If it
815 // is not hoistable, it will be rejected later, but here we assume it is and
816 // that makes the value invariant.
817 if (auto LI = dyn_cast<LoadInst>(I)) {
818 Ctx.RequiredILS.insert(LI);
819 return true;
822 return false;
825 namespace {
827 /// Remove smax of smax(0, size) expressions from a SCEV expression and
828 /// register the '...' components.
830 /// Array access expressions as they are generated by GFortran contain smax(0,
831 /// size) expressions that confuse the 'normal' delinearization algorithm.
832 /// However, if we extract such expressions before the normal delinearization
833 /// takes place they can actually help to identify array size expressions in
834 /// Fortran accesses. For the subsequently following delinearization the smax(0,
835 /// size) component can be replaced by just 'size'. This is correct as we will
836 /// always add and verify the assumption that for all subscript expressions
837 /// 'exp' the inequality 0 <= exp < size holds. Hence, we will also verify
838 /// that 0 <= size, which means smax(0, size) == size.
839 class SCEVRemoveMax : public SCEVRewriteVisitor<SCEVRemoveMax> {
840 public:
841 SCEVRemoveMax(ScalarEvolution &SE, std::vector<const SCEV *> *Terms)
842 : SCEVRewriteVisitor(SE), Terms(Terms) {}
844 static const SCEV *rewrite(const SCEV *Scev, ScalarEvolution &SE,
845 std::vector<const SCEV *> *Terms = nullptr) {
846 SCEVRemoveMax Rewriter(SE, Terms);
847 return Rewriter.visit(Scev);
850 const SCEV *visitSMaxExpr(const SCEVSMaxExpr *Expr) {
851 if ((Expr->getNumOperands() == 2) && Expr->getOperand(0)->isZero()) {
852 auto Res = visit(Expr->getOperand(1));
853 if (Terms)
854 (*Terms).push_back(Res);
855 return Res;
858 return Expr;
861 private:
862 std::vector<const SCEV *> *Terms;
864 } // namespace
866 SmallVector<const SCEV *, 4>
867 ScopDetection::getDelinearizationTerms(DetectionContext &Context,
868 const SCEVUnknown *BasePointer) const {
869 SmallVector<const SCEV *, 4> Terms;
870 for (const auto &Pair : Context.Accesses[BasePointer]) {
871 std::vector<const SCEV *> MaxTerms;
872 SCEVRemoveMax::rewrite(Pair.second, SE, &MaxTerms);
873 if (!MaxTerms.empty()) {
874 Terms.insert(Terms.begin(), MaxTerms.begin(), MaxTerms.end());
875 continue;
877 // In case the outermost expression is a plain add, we check if any of its
878 // terms has the form 4 * %inst * %param * %param ..., aka a term that
879 // contains a product between a parameter and an instruction that is
880 // inside the scop. Such instructions, if allowed at all, are instructions
881 // SCEV can not represent, but Polly is still looking through. As a
882 // result, these instructions can depend on induction variables and are
883 // most likely no array sizes. However, terms that are multiplied with
884 // them are likely candidates for array sizes.
885 if (auto *AF = dyn_cast<SCEVAddExpr>(Pair.second)) {
886 for (auto Op : AF->operands()) {
887 if (auto *AF2 = dyn_cast<SCEVAddRecExpr>(Op))
888 SE.collectParametricTerms(AF2, Terms);
889 if (auto *AF2 = dyn_cast<SCEVMulExpr>(Op)) {
890 SmallVector<const SCEV *, 0> Operands;
892 for (auto *MulOp : AF2->operands()) {
893 if (auto *Const = dyn_cast<SCEVConstant>(MulOp))
894 Operands.push_back(Const);
895 if (auto *Unknown = dyn_cast<SCEVUnknown>(MulOp)) {
896 if (auto *Inst = dyn_cast<Instruction>(Unknown->getValue())) {
897 if (!Context.CurRegion.contains(Inst))
898 Operands.push_back(MulOp);
900 } else {
901 Operands.push_back(MulOp);
905 if (Operands.size())
906 Terms.push_back(SE.getMulExpr(Operands));
910 if (Terms.empty())
911 SE.collectParametricTerms(Pair.second, Terms);
913 return Terms;
916 bool ScopDetection::hasValidArraySizes(DetectionContext &Context,
917 SmallVectorImpl<const SCEV *> &Sizes,
918 const SCEVUnknown *BasePointer,
919 Loop *Scope) const {
920 // If no sizes were found, all sizes are trivially valid. We allow this case
921 // to make it possible to pass known-affine accesses to the delinearization to
922 // try to recover some interesting multi-dimensional accesses, but to still
923 // allow the already known to be affine access in case the delinearization
924 // fails. In such situations, the delinearization will just return a Sizes
925 // array of size zero.
926 if (Sizes.size() == 0)
927 return true;
929 Value *BaseValue = BasePointer->getValue();
930 Region &CurRegion = Context.CurRegion;
931 for (const SCEV *DelinearizedSize : Sizes) {
932 if (!isAffine(DelinearizedSize, Scope, Context)) {
933 Sizes.clear();
934 break;
936 if (auto *Unknown = dyn_cast<SCEVUnknown>(DelinearizedSize)) {
937 auto *V = dyn_cast<Value>(Unknown->getValue());
938 if (auto *Load = dyn_cast<LoadInst>(V)) {
939 if (Context.CurRegion.contains(Load) &&
940 isHoistableLoad(Load, CurRegion, LI, SE, DT, Context.RequiredILS))
941 Context.RequiredILS.insert(Load);
942 continue;
945 if (hasScalarDepsInsideRegion(DelinearizedSize, &CurRegion, Scope, false,
946 Context.RequiredILS))
947 return invalid<ReportNonAffineAccess>(
948 Context, /*Assert=*/true, DelinearizedSize,
949 Context.Accesses[BasePointer].front().first, BaseValue);
952 // No array shape derived.
953 if (Sizes.empty()) {
954 if (AllowNonAffine)
955 return true;
957 for (const auto &Pair : Context.Accesses[BasePointer]) {
958 const Instruction *Insn = Pair.first;
959 const SCEV *AF = Pair.second;
961 if (!isAffine(AF, Scope, Context)) {
962 invalid<ReportNonAffineAccess>(Context, /*Assert=*/true, AF, Insn,
963 BaseValue);
964 if (!KeepGoing)
965 return false;
968 return false;
970 return true;
973 // We first store the resulting memory accesses in TempMemoryAccesses. Only
974 // if the access functions for all memory accesses have been successfully
975 // delinearized we continue. Otherwise, we either report a failure or, if
976 // non-affine accesses are allowed, we drop the information. In case the
977 // information is dropped the memory accesses need to be overapproximated
978 // when translated to a polyhedral representation.
979 bool ScopDetection::computeAccessFunctions(
980 DetectionContext &Context, const SCEVUnknown *BasePointer,
981 std::shared_ptr<ArrayShape> Shape) const {
982 Value *BaseValue = BasePointer->getValue();
983 bool BasePtrHasNonAffine = false;
984 MapInsnToMemAcc TempMemoryAccesses;
985 for (const auto &Pair : Context.Accesses[BasePointer]) {
986 const Instruction *Insn = Pair.first;
987 auto *AF = Pair.second;
988 AF = SCEVRemoveMax::rewrite(AF, SE);
989 bool IsNonAffine = false;
990 TempMemoryAccesses.insert(std::make_pair(Insn, MemAcc(Insn, Shape)));
991 MemAcc *Acc = &TempMemoryAccesses.find(Insn)->second;
992 auto *Scope = LI.getLoopFor(Insn->getParent());
994 if (!AF) {
995 if (isAffine(Pair.second, Scope, Context))
996 Acc->DelinearizedSubscripts.push_back(Pair.second);
997 else
998 IsNonAffine = true;
999 } else {
1000 if (Shape->DelinearizedSizes.size() == 0) {
1001 Acc->DelinearizedSubscripts.push_back(AF);
1002 } else {
1003 SE.computeAccessFunctions(AF, Acc->DelinearizedSubscripts,
1004 Shape->DelinearizedSizes);
1005 if (Acc->DelinearizedSubscripts.size() == 0)
1006 IsNonAffine = true;
1008 for (const SCEV *S : Acc->DelinearizedSubscripts)
1009 if (!isAffine(S, Scope, Context))
1010 IsNonAffine = true;
1013 // (Possibly) report non affine access
1014 if (IsNonAffine) {
1015 BasePtrHasNonAffine = true;
1016 if (!AllowNonAffine)
1017 invalid<ReportNonAffineAccess>(Context, /*Assert=*/true, Pair.second,
1018 Insn, BaseValue);
1019 if (!KeepGoing && !AllowNonAffine)
1020 return false;
1024 if (!BasePtrHasNonAffine)
1025 Context.InsnToMemAcc.insert(TempMemoryAccesses.begin(),
1026 TempMemoryAccesses.end());
1028 return true;
1031 bool ScopDetection::hasBaseAffineAccesses(DetectionContext &Context,
1032 const SCEVUnknown *BasePointer,
1033 Loop *Scope) const {
1034 auto Shape = std::shared_ptr<ArrayShape>(new ArrayShape(BasePointer));
1036 auto Terms = getDelinearizationTerms(Context, BasePointer);
1038 SE.findArrayDimensions(Terms, Shape->DelinearizedSizes,
1039 Context.ElementSize[BasePointer]);
1041 if (!hasValidArraySizes(Context, Shape->DelinearizedSizes, BasePointer,
1042 Scope))
1043 return false;
1045 return computeAccessFunctions(Context, BasePointer, Shape);
1048 bool ScopDetection::hasAffineMemoryAccesses(DetectionContext &Context) const {
1049 // TODO: If we have an unknown access and other non-affine accesses we do
1050 // not try to delinearize them for now.
1051 if (Context.HasUnknownAccess && !Context.NonAffineAccesses.empty())
1052 return AllowNonAffine;
1054 for (auto &Pair : Context.NonAffineAccesses) {
1055 auto *BasePointer = Pair.first;
1056 auto *Scope = Pair.second;
1057 if (!hasBaseAffineAccesses(Context, BasePointer, Scope)) {
1058 if (KeepGoing)
1059 continue;
1060 else
1061 return false;
1064 return true;
1067 bool ScopDetection::isValidAccess(Instruction *Inst, const SCEV *AF,
1068 const SCEVUnknown *BP,
1069 DetectionContext &Context) const {
1071 if (!BP)
1072 return invalid<ReportNoBasePtr>(Context, /*Assert=*/true, Inst);
1074 auto *BV = BP->getValue();
1075 if (isa<UndefValue>(BV))
1076 return invalid<ReportUndefBasePtr>(Context, /*Assert=*/true, Inst);
1078 // FIXME: Think about allowing IntToPtrInst
1079 if (IntToPtrInst *Inst = dyn_cast<IntToPtrInst>(BV))
1080 return invalid<ReportIntToPtr>(Context, /*Assert=*/true, Inst);
1082 // Check that the base address of the access is invariant in the current
1083 // region.
1084 if (!isInvariant(*BV, Context.CurRegion, Context))
1085 return invalid<ReportVariantBasePtr>(Context, /*Assert=*/true, BV, Inst);
1087 AF = SE.getMinusSCEV(AF, BP);
1089 const SCEV *Size;
1090 if (!isa<MemIntrinsic>(Inst)) {
1091 Size = SE.getElementSize(Inst);
1092 } else {
1093 auto *SizeTy =
1094 SE.getEffectiveSCEVType(PointerType::getInt8PtrTy(SE.getContext()));
1095 Size = SE.getConstant(SizeTy, 8);
1098 if (Context.ElementSize[BP]) {
1099 if (!AllowDifferentTypes && Context.ElementSize[BP] != Size)
1100 return invalid<ReportDifferentArrayElementSize>(Context, /*Assert=*/true,
1101 Inst, BV);
1103 Context.ElementSize[BP] = SE.getSMinExpr(Size, Context.ElementSize[BP]);
1104 } else {
1105 Context.ElementSize[BP] = Size;
1108 bool IsVariantInNonAffineLoop = false;
1109 SetVector<const Loop *> Loops;
1110 findLoops(AF, Loops);
1111 for (const Loop *L : Loops)
1112 if (Context.BoxedLoopsSet.count(L))
1113 IsVariantInNonAffineLoop = true;
1115 auto *Scope = LI.getLoopFor(Inst->getParent());
1116 bool IsAffine = !IsVariantInNonAffineLoop && isAffine(AF, Scope, Context);
1117 // Do not try to delinearize memory intrinsics and force them to be affine.
1118 if (isa<MemIntrinsic>(Inst) && !IsAffine) {
1119 return invalid<ReportNonAffineAccess>(Context, /*Assert=*/true, AF, Inst,
1120 BV);
1121 } else if (PollyDelinearize && !IsVariantInNonAffineLoop) {
1122 Context.Accesses[BP].push_back({Inst, AF});
1124 if (!IsAffine || hasIVParams(AF))
1125 Context.NonAffineAccesses.insert(
1126 std::make_pair(BP, LI.getLoopFor(Inst->getParent())));
1127 } else if (!AllowNonAffine && !IsAffine) {
1128 return invalid<ReportNonAffineAccess>(Context, /*Assert=*/true, AF, Inst,
1129 BV);
1132 if (IgnoreAliasing)
1133 return true;
1135 // Check if the base pointer of the memory access does alias with
1136 // any other pointer. This cannot be handled at the moment.
1137 AAMDNodes AATags;
1138 Inst->getAAMetadata(AATags);
1139 AliasSet &AS = Context.AST.getAliasSetFor(
1140 MemoryLocation(BP->getValue(), MemoryLocation::UnknownSize, AATags));
1142 if (!AS.isMustAlias()) {
1143 if (PollyUseRuntimeAliasChecks) {
1144 bool CanBuildRunTimeCheck = true;
1145 // The run-time alias check places code that involves the base pointer at
1146 // the beginning of the SCoP. This breaks if the base pointer is defined
1147 // inside the scop. Hence, we can only create a run-time check if we are
1148 // sure the base pointer is not an instruction defined inside the scop.
1149 // However, we can ignore loads that will be hoisted.
1151 InvariantLoadsSetTy VariantLS, InvariantLS;
1152 // In order to detect loads which are dependent on other invariant loads
1153 // as invariant, we use fixed-point iteration method here i.e we iterate
1154 // over the alias set for arbitrary number of times until it is safe to
1155 // assume that all the invariant loads have been detected
1156 while (1) {
1157 const unsigned int VariantSize = VariantLS.size(),
1158 InvariantSize = InvariantLS.size();
1160 for (const auto &Ptr : AS) {
1161 Instruction *Inst = dyn_cast<Instruction>(Ptr.getValue());
1162 if (Inst && Context.CurRegion.contains(Inst)) {
1163 auto *Load = dyn_cast<LoadInst>(Inst);
1164 if (Load && InvariantLS.count(Load))
1165 continue;
1166 if (Load && isHoistableLoad(Load, Context.CurRegion, LI, SE, DT,
1167 InvariantLS)) {
1168 if (VariantLS.count(Load))
1169 VariantLS.remove(Load);
1170 Context.RequiredILS.insert(Load);
1171 InvariantLS.insert(Load);
1172 } else {
1173 CanBuildRunTimeCheck = false;
1174 VariantLS.insert(Load);
1179 if (InvariantSize == InvariantLS.size() &&
1180 VariantSize == VariantLS.size())
1181 break;
1184 if (CanBuildRunTimeCheck)
1185 return true;
1187 return invalid<ReportAlias>(Context, /*Assert=*/true, Inst, AS);
1190 return true;
1193 bool ScopDetection::isValidMemoryAccess(MemAccInst Inst,
1194 DetectionContext &Context) const {
1195 Value *Ptr = Inst.getPointerOperand();
1196 Loop *L = LI.getLoopFor(Inst->getParent());
1197 const SCEV *AccessFunction = SE.getSCEVAtScope(Ptr, L);
1198 const SCEVUnknown *BasePointer;
1200 BasePointer = dyn_cast<SCEVUnknown>(SE.getPointerBase(AccessFunction));
1202 return isValidAccess(Inst, AccessFunction, BasePointer, Context);
1205 bool ScopDetection::isValidInstruction(Instruction &Inst,
1206 DetectionContext &Context) const {
1207 for (auto &Op : Inst.operands()) {
1208 auto *OpInst = dyn_cast<Instruction>(&Op);
1210 if (!OpInst)
1211 continue;
1213 if (isErrorBlock(*OpInst->getParent(), Context.CurRegion, LI, DT)) {
1214 auto *PHI = dyn_cast<PHINode>(OpInst);
1215 if (PHI) {
1216 for (User *U : PHI->users()) {
1217 auto *UI = dyn_cast<Instruction>(U);
1218 if (!UI || !UI->isTerminator())
1219 return false;
1221 } else {
1222 return false;
1227 if (isa<LandingPadInst>(&Inst) || isa<ResumeInst>(&Inst))
1228 return false;
1230 // We only check the call instruction but not invoke instruction.
1231 if (CallInst *CI = dyn_cast<CallInst>(&Inst)) {
1232 if (isValidCallInst(*CI, Context))
1233 return true;
1235 return invalid<ReportFuncCall>(Context, /*Assert=*/true, &Inst);
1238 if (!Inst.mayReadOrWriteMemory()) {
1239 if (!isa<AllocaInst>(Inst))
1240 return true;
1242 return invalid<ReportAlloca>(Context, /*Assert=*/true, &Inst);
1245 // Check the access function.
1246 if (auto MemInst = MemAccInst::dyn_cast(Inst)) {
1247 Context.hasStores |= isa<StoreInst>(MemInst);
1248 Context.hasLoads |= isa<LoadInst>(MemInst);
1249 if (!MemInst.isSimple())
1250 return invalid<ReportNonSimpleMemoryAccess>(Context, /*Assert=*/true,
1251 &Inst);
1253 return isValidMemoryAccess(MemInst, Context);
1256 // We do not know this instruction, therefore we assume it is invalid.
1257 return invalid<ReportUnknownInst>(Context, /*Assert=*/true, &Inst);
1260 /// Check whether @p L has exiting blocks.
1262 /// @param L The loop of interest
1264 /// @return True if the loop has exiting blocks, false otherwise.
1265 static bool hasExitingBlocks(Loop *L) {
1266 SmallVector<BasicBlock *, 4> ExitingBlocks;
1267 L->getExitingBlocks(ExitingBlocks);
1268 return !ExitingBlocks.empty();
1271 bool ScopDetection::canUseISLTripCount(Loop *L,
1272 DetectionContext &Context) const {
1273 // Ensure the loop has valid exiting blocks as well as latches, otherwise we
1274 // need to overapproximate it as a boxed loop.
1275 SmallVector<BasicBlock *, 4> LoopControlBlocks;
1276 L->getExitingBlocks(LoopControlBlocks);
1277 L->getLoopLatches(LoopControlBlocks);
1278 for (BasicBlock *ControlBB : LoopControlBlocks) {
1279 if (!isValidCFG(*ControlBB, true, false, Context))
1280 return false;
1283 // We can use ISL to compute the trip count of L.
1284 return true;
1287 bool ScopDetection::isValidLoop(Loop *L, DetectionContext &Context) const {
1288 // Loops that contain part but not all of the blocks of a region cannot be
1289 // handled by the schedule generation. Such loop constructs can happen
1290 // because a region can contain BBs that have no path to the exit block
1291 // (Infinite loops, UnreachableInst), but such blocks are never part of a
1292 // loop.
1294 // _______________
1295 // | Loop Header | <-----------.
1296 // --------------- |
1297 // | |
1298 // _______________ ______________
1299 // | RegionEntry |-----> | RegionExit |----->
1300 // --------------- --------------
1301 // |
1302 // _______________
1303 // | EndlessLoop | <--.
1304 // --------------- |
1305 // | |
1306 // \------------/
1308 // In the example above, the loop (LoopHeader,RegionEntry,RegionExit) is
1309 // neither entirely contained in the region RegionEntry->RegionExit
1310 // (containing RegionEntry,EndlessLoop) nor is the region entirely contained
1311 // in the loop.
1312 // The block EndlessLoop is contained in the region because Region::contains
1313 // tests whether it is not dominated by RegionExit. This is probably to not
1314 // having to query the PostdominatorTree. Instead of an endless loop, a dead
1315 // end can also be formed by an UnreachableInst. This case is already caught
1316 // by isErrorBlock(). We hence only have to reject endless loops here.
1317 if (!hasExitingBlocks(L))
1318 return invalid<ReportLoopHasNoExit>(Context, /*Assert=*/true, L);
1320 // The algorithm for domain construction assumes that loops has only a single
1321 // exit block (and hence corresponds to a subregion). Note that we cannot use
1322 // L->getExitBlock() because it does not check whether all exiting edges point
1323 // to the same BB.
1324 SmallVector<BasicBlock *, 4> ExitBlocks;
1325 L->getExitBlocks(ExitBlocks);
1326 BasicBlock *TheExitBlock = ExitBlocks[0];
1327 for (BasicBlock *ExitBB : ExitBlocks) {
1328 if (TheExitBlock != ExitBB)
1329 return invalid<ReportLoopHasMultipleExits>(Context, /*Assert=*/true, L);
1332 if (canUseISLTripCount(L, Context))
1333 return true;
1335 if (AllowNonAffineSubLoops && AllowNonAffineSubRegions) {
1336 Region *R = RI.getRegionFor(L->getHeader());
1337 while (R != &Context.CurRegion && !R->contains(L))
1338 R = R->getParent();
1340 if (addOverApproximatedRegion(R, Context))
1341 return true;
1344 const SCEV *LoopCount = SE.getBackedgeTakenCount(L);
1345 return invalid<ReportLoopBound>(Context, /*Assert=*/true, L, LoopCount);
1348 /// Return the number of loops in @p L (incl. @p L) that have a trip
1349 /// count that is not known to be less than @MinProfitableTrips.
1350 ScopDetection::LoopStats
1351 ScopDetection::countBeneficialSubLoops(Loop *L, ScalarEvolution &SE,
1352 unsigned MinProfitableTrips) {
1353 auto *TripCount = SE.getBackedgeTakenCount(L);
1355 int NumLoops = 1;
1356 int MaxLoopDepth = 1;
1357 if (MinProfitableTrips > 0)
1358 if (auto *TripCountC = dyn_cast<SCEVConstant>(TripCount))
1359 if (TripCountC->getType()->getScalarSizeInBits() <= 64)
1360 if (TripCountC->getValue()->getZExtValue() <= MinProfitableTrips)
1361 NumLoops -= 1;
1363 for (auto &SubLoop : *L) {
1364 LoopStats Stats = countBeneficialSubLoops(SubLoop, SE, MinProfitableTrips);
1365 NumLoops += Stats.NumLoops;
1366 MaxLoopDepth = std::max(MaxLoopDepth, Stats.MaxDepth + 1);
1369 return {NumLoops, MaxLoopDepth};
1372 ScopDetection::LoopStats
1373 ScopDetection::countBeneficialLoops(Region *R, ScalarEvolution &SE,
1374 LoopInfo &LI, unsigned MinProfitableTrips) {
1375 int LoopNum = 0;
1376 int MaxLoopDepth = 0;
1378 auto L = LI.getLoopFor(R->getEntry());
1380 // If L is fully contained in R, move to first loop surrounding R. Otherwise,
1381 // L is either nullptr or already surrounding R.
1382 if (L && R->contains(L)) {
1383 L = R->outermostLoopInRegion(L);
1384 L = L->getParentLoop();
1387 auto SubLoops =
1388 L ? L->getSubLoopsVector() : std::vector<Loop *>(LI.begin(), LI.end());
1390 for (auto &SubLoop : SubLoops)
1391 if (R->contains(SubLoop)) {
1392 LoopStats Stats =
1393 countBeneficialSubLoops(SubLoop, SE, MinProfitableTrips);
1394 LoopNum += Stats.NumLoops;
1395 MaxLoopDepth = std::max(MaxLoopDepth, Stats.MaxDepth);
1398 return {LoopNum, MaxLoopDepth};
1401 Region *ScopDetection::expandRegion(Region &R) {
1402 // Initial no valid region was found (greater than R)
1403 std::unique_ptr<Region> LastValidRegion;
1404 auto ExpandedRegion = std::unique_ptr<Region>(R.getExpandedRegion());
1406 LLVM_DEBUG(dbgs() << "\tExpanding " << R.getNameStr() << "\n");
1408 while (ExpandedRegion) {
1409 const auto &It = DetectionContextMap.insert(std::make_pair(
1410 getBBPairForRegion(ExpandedRegion.get()),
1411 DetectionContext(*ExpandedRegion, AA, false /*verifying*/)));
1412 DetectionContext &Context = It.first->second;
1413 LLVM_DEBUG(dbgs() << "\t\tTrying " << ExpandedRegion->getNameStr() << "\n");
1414 // Only expand when we did not collect errors.
1416 if (!Context.Log.hasErrors()) {
1417 // If the exit is valid check all blocks
1418 // - if true, a valid region was found => store it + keep expanding
1419 // - if false, .tbd. => stop (should this really end the loop?)
1420 if (!allBlocksValid(Context) || Context.Log.hasErrors()) {
1421 removeCachedResults(*ExpandedRegion);
1422 DetectionContextMap.erase(It.first);
1423 break;
1426 // Store this region, because it is the greatest valid (encountered so
1427 // far).
1428 if (LastValidRegion) {
1429 removeCachedResults(*LastValidRegion);
1430 DetectionContextMap.erase(getBBPairForRegion(LastValidRegion.get()));
1432 LastValidRegion = std::move(ExpandedRegion);
1434 // Create and test the next greater region (if any)
1435 ExpandedRegion =
1436 std::unique_ptr<Region>(LastValidRegion->getExpandedRegion());
1438 } else {
1439 // Create and test the next greater region (if any)
1440 removeCachedResults(*ExpandedRegion);
1441 DetectionContextMap.erase(It.first);
1442 ExpandedRegion =
1443 std::unique_ptr<Region>(ExpandedRegion->getExpandedRegion());
1447 LLVM_DEBUG({
1448 if (LastValidRegion)
1449 dbgs() << "\tto " << LastValidRegion->getNameStr() << "\n";
1450 else
1451 dbgs() << "\tExpanding " << R.getNameStr() << " failed\n";
1454 return LastValidRegion.release();
1457 static bool regionWithoutLoops(Region &R, LoopInfo &LI) {
1458 for (const BasicBlock *BB : R.blocks())
1459 if (R.contains(LI.getLoopFor(BB)))
1460 return false;
1462 return true;
1465 void ScopDetection::removeCachedResultsRecursively(const Region &R) {
1466 for (auto &SubRegion : R) {
1467 if (ValidRegions.count(SubRegion.get())) {
1468 removeCachedResults(*SubRegion.get());
1469 } else
1470 removeCachedResultsRecursively(*SubRegion);
1474 void ScopDetection::removeCachedResults(const Region &R) {
1475 ValidRegions.remove(&R);
1478 void ScopDetection::findScops(Region &R) {
1479 const auto &It = DetectionContextMap.insert(std::make_pair(
1480 getBBPairForRegion(&R), DetectionContext(R, AA, false /*verifying*/)));
1481 DetectionContext &Context = It.first->second;
1483 bool RegionIsValid = false;
1484 if (!PollyProcessUnprofitable && regionWithoutLoops(R, LI))
1485 invalid<ReportUnprofitable>(Context, /*Assert=*/true, &R);
1486 else
1487 RegionIsValid = isValidRegion(Context);
1489 bool HasErrors = !RegionIsValid || Context.Log.size() > 0;
1491 if (HasErrors) {
1492 removeCachedResults(R);
1493 } else {
1494 ValidRegions.insert(&R);
1495 return;
1498 for (auto &SubRegion : R)
1499 findScops(*SubRegion);
1501 // Try to expand regions.
1503 // As the region tree normally only contains canonical regions, non canonical
1504 // regions that form a Scop are not found. Therefore, those non canonical
1505 // regions are checked by expanding the canonical ones.
1507 std::vector<Region *> ToExpand;
1509 for (auto &SubRegion : R)
1510 ToExpand.push_back(SubRegion.get());
1512 for (Region *CurrentRegion : ToExpand) {
1513 // Skip invalid regions. Regions may become invalid, if they are element of
1514 // an already expanded region.
1515 if (!ValidRegions.count(CurrentRegion))
1516 continue;
1518 // Skip regions that had errors.
1519 bool HadErrors = lookupRejectionLog(CurrentRegion)->hasErrors();
1520 if (HadErrors)
1521 continue;
1523 Region *ExpandedR = expandRegion(*CurrentRegion);
1525 if (!ExpandedR)
1526 continue;
1528 R.addSubRegion(ExpandedR, true);
1529 ValidRegions.insert(ExpandedR);
1530 removeCachedResults(*CurrentRegion);
1531 removeCachedResultsRecursively(*ExpandedR);
1535 bool ScopDetection::allBlocksValid(DetectionContext &Context) const {
1536 Region &CurRegion = Context.CurRegion;
1538 for (const BasicBlock *BB : CurRegion.blocks()) {
1539 Loop *L = LI.getLoopFor(BB);
1540 if (L && L->getHeader() == BB) {
1541 if (CurRegion.contains(L)) {
1542 if (!isValidLoop(L, Context) && !KeepGoing)
1543 return false;
1544 } else {
1545 SmallVector<BasicBlock *, 1> Latches;
1546 L->getLoopLatches(Latches);
1547 for (BasicBlock *Latch : Latches)
1548 if (CurRegion.contains(Latch))
1549 return invalid<ReportLoopOnlySomeLatches>(Context, /*Assert=*/true,
1555 for (BasicBlock *BB : CurRegion.blocks()) {
1556 bool IsErrorBlock = isErrorBlock(*BB, CurRegion, LI, DT);
1558 // Also check exception blocks (and possibly register them as non-affine
1559 // regions). Even though exception blocks are not modeled, we use them
1560 // to forward-propagate domain constraints during ScopInfo construction.
1561 if (!isValidCFG(*BB, false, IsErrorBlock, Context) && !KeepGoing)
1562 return false;
1564 if (IsErrorBlock)
1565 continue;
1567 for (BasicBlock::iterator I = BB->begin(), E = --BB->end(); I != E; ++I)
1568 if (!isValidInstruction(*I, Context) && !KeepGoing)
1569 return false;
1572 if (!hasAffineMemoryAccesses(Context))
1573 return false;
1575 return true;
1578 bool ScopDetection::hasSufficientCompute(DetectionContext &Context,
1579 int NumLoops) const {
1580 int InstCount = 0;
1582 if (NumLoops == 0)
1583 return false;
1585 for (auto *BB : Context.CurRegion.blocks())
1586 if (Context.CurRegion.contains(LI.getLoopFor(BB)))
1587 InstCount += BB->size();
1589 InstCount = InstCount / NumLoops;
1591 return InstCount >= ProfitabilityMinPerLoopInstructions;
1594 bool ScopDetection::hasPossiblyDistributableLoop(
1595 DetectionContext &Context) const {
1596 for (auto *BB : Context.CurRegion.blocks()) {
1597 auto *L = LI.getLoopFor(BB);
1598 if (!Context.CurRegion.contains(L))
1599 continue;
1600 if (Context.BoxedLoopsSet.count(L))
1601 continue;
1602 unsigned StmtsWithStoresInLoops = 0;
1603 for (auto *LBB : L->blocks()) {
1604 bool MemStore = false;
1605 for (auto &I : *LBB)
1606 MemStore |= isa<StoreInst>(&I);
1607 StmtsWithStoresInLoops += MemStore;
1609 return (StmtsWithStoresInLoops > 1);
1611 return false;
1614 bool ScopDetection::isProfitableRegion(DetectionContext &Context) const {
1615 Region &CurRegion = Context.CurRegion;
1617 if (PollyProcessUnprofitable)
1618 return true;
1620 // We can probably not do a lot on scops that only write or only read
1621 // data.
1622 if (!Context.hasStores || !Context.hasLoads)
1623 return invalid<ReportUnprofitable>(Context, /*Assert=*/true, &CurRegion);
1625 int NumLoops =
1626 countBeneficialLoops(&CurRegion, SE, LI, MIN_LOOP_TRIP_COUNT).NumLoops;
1627 int NumAffineLoops = NumLoops - Context.BoxedLoopsSet.size();
1629 // Scops with at least two loops may allow either loop fusion or tiling and
1630 // are consequently interesting to look at.
1631 if (NumAffineLoops >= 2)
1632 return true;
1634 // A loop with multiple non-trivial blocks might be amendable to distribution.
1635 if (NumAffineLoops == 1 && hasPossiblyDistributableLoop(Context))
1636 return true;
1638 // Scops that contain a loop with a non-trivial amount of computation per
1639 // loop-iteration are interesting as we may be able to parallelize such
1640 // loops. Individual loops that have only a small amount of computation
1641 // per-iteration are performance-wise very fragile as any change to the
1642 // loop induction variables may affect performance. To not cause spurious
1643 // performance regressions, we do not consider such loops.
1644 if (NumAffineLoops == 1 && hasSufficientCompute(Context, NumLoops))
1645 return true;
1647 return invalid<ReportUnprofitable>(Context, /*Assert=*/true, &CurRegion);
1650 bool ScopDetection::isValidRegion(DetectionContext &Context) const {
1651 Region &CurRegion = Context.CurRegion;
1653 LLVM_DEBUG(dbgs() << "Checking region: " << CurRegion.getNameStr() << "\n\t");
1655 if (!PollyAllowFullFunction && CurRegion.isTopLevelRegion()) {
1656 LLVM_DEBUG(dbgs() << "Top level region is invalid\n");
1657 return false;
1660 DebugLoc DbgLoc;
1661 if (CurRegion.getExit() &&
1662 isa<UnreachableInst>(CurRegion.getExit()->getTerminator())) {
1663 LLVM_DEBUG(dbgs() << "Unreachable in exit\n");
1664 return invalid<ReportUnreachableInExit>(Context, /*Assert=*/true,
1665 CurRegion.getExit(), DbgLoc);
1668 if (!CurRegion.getEntry()->getName().count(OnlyRegion)) {
1669 LLVM_DEBUG({
1670 dbgs() << "Region entry does not match -polly-region-only";
1671 dbgs() << "\n";
1673 return false;
1676 // SCoP cannot contain the entry block of the function, because we need
1677 // to insert alloca instruction there when translate scalar to array.
1678 if (!PollyAllowFullFunction &&
1679 CurRegion.getEntry() ==
1680 &(CurRegion.getEntry()->getParent()->getEntryBlock()))
1681 return invalid<ReportEntry>(Context, /*Assert=*/true, CurRegion.getEntry());
1683 if (!allBlocksValid(Context))
1684 return false;
1686 if (!isReducibleRegion(CurRegion, DbgLoc))
1687 return invalid<ReportIrreducibleRegion>(Context, /*Assert=*/true,
1688 &CurRegion, DbgLoc);
1690 LLVM_DEBUG(dbgs() << "OK\n");
1691 return true;
1694 void ScopDetection::markFunctionAsInvalid(Function *F) {
1695 F->addFnAttr(PollySkipFnAttr);
1698 bool ScopDetection::isValidFunction(Function &F) {
1699 return !F.hasFnAttribute(PollySkipFnAttr);
1702 void ScopDetection::printLocations(Function &F) {
1703 for (const Region *R : *this) {
1704 unsigned LineEntry, LineExit;
1705 std::string FileName;
1707 getDebugLocation(R, LineEntry, LineExit, FileName);
1708 DiagnosticScopFound Diagnostic(F, FileName, LineEntry, LineExit);
1709 F.getContext().diagnose(Diagnostic);
1713 void ScopDetection::emitMissedRemarks(const Function &F) {
1714 for (auto &DIt : DetectionContextMap) {
1715 auto &DC = DIt.getSecond();
1716 if (DC.Log.hasErrors())
1717 emitRejectionRemarks(DIt.getFirst(), DC.Log, ORE);
1721 bool ScopDetection::isReducibleRegion(Region &R, DebugLoc &DbgLoc) const {
1722 /// Enum for coloring BBs in Region.
1724 /// WHITE - Unvisited BB in DFS walk.
1725 /// GREY - BBs which are currently on the DFS stack for processing.
1726 /// BLACK - Visited and completely processed BB.
1727 enum Color { WHITE, GREY, BLACK };
1729 BasicBlock *REntry = R.getEntry();
1730 BasicBlock *RExit = R.getExit();
1731 // Map to match the color of a BasicBlock during the DFS walk.
1732 DenseMap<const BasicBlock *, Color> BBColorMap;
1733 // Stack keeping track of current BB and index of next child to be processed.
1734 std::stack<std::pair<BasicBlock *, unsigned>> DFSStack;
1736 unsigned AdjacentBlockIndex = 0;
1737 BasicBlock *CurrBB, *SuccBB;
1738 CurrBB = REntry;
1740 // Initialize the map for all BB with WHITE color.
1741 for (auto *BB : R.blocks())
1742 BBColorMap[BB] = WHITE;
1744 // Process the entry block of the Region.
1745 BBColorMap[CurrBB] = GREY;
1746 DFSStack.push(std::make_pair(CurrBB, 0));
1748 while (!DFSStack.empty()) {
1749 // Get next BB on stack to be processed.
1750 CurrBB = DFSStack.top().first;
1751 AdjacentBlockIndex = DFSStack.top().second;
1752 DFSStack.pop();
1754 // Loop to iterate over the successors of current BB.
1755 const TerminatorInst *TInst = CurrBB->getTerminator();
1756 unsigned NSucc = TInst->getNumSuccessors();
1757 for (unsigned I = AdjacentBlockIndex; I < NSucc;
1758 ++I, ++AdjacentBlockIndex) {
1759 SuccBB = TInst->getSuccessor(I);
1761 // Checks for region exit block and self-loops in BB.
1762 if (SuccBB == RExit || SuccBB == CurrBB)
1763 continue;
1765 // WHITE indicates an unvisited BB in DFS walk.
1766 if (BBColorMap[SuccBB] == WHITE) {
1767 // Push the current BB and the index of the next child to be visited.
1768 DFSStack.push(std::make_pair(CurrBB, I + 1));
1769 // Push the next BB to be processed.
1770 DFSStack.push(std::make_pair(SuccBB, 0));
1771 // First time the BB is being processed.
1772 BBColorMap[SuccBB] = GREY;
1773 break;
1774 } else if (BBColorMap[SuccBB] == GREY) {
1775 // GREY indicates a loop in the control flow.
1776 // If the destination dominates the source, it is a natural loop
1777 // else, an irreducible control flow in the region is detected.
1778 if (!DT.dominates(SuccBB, CurrBB)) {
1779 // Get debug info of instruction which causes irregular control flow.
1780 DbgLoc = TInst->getDebugLoc();
1781 return false;
1786 // If all children of current BB have been processed,
1787 // then mark that BB as fully processed.
1788 if (AdjacentBlockIndex == NSucc)
1789 BBColorMap[CurrBB] = BLACK;
1792 return true;
1795 static void updateLoopCountStatistic(ScopDetection::LoopStats Stats,
1796 bool OnlyProfitable) {
1797 if (!OnlyProfitable) {
1798 NumLoopsInScop += Stats.NumLoops;
1799 MaxNumLoopsInScop =
1800 std::max(MaxNumLoopsInScop.getValue(), (unsigned)Stats.NumLoops);
1801 if (Stats.MaxDepth == 0)
1802 NumScopsDepthZero++;
1803 else if (Stats.MaxDepth == 1)
1804 NumScopsDepthOne++;
1805 else if (Stats.MaxDepth == 2)
1806 NumScopsDepthTwo++;
1807 else if (Stats.MaxDepth == 3)
1808 NumScopsDepthThree++;
1809 else if (Stats.MaxDepth == 4)
1810 NumScopsDepthFour++;
1811 else if (Stats.MaxDepth == 5)
1812 NumScopsDepthFive++;
1813 else
1814 NumScopsDepthLarger++;
1815 } else {
1816 NumLoopsInProfScop += Stats.NumLoops;
1817 MaxNumLoopsInProfScop =
1818 std::max(MaxNumLoopsInProfScop.getValue(), (unsigned)Stats.NumLoops);
1819 if (Stats.MaxDepth == 0)
1820 NumProfScopsDepthZero++;
1821 else if (Stats.MaxDepth == 1)
1822 NumProfScopsDepthOne++;
1823 else if (Stats.MaxDepth == 2)
1824 NumProfScopsDepthTwo++;
1825 else if (Stats.MaxDepth == 3)
1826 NumProfScopsDepthThree++;
1827 else if (Stats.MaxDepth == 4)
1828 NumProfScopsDepthFour++;
1829 else if (Stats.MaxDepth == 5)
1830 NumProfScopsDepthFive++;
1831 else
1832 NumProfScopsDepthLarger++;
1836 ScopDetection::DetectionContext *
1837 ScopDetection::getDetectionContext(const Region *R) const {
1838 auto DCMIt = DetectionContextMap.find(getBBPairForRegion(R));
1839 if (DCMIt == DetectionContextMap.end())
1840 return nullptr;
1841 return &DCMIt->second;
1844 const RejectLog *ScopDetection::lookupRejectionLog(const Region *R) const {
1845 const DetectionContext *DC = getDetectionContext(R);
1846 return DC ? &DC->Log : nullptr;
1849 void ScopDetection::verifyRegion(const Region &R) const {
1850 assert(isMaxRegionInScop(R) && "Expect R is a valid region.");
1852 DetectionContext Context(const_cast<Region &>(R), AA, true /*verifying*/);
1853 isValidRegion(Context);
1856 void ScopDetection::verifyAnalysis() const {
1857 if (!VerifyScops)
1858 return;
1860 for (const Region *R : ValidRegions)
1861 verifyRegion(*R);
1864 bool ScopDetectionWrapperPass::runOnFunction(Function &F) {
1865 auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
1866 auto &RI = getAnalysis<RegionInfoPass>().getRegionInfo();
1867 auto &AA = getAnalysis<AAResultsWrapperPass>().getAAResults();
1868 auto &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE();
1869 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
1870 auto &ORE = getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE();
1871 Result.reset(new ScopDetection(F, DT, SE, LI, RI, AA, ORE));
1872 return false;
1875 void ScopDetectionWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
1876 AU.addRequired<LoopInfoWrapperPass>();
1877 AU.addRequiredTransitive<ScalarEvolutionWrapperPass>();
1878 AU.addRequired<DominatorTreeWrapperPass>();
1879 AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
1880 // We also need AA and RegionInfo when we are verifying analysis.
1881 AU.addRequiredTransitive<AAResultsWrapperPass>();
1882 AU.addRequiredTransitive<RegionInfoPass>();
1883 AU.setPreservesAll();
1886 void ScopDetectionWrapperPass::print(raw_ostream &OS, const Module *) const {
1887 for (const Region *R : Result->ValidRegions)
1888 OS << "Valid Region for Scop: " << R->getNameStr() << '\n';
1890 OS << "\n";
1893 ScopDetectionWrapperPass::ScopDetectionWrapperPass() : FunctionPass(ID) {
1894 // Disable runtime alias checks if we ignore aliasing all together.
1895 if (IgnoreAliasing)
1896 PollyUseRuntimeAliasChecks = false;
1899 ScopAnalysis::ScopAnalysis() {
1900 // Disable runtime alias checks if we ignore aliasing all together.
1901 if (IgnoreAliasing)
1902 PollyUseRuntimeAliasChecks = false;
1905 void ScopDetectionWrapperPass::releaseMemory() { Result.reset(); }
1907 char ScopDetectionWrapperPass::ID;
1909 AnalysisKey ScopAnalysis::Key;
1911 ScopDetection ScopAnalysis::run(Function &F, FunctionAnalysisManager &FAM) {
1912 auto &LI = FAM.getResult<LoopAnalysis>(F);
1913 auto &RI = FAM.getResult<RegionInfoAnalysis>(F);
1914 auto &AA = FAM.getResult<AAManager>(F);
1915 auto &SE = FAM.getResult<ScalarEvolutionAnalysis>(F);
1916 auto &DT = FAM.getResult<DominatorTreeAnalysis>(F);
1917 auto &ORE = FAM.getResult<OptimizationRemarkEmitterAnalysis>(F);
1918 return {F, DT, SE, LI, RI, AA, ORE};
1921 PreservedAnalyses ScopAnalysisPrinterPass::run(Function &F,
1922 FunctionAnalysisManager &FAM) {
1923 OS << "Detected Scops in Function " << F.getName() << "\n";
1924 auto &SD = FAM.getResult<ScopAnalysis>(F);
1925 for (const Region *R : SD.ValidRegions)
1926 OS << "Valid Region for Scop: " << R->getNameStr() << '\n';
1928 OS << "\n";
1929 return PreservedAnalyses::all();
1932 Pass *polly::createScopDetectionWrapperPassPass() {
1933 return new ScopDetectionWrapperPass();
1936 INITIALIZE_PASS_BEGIN(ScopDetectionWrapperPass, "polly-detect",
1937 "Polly - Detect static control parts (SCoPs)", false,
1938 false);
1939 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass);
1940 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass);
1941 INITIALIZE_PASS_DEPENDENCY(RegionInfoPass);
1942 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass);
1943 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass);
1944 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass);
1945 INITIALIZE_PASS_END(ScopDetectionWrapperPass, "polly-detect",
1946 "Polly - Detect static control parts (SCoPs)", false, false)