Fix Polly
[polly-mirror.git] / lib / Analysis / ScopDetection.cpp
blobf57174f675df5a265f87e4aee1a41dd31251d24c
1 //===- ScopDetection.cpp - Detect Scops -----------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Detect the maximal Scops of a function.
11 // A static control part (Scop) is a subgraph of the control flow graph (CFG)
12 // that only has statically known control flow and can therefore be described
13 // within the polyhedral model.
15 // Every Scop fulfills these restrictions:
17 // * It is a single entry single exit region
19 // * Only affine linear bounds in the loops
21 // Every natural loop in a Scop must have a number of loop iterations that can
22 // be described as an affine linear function in surrounding loop iterators or
23 // parameters. (A parameter is a scalar that does not change its value during
24 // execution of the Scop).
26 // * Only comparisons of affine linear expressions in conditions
28 // * All loops and conditions perfectly nested
30 // The control flow needs to be structured such that it could be written using
31 // just 'for' and 'if' statements, without the need for any 'goto', 'break' or
32 // 'continue'.
34 // * Side effect free functions call
36 // Function calls and intrinsics that do not have side effects (readnone)
37 // or memory intrinsics (memset, memcpy, memmove) are allowed.
39 // The Scop detection finds the largest Scops by checking if the largest
40 // region is a Scop. If this is not the case, its canonical subregions are
41 // checked until a region is a Scop. It is now tried to extend this Scop by
42 // creating a larger non canonical region.
44 //===----------------------------------------------------------------------===//
46 #include "polly/ScopDetection.h"
47 #include "polly/LinkAllPasses.h"
48 #include "polly/Options.h"
49 #include "polly/ScopDetectionDiagnostic.h"
50 #include "polly/Support/SCEVValidator.h"
51 #include "polly/Support/ScopHelper.h"
52 #include "polly/Support/ScopLocation.h"
53 #include "llvm/ADT/SmallPtrSet.h"
54 #include "llvm/ADT/Statistic.h"
55 #include "llvm/Analysis/AliasAnalysis.h"
56 #include "llvm/Analysis/Loads.h"
57 #include "llvm/Analysis/LoopInfo.h"
58 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
59 #include "llvm/Analysis/RegionInfo.h"
60 #include "llvm/Analysis/ScalarEvolution.h"
61 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
62 #include "llvm/IR/BasicBlock.h"
63 #include "llvm/IR/DebugLoc.h"
64 #include "llvm/IR/DerivedTypes.h"
65 #include "llvm/IR/DiagnosticInfo.h"
66 #include "llvm/IR/DiagnosticPrinter.h"
67 #include "llvm/IR/Dominators.h"
68 #include "llvm/IR/Function.h"
69 #include "llvm/IR/InstrTypes.h"
70 #include "llvm/IR/Instruction.h"
71 #include "llvm/IR/Instructions.h"
72 #include "llvm/IR/IntrinsicInst.h"
73 #include "llvm/IR/Metadata.h"
74 #include "llvm/IR/Module.h"
75 #include "llvm/IR/PassManager.h"
76 #include "llvm/IR/Value.h"
77 #include "llvm/Pass.h"
78 #include "llvm/Support/Debug.h"
79 #include "llvm/Support/raw_ostream.h"
80 #include <cassert>
82 using namespace llvm;
83 using namespace polly;
85 #define DEBUG_TYPE "polly-detect"
87 // This option is set to a very high value, as analyzing such loops increases
88 // compile time on several cases. For experiments that enable this option,
89 // a value of around 40 has been working to avoid run-time regressions with
90 // Polly while still exposing interesting optimization opportunities.
91 static cl::opt<int> ProfitabilityMinPerLoopInstructions(
92 "polly-detect-profitability-min-per-loop-insts",
93 cl::desc("The minimal number of per-loop instructions before a single loop "
94 "region is considered profitable"),
95 cl::Hidden, cl::ValueRequired, cl::init(100000000), cl::cat(PollyCategory));
97 bool polly::PollyProcessUnprofitable;
99 static cl::opt<bool, true> XPollyProcessUnprofitable(
100 "polly-process-unprofitable",
101 cl::desc(
102 "Process scops that are unlikely to benefit from Polly optimizations."),
103 cl::location(PollyProcessUnprofitable), cl::init(false), cl::ZeroOrMore,
104 cl::cat(PollyCategory));
106 static cl::list<std::string> OnlyFunctions(
107 "polly-only-func",
108 cl::desc("Only run on functions that match a regex. "
109 "Multiple regexes can be comma separated. "
110 "Scop detection will run on all functions that match "
111 "ANY of the regexes provided."),
112 cl::ZeroOrMore, cl::CommaSeparated, cl::cat(PollyCategory));
114 static cl::list<std::string> IgnoredFunctions(
115 "polly-ignore-func",
116 cl::desc("Ignore functions that match a regex. "
117 "Multiple regexes can be comma separated. "
118 "Scop detection will ignore all functions that match "
119 "ANY of the regexes provided."),
120 cl::ZeroOrMore, cl::CommaSeparated, cl::cat(PollyCategory));
122 bool polly::PollyAllowFullFunction;
124 static cl::opt<bool, true>
125 XAllowFullFunction("polly-detect-full-functions",
126 cl::desc("Allow the detection of full functions"),
127 cl::location(polly::PollyAllowFullFunction),
128 cl::init(false), cl::cat(PollyCategory));
130 static cl::opt<std::string> OnlyRegion(
131 "polly-only-region",
132 cl::desc("Only run on certain regions (The provided identifier must "
133 "appear in the name of the region's entry block"),
134 cl::value_desc("identifier"), cl::ValueRequired, cl::init(""),
135 cl::cat(PollyCategory));
137 static cl::opt<bool>
138 IgnoreAliasing("polly-ignore-aliasing",
139 cl::desc("Ignore possible aliasing of the array bases"),
140 cl::Hidden, cl::init(false), cl::ZeroOrMore,
141 cl::cat(PollyCategory));
143 bool polly::PollyAllowUnsignedOperations;
145 static cl::opt<bool, true> XPollyAllowUnsignedOperations(
146 "polly-allow-unsigned-operations",
147 cl::desc("Allow unsigned operations such as comparisons or zero-extends."),
148 cl::location(PollyAllowUnsignedOperations), cl::Hidden, cl::ZeroOrMore,
149 cl::init(true), cl::cat(PollyCategory));
151 bool polly::PollyUseRuntimeAliasChecks;
153 static cl::opt<bool, true> XPollyUseRuntimeAliasChecks(
154 "polly-use-runtime-alias-checks",
155 cl::desc("Use runtime alias checks to resolve possible aliasing."),
156 cl::location(PollyUseRuntimeAliasChecks), cl::Hidden, cl::ZeroOrMore,
157 cl::init(true), cl::cat(PollyCategory));
159 static cl::opt<bool>
160 ReportLevel("polly-report",
161 cl::desc("Print information about the activities of Polly"),
162 cl::init(false), cl::ZeroOrMore, cl::cat(PollyCategory));
164 static cl::opt<bool> AllowDifferentTypes(
165 "polly-allow-differing-element-types",
166 cl::desc("Allow different element types for array accesses"), cl::Hidden,
167 cl::init(true), cl::ZeroOrMore, cl::cat(PollyCategory));
169 static cl::opt<bool>
170 AllowNonAffine("polly-allow-nonaffine",
171 cl::desc("Allow non affine access functions in arrays"),
172 cl::Hidden, cl::init(false), cl::ZeroOrMore,
173 cl::cat(PollyCategory));
175 static cl::opt<bool>
176 AllowModrefCall("polly-allow-modref-calls",
177 cl::desc("Allow functions with known modref behavior"),
178 cl::Hidden, cl::init(false), cl::ZeroOrMore,
179 cl::cat(PollyCategory));
181 static cl::opt<bool> AllowNonAffineSubRegions(
182 "polly-allow-nonaffine-branches",
183 cl::desc("Allow non affine conditions for branches"), cl::Hidden,
184 cl::init(true), cl::ZeroOrMore, cl::cat(PollyCategory));
186 static cl::opt<bool>
187 AllowNonAffineSubLoops("polly-allow-nonaffine-loops",
188 cl::desc("Allow non affine conditions for loops"),
189 cl::Hidden, cl::init(false), cl::ZeroOrMore,
190 cl::cat(PollyCategory));
192 static cl::opt<bool, true>
193 TrackFailures("polly-detect-track-failures",
194 cl::desc("Track failure strings in detecting scop regions"),
195 cl::location(PollyTrackFailures), cl::Hidden, cl::ZeroOrMore,
196 cl::init(true), cl::cat(PollyCategory));
198 static cl::opt<bool> KeepGoing("polly-detect-keep-going",
199 cl::desc("Do not fail on the first error."),
200 cl::Hidden, cl::ZeroOrMore, cl::init(false),
201 cl::cat(PollyCategory));
203 static cl::opt<bool, true>
204 PollyDelinearizeX("polly-delinearize",
205 cl::desc("Delinearize array access functions"),
206 cl::location(PollyDelinearize), cl::Hidden,
207 cl::ZeroOrMore, cl::init(true), cl::cat(PollyCategory));
209 static cl::opt<bool>
210 VerifyScops("polly-detect-verify",
211 cl::desc("Verify the detected SCoPs after each transformation"),
212 cl::Hidden, cl::init(false), cl::ZeroOrMore,
213 cl::cat(PollyCategory));
215 bool polly::PollyInvariantLoadHoisting;
217 static cl::opt<bool, true> XPollyInvariantLoadHoisting(
218 "polly-invariant-load-hoisting", cl::desc("Hoist invariant loads."),
219 cl::location(PollyInvariantLoadHoisting), cl::Hidden, cl::ZeroOrMore,
220 cl::init(false), cl::cat(PollyCategory));
222 /// The minimal trip count under which loops are considered unprofitable.
223 static const unsigned MIN_LOOP_TRIP_COUNT = 8;
225 bool polly::PollyTrackFailures = false;
226 bool polly::PollyDelinearize = false;
227 StringRef polly::PollySkipFnAttr = "polly.skip.fn";
229 //===----------------------------------------------------------------------===//
230 // Statistics.
232 STATISTIC(NumScopRegions, "Number of scops");
233 STATISTIC(NumLoopsInScop, "Number of loops in scops");
234 STATISTIC(NumScopsDepthZero, "Number of scops with maximal loop depth 0");
235 STATISTIC(NumScopsDepthOne, "Number of scops with maximal loop depth 1");
236 STATISTIC(NumScopsDepthTwo, "Number of scops with maximal loop depth 2");
237 STATISTIC(NumScopsDepthThree, "Number of scops with maximal loop depth 3");
238 STATISTIC(NumScopsDepthFour, "Number of scops with maximal loop depth 4");
239 STATISTIC(NumScopsDepthFive, "Number of scops with maximal loop depth 5");
240 STATISTIC(NumScopsDepthLarger,
241 "Number of scops with maximal loop depth 6 and larger");
242 STATISTIC(NumProfScopRegions, "Number of scops (profitable scops only)");
243 STATISTIC(NumLoopsInProfScop,
244 "Number of loops in scops (profitable scops only)");
245 STATISTIC(NumLoopsOverall, "Number of total loops");
246 STATISTIC(NumProfScopsDepthZero,
247 "Number of scops with maximal loop depth 0 (profitable scops only)");
248 STATISTIC(NumProfScopsDepthOne,
249 "Number of scops with maximal loop depth 1 (profitable scops only)");
250 STATISTIC(NumProfScopsDepthTwo,
251 "Number of scops with maximal loop depth 2 (profitable scops only)");
252 STATISTIC(NumProfScopsDepthThree,
253 "Number of scops with maximal loop depth 3 (profitable scops only)");
254 STATISTIC(NumProfScopsDepthFour,
255 "Number of scops with maximal loop depth 4 (profitable scops only)");
256 STATISTIC(NumProfScopsDepthFive,
257 "Number of scops with maximal loop depth 5 (profitable scops only)");
258 STATISTIC(NumProfScopsDepthLarger,
259 "Number of scops with maximal loop depth 6 and larger "
260 "(profitable scops only)");
261 STATISTIC(MaxNumLoopsInScop, "Maximal number of loops in scops");
262 STATISTIC(MaxNumLoopsInProfScop,
263 "Maximal number of loops in scops (profitable scops only)");
265 static void updateLoopCountStatistic(ScopDetection::LoopStats Stats,
266 bool OnlyProfitable);
268 namespace {
270 class DiagnosticScopFound : public DiagnosticInfo {
271 private:
272 static int PluginDiagnosticKind;
274 Function &F;
275 std::string FileName;
276 unsigned EntryLine, ExitLine;
278 public:
279 DiagnosticScopFound(Function &F, std::string FileName, unsigned EntryLine,
280 unsigned ExitLine)
281 : DiagnosticInfo(PluginDiagnosticKind, DS_Note), F(F), FileName(FileName),
282 EntryLine(EntryLine), ExitLine(ExitLine) {}
284 void print(DiagnosticPrinter &DP) const override;
286 static bool classof(const DiagnosticInfo *DI) {
287 return DI->getKind() == PluginDiagnosticKind;
290 } // namespace
292 int DiagnosticScopFound::PluginDiagnosticKind =
293 getNextAvailablePluginDiagnosticKind();
295 void DiagnosticScopFound::print(DiagnosticPrinter &DP) const {
296 DP << "Polly detected an optimizable loop region (scop) in function '" << F
297 << "'\n";
299 if (FileName.empty()) {
300 DP << "Scop location is unknown. Compile with debug info "
301 "(-g) to get more precise information. ";
302 return;
305 DP << FileName << ":" << EntryLine << ": Start of scop\n";
306 DP << FileName << ":" << ExitLine << ": End of scop";
309 /// Check if a string matches any regex in a list of regexes.
310 /// @param Str the input string to match against.
311 /// @param RegexList a list of strings that are regular expressions.
312 static bool doesStringMatchAnyRegex(StringRef Str,
313 const cl::list<std::string> &RegexList) {
314 for (auto RegexStr : RegexList) {
315 Regex R(RegexStr);
317 std::string Err;
318 if (!R.isValid(Err))
319 report_fatal_error("invalid regex given as input to polly: " + Err, true);
321 if (R.match(Str))
322 return true;
324 return false;
326 //===----------------------------------------------------------------------===//
327 // ScopDetection.
329 ScopDetection::ScopDetection(Function &F, const DominatorTree &DT,
330 ScalarEvolution &SE, LoopInfo &LI, RegionInfo &RI,
331 AliasAnalysis &AA, OptimizationRemarkEmitter &ORE)
332 : DT(DT), SE(SE), LI(LI), RI(RI), AA(AA), ORE(ORE) {
333 if (!PollyProcessUnprofitable && LI.empty())
334 return;
336 Region *TopRegion = RI.getTopLevelRegion();
338 if (!OnlyFunctions.empty() &&
339 !doesStringMatchAnyRegex(F.getName(), OnlyFunctions))
340 return;
342 if (doesStringMatchAnyRegex(F.getName(), IgnoredFunctions))
343 return;
345 if (!isValidFunction(F))
346 return;
348 findScops(*TopRegion);
350 NumScopRegions += ValidRegions.size();
352 // Prune non-profitable regions.
353 for (auto &DIt : DetectionContextMap) {
354 auto &DC = DIt.getSecond();
355 if (DC.Log.hasErrors())
356 continue;
357 if (!ValidRegions.count(&DC.CurRegion))
358 continue;
359 LoopStats Stats = countBeneficialLoops(&DC.CurRegion, SE, LI, 0);
360 updateLoopCountStatistic(Stats, false /* OnlyProfitable */);
361 if (isProfitableRegion(DC)) {
362 updateLoopCountStatistic(Stats, true /* OnlyProfitable */);
363 continue;
366 ValidRegions.remove(&DC.CurRegion);
369 NumProfScopRegions += ValidRegions.size();
370 NumLoopsOverall += countBeneficialLoops(TopRegion, SE, LI, 0).NumLoops;
372 // Only makes sense when we tracked errors.
373 if (PollyTrackFailures)
374 emitMissedRemarks(F);
376 if (ReportLevel)
377 printLocations(F);
379 assert(ValidRegions.size() <= DetectionContextMap.size() &&
380 "Cached more results than valid regions");
383 template <class RR, typename... Args>
384 inline bool ScopDetection::invalid(DetectionContext &Context, bool Assert,
385 Args &&... Arguments) const {
386 if (!Context.Verifying) {
387 RejectLog &Log = Context.Log;
388 std::shared_ptr<RR> RejectReason = std::make_shared<RR>(Arguments...);
390 if (PollyTrackFailures)
391 Log.report(RejectReason);
393 LLVM_DEBUG(dbgs() << RejectReason->getMessage());
394 LLVM_DEBUG(dbgs() << "\n");
395 } else {
396 assert(!Assert && "Verification of detected scop failed");
399 return false;
402 bool ScopDetection::isMaxRegionInScop(const Region &R, bool Verify) const {
403 if (!ValidRegions.count(&R))
404 return false;
406 if (Verify) {
407 DetectionContextMap.erase(getBBPairForRegion(&R));
408 const auto &It = DetectionContextMap.insert(std::make_pair(
409 getBBPairForRegion(&R),
410 DetectionContext(const_cast<Region &>(R), AA, false /*verifying*/)));
411 DetectionContext &Context = It.first->second;
412 return isValidRegion(Context);
415 return true;
418 std::string ScopDetection::regionIsInvalidBecause(const Region *R) const {
419 // Get the first error we found. Even in keep-going mode, this is the first
420 // reason that caused the candidate to be rejected.
421 auto *Log = lookupRejectionLog(R);
423 // This can happen when we marked a region invalid, but didn't track
424 // an error for it.
425 if (!Log || !Log->hasErrors())
426 return "";
428 RejectReasonPtr RR = *Log->begin();
429 return RR->getMessage();
432 bool ScopDetection::addOverApproximatedRegion(Region *AR,
433 DetectionContext &Context) const {
434 // If we already know about Ar we can exit.
435 if (!Context.NonAffineSubRegionSet.insert(AR))
436 return true;
438 // All loops in the region have to be overapproximated too if there
439 // are accesses that depend on the iteration count.
441 for (BasicBlock *BB : AR->blocks()) {
442 Loop *L = LI.getLoopFor(BB);
443 if (AR->contains(L))
444 Context.BoxedLoopsSet.insert(L);
447 return (AllowNonAffineSubLoops || Context.BoxedLoopsSet.empty());
450 bool ScopDetection::onlyValidRequiredInvariantLoads(
451 InvariantLoadsSetTy &RequiredILS, DetectionContext &Context) const {
452 Region &CurRegion = Context.CurRegion;
453 const DataLayout &DL = CurRegion.getEntry()->getModule()->getDataLayout();
455 if (!PollyInvariantLoadHoisting && !RequiredILS.empty())
456 return false;
458 for (LoadInst *Load : RequiredILS) {
459 // If we already know a load has been accepted as required invariant, we
460 // already run the validation below once and consequently don't need to
461 // run it again. Hence, we return early. For certain test cases (e.g.,
462 // COSMO this avoids us spending 50% of scop-detection time in this
463 // very function (and its children).
464 if (Context.RequiredILS.count(Load))
465 continue;
466 if (!isHoistableLoad(Load, CurRegion, LI, SE, DT, Context.RequiredILS))
467 return false;
469 for (auto NonAffineRegion : Context.NonAffineSubRegionSet) {
470 if (isSafeToLoadUnconditionally(Load->getPointerOperand(),
471 Load->getType(),
472 MaybeAlign(Load->getAlignment()), DL))
473 continue;
475 if (NonAffineRegion->contains(Load) &&
476 Load->getParent() != NonAffineRegion->getEntry())
477 return false;
481 Context.RequiredILS.insert(RequiredILS.begin(), RequiredILS.end());
483 return true;
486 bool ScopDetection::involvesMultiplePtrs(const SCEV *S0, const SCEV *S1,
487 Loop *Scope) const {
488 SetVector<Value *> Values;
489 findValues(S0, SE, Values);
490 if (S1)
491 findValues(S1, SE, Values);
493 SmallPtrSet<Value *, 8> PtrVals;
494 for (auto *V : Values) {
495 if (auto *P2I = dyn_cast<PtrToIntInst>(V))
496 V = P2I->getOperand(0);
498 if (!V->getType()->isPointerTy())
499 continue;
501 auto *PtrSCEV = SE.getSCEVAtScope(V, Scope);
502 if (isa<SCEVConstant>(PtrSCEV))
503 continue;
505 auto *BasePtr = dyn_cast<SCEVUnknown>(SE.getPointerBase(PtrSCEV));
506 if (!BasePtr)
507 return true;
509 auto *BasePtrVal = BasePtr->getValue();
510 if (PtrVals.insert(BasePtrVal).second) {
511 for (auto *PtrVal : PtrVals)
512 if (PtrVal != BasePtrVal && !AA.isNoAlias(PtrVal, BasePtrVal))
513 return true;
517 return false;
520 bool ScopDetection::isAffine(const SCEV *S, Loop *Scope,
521 DetectionContext &Context) const {
522 InvariantLoadsSetTy AccessILS;
523 if (!isAffineExpr(&Context.CurRegion, Scope, S, SE, &AccessILS))
524 return false;
526 if (!onlyValidRequiredInvariantLoads(AccessILS, Context))
527 return false;
529 return true;
532 bool ScopDetection::isValidSwitch(BasicBlock &BB, SwitchInst *SI,
533 Value *Condition, bool IsLoopBranch,
534 DetectionContext &Context) const {
535 Loop *L = LI.getLoopFor(&BB);
536 const SCEV *ConditionSCEV = SE.getSCEVAtScope(Condition, L);
538 if (IsLoopBranch && L->isLoopLatch(&BB))
539 return false;
541 // Check for invalid usage of different pointers in one expression.
542 if (involvesMultiplePtrs(ConditionSCEV, nullptr, L))
543 return false;
545 if (isAffine(ConditionSCEV, L, Context))
546 return true;
548 if (AllowNonAffineSubRegions &&
549 addOverApproximatedRegion(RI.getRegionFor(&BB), Context))
550 return true;
552 return invalid<ReportNonAffBranch>(Context, /*Assert=*/true, &BB,
553 ConditionSCEV, ConditionSCEV, SI);
556 bool ScopDetection::isValidBranch(BasicBlock &BB, BranchInst *BI,
557 Value *Condition, bool IsLoopBranch,
558 DetectionContext &Context) const {
559 // Constant integer conditions are always affine.
560 if (isa<ConstantInt>(Condition))
561 return true;
563 if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Condition)) {
564 auto Opcode = BinOp->getOpcode();
565 if (Opcode == Instruction::And || Opcode == Instruction::Or) {
566 Value *Op0 = BinOp->getOperand(0);
567 Value *Op1 = BinOp->getOperand(1);
568 return isValidBranch(BB, BI, Op0, IsLoopBranch, Context) &&
569 isValidBranch(BB, BI, Op1, IsLoopBranch, Context);
573 if (auto PHI = dyn_cast<PHINode>(Condition)) {
574 auto *Unique = dyn_cast_or_null<ConstantInt>(
575 getUniqueNonErrorValue(PHI, &Context.CurRegion, LI, DT));
576 if (Unique && (Unique->isZero() || Unique->isOne()))
577 return true;
580 if (auto Load = dyn_cast<LoadInst>(Condition))
581 if (!IsLoopBranch && Context.CurRegion.contains(Load)) {
582 Context.RequiredILS.insert(Load);
583 return true;
586 // Non constant conditions of branches need to be ICmpInst.
587 if (!isa<ICmpInst>(Condition)) {
588 if (!IsLoopBranch && AllowNonAffineSubRegions &&
589 addOverApproximatedRegion(RI.getRegionFor(&BB), Context))
590 return true;
591 return invalid<ReportInvalidCond>(Context, /*Assert=*/true, BI, &BB);
594 ICmpInst *ICmp = cast<ICmpInst>(Condition);
596 // Are both operands of the ICmp affine?
597 if (isa<UndefValue>(ICmp->getOperand(0)) ||
598 isa<UndefValue>(ICmp->getOperand(1)))
599 return invalid<ReportUndefOperand>(Context, /*Assert=*/true, &BB, ICmp);
601 Loop *L = LI.getLoopFor(&BB);
602 const SCEV *LHS = SE.getSCEVAtScope(ICmp->getOperand(0), L);
603 const SCEV *RHS = SE.getSCEVAtScope(ICmp->getOperand(1), L);
605 LHS = tryForwardThroughPHI(LHS, Context.CurRegion, SE, LI, DT);
606 RHS = tryForwardThroughPHI(RHS, Context.CurRegion, SE, LI, DT);
608 // If unsigned operations are not allowed try to approximate the region.
609 if (ICmp->isUnsigned() && !PollyAllowUnsignedOperations)
610 return !IsLoopBranch && AllowNonAffineSubRegions &&
611 addOverApproximatedRegion(RI.getRegionFor(&BB), Context);
613 // Check for invalid usage of different pointers in one expression.
614 if (ICmp->isEquality() && involvesMultiplePtrs(LHS, nullptr, L) &&
615 involvesMultiplePtrs(RHS, nullptr, L))
616 return false;
618 // Check for invalid usage of different pointers in a relational comparison.
619 if (ICmp->isRelational() && involvesMultiplePtrs(LHS, RHS, L))
620 return false;
622 if (isAffine(LHS, L, Context) && isAffine(RHS, L, Context))
623 return true;
625 if (!IsLoopBranch && AllowNonAffineSubRegions &&
626 addOverApproximatedRegion(RI.getRegionFor(&BB), Context))
627 return true;
629 if (IsLoopBranch)
630 return false;
632 return invalid<ReportNonAffBranch>(Context, /*Assert=*/true, &BB, LHS, RHS,
633 ICmp);
636 bool ScopDetection::isValidCFG(BasicBlock &BB, bool IsLoopBranch,
637 bool AllowUnreachable,
638 DetectionContext &Context) const {
639 Region &CurRegion = Context.CurRegion;
641 Instruction *TI = BB.getTerminator();
643 if (AllowUnreachable && isa<UnreachableInst>(TI))
644 return true;
646 // Return instructions are only valid if the region is the top level region.
647 if (isa<ReturnInst>(TI) && CurRegion.isTopLevelRegion())
648 return true;
650 Value *Condition = getConditionFromTerminator(TI);
652 if (!Condition)
653 return invalid<ReportInvalidTerminator>(Context, /*Assert=*/true, &BB);
655 // UndefValue is not allowed as condition.
656 if (isa<UndefValue>(Condition))
657 return invalid<ReportUndefCond>(Context, /*Assert=*/true, TI, &BB);
659 if (BranchInst *BI = dyn_cast<BranchInst>(TI))
660 return isValidBranch(BB, BI, Condition, IsLoopBranch, Context);
662 SwitchInst *SI = dyn_cast<SwitchInst>(TI);
663 assert(SI && "Terminator was neither branch nor switch");
665 return isValidSwitch(BB, SI, Condition, IsLoopBranch, Context);
668 bool ScopDetection::isValidCallInst(CallInst &CI,
669 DetectionContext &Context) const {
670 if (CI.doesNotReturn())
671 return false;
673 if (CI.doesNotAccessMemory())
674 return true;
676 if (auto *II = dyn_cast<IntrinsicInst>(&CI))
677 if (isValidIntrinsicInst(*II, Context))
678 return true;
680 Function *CalledFunction = CI.getCalledFunction();
682 // Indirect calls are not supported.
683 if (CalledFunction == nullptr)
684 return false;
686 if (isDebugCall(&CI)) {
687 LLVM_DEBUG(dbgs() << "Allow call to debug function: "
688 << CalledFunction->getName() << '\n');
689 return true;
692 if (AllowModrefCall) {
693 switch (AA.getModRefBehavior(CalledFunction)) {
694 case FMRB_UnknownModRefBehavior:
695 return false;
696 case FMRB_DoesNotAccessMemory:
697 case FMRB_OnlyReadsMemory:
698 // Implicitly disable delinearization since we have an unknown
699 // accesses with an unknown access function.
700 Context.HasUnknownAccess = true;
701 // Explicitly use addUnknown so we don't put a loop-variant
702 // pointer into the alias set.
703 Context.AST.addUnknown(&CI);
704 return true;
705 case FMRB_OnlyReadsArgumentPointees:
706 case FMRB_OnlyAccessesArgumentPointees:
707 for (const auto &Arg : CI.arg_operands()) {
708 if (!Arg->getType()->isPointerTy())
709 continue;
711 // Bail if a pointer argument has a base address not known to
712 // ScalarEvolution. Note that a zero pointer is acceptable.
713 auto *ArgSCEV = SE.getSCEVAtScope(Arg, LI.getLoopFor(CI.getParent()));
714 if (ArgSCEV->isZero())
715 continue;
717 auto *BP = dyn_cast<SCEVUnknown>(SE.getPointerBase(ArgSCEV));
718 if (!BP)
719 return false;
721 // Implicitly disable delinearization since we have an unknown
722 // accesses with an unknown access function.
723 Context.HasUnknownAccess = true;
726 // Explicitly use addUnknown so we don't put a loop-variant
727 // pointer into the alias set.
728 Context.AST.addUnknown(&CI);
729 return true;
730 case FMRB_DoesNotReadMemory:
731 case FMRB_OnlyAccessesInaccessibleMem:
732 case FMRB_OnlyAccessesInaccessibleOrArgMem:
733 return false;
737 return false;
740 bool ScopDetection::isValidIntrinsicInst(IntrinsicInst &II,
741 DetectionContext &Context) const {
742 if (isIgnoredIntrinsic(&II))
743 return true;
745 // The closest loop surrounding the call instruction.
746 Loop *L = LI.getLoopFor(II.getParent());
748 // The access function and base pointer for memory intrinsics.
749 const SCEV *AF;
750 const SCEVUnknown *BP;
752 switch (II.getIntrinsicID()) {
753 // Memory intrinsics that can be represented are supported.
754 case Intrinsic::memmove:
755 case Intrinsic::memcpy:
756 AF = SE.getSCEVAtScope(cast<MemTransferInst>(II).getSource(), L);
757 if (!AF->isZero()) {
758 BP = dyn_cast<SCEVUnknown>(SE.getPointerBase(AF));
759 // Bail if the source pointer is not valid.
760 if (!isValidAccess(&II, AF, BP, Context))
761 return false;
763 LLVM_FALLTHROUGH;
764 case Intrinsic::memset:
765 AF = SE.getSCEVAtScope(cast<MemIntrinsic>(II).getDest(), L);
766 if (!AF->isZero()) {
767 BP = dyn_cast<SCEVUnknown>(SE.getPointerBase(AF));
768 // Bail if the destination pointer is not valid.
769 if (!isValidAccess(&II, AF, BP, Context))
770 return false;
773 // Bail if the length is not affine.
774 if (!isAffine(SE.getSCEVAtScope(cast<MemIntrinsic>(II).getLength(), L), L,
775 Context))
776 return false;
778 return true;
779 default:
780 break;
783 return false;
786 bool ScopDetection::isInvariant(Value &Val, const Region &Reg,
787 DetectionContext &Ctx) const {
788 // A reference to function argument or constant value is invariant.
789 if (isa<Argument>(Val) || isa<Constant>(Val))
790 return true;
792 Instruction *I = dyn_cast<Instruction>(&Val);
793 if (!I)
794 return false;
796 if (!Reg.contains(I))
797 return true;
799 // Loads within the SCoP may read arbitrary values, need to hoist them. If it
800 // is not hoistable, it will be rejected later, but here we assume it is and
801 // that makes the value invariant.
802 if (auto LI = dyn_cast<LoadInst>(I)) {
803 Ctx.RequiredILS.insert(LI);
804 return true;
807 return false;
810 namespace {
812 /// Remove smax of smax(0, size) expressions from a SCEV expression and
813 /// register the '...' components.
815 /// Array access expressions as they are generated by GFortran contain smax(0,
816 /// size) expressions that confuse the 'normal' delinearization algorithm.
817 /// However, if we extract such expressions before the normal delinearization
818 /// takes place they can actually help to identify array size expressions in
819 /// Fortran accesses. For the subsequently following delinearization the smax(0,
820 /// size) component can be replaced by just 'size'. This is correct as we will
821 /// always add and verify the assumption that for all subscript expressions
822 /// 'exp' the inequality 0 <= exp < size holds. Hence, we will also verify
823 /// that 0 <= size, which means smax(0, size) == size.
824 class SCEVRemoveMax : public SCEVRewriteVisitor<SCEVRemoveMax> {
825 public:
826 SCEVRemoveMax(ScalarEvolution &SE, std::vector<const SCEV *> *Terms)
827 : SCEVRewriteVisitor(SE), Terms(Terms) {}
829 static const SCEV *rewrite(const SCEV *Scev, ScalarEvolution &SE,
830 std::vector<const SCEV *> *Terms = nullptr) {
831 SCEVRemoveMax Rewriter(SE, Terms);
832 return Rewriter.visit(Scev);
835 const SCEV *visitSMaxExpr(const SCEVSMaxExpr *Expr) {
836 if ((Expr->getNumOperands() == 2) && Expr->getOperand(0)->isZero()) {
837 auto Res = visit(Expr->getOperand(1));
838 if (Terms)
839 (*Terms).push_back(Res);
840 return Res;
843 return Expr;
846 private:
847 std::vector<const SCEV *> *Terms;
849 } // namespace
851 SmallVector<const SCEV *, 4>
852 ScopDetection::getDelinearizationTerms(DetectionContext &Context,
853 const SCEVUnknown *BasePointer) const {
854 SmallVector<const SCEV *, 4> Terms;
855 for (const auto &Pair : Context.Accesses[BasePointer]) {
856 std::vector<const SCEV *> MaxTerms;
857 SCEVRemoveMax::rewrite(Pair.second, SE, &MaxTerms);
858 if (!MaxTerms.empty()) {
859 Terms.insert(Terms.begin(), MaxTerms.begin(), MaxTerms.end());
860 continue;
862 // In case the outermost expression is a plain add, we check if any of its
863 // terms has the form 4 * %inst * %param * %param ..., aka a term that
864 // contains a product between a parameter and an instruction that is
865 // inside the scop. Such instructions, if allowed at all, are instructions
866 // SCEV can not represent, but Polly is still looking through. As a
867 // result, these instructions can depend on induction variables and are
868 // most likely no array sizes. However, terms that are multiplied with
869 // them are likely candidates for array sizes.
870 if (auto *AF = dyn_cast<SCEVAddExpr>(Pair.second)) {
871 for (auto Op : AF->operands()) {
872 if (auto *AF2 = dyn_cast<SCEVAddRecExpr>(Op))
873 SE.collectParametricTerms(AF2, Terms);
874 if (auto *AF2 = dyn_cast<SCEVMulExpr>(Op)) {
875 SmallVector<const SCEV *, 0> Operands;
877 for (auto *MulOp : AF2->operands()) {
878 if (auto *Const = dyn_cast<SCEVConstant>(MulOp))
879 Operands.push_back(Const);
880 if (auto *Unknown = dyn_cast<SCEVUnknown>(MulOp)) {
881 if (auto *Inst = dyn_cast<Instruction>(Unknown->getValue())) {
882 if (!Context.CurRegion.contains(Inst))
883 Operands.push_back(MulOp);
885 } else {
886 Operands.push_back(MulOp);
890 if (Operands.size())
891 Terms.push_back(SE.getMulExpr(Operands));
895 if (Terms.empty())
896 SE.collectParametricTerms(Pair.second, Terms);
898 return Terms;
901 bool ScopDetection::hasValidArraySizes(DetectionContext &Context,
902 SmallVectorImpl<const SCEV *> &Sizes,
903 const SCEVUnknown *BasePointer,
904 Loop *Scope) const {
905 // If no sizes were found, all sizes are trivially valid. We allow this case
906 // to make it possible to pass known-affine accesses to the delinearization to
907 // try to recover some interesting multi-dimensional accesses, but to still
908 // allow the already known to be affine access in case the delinearization
909 // fails. In such situations, the delinearization will just return a Sizes
910 // array of size zero.
911 if (Sizes.size() == 0)
912 return true;
914 Value *BaseValue = BasePointer->getValue();
915 Region &CurRegion = Context.CurRegion;
916 for (const SCEV *DelinearizedSize : Sizes) {
917 // Don't pass down the scope to isAfffine; array dimensions must be
918 // invariant across the entire scop.
919 if (!isAffine(DelinearizedSize, nullptr, Context)) {
920 Sizes.clear();
921 break;
923 if (auto *Unknown = dyn_cast<SCEVUnknown>(DelinearizedSize)) {
924 auto *V = dyn_cast<Value>(Unknown->getValue());
925 if (auto *Load = dyn_cast<LoadInst>(V)) {
926 if (Context.CurRegion.contains(Load) &&
927 isHoistableLoad(Load, CurRegion, LI, SE, DT, Context.RequiredILS))
928 Context.RequiredILS.insert(Load);
929 continue;
932 if (hasScalarDepsInsideRegion(DelinearizedSize, &CurRegion, Scope, false,
933 Context.RequiredILS))
934 return invalid<ReportNonAffineAccess>(
935 Context, /*Assert=*/true, DelinearizedSize,
936 Context.Accesses[BasePointer].front().first, BaseValue);
939 // No array shape derived.
940 if (Sizes.empty()) {
941 if (AllowNonAffine)
942 return true;
944 for (const auto &Pair : Context.Accesses[BasePointer]) {
945 const Instruction *Insn = Pair.first;
946 const SCEV *AF = Pair.second;
948 if (!isAffine(AF, Scope, Context)) {
949 invalid<ReportNonAffineAccess>(Context, /*Assert=*/true, AF, Insn,
950 BaseValue);
951 if (!KeepGoing)
952 return false;
955 return false;
957 return true;
960 // We first store the resulting memory accesses in TempMemoryAccesses. Only
961 // if the access functions for all memory accesses have been successfully
962 // delinearized we continue. Otherwise, we either report a failure or, if
963 // non-affine accesses are allowed, we drop the information. In case the
964 // information is dropped the memory accesses need to be overapproximated
965 // when translated to a polyhedral representation.
966 bool ScopDetection::computeAccessFunctions(
967 DetectionContext &Context, const SCEVUnknown *BasePointer,
968 std::shared_ptr<ArrayShape> Shape) const {
969 Value *BaseValue = BasePointer->getValue();
970 bool BasePtrHasNonAffine = false;
971 MapInsnToMemAcc TempMemoryAccesses;
972 for (const auto &Pair : Context.Accesses[BasePointer]) {
973 const Instruction *Insn = Pair.first;
974 auto *AF = Pair.second;
975 AF = SCEVRemoveMax::rewrite(AF, SE);
976 bool IsNonAffine = false;
977 TempMemoryAccesses.insert(std::make_pair(Insn, MemAcc(Insn, Shape)));
978 MemAcc *Acc = &TempMemoryAccesses.find(Insn)->second;
979 auto *Scope = LI.getLoopFor(Insn->getParent());
981 if (!AF) {
982 if (isAffine(Pair.second, Scope, Context))
983 Acc->DelinearizedSubscripts.push_back(Pair.second);
984 else
985 IsNonAffine = true;
986 } else {
987 if (Shape->DelinearizedSizes.size() == 0) {
988 Acc->DelinearizedSubscripts.push_back(AF);
989 } else {
990 SE.computeAccessFunctions(AF, Acc->DelinearizedSubscripts,
991 Shape->DelinearizedSizes);
992 if (Acc->DelinearizedSubscripts.size() == 0)
993 IsNonAffine = true;
995 for (const SCEV *S : Acc->DelinearizedSubscripts)
996 if (!isAffine(S, Scope, Context))
997 IsNonAffine = true;
1000 // (Possibly) report non affine access
1001 if (IsNonAffine) {
1002 BasePtrHasNonAffine = true;
1003 if (!AllowNonAffine)
1004 invalid<ReportNonAffineAccess>(Context, /*Assert=*/true, Pair.second,
1005 Insn, BaseValue);
1006 if (!KeepGoing && !AllowNonAffine)
1007 return false;
1011 if (!BasePtrHasNonAffine)
1012 Context.InsnToMemAcc.insert(TempMemoryAccesses.begin(),
1013 TempMemoryAccesses.end());
1015 return true;
1018 bool ScopDetection::hasBaseAffineAccesses(DetectionContext &Context,
1019 const SCEVUnknown *BasePointer,
1020 Loop *Scope) const {
1021 auto Shape = std::shared_ptr<ArrayShape>(new ArrayShape(BasePointer));
1023 auto Terms = getDelinearizationTerms(Context, BasePointer);
1025 SE.findArrayDimensions(Terms, Shape->DelinearizedSizes,
1026 Context.ElementSize[BasePointer]);
1028 if (!hasValidArraySizes(Context, Shape->DelinearizedSizes, BasePointer,
1029 Scope))
1030 return false;
1032 return computeAccessFunctions(Context, BasePointer, Shape);
1035 bool ScopDetection::hasAffineMemoryAccesses(DetectionContext &Context) const {
1036 // TODO: If we have an unknown access and other non-affine accesses we do
1037 // not try to delinearize them for now.
1038 if (Context.HasUnknownAccess && !Context.NonAffineAccesses.empty())
1039 return AllowNonAffine;
1041 for (auto &Pair : Context.NonAffineAccesses) {
1042 auto *BasePointer = Pair.first;
1043 auto *Scope = Pair.second;
1044 if (!hasBaseAffineAccesses(Context, BasePointer, Scope)) {
1045 if (KeepGoing)
1046 continue;
1047 else
1048 return false;
1051 return true;
1054 bool ScopDetection::isValidAccess(Instruction *Inst, const SCEV *AF,
1055 const SCEVUnknown *BP,
1056 DetectionContext &Context) const {
1058 if (!BP)
1059 return invalid<ReportNoBasePtr>(Context, /*Assert=*/true, Inst);
1061 auto *BV = BP->getValue();
1062 if (isa<UndefValue>(BV))
1063 return invalid<ReportUndefBasePtr>(Context, /*Assert=*/true, Inst);
1065 // FIXME: Think about allowing IntToPtrInst
1066 if (IntToPtrInst *Inst = dyn_cast<IntToPtrInst>(BV))
1067 return invalid<ReportIntToPtr>(Context, /*Assert=*/true, Inst);
1069 // Check that the base address of the access is invariant in the current
1070 // region.
1071 if (!isInvariant(*BV, Context.CurRegion, Context))
1072 return invalid<ReportVariantBasePtr>(Context, /*Assert=*/true, BV, Inst);
1074 AF = SE.getMinusSCEV(AF, BP);
1076 const SCEV *Size;
1077 if (!isa<MemIntrinsic>(Inst)) {
1078 Size = SE.getElementSize(Inst);
1079 } else {
1080 auto *SizeTy =
1081 SE.getEffectiveSCEVType(PointerType::getInt8PtrTy(SE.getContext()));
1082 Size = SE.getConstant(SizeTy, 8);
1085 if (Context.ElementSize[BP]) {
1086 if (!AllowDifferentTypes && Context.ElementSize[BP] != Size)
1087 return invalid<ReportDifferentArrayElementSize>(Context, /*Assert=*/true,
1088 Inst, BV);
1090 Context.ElementSize[BP] = SE.getSMinExpr(Size, Context.ElementSize[BP]);
1091 } else {
1092 Context.ElementSize[BP] = Size;
1095 bool IsVariantInNonAffineLoop = false;
1096 SetVector<const Loop *> Loops;
1097 findLoops(AF, Loops);
1098 for (const Loop *L : Loops)
1099 if (Context.BoxedLoopsSet.count(L))
1100 IsVariantInNonAffineLoop = true;
1102 auto *Scope = LI.getLoopFor(Inst->getParent());
1103 bool IsAffine = !IsVariantInNonAffineLoop && isAffine(AF, Scope, Context);
1104 // Do not try to delinearize memory intrinsics and force them to be affine.
1105 if (isa<MemIntrinsic>(Inst) && !IsAffine) {
1106 return invalid<ReportNonAffineAccess>(Context, /*Assert=*/true, AF, Inst,
1107 BV);
1108 } else if (PollyDelinearize && !IsVariantInNonAffineLoop) {
1109 Context.Accesses[BP].push_back({Inst, AF});
1111 if (!IsAffine || hasIVParams(AF))
1112 Context.NonAffineAccesses.insert(
1113 std::make_pair(BP, LI.getLoopFor(Inst->getParent())));
1114 } else if (!AllowNonAffine && !IsAffine) {
1115 return invalid<ReportNonAffineAccess>(Context, /*Assert=*/true, AF, Inst,
1116 BV);
1119 if (IgnoreAliasing)
1120 return true;
1122 // Check if the base pointer of the memory access does alias with
1123 // any other pointer. This cannot be handled at the moment.
1124 AAMDNodes AATags;
1125 Inst->getAAMetadata(AATags);
1126 AliasSet &AS = Context.AST.getAliasSetFor(
1127 MemoryLocation(BP->getValue(), MemoryLocation::UnknownSize, AATags));
1129 if (!AS.isMustAlias()) {
1130 if (PollyUseRuntimeAliasChecks) {
1131 bool CanBuildRunTimeCheck = true;
1132 // The run-time alias check places code that involves the base pointer at
1133 // the beginning of the SCoP. This breaks if the base pointer is defined
1134 // inside the scop. Hence, we can only create a run-time check if we are
1135 // sure the base pointer is not an instruction defined inside the scop.
1136 // However, we can ignore loads that will be hoisted.
1138 InvariantLoadsSetTy VariantLS, InvariantLS;
1139 // In order to detect loads which are dependent on other invariant loads
1140 // as invariant, we use fixed-point iteration method here i.e we iterate
1141 // over the alias set for arbitrary number of times until it is safe to
1142 // assume that all the invariant loads have been detected
1143 while (1) {
1144 const unsigned int VariantSize = VariantLS.size(),
1145 InvariantSize = InvariantLS.size();
1147 for (const auto &Ptr : AS) {
1148 Instruction *Inst = dyn_cast<Instruction>(Ptr.getValue());
1149 if (Inst && Context.CurRegion.contains(Inst)) {
1150 auto *Load = dyn_cast<LoadInst>(Inst);
1151 if (Load && InvariantLS.count(Load))
1152 continue;
1153 if (Load && isHoistableLoad(Load, Context.CurRegion, LI, SE, DT,
1154 InvariantLS)) {
1155 if (VariantLS.count(Load))
1156 VariantLS.remove(Load);
1157 Context.RequiredILS.insert(Load);
1158 InvariantLS.insert(Load);
1159 } else {
1160 CanBuildRunTimeCheck = false;
1161 VariantLS.insert(Load);
1166 if (InvariantSize == InvariantLS.size() &&
1167 VariantSize == VariantLS.size())
1168 break;
1171 if (CanBuildRunTimeCheck)
1172 return true;
1174 return invalid<ReportAlias>(Context, /*Assert=*/true, Inst, AS);
1177 return true;
1180 bool ScopDetection::isValidMemoryAccess(MemAccInst Inst,
1181 DetectionContext &Context) const {
1182 Value *Ptr = Inst.getPointerOperand();
1183 Loop *L = LI.getLoopFor(Inst->getParent());
1184 const SCEV *AccessFunction = SE.getSCEVAtScope(Ptr, L);
1185 const SCEVUnknown *BasePointer;
1187 BasePointer = dyn_cast<SCEVUnknown>(SE.getPointerBase(AccessFunction));
1189 return isValidAccess(Inst, AccessFunction, BasePointer, Context);
1192 bool ScopDetection::isValidInstruction(Instruction &Inst,
1193 DetectionContext &Context) const {
1194 for (auto &Op : Inst.operands()) {
1195 auto *OpInst = dyn_cast<Instruction>(&Op);
1197 if (!OpInst)
1198 continue;
1200 if (isErrorBlock(*OpInst->getParent(), Context.CurRegion, LI, DT)) {
1201 auto *PHI = dyn_cast<PHINode>(OpInst);
1202 if (PHI) {
1203 for (User *U : PHI->users()) {
1204 auto *UI = dyn_cast<Instruction>(U);
1205 if (!UI || !UI->isTerminator())
1206 return false;
1208 } else {
1209 return false;
1214 if (isa<LandingPadInst>(&Inst) || isa<ResumeInst>(&Inst))
1215 return false;
1217 // We only check the call instruction but not invoke instruction.
1218 if (CallInst *CI = dyn_cast<CallInst>(&Inst)) {
1219 if (isValidCallInst(*CI, Context))
1220 return true;
1222 return invalid<ReportFuncCall>(Context, /*Assert=*/true, &Inst);
1225 if (!Inst.mayReadOrWriteMemory()) {
1226 if (!isa<AllocaInst>(Inst))
1227 return true;
1229 return invalid<ReportAlloca>(Context, /*Assert=*/true, &Inst);
1232 // Check the access function.
1233 if (auto MemInst = MemAccInst::dyn_cast(Inst)) {
1234 Context.hasStores |= isa<StoreInst>(MemInst);
1235 Context.hasLoads |= isa<LoadInst>(MemInst);
1236 if (!MemInst.isSimple())
1237 return invalid<ReportNonSimpleMemoryAccess>(Context, /*Assert=*/true,
1238 &Inst);
1240 return isValidMemoryAccess(MemInst, Context);
1243 // We do not know this instruction, therefore we assume it is invalid.
1244 return invalid<ReportUnknownInst>(Context, /*Assert=*/true, &Inst);
1247 /// Check whether @p L has exiting blocks.
1249 /// @param L The loop of interest
1251 /// @return True if the loop has exiting blocks, false otherwise.
1252 static bool hasExitingBlocks(Loop *L) {
1253 SmallVector<BasicBlock *, 4> ExitingBlocks;
1254 L->getExitingBlocks(ExitingBlocks);
1255 return !ExitingBlocks.empty();
1258 bool ScopDetection::canUseISLTripCount(Loop *L,
1259 DetectionContext &Context) const {
1260 // Ensure the loop has valid exiting blocks as well as latches, otherwise we
1261 // need to overapproximate it as a boxed loop.
1262 SmallVector<BasicBlock *, 4> LoopControlBlocks;
1263 L->getExitingBlocks(LoopControlBlocks);
1264 L->getLoopLatches(LoopControlBlocks);
1265 for (BasicBlock *ControlBB : LoopControlBlocks) {
1266 if (!isValidCFG(*ControlBB, true, false, Context))
1267 return false;
1270 // We can use ISL to compute the trip count of L.
1271 return true;
1274 bool ScopDetection::isValidLoop(Loop *L, DetectionContext &Context) const {
1275 // Loops that contain part but not all of the blocks of a region cannot be
1276 // handled by the schedule generation. Such loop constructs can happen
1277 // because a region can contain BBs that have no path to the exit block
1278 // (Infinite loops, UnreachableInst), but such blocks are never part of a
1279 // loop.
1281 // _______________
1282 // | Loop Header | <-----------.
1283 // --------------- |
1284 // | |
1285 // _______________ ______________
1286 // | RegionEntry |-----> | RegionExit |----->
1287 // --------------- --------------
1288 // |
1289 // _______________
1290 // | EndlessLoop | <--.
1291 // --------------- |
1292 // | |
1293 // \------------/
1295 // In the example above, the loop (LoopHeader,RegionEntry,RegionExit) is
1296 // neither entirely contained in the region RegionEntry->RegionExit
1297 // (containing RegionEntry,EndlessLoop) nor is the region entirely contained
1298 // in the loop.
1299 // The block EndlessLoop is contained in the region because Region::contains
1300 // tests whether it is not dominated by RegionExit. This is probably to not
1301 // having to query the PostdominatorTree. Instead of an endless loop, a dead
1302 // end can also be formed by an UnreachableInst. This case is already caught
1303 // by isErrorBlock(). We hence only have to reject endless loops here.
1304 if (!hasExitingBlocks(L))
1305 return invalid<ReportLoopHasNoExit>(Context, /*Assert=*/true, L);
1307 // The algorithm for domain construction assumes that loops has only a single
1308 // exit block (and hence corresponds to a subregion). Note that we cannot use
1309 // L->getExitBlock() because it does not check whether all exiting edges point
1310 // to the same BB.
1311 SmallVector<BasicBlock *, 4> ExitBlocks;
1312 L->getExitBlocks(ExitBlocks);
1313 BasicBlock *TheExitBlock = ExitBlocks[0];
1314 for (BasicBlock *ExitBB : ExitBlocks) {
1315 if (TheExitBlock != ExitBB)
1316 return invalid<ReportLoopHasMultipleExits>(Context, /*Assert=*/true, L);
1319 if (canUseISLTripCount(L, Context))
1320 return true;
1322 if (AllowNonAffineSubLoops && AllowNonAffineSubRegions) {
1323 Region *R = RI.getRegionFor(L->getHeader());
1324 while (R != &Context.CurRegion && !R->contains(L))
1325 R = R->getParent();
1327 if (addOverApproximatedRegion(R, Context))
1328 return true;
1331 const SCEV *LoopCount = SE.getBackedgeTakenCount(L);
1332 return invalid<ReportLoopBound>(Context, /*Assert=*/true, L, LoopCount);
1335 /// Return the number of loops in @p L (incl. @p L) that have a trip
1336 /// count that is not known to be less than @MinProfitableTrips.
1337 ScopDetection::LoopStats
1338 ScopDetection::countBeneficialSubLoops(Loop *L, ScalarEvolution &SE,
1339 unsigned MinProfitableTrips) {
1340 auto *TripCount = SE.getBackedgeTakenCount(L);
1342 int NumLoops = 1;
1343 int MaxLoopDepth = 1;
1344 if (MinProfitableTrips > 0)
1345 if (auto *TripCountC = dyn_cast<SCEVConstant>(TripCount))
1346 if (TripCountC->getType()->getScalarSizeInBits() <= 64)
1347 if (TripCountC->getValue()->getZExtValue() <= MinProfitableTrips)
1348 NumLoops -= 1;
1350 for (auto &SubLoop : *L) {
1351 LoopStats Stats = countBeneficialSubLoops(SubLoop, SE, MinProfitableTrips);
1352 NumLoops += Stats.NumLoops;
1353 MaxLoopDepth = std::max(MaxLoopDepth, Stats.MaxDepth + 1);
1356 return {NumLoops, MaxLoopDepth};
1359 ScopDetection::LoopStats
1360 ScopDetection::countBeneficialLoops(Region *R, ScalarEvolution &SE,
1361 LoopInfo &LI, unsigned MinProfitableTrips) {
1362 int LoopNum = 0;
1363 int MaxLoopDepth = 0;
1365 auto L = LI.getLoopFor(R->getEntry());
1367 // If L is fully contained in R, move to first loop surrounding R. Otherwise,
1368 // L is either nullptr or already surrounding R.
1369 if (L && R->contains(L)) {
1370 L = R->outermostLoopInRegion(L);
1371 L = L->getParentLoop();
1374 auto SubLoops =
1375 L ? L->getSubLoopsVector() : std::vector<Loop *>(LI.begin(), LI.end());
1377 for (auto &SubLoop : SubLoops)
1378 if (R->contains(SubLoop)) {
1379 LoopStats Stats =
1380 countBeneficialSubLoops(SubLoop, SE, MinProfitableTrips);
1381 LoopNum += Stats.NumLoops;
1382 MaxLoopDepth = std::max(MaxLoopDepth, Stats.MaxDepth);
1385 return {LoopNum, MaxLoopDepth};
1388 Region *ScopDetection::expandRegion(Region &R) {
1389 // Initial no valid region was found (greater than R)
1390 std::unique_ptr<Region> LastValidRegion;
1391 auto ExpandedRegion = std::unique_ptr<Region>(R.getExpandedRegion());
1393 LLVM_DEBUG(dbgs() << "\tExpanding " << R.getNameStr() << "\n");
1395 while (ExpandedRegion) {
1396 const auto &It = DetectionContextMap.insert(std::make_pair(
1397 getBBPairForRegion(ExpandedRegion.get()),
1398 DetectionContext(*ExpandedRegion, AA, false /*verifying*/)));
1399 DetectionContext &Context = It.first->second;
1400 LLVM_DEBUG(dbgs() << "\t\tTrying " << ExpandedRegion->getNameStr() << "\n");
1401 // Only expand when we did not collect errors.
1403 if (!Context.Log.hasErrors()) {
1404 // If the exit is valid check all blocks
1405 // - if true, a valid region was found => store it + keep expanding
1406 // - if false, .tbd. => stop (should this really end the loop?)
1407 if (!allBlocksValid(Context) || Context.Log.hasErrors()) {
1408 removeCachedResults(*ExpandedRegion);
1409 DetectionContextMap.erase(It.first);
1410 break;
1413 // Store this region, because it is the greatest valid (encountered so
1414 // far).
1415 if (LastValidRegion) {
1416 removeCachedResults(*LastValidRegion);
1417 DetectionContextMap.erase(getBBPairForRegion(LastValidRegion.get()));
1419 LastValidRegion = std::move(ExpandedRegion);
1421 // Create and test the next greater region (if any)
1422 ExpandedRegion =
1423 std::unique_ptr<Region>(LastValidRegion->getExpandedRegion());
1425 } else {
1426 // Create and test the next greater region (if any)
1427 removeCachedResults(*ExpandedRegion);
1428 DetectionContextMap.erase(It.first);
1429 ExpandedRegion =
1430 std::unique_ptr<Region>(ExpandedRegion->getExpandedRegion());
1434 LLVM_DEBUG({
1435 if (LastValidRegion)
1436 dbgs() << "\tto " << LastValidRegion->getNameStr() << "\n";
1437 else
1438 dbgs() << "\tExpanding " << R.getNameStr() << " failed\n";
1441 return LastValidRegion.release();
1444 static bool regionWithoutLoops(Region &R, LoopInfo &LI) {
1445 for (const BasicBlock *BB : R.blocks())
1446 if (R.contains(LI.getLoopFor(BB)))
1447 return false;
1449 return true;
1452 void ScopDetection::removeCachedResultsRecursively(const Region &R) {
1453 for (auto &SubRegion : R) {
1454 if (ValidRegions.count(SubRegion.get())) {
1455 removeCachedResults(*SubRegion.get());
1456 } else
1457 removeCachedResultsRecursively(*SubRegion);
1461 void ScopDetection::removeCachedResults(const Region &R) {
1462 ValidRegions.remove(&R);
1465 void ScopDetection::findScops(Region &R) {
1466 const auto &It = DetectionContextMap.insert(std::make_pair(
1467 getBBPairForRegion(&R), DetectionContext(R, AA, false /*verifying*/)));
1468 DetectionContext &Context = It.first->second;
1470 bool RegionIsValid = false;
1471 if (!PollyProcessUnprofitable && regionWithoutLoops(R, LI))
1472 invalid<ReportUnprofitable>(Context, /*Assert=*/true, &R);
1473 else
1474 RegionIsValid = isValidRegion(Context);
1476 bool HasErrors = !RegionIsValid || Context.Log.size() > 0;
1478 if (HasErrors) {
1479 removeCachedResults(R);
1480 } else {
1481 ValidRegions.insert(&R);
1482 return;
1485 for (auto &SubRegion : R)
1486 findScops(*SubRegion);
1488 // Try to expand regions.
1490 // As the region tree normally only contains canonical regions, non canonical
1491 // regions that form a Scop are not found. Therefore, those non canonical
1492 // regions are checked by expanding the canonical ones.
1494 std::vector<Region *> ToExpand;
1496 for (auto &SubRegion : R)
1497 ToExpand.push_back(SubRegion.get());
1499 for (Region *CurrentRegion : ToExpand) {
1500 // Skip invalid regions. Regions may become invalid, if they are element of
1501 // an already expanded region.
1502 if (!ValidRegions.count(CurrentRegion))
1503 continue;
1505 // Skip regions that had errors.
1506 bool HadErrors = lookupRejectionLog(CurrentRegion)->hasErrors();
1507 if (HadErrors)
1508 continue;
1510 Region *ExpandedR = expandRegion(*CurrentRegion);
1512 if (!ExpandedR)
1513 continue;
1515 R.addSubRegion(ExpandedR, true);
1516 ValidRegions.insert(ExpandedR);
1517 removeCachedResults(*CurrentRegion);
1518 removeCachedResultsRecursively(*ExpandedR);
1522 bool ScopDetection::allBlocksValid(DetectionContext &Context) const {
1523 Region &CurRegion = Context.CurRegion;
1525 for (const BasicBlock *BB : CurRegion.blocks()) {
1526 Loop *L = LI.getLoopFor(BB);
1527 if (L && L->getHeader() == BB) {
1528 if (CurRegion.contains(L)) {
1529 if (!isValidLoop(L, Context) && !KeepGoing)
1530 return false;
1531 } else {
1532 SmallVector<BasicBlock *, 1> Latches;
1533 L->getLoopLatches(Latches);
1534 for (BasicBlock *Latch : Latches)
1535 if (CurRegion.contains(Latch))
1536 return invalid<ReportLoopOnlySomeLatches>(Context, /*Assert=*/true,
1542 for (BasicBlock *BB : CurRegion.blocks()) {
1543 bool IsErrorBlock = isErrorBlock(*BB, CurRegion, LI, DT);
1545 // Also check exception blocks (and possibly register them as non-affine
1546 // regions). Even though exception blocks are not modeled, we use them
1547 // to forward-propagate domain constraints during ScopInfo construction.
1548 if (!isValidCFG(*BB, false, IsErrorBlock, Context) && !KeepGoing)
1549 return false;
1551 if (IsErrorBlock)
1552 continue;
1554 for (BasicBlock::iterator I = BB->begin(), E = --BB->end(); I != E; ++I)
1555 if (!isValidInstruction(*I, Context) && !KeepGoing)
1556 return false;
1559 if (!hasAffineMemoryAccesses(Context))
1560 return false;
1562 return true;
1565 bool ScopDetection::hasSufficientCompute(DetectionContext &Context,
1566 int NumLoops) const {
1567 int InstCount = 0;
1569 if (NumLoops == 0)
1570 return false;
1572 for (auto *BB : Context.CurRegion.blocks())
1573 if (Context.CurRegion.contains(LI.getLoopFor(BB)))
1574 InstCount += BB->size();
1576 InstCount = InstCount / NumLoops;
1578 return InstCount >= ProfitabilityMinPerLoopInstructions;
1581 bool ScopDetection::hasPossiblyDistributableLoop(
1582 DetectionContext &Context) const {
1583 for (auto *BB : Context.CurRegion.blocks()) {
1584 auto *L = LI.getLoopFor(BB);
1585 if (!Context.CurRegion.contains(L))
1586 continue;
1587 if (Context.BoxedLoopsSet.count(L))
1588 continue;
1589 unsigned StmtsWithStoresInLoops = 0;
1590 for (auto *LBB : L->blocks()) {
1591 bool MemStore = false;
1592 for (auto &I : *LBB)
1593 MemStore |= isa<StoreInst>(&I);
1594 StmtsWithStoresInLoops += MemStore;
1596 return (StmtsWithStoresInLoops > 1);
1598 return false;
1601 bool ScopDetection::isProfitableRegion(DetectionContext &Context) const {
1602 Region &CurRegion = Context.CurRegion;
1604 if (PollyProcessUnprofitable)
1605 return true;
1607 // We can probably not do a lot on scops that only write or only read
1608 // data.
1609 if (!Context.hasStores || !Context.hasLoads)
1610 return invalid<ReportUnprofitable>(Context, /*Assert=*/true, &CurRegion);
1612 int NumLoops =
1613 countBeneficialLoops(&CurRegion, SE, LI, MIN_LOOP_TRIP_COUNT).NumLoops;
1614 int NumAffineLoops = NumLoops - Context.BoxedLoopsSet.size();
1616 // Scops with at least two loops may allow either loop fusion or tiling and
1617 // are consequently interesting to look at.
1618 if (NumAffineLoops >= 2)
1619 return true;
1621 // A loop with multiple non-trivial blocks might be amendable to distribution.
1622 if (NumAffineLoops == 1 && hasPossiblyDistributableLoop(Context))
1623 return true;
1625 // Scops that contain a loop with a non-trivial amount of computation per
1626 // loop-iteration are interesting as we may be able to parallelize such
1627 // loops. Individual loops that have only a small amount of computation
1628 // per-iteration are performance-wise very fragile as any change to the
1629 // loop induction variables may affect performance. To not cause spurious
1630 // performance regressions, we do not consider such loops.
1631 if (NumAffineLoops == 1 && hasSufficientCompute(Context, NumLoops))
1632 return true;
1634 return invalid<ReportUnprofitable>(Context, /*Assert=*/true, &CurRegion);
1637 bool ScopDetection::isValidRegion(DetectionContext &Context) const {
1638 Region &CurRegion = Context.CurRegion;
1640 LLVM_DEBUG(dbgs() << "Checking region: " << CurRegion.getNameStr() << "\n\t");
1642 if (!PollyAllowFullFunction && CurRegion.isTopLevelRegion()) {
1643 LLVM_DEBUG(dbgs() << "Top level region is invalid\n");
1644 return false;
1647 DebugLoc DbgLoc;
1648 if (CurRegion.getExit() &&
1649 isa<UnreachableInst>(CurRegion.getExit()->getTerminator())) {
1650 LLVM_DEBUG(dbgs() << "Unreachable in exit\n");
1651 return invalid<ReportUnreachableInExit>(Context, /*Assert=*/true,
1652 CurRegion.getExit(), DbgLoc);
1655 if (!CurRegion.getEntry()->getName().count(OnlyRegion)) {
1656 LLVM_DEBUG({
1657 dbgs() << "Region entry does not match -polly-region-only";
1658 dbgs() << "\n";
1660 return false;
1663 // SCoP cannot contain the entry block of the function, because we need
1664 // to insert alloca instruction there when translate scalar to array.
1665 if (!PollyAllowFullFunction &&
1666 CurRegion.getEntry() ==
1667 &(CurRegion.getEntry()->getParent()->getEntryBlock()))
1668 return invalid<ReportEntry>(Context, /*Assert=*/true, CurRegion.getEntry());
1670 if (!allBlocksValid(Context))
1671 return false;
1673 if (!isReducibleRegion(CurRegion, DbgLoc))
1674 return invalid<ReportIrreducibleRegion>(Context, /*Assert=*/true,
1675 &CurRegion, DbgLoc);
1677 LLVM_DEBUG(dbgs() << "OK\n");
1678 return true;
1681 void ScopDetection::markFunctionAsInvalid(Function *F) {
1682 F->addFnAttr(PollySkipFnAttr);
1685 bool ScopDetection::isValidFunction(Function &F) {
1686 return !F.hasFnAttribute(PollySkipFnAttr);
1689 void ScopDetection::printLocations(Function &F) {
1690 for (const Region *R : *this) {
1691 unsigned LineEntry, LineExit;
1692 std::string FileName;
1694 getDebugLocation(R, LineEntry, LineExit, FileName);
1695 DiagnosticScopFound Diagnostic(F, FileName, LineEntry, LineExit);
1696 F.getContext().diagnose(Diagnostic);
1700 void ScopDetection::emitMissedRemarks(const Function &F) {
1701 for (auto &DIt : DetectionContextMap) {
1702 auto &DC = DIt.getSecond();
1703 if (DC.Log.hasErrors())
1704 emitRejectionRemarks(DIt.getFirst(), DC.Log, ORE);
1708 bool ScopDetection::isReducibleRegion(Region &R, DebugLoc &DbgLoc) const {
1709 /// Enum for coloring BBs in Region.
1711 /// WHITE - Unvisited BB in DFS walk.
1712 /// GREY - BBs which are currently on the DFS stack for processing.
1713 /// BLACK - Visited and completely processed BB.
1714 enum Color { WHITE, GREY, BLACK };
1716 BasicBlock *REntry = R.getEntry();
1717 BasicBlock *RExit = R.getExit();
1718 // Map to match the color of a BasicBlock during the DFS walk.
1719 DenseMap<const BasicBlock *, Color> BBColorMap;
1720 // Stack keeping track of current BB and index of next child to be processed.
1721 std::stack<std::pair<BasicBlock *, unsigned>> DFSStack;
1723 unsigned AdjacentBlockIndex = 0;
1724 BasicBlock *CurrBB, *SuccBB;
1725 CurrBB = REntry;
1727 // Initialize the map for all BB with WHITE color.
1728 for (auto *BB : R.blocks())
1729 BBColorMap[BB] = WHITE;
1731 // Process the entry block of the Region.
1732 BBColorMap[CurrBB] = GREY;
1733 DFSStack.push(std::make_pair(CurrBB, 0));
1735 while (!DFSStack.empty()) {
1736 // Get next BB on stack to be processed.
1737 CurrBB = DFSStack.top().first;
1738 AdjacentBlockIndex = DFSStack.top().second;
1739 DFSStack.pop();
1741 // Loop to iterate over the successors of current BB.
1742 const Instruction *TInst = CurrBB->getTerminator();
1743 unsigned NSucc = TInst->getNumSuccessors();
1744 for (unsigned I = AdjacentBlockIndex; I < NSucc;
1745 ++I, ++AdjacentBlockIndex) {
1746 SuccBB = TInst->getSuccessor(I);
1748 // Checks for region exit block and self-loops in BB.
1749 if (SuccBB == RExit || SuccBB == CurrBB)
1750 continue;
1752 // WHITE indicates an unvisited BB in DFS walk.
1753 if (BBColorMap[SuccBB] == WHITE) {
1754 // Push the current BB and the index of the next child to be visited.
1755 DFSStack.push(std::make_pair(CurrBB, I + 1));
1756 // Push the next BB to be processed.
1757 DFSStack.push(std::make_pair(SuccBB, 0));
1758 // First time the BB is being processed.
1759 BBColorMap[SuccBB] = GREY;
1760 break;
1761 } else if (BBColorMap[SuccBB] == GREY) {
1762 // GREY indicates a loop in the control flow.
1763 // If the destination dominates the source, it is a natural loop
1764 // else, an irreducible control flow in the region is detected.
1765 if (!DT.dominates(SuccBB, CurrBB)) {
1766 // Get debug info of instruction which causes irregular control flow.
1767 DbgLoc = TInst->getDebugLoc();
1768 return false;
1773 // If all children of current BB have been processed,
1774 // then mark that BB as fully processed.
1775 if (AdjacentBlockIndex == NSucc)
1776 BBColorMap[CurrBB] = BLACK;
1779 return true;
1782 static void updateLoopCountStatistic(ScopDetection::LoopStats Stats,
1783 bool OnlyProfitable) {
1784 if (!OnlyProfitable) {
1785 NumLoopsInScop += Stats.NumLoops;
1786 MaxNumLoopsInScop =
1787 std::max(MaxNumLoopsInScop.getValue(), (unsigned)Stats.NumLoops);
1788 if (Stats.MaxDepth == 0)
1789 NumScopsDepthZero++;
1790 else if (Stats.MaxDepth == 1)
1791 NumScopsDepthOne++;
1792 else if (Stats.MaxDepth == 2)
1793 NumScopsDepthTwo++;
1794 else if (Stats.MaxDepth == 3)
1795 NumScopsDepthThree++;
1796 else if (Stats.MaxDepth == 4)
1797 NumScopsDepthFour++;
1798 else if (Stats.MaxDepth == 5)
1799 NumScopsDepthFive++;
1800 else
1801 NumScopsDepthLarger++;
1802 } else {
1803 NumLoopsInProfScop += Stats.NumLoops;
1804 MaxNumLoopsInProfScop =
1805 std::max(MaxNumLoopsInProfScop.getValue(), (unsigned)Stats.NumLoops);
1806 if (Stats.MaxDepth == 0)
1807 NumProfScopsDepthZero++;
1808 else if (Stats.MaxDepth == 1)
1809 NumProfScopsDepthOne++;
1810 else if (Stats.MaxDepth == 2)
1811 NumProfScopsDepthTwo++;
1812 else if (Stats.MaxDepth == 3)
1813 NumProfScopsDepthThree++;
1814 else if (Stats.MaxDepth == 4)
1815 NumProfScopsDepthFour++;
1816 else if (Stats.MaxDepth == 5)
1817 NumProfScopsDepthFive++;
1818 else
1819 NumProfScopsDepthLarger++;
1823 ScopDetection::DetectionContext *
1824 ScopDetection::getDetectionContext(const Region *R) const {
1825 auto DCMIt = DetectionContextMap.find(getBBPairForRegion(R));
1826 if (DCMIt == DetectionContextMap.end())
1827 return nullptr;
1828 return &DCMIt->second;
1831 const RejectLog *ScopDetection::lookupRejectionLog(const Region *R) const {
1832 const DetectionContext *DC = getDetectionContext(R);
1833 return DC ? &DC->Log : nullptr;
1836 void ScopDetection::verifyRegion(const Region &R) const {
1837 assert(isMaxRegionInScop(R) && "Expect R is a valid region.");
1839 DetectionContext Context(const_cast<Region &>(R), AA, true /*verifying*/);
1840 isValidRegion(Context);
1843 void ScopDetection::verifyAnalysis() const {
1844 if (!VerifyScops)
1845 return;
1847 for (const Region *R : ValidRegions)
1848 verifyRegion(*R);
1851 bool ScopDetectionWrapperPass::runOnFunction(Function &F) {
1852 auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
1853 auto &RI = getAnalysis<RegionInfoPass>().getRegionInfo();
1854 auto &AA = getAnalysis<AAResultsWrapperPass>().getAAResults();
1855 auto &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE();
1856 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
1857 auto &ORE = getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE();
1858 Result.reset(new ScopDetection(F, DT, SE, LI, RI, AA, ORE));
1859 return false;
1862 void ScopDetectionWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
1863 AU.addRequired<LoopInfoWrapperPass>();
1864 AU.addRequiredTransitive<ScalarEvolutionWrapperPass>();
1865 AU.addRequired<DominatorTreeWrapperPass>();
1866 AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
1867 // We also need AA and RegionInfo when we are verifying analysis.
1868 AU.addRequiredTransitive<AAResultsWrapperPass>();
1869 AU.addRequiredTransitive<RegionInfoPass>();
1870 AU.setPreservesAll();
1873 void ScopDetectionWrapperPass::print(raw_ostream &OS, const Module *) const {
1874 for (const Region *R : Result->ValidRegions)
1875 OS << "Valid Region for Scop: " << R->getNameStr() << '\n';
1877 OS << "\n";
1880 ScopDetectionWrapperPass::ScopDetectionWrapperPass() : FunctionPass(ID) {
1881 // Disable runtime alias checks if we ignore aliasing all together.
1882 if (IgnoreAliasing)
1883 PollyUseRuntimeAliasChecks = false;
1886 ScopAnalysis::ScopAnalysis() {
1887 // Disable runtime alias checks if we ignore aliasing all together.
1888 if (IgnoreAliasing)
1889 PollyUseRuntimeAliasChecks = false;
1892 void ScopDetectionWrapperPass::releaseMemory() { Result.reset(); }
1894 char ScopDetectionWrapperPass::ID;
1896 AnalysisKey ScopAnalysis::Key;
1898 ScopDetection ScopAnalysis::run(Function &F, FunctionAnalysisManager &FAM) {
1899 auto &LI = FAM.getResult<LoopAnalysis>(F);
1900 auto &RI = FAM.getResult<RegionInfoAnalysis>(F);
1901 auto &AA = FAM.getResult<AAManager>(F);
1902 auto &SE = FAM.getResult<ScalarEvolutionAnalysis>(F);
1903 auto &DT = FAM.getResult<DominatorTreeAnalysis>(F);
1904 auto &ORE = FAM.getResult<OptimizationRemarkEmitterAnalysis>(F);
1905 return {F, DT, SE, LI, RI, AA, ORE};
1908 PreservedAnalyses ScopAnalysisPrinterPass::run(Function &F,
1909 FunctionAnalysisManager &FAM) {
1910 OS << "Detected Scops in Function " << F.getName() << "\n";
1911 auto &SD = FAM.getResult<ScopAnalysis>(F);
1912 for (const Region *R : SD.ValidRegions)
1913 OS << "Valid Region for Scop: " << R->getNameStr() << '\n';
1915 OS << "\n";
1916 return PreservedAnalyses::all();
1919 Pass *polly::createScopDetectionWrapperPassPass() {
1920 return new ScopDetectionWrapperPass();
1923 INITIALIZE_PASS_BEGIN(ScopDetectionWrapperPass, "polly-detect",
1924 "Polly - Detect static control parts (SCoPs)", false,
1925 false);
1926 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass);
1927 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass);
1928 INITIALIZE_PASS_DEPENDENCY(RegionInfoPass);
1929 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass);
1930 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass);
1931 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass);
1932 INITIALIZE_PASS_END(ScopDetectionWrapperPass, "polly-detect",
1933 "Polly - Detect static control parts (SCoPs)", false, false)